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ABSTRACT

Carbon nanotubes with few walls (FWCNTs) are prepared by catalytic chemical 
vapor deposition. Transmission electron microscopy investigations for each 
sample show the average number of walls (3, 4 and 8) as well as the internal and 
external diameter distributions. Binder-free FWCNT monoliths are prepared by 
spark plasma sintering (SPS) at temperatures in the range 1000–1600 �C. A 
combination of techniques including Raman spectroscopy, scanning- and 
transmission electron microscopy, electron microdiffraction is used to charac-

terize the samples. Compared to the FWCNT powders, the high temperatures 
used for SPS favor the elimination of surface defects in CNT walls but also some 
limited amorphization, without dramatic damage to the CNTs. Increasing the 
SPS temperatures produces an increase in densification. N2 adsorption–des-

orption cycles revealed that the powders and monoliths show microporosity 
and, mostly, mesoporosity. Some monoliths show a specific surface area equal to 
about 500 m2/g. The 4WCNTs when consolidated into monoliths by SPS at 1000 
or 1100 �C are able to retain a high amount of mesoporosity that contributes to a 
high porous volume of the order of 0.8 cm3/g.

Introduction

Carbon nanotube (CNT) monoliths (also denoted as 
CNT compacts) are attracting much interest because 
they may have exceptional physical [1–7] and 
mechanical properties [8–13]. They may present some 
meso- and macro-porosity [14–16] and are considered 
biocompatible [11, 12]. To the best of our knowledge, 
all reported works are performed on multi-walled

CNTs (MWCNTs) with outer diameters typically in

the range 10–50 nm, corresponding to CNTs with

about 10–50 walls [17], except one report using sin-

gle-wall CNTs (SWCNTs) [10] and one using double-

walled CNTs (DWCNTs) [15]. Few-walled carbon

nanotubes (FWCNTs) have 3–6 walls (some authors

[18] also include the DWCNTs) and show both the

high aspect ratio of SWCNTs and DWCNTs and the

robustness of MWCNTs while containing less
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structural defects than the latter, making them 
interesting for many applications [18–22]. The aim of 
the present paper is to prepare binder-free FWCNTs 
monoliths by spark plasma sintering and to investi-

gate the density, presence of defects and porosity. 
Some monoliths show a specific surface area about 
500 m2/g as well as micro- and mesoporosity and 
high porous volume.

Materials and methods

Carbon nanotubes

The FWCNTs were synthesized by a catalytic chem-

ical vapor deposition (CCVD) route described else-

where [23, 24]. First, two oxide powders were 
prepared, the formulas of which are written as 
Mg0.99(Co0.33Mo0.67)0.01 and Mg0.90(Co0.33Mo0.67)0.10 

for commodity and are denoted powders A and B, 
respectively. Indeed, free MoO3 particles are present 
because the molybdenum ions do not enter the rock 
salt lattice of MgO. Powders A and B were submitted 
to a CCVD treatment (H2–CH4 with 18 and 36 mol%

CH4, respectively, heating and cooling rates 5 �C 
min-1, maximum temperature 1000 �C, no dwell). 
This produced CNT-Co–Mo2C–MgO, denoted pow-

ders AR and BR, respectively, which were soaked in a 
37% HCl aqueous solution in order to dissolve MgO 
as well as unprotected Co and Mo2C particle [25]. 
Indeed, previous studies [26, 27] have shown that 
unlike nitric acid or other oxidizing acids, HCl does 
not damage the CNTs (no opening of the CNTs, no 
oxidation of the tips and defects which may be pre-

sent on the outer sidewalls). The acidic suspensions 
were filtered on 0.45 mm pore size cellulose nitrate 
membranes (Whatman) and washed with deionised 
water until neutrality and subsequently filtered and 
washed with ethanol. Finally, the samples were dried 
overnight at 80 �C in air. The CNT powders derived 
from the A and B powders will be denoted 3WCNT 
and 4WCNT hereafter, respectively, denoting the 
average number of walls (N) as discussed later in the 
text. For the sake of comparison, an MWCNT powder 
was purchased from Nanocyl (Belgium). It was pre-

pared using a CCVD route but the precise experi-

mental details are not known to the authors. A 
previous study [28] revealed that N is equal to 8 and 
therefore the MWCNT sample will be denoted 
8WCNT hereafter.

Spark plasma sintering

The CNT powders were divided into several batches, 
which were consolidated by spark plasma sintering 
(SPS, Dr Sinter 2080, SPS Syntex Inc., Japan). They 
were loaded into a 8-mm inner diameter graphite die. 
A sheet of graphitic paper was placed between the 
punch and the powder as well as between the die and 
the powder for easy removal. The powders were 
sintered in vacuum (residual cell pressure \ 10 Pa). 
A pulse pattern of twelve current pulses followed by 
two periods of zero current was used. A heating rate 
of 300 �C/min was used from room temperature to 
600 �C, where a 1-min dwell was applied. A uniaxial 
charge was gradually applied during the ramp and 
dwell, reaching a value corresponding to 100 MPa on 
the pellet. Then, the temperature was raised (100 �C/

min) to a maximum in the range 1000–1600 �C, as 
required for the study, where a 3-min dwell was 
applied. An optical pyrometer, focused on a little 
hole at the outer surface of the die, was used to 
control the temperature. Natural cooling was applied 
down to room temperature, and the uniaxial load 
was gradually released during the same time. The 
sintered specimens were in the form of pellets 8 mm 
in diameter and about 2 mm thick. The sintered 
specimens will be noted as in the following example: 
3W1100, 3W indicating that the 3WCNT powder was 
used and 1100 denoting a SPS temperature equal to 
1100 �C.

Characterization

The composite powders and CNT samples were 
observed by field-emission gun scanning electron 
microscopy (FESEM, JEOL JSM 6700F) and trans-

mission electron microscopy (TEM, JEOL JSM 2100F 
operated at 200 kV). The carbon content in the CNT 
powders was determined by flash combustion. N2 

adsorption–desorption isotherms of the CNT pow-

ders and monoliths were measured at liquid–N2 

temperature (Micromeritics ASAP 2020). The samples 
were previously degassed by heating at 120 �C under 
a primary vacuum for 12 h. Specific surface areas 
(SBET) were calculated using the BET equation. Pore 
size distributions were calculated from the desorp-

tion branch using the non-local density functional 
theory (NLDFT) kernel in the MicroActive 3.00 soft-

ware. Selected samples were studied by Raman 
spectroscopy (Jobin–Yvon LabRAM HR800



spectrometer using the 633 nm laser excitation). The

density of the pellets was calculated from their

weight and dimensions. A selected monolith was

observed by FESEM and TEM. Focused Ion Beam

(FIB) FESEM (FEI Helios 600i) was used for the

preparation of a cross-sectional foil of the monolith

for TEM observations. Prior to cutting with a focused

Ga? ions beam (maximum current 65 nA), a strip of

Pt was deposited above the area of interest in order to

protect it from ablation and Ga-implantation during

preparation. Energy-dispersive X-ray spectroscopy

(EDS, Bruker Silicon drift detector (SDD) with a res-

olution of 127 eV) and electron microdiffraction were

performed during TEM observations.

Results and discussion

Carbon nanotube powders

The carbon content in powders AR and BR is equal to 
15.00 and 87.10 ± 0.02 wt%, respectively. FESEM 
images of powder AR (Fig. 1a, c) reveal the presence 
of long, flexible filaments, with a smooth and regular 
surface, on the surface of the oxide grains and 
bridging several grains. No thick, short carbon 
nanofibers are observed. All filaments have a diam-

eter lower than 30 nm and a length on the order of 
some tens of micrometers. From the results of pre-

vious studies [23, 24, 29], it is known that such fila-

ments are isolated CNTs and/or CNTs bundles. For

1 µm

100 nm

1 µm

100 nm

(a) (b)

(c) (d)

Figure 1 FESEM images of the CNT-Co/Mo–MgO composite powders: a, c powder AR and b, d powder BR.

Table 1 Average number of walls (N), average internal diam-
eter (dint), average external diameter (dext) and approximate
length (L) of the CNTs, theoretical density of the CNT (q0),

carbon content in the CNT samples (Ce) (the balance is mostly
adsorbed water and residual metal catalyst), Raman ID/IG ratio,
specific surface area of the CNT samples (SBET)

Specimen N dint (nm) dext (nm) L (lm) q0 (g/cm
3) Ce ± 0.2 (wt%) ID/IG SBET (m2/g)

3WCNT 2.7 2.1 3.5 [ 5 2.09 90.5 0.08 534

4WCNT 3.6 2.6 4.6 [ 5 2.06 97.3 0.16 493

8WCNT 8.5 5.1 10.2 \ 1.5 1.83 91.8 1.90 242



BR (Fig. 1b, d), the CNT bundles are so numerous, in

agreement with the high carbon content, that they

completely cover the oxide grains. The selective

reduction of the starting oxide leads to the formation

of nanometric Co particles which immediately cat-

alyze the decomposition of CH4, which is helped by

increasing proportions of MoO3 [24, 25] and are thus

progressively loaded with carbon atoms (activation

of the nanoparticles). The carbon concentration in the

nanoparticles then increases until reaching the solu-

bility limit, followed by the nucleation and growth of

a single CNT on each activated metal particle [30]. It

is a complex balance between the relative global

proportions of amounts of catalyst (Co), activator

(MoO3) and carbon source (CH4) that determine the

local conditions around each activated particle which

will in turn determine the number of walls of the

corresponding CNT [24, 25, 31–33].

The carbon content in the CNT powders (Ce—

Table 1) is equal to 90.5 wt% for 3WCNT, 97.3 wt%

for 4WCNT and 91.8 wt% for and the commercial

8WCNT sample. The balance corresponds mostly to

adsorbed water and residual Co and Mo2C particles.

The CNT powders were investigated by TEM. Typi-

cal images are shown in Fig. 2. The presence of

structural defects along the CNT walls and non-

tubular carbon at their surface may result from

degradation under the electron beam, although it is

clear that the 8WCNTs (Fig. 2c) contain significantly

more defect such as kinks, uncompleted walls, bam-

boo-like structure and variation of the diameter,

along the length of the CNTs. They also are not

bundled. The number of walls was measured for

about 100 CNTs on HRTEM images. The average

number of walls (N) is shown in Table 1. For the

3WCNT specimen (Fig. 3a), CNTs with 1–7 walls are

observed. The DWCNTs are dominant (40%) with

3WCNTs (29%) the second most abundant CNTs. N

is equal to 2.7 which was rounded to 3. For the

4WCNT specimen (Fig. 3b), CNTs with 1–7 walls are

also observed but now the 4WCNTs are dominant

(30%) with 3WCNTs (28%) the second most abundant

CNTs. N is equal to 3.6 which was rounded to 4. For

the 8WCNT sample (Fig. 3c), CNTs with 3–22 walls

are observed. The 8WCNTs are dominant (30%) with

7WCNTs and 9WCNTs (both 16%) the second most

abundant CNTs. N is equal to 8.5 which was rounded

to 8. The internal and external diameter distribution

also derived from HRTEM measurements are shown

on the right-side panel of Fig. 3. The average internal

and external diameter (dint and dext—Table 1) are in

excellent agreement with the empirical law giving the

correlation with N for a population of MWCNTs

(a)

20 nm 5 nm

(b)

10 nm 5 nm

(c)

100 nm 10 nm

Figure 2 TEM images showing typical CNTs present in the

a 3WCNT, b 4WCNT and c 8WCNT samples.



prepared by CCVD [17]. The theoretical density of

the CNTs (q0—Table 1) was calculated using the

CNT density chart [34]. It was also attempted to

evaluate CNT length (L—Table 1) on transmission

electron microscopy images, although it is very dif-

ficult for the 3WCNT and 4WCNT samples because

the CNTs tend to form bundles as noted above.

The Raman spectra of the CNT powders are com-

pared in Fig. 4. ID/IG represents the ratio between the

intensity of the D band (about 1320 cm-1) and the G

band (about 1580 cm-1). An increasing ID/IG value

(8, 16 and 190% for 3WCNT, 4WCNT and 8WCNT,

respectively) was reported to reflect defective sites or

sp3-hybridized carbon atoms [13], accounting for

defects in CNT walls and disordered material

surrounding the CNTs [26]. The low-frequency range

of the spectra for 3WCNT (Fig. 4a) and 4WCNT

(Fig. 4b) shows radial breathing mode (RBM) peaks,

indicating the presence of small-diameter CNTs, such

as SWCNTs and DWCNTs, in agreement with TEM

data (Fig. 3). Note that the Raman process is influ-

enced by optical resonance, and it is thus impossible

to detect all present CNTs using only one wave-

length. Moreover, the peak intensities do not reflect

the real amount of individual CNT because the res-

onance effect amplifies the Raman signal from certain

CNTs.

The CNT powders exhibit a N2 sorption isotherm

(Fig. 5 left-side panel) with a narrow hysteresis loop

at relative pressures from 0.7 to 1.0 and adsorbed
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Figure 3 Distribution of the number of walls for the CNTs in the

a 3WCNT, b 4WCNT and c 8WCNT samples; distribution of the

internal (open bars) and external (solid bars) diameters for the

CNTs in the d 3WCNT, e 4WCNT and f 8WCNT samples. The

number of individual CNTs measured is indicated.



volumes (1000–2500 m2/g) in line with other reports

for thin MWCNTs [35], DWCNTs [15, 36] and

SWCNTs [37, 38]. The shape of the isotherm and

specifically the presence of the hysteresis loop points

to a type IV isotherm, one of the six types of isotherm

recognized by the IUPAC classification and charac-

teristic of mesoporous adsorbents (i.e., the pore size

diameter is in the range 2–50 nm) [39]. Observation of

the low-pressure domain (insets in Fig. 5) reveals 
some microporosity. The mesopore size distributions 
are very broad (Fig. 5 right-side panel), reflecting 
mostly the inter-tube space in the specimen [15, 36]. 
The BET-specific surface area of the samples (SCNT—

Table 1) decreases upon the increase in number of 
walls of the CNTs (534, 493 and 242 m2/g for 
3WCNT, 4WCNT and 8WCNT, respectively), in 
agreement with calculations from geometrical data 
(number of walls and diameter) [40].

Carbon nanotube monoliths

The density (q—Table 2) of the monoliths increases 
upon the increase in the SPS temperature. An esti-

mation of the relative density as if the samples were 
pure carbon, and thus calculated using the theoretical 
density (q0—Table 1), gives values in the range 
45–62% for 3WCNT, slightly lower (36–53%) for 
4WCNT and slightly higher (57–70%) for 8WCNT. 
The values change only slightly if one takes into 
account the presence of some residual catalyst as 
noted above. Both values are nevertheless included in 
Table 2. Note that no attempt was made to evaluate if 
the proportion of residual catalyst changed upon SPS. 
It has been reported [41, 42] that the heat-treatment of 
the MWCNTs has to be performed at temperatures 
above 1800 �C (or 1500 �C) to be an efficient method 
for removing residual metals. The present SPS are 
performed a temperatures in the range 1000–1500 �C; 
therefore, any change would be very small. The 
higher density values for the 8WCNTs could reflect 
that their shorter length has favored packing. The 
difference between the 3WCNTs and 4WCNTs could 
be due to a higher stiffness for the latter. The Raman 
spectra of the 4WCNT monoliths (Fig. 6) show little 
change compared to the spectrum of the corre-

sponding 4WCNT powder sample (Fig. 4b). RBM 
peaks (insets in Fig. 6) are still detected indicating the 
continuous presence of small-diameter CNTs in all 
the 4WCNT monoliths. For some samples, 4W1200 
(Fig. 6c) and 4W1500 (Fig. 6f), a weak band at 
1720 cm-1 is detected. Upon closer inspection, it is 
present but extremely weak on most spectra includ-

ing for the 4WCNT powder (Fig. 4b) and although it 
is still unclear, it could reflect the presence of disor-

dered carbon due to the influence of the local applied 
pressure on the different walls, including amor-

phization, ovalization and collapse [43–45]. The 
Raman ID/IG ratio for the monoliths (Table 2) is
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Figure 4 Raman spectra of the a 3WCNT, b 4WCNT and

c 8WCNT samples. Insets are the low-frequency area showing

radial breathing mode peaks.
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Figure 5 N2 adsorption–

desorption isotherms (77 K)

for the a 3WCNT, b 4WCNT

and c 8WCNT samples (insets

show the low-pressure range);

pore size distribution as

deduced from N2 desorption

curves for the CNTs in the

d 3WCNT, e 4WCNT and

f 8WCNT samples.

Table 2 Experimental data

for the different monoliths:

CNT specimen, SPS

temperature (TSPS), density

(q), relative density (d),

Raman ID/IG ratio, specific

surface area (SBET), porous

volume (VP)

CNT specimen TSPS (�C) q (g/cm3) d (%) ID/IG SBET (m2/g) Vp (cm
3/g)

3WCNT 1000 1.01 45–48 0.05 505 0.389

3WCNT 1100 1.06 47–51 0.06 538 0.390

3WCNT 1200 1.15 51–55 0.08 613 0.462

3WCNT 1300 1.15–1.22 51–58 0.09 401* –

3WCNT 1400 1.15 51–55 0.09 364* –

3WCNT 1500 1.30 58–62 0.22 232 0.160

4WCNT 1000 0.76 36–37 0.08 487 0.899

4WCNT 1100 0.94 45–46 0.13 484 0.734

4WCNT 1300 0.97 46–47 0.14 412* –

4WCNT 1400 1.05 50–51 0.15 402* –

4WCNT 1500 1.09 52–53 0.20 310 0.340

8WCNT 1300 1.10 56–60 1.57 214 0.264

8WCNT 1400 1.17 60–64 1.65 – –

8WCNT 1500 1.24 63–68 1.51 – –

8WCNT 1600 1.29 66–70 1.69 211 0.213

*Date from a one-point measurement (i.e., one adsorption pressure)



lower than that found prior to consolidation

(Table 1), which could reflect the elimination of sur-

face defects and formational defects in the CNT outer

walls by a thermal annealing effect during SPS.

Indeed, other authors [41, 42, 46] have reported that

oxygen functional groups can be selectively removed

from a CNT surface and formational defects can

anneal out at relatively low temperatures, below

1600 �C, whereas microstructural defects within the

MWCNT structure require subsequent annealing at

much higher temperatures (typically above 3000 �C).

The trend, however, is that the ID/IG ratio increases

upon the increase in temperature and this density

(Fig. 7). As mentioned above, this could also reflect

the presence of disordered material surrounding the

CNTs [26] and the limited formation of amorphous-

like carbon forms during the SPS treatment It has

been reported [47] that single-wall CNTs prepared by

arc-discharge, with a very narrow diameter distri-

bution (in the range 1.33–1.52 nm), are progressively

transformed into graphite-like and amorphous-like

structures during the SPS process, the latter embed-

ding the remaining CNT bundles. The general evo-

lution should be the same in our case but using CNT

samples with a distribution in diameters and number

of walls and thus a distribution of defects along their

length, any effect is more difficult to observe and

anyway the Raman spectra show that the formation

of amorphous-like structures during the SPS process

is limited.
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Figure 6 Raman spectra of

the 4WCNT monoliths:

a 4W1000, b 4W1100,

c 4W1200, d 4W1300,

e 4W1400 and f 4W1500.

Insets are the low-frequency

area showing radial breathing

mode peaks.



The CNT sorption isotherms of selected monoliths

are presented in Fig. 8. The specific surface area

(SBET—Table 2) for the 3W monoliths tends to ini-

tially slightly increase upon the increase in SPS tem-

perature, from 534 m2/g for 3WCNT to 613 m2/g for

3W1200, and then regularly decreases. For the 4W

monoliths, SBET stays constant ([ 480 m2/g) up to

4W1200 and then also regularly decreases down to
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Figure 7 Raman ID/IG ratio versus density for the 3WCNT(tri-

angles) and 4WCNT(circles) monoliths. The dotted lines are

guides to the eye.
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Figure 9 Pore size distribution as deduced from N2 desorption

curves for selected monoliths: a 3W1000 (solid red) and 3W1500

(dotted red), b 4W1000 (solid black) and 4W1500 (dotted black),

c 8W1300 (solid blue) and 8W1600 (dotted blue). Insets show the

micropore range.



310 m2/g for 4W1500. SBET of 500 m2/g was reported

for spatially aligned arrays of large (inner diameter

equal to 8 mm) DWCNTs [36]. For the 8W monoliths

(ca. 210 m2/g), the decrease compared to the 8WCNT

powder (242 m2/g) is very moderate. The 4W1000

isotherm stands out because it still shows a hysteresis

loop over a wide range of relative pressure, indicat-

ing a wide range of mesopore sizes. It is widely

accepted that there is a correlation between the shape

of the hysteresis loop and the texture (pore size dis-

tribution, pore geometry and connectivity) of a

mesoporous material [39]. Moreover, the adsorbed

volume (about 600 cm3/g) is markedly higher than

for the other monoliths. By contrast, the isotherm for

4W1500, like those for 3W1000, 3W1500, 8W1300 and

8W1600, shows a IUPAC classification H2 loop [39]

indicating materials that are often disordered, where

the distribution of pore size and shape is not well

defined and also indicative of bottleneck constrictions

and interconnecting mesopores. The pore size distri-

butions reveal that the 4W1000 monolith (solid line in

Fig. 9b) retains mesopores over a wide range from 2

to over 20 nm, whereas the 4W1500 monolith (dotted

line in Fig. 9b) and the 3W (Fig. 9a) and the 8W

monoliths (Fig. 9c) have a much narrower pore size

distribution, with a maximum diameter at 12, 10 or

6 nm depending on CNT sample and temperature.

The fact that other authors [15, 16] use the Barrett–

Joyner–Halenda (BJH) method for calculating the

pore size distributions, as opposed to the NLDFT

method here, makes it difficult to make comparisons.

The BJH method is not fit for pore diameters below

1.7 nm. The volume adsorbed at very low pressure

(micropores domain) is similar to that found prior to

consolidation and the corresponding pore size dis-

tributions (insets in Fig. 9) show two more or less

defined micropore ranges, 0.5–1.0 nm and

1.4–1.9 nm. This could reflect a partial opening of the

CNTs [37]. The present values for SBET and pore size

distribution are in line with the values reported for

carbon monoliths for non-activated carbon (KOH-

activation is known to increase the specific surface

area and microporosity) and possible applications

could be as oil or gas sorbents [16, 48–50]. The porous

volume (Vp—Table 2) for 4W1000 (0.899 cm3/g) and

4W1100 (0.734 cm3/g) is, however, significantly (2–3

times) higher than for the other present monoliths

and those reported elsewhere [16, 49, 50]. Thus, it

appears that the 4WCNTs when consolidated into

monoliths by SPS at 1000 or 1100 �C are able to

somewhat resist consolidation and to retain some

high amount of mesoporosity above 10 nm which

contributes to a high porous volume. Compared to

the 3WCNT monoliths with the same SBET but half

the porous volume, this could reflect a particular

combination of CNT length, flexibility, proportion of

defects as well as sample purity and deserves further

studies.

The 4W1500 monolith, with a narrow pores size

distribution (dotted line in Fig. 9b), was selected for

further characterization. FESEM images of the top

surface (Fig. 10b) and cross section (Fig. 10b) reveal

undamaged CNTs and CNT bundles. TEM images of

the 4W1500 thin foil prepared by FIB are presented in

Fig. 11. Bundles of 4WCNT are observed (between

the dashed lines in Fig. 11a), indicating that they

were not destroyed by FIB milling, therefore vali-

dating the method for subsequent TEM observations

of CNT monoliths. Interestingly, no pores are

(a)

200 nm

100 nm

(b)

Figure 10 FESEM images of the 4W1500 monolith: a top-view

and b cross-sectional view.



observed at this scale. Nanometric particles are also

evidenced (dark contrasts arrowed in Fig. 11a).

Analysis of the EDS pattern (Fig. 11b) of the corre-

sponding area reveals the presence of carbon, cobalt

and molybdenum elements originating from the

CNTs and residual Co and Mo2C catalytic nanopar-

ticles. The detection of copper and platinum reflects

the thin foil Cu support and to the FIB preparation

involving a Pt deposit, respectively. Note that EDS is

too local a probe for quantitative assessment of the

content of residual catalyst in the monolith and, as

noted above, that the present SPS temperatures are

too low to massively remove the residual metals.

HRTEM images (Fig. 11c, d) reveal pores between 2

and 10 nm in size, in good agreement with the cor-

responding pore size distribution deduced from the

N2 desorption curve (2–12 nm, dotted line in Fig. 9b).

The cross sections of several FWCNTs are clearly

observed (Fig. 11d), but it is not possible to prove that

they are open and contribute to the porosity. An

electron microdiffraction pattern (inset in Fig. 11d)

recorded in an area devoid of nanoparticles presents

four rings corresponding to the (002), (101), (004) and

(110) planes of graphite, reflecting the spatial disor-

ganization of the 4WCNTs within the monolith.

Summary and conclusions

Carbon nanotubes with few walls (FWCNTs) are 
prepared by catalytic chemical vapor deposition. The 
average number of walls (3, 4 and 8) and the internal 
and external diameter distributions are determined 
from TEM images. The 3WCNTs and 4WCNTs pre-

pared in-house show less defects than the commer-

cial 8WCNTs. Binder-free FWCNTs monoliths are 
prepared by spark plasma sintering of the CNT 
powders at 1000–1600 �C. The high temperatures 
favor the elimination of surface defects of the 
FWCNT, although there is a progressive albeit lim-

ited amorphization upon the increase in SPS tem-

perature. No dramatic damage to the CNTs is 
detected by FESEM and HRTEM observations. Den-

sification increases moderately upon the increase in 
SPS temperature and most monoliths show a density 
close to about 1 cm3/g.

(c)

20 nm

(a)

5 nm

(d)
(002)
(101)
(004)

(110)

5 nm

(b)

Figure 11 TEM images of the

4W1500 monolith thin foil

showing a bundles of 4WCNT

(between the dashed lines) and

nanometric particles (dark

contrasts arrowed in the boxed

area); b EDS pattern of the

corresponding area; c and

d HRTEM images showing

reveal pores 2–10 nm in size,

and the cross sections of

several FWCNTs. Inset in d is

an electron microdiffraction

pattern recorded in an area

devoid of nanoparticles.



N2 adsorption–desorption cycles revealed that the 
powders and monoliths show microporosity and, 
mostly, mesoporosity. The 3WCNT and 4WCNT 
monoliths sintered at 1000 and 1100 �C show a 
specific surface area equal to about 500 m2/g, with 
very little losses compared to the corresponding 
powders. Interestingly, the 4WCNT monoliths are 
able to retain a high amount of mesoporosity in the 
10–20 nm range and thus they show a high porous 
volume of the order of 0.8 cm3/g, twice the value 
reported found for other CNT monoliths or foams. 
The difference between the 3WCNTs and 4WCNTs 
could reflect a particular combination of CNT length, 
flexibility and proportion of defects and warrants 
further studies.
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