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Multidimensional stability of planar traveling waves for the scalar

nonlocal Allen-Cahn equation
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1CAMS - Ecole des Hautes Etudes en Sciences Sociales, 190-198 avenue de France, 75013, Paris, France

September 16, 2015

Abstract

We prove the multidimensional stability of planar traveling waves for scalar nonlocal Allen-Cahn

equations using semigroup estimates. We show that if the traveling wave is spectrally stable in one

space dimension, then it is stable in n-space dimension, n ≥ 2, with perturbations of the traveling wave

decaying like t−(n−1)/4 as t→ +∞ in Hk(Rn) for k ≥
[
n+1
2

]
.

Key words: Nonlocal equation; Traveling wave; Nonlinear stability.

AMS subject classifications: 35K57, 34K20 and 47D06.

1 Introduction

We consider the scalar nonlocal Allen-Cahn equation

∂tu(x, t) = −u(x, t) +

∫
Rn
K(x− y)u(y, t)dy + f(u(x, t)) := −u(x, t) +K ∗x u(x, t) + f(u(x, t)) (1.1)

where u ∈ R, (x, t) ∈ Rn × R+ and f is a smooth function of bistable type with three zeros, 0, 1 and

a ∈ (0, 1). A prototypical example for f is the cubic nonlinearity of form fcu(u) := u(1− u)(u− a). Here

K ∈ L1(R) is a nonnegative function with
∫
Rn K(x)dx = 1 and that is even with respect to each variable. A

traveling wave ϕ(ξ) is a smooth function of the variable ξ = e ·x− ct, for e ∈ Sn−1 and some c ∈ R, which

is a solution of (1.1) satisfying the limits lim
ξ→−∞

ϕ(ξ) = 1 and lim
ξ→+∞

ϕ(ξ) = 0. Without loss of generality, we

suppose that e = (1, 0, . . . , 0). In the moving frame x = (ξ, z) ∈ R × Rn−1, equation (1.1) can be written

as

∂tu(x, t)− c∂ξu(x, t) = −u(x, t) +

∫
Rn
K(x− y)u(y, t)dy + f(u(x, t)) (1.2)
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such that the traveling wave ϕ(ξ) is a stationary solution of (1.2). If we define K0 : R→ R as

K0(ξ) =

∫
Rn−1

K(ξ, z)dz (1.3)

then (ϕ, c) satisfies

− cϕ̇(ξ) = −ϕ(ξ) +

∫
R
K0(ξ − ζ)ϕ(ζ)dζ + f(ϕ(ξ)), lim

ξ→−∞
ϕ(ξ) = 1 and lim

ξ→+∞
ϕ(ξ) = 0, (1.4)

where ˙ stands for d
dξ and ϕ is decreasing.

Main assumptions. Throughout the paper, we will assume the following hypotheses for f and K which

ensure the existence and uniqueness (modulo translation) of a solution (ϕ, c) to (1.4), see [3].

Hypothesis (H1) We suppose that the nonlinearity f satisfies the following properties:

(i) f ∈ C∞(R);

(ii) f(u) = 0 precisely when u ∈ {0, a, 1};

(iii) f ′(0) < 0, f ′(1) < 0 and f ′(a) > 0.

Note that we only need f ∈ C2(R) to obtain the existence result of [3] and here we require more regularity

to obtain uniform bounds on the nonlinear terms in our stability analysis.

Hypothesis (H2) We suppose that the kernel K satisfies the following properties:

(i) K ≥ 0, is even with respect to each variable;

(ii) K ∈W 1,1(Rn);

(iii)
∫
Rn K(x)dx = 1,

∫
Rn ‖x‖K(x)dx <∞ and

∫
Rn ‖x‖

2K(x)dx <∞;

(iv) K̂(k) = 1− d0‖k‖2 + o(‖k‖2) as k→ 0 with d0 > 0.

Here, W k,p(Rn) denotes the Sobolev space with its usual norm and we use the notation Hk(Rn) :=

W k,2(Rn). The symbol K̂ denotes the Fourier transform of K defined as

K̂(k) =

∫
Rn
K(x)e−ik·xdx, k ∈ Rn.

The first assumption is natural from a modeling point of view while the second and third assumptions

are required to ensure the existence of traveling wave solution ϕ to equation (1.4). The third and forth

assumptions also imply that

∀j ∈ J1, nK
∫
Rn
xjK(x)dx = 0 and d0 =

1

2n

∫
Rn
‖x‖2K(x)dx > 0.
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Furthermore, as −1 + K̂(k) ∼ −d0‖k‖2 for k → 0, in the long wavelength limit, the linear operator

u 7→ −u+K∗u approaches the Laplacian d0∆Rn and we recover the classical Allen-Cahn equation. Remark

that in the short wavelength limit we have −1 + K̂(k) ∼ −1 for ‖k‖ → ∞ such that u 7→ −u+ K ∗ u is a

bounded operator which is a very different feature from the Laplacian. Note that with Hypothesis (H2)

for the kernel K we recover all the hypotheses of [3] for K0.

In this paper, we are concerned with determining the stability of the traveling wave ϕ. We are thus let to

study the spectral properties of the linear operator L

L : H1(Rn) −→ L2(Rn)

u 7−→ −u+K ∗x u+ c d
dξ + f ′(ϕ)u.

(1.5)

It is natural to assume that the wave ϕ is linearly stable in one space dimension to get stability in higher

in space dimensions. In fact, it is consequence of Hypotheses (H1) and (H2) on f and K. First, define the

linear operator L0 associated to equation (1.4)

L0 : H1(R) −→ L2(R)

u 7−→ −u+K0 ∗ξ u+ c d
dξ + f ′(ϕ)u.

(1.6)

and its adjoint operator L∗0
L∗0 : D(L∗0) ⊂ L2(R) −→ L2(R)

u 7−→ −u+K0 ∗ξ u− c d
dξ + f ′(ϕ)u.

(1.7)

Lemma 1.1 ([2, 6]). Suppose that Hypotheses (H1) and (H2) are satisfied, then

(i) 0 is an algebraic simple eigenvalue of L0 with negative eigenfunction ϕ′;

(ii) there exists γ0 > 0 such that σess(L0) ⊂ {λ | |<(λ)| < −γ0};

(iii) there exists a unique negative solution ψ ∈ H1(R) which solves L∗0ψ = 0 with
∫
R ϕ
′(ξ)ψ(ξ)dξ = 1.

Since the eigenvalue zero is isolated, there exists a spectral projection operator, P, onto the null space of

L0 given by

Pu =
1

2πi

∫
Γ

(L0 − λ)−1 udλ, (1.8)

where Γ is a simple closed curve in the complex plane enclosing the zero eigenvalue. If 〈·, ·〉 denotes the

scalar product on L2(R) then we can write P as

Pu(ξ, z) = 〈ψ, u〉(z)ϕ′(ξ) :=

(∫
R
ψ(ξ)u(ξ, z)dξ

)
ϕ′(ξ). (1.9)

We define the operator Q as Qu := u− Pu.

Main result. We can now state our main result. The perturbation of the wave will be written as

u(x, t) := ϕ(ξ − ρ(z, t)) + v(ξ − ρ(z, t), z, t) (1.10)

where ρ : Rn−1 → R ∈ Hk(Rn−1) and v : Rn → R ∈ Hk(Rn) is in the range of the operator L0 that is

Pv = 0. And we set

E0 := ‖v0‖W 1,1(Rn) + ‖v0‖Hk(Rn) + ‖ρ0‖W 1,1(Rn−1) + ‖ρ0‖Hk+1(Rn−1).
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Theorem 1. Let n ≥ 2 and k ≥
[
n+1

2

]
. Suppose that Hypotheses (H1) and (H2) are satisfied. There

exists C > 0 such that if E0 is sufficiently small, then the traveling wave solution ϕ of equation (1.2) is

stable in the sense that the perturbation (ρ, v) given in (1.10) satisfies the decay estimates for all t ≥ 0

‖v(t)‖Hk(Rn) ≤ C(1 + t)−
n−1
4
−1E0, (1.11a)

‖ρ(t)‖Hk(Rn−1) ≤ C(1 + t)−
n−1
4 E0, (1.11b)

‖∇z · ρ(t)‖Hk(Rn−1) ≤ C(1 + t)−
n+1
4 E0, (1.11c)

where ∇z = (∂x2 , · · · , ∂xn).

Note that Theorem 1 is well known in the case of local diffusion, namely when the nonlocal term −u+K∗xu
in equation (1.1) is replaced by the standard Laplacian ∆ =

∑n
i=1 ∂

2
xi on Rn. Xin [18] was the first to

prove these results in dimension n ≥ 4 in the local case. His results were then extended to the remaining

dimensions n = 2, 3 in [14] and generalized to systems of bistable reaction-diffusion equations by Kapitula

[13]. Our strategy of proof will be similar to as [13, 18] where semigroup estimates for the associated

linearized operator are used to prove the multidimensional stability of the traveling wave ϕ. It is important

to remark that in dimension n ≥ 4, these semigroup estimates are sufficient to prove Theorem 1. For the

remaining dimensions n = 2, 3, the proof essentially relies on the decomposition of the perturbation as

written in (1.10) which basically allows one to split the problem into two parts. One part controls the drift

of the perturbations along the translates of the wave and another part which controls the remaining part

of the perturbations and will decay faster in time. Although our proof will follow the strategy developed

in [13, 18], we still have to deal with the nonlocal nature of our equations. In our case, we use point-wise

Green’s functions estimates to obtain sharp decay estimates of the linear part of our linearized operator.

These types of estimates are reminiscent of the ones obtained by Hoffman and coworkers [11] in the study

of multi-dimensional stability of planar traveling of lattice differential equations, which are discrete version

of equation (1.1). In the nonlocal setting, using super- and sub- solution technique, Chen [5] has been

able to prove the uniform multidimensional stability of the traveling wave ϕ of equation (1.1). As a direct

consequence, our Theorem 1 generalizes Chen’s result.

An application. This present work was initially motivated by the study of Bates and Chen [1] where

they prove a multidimensional stability result for a slightly different multidimensional nonlocal Allen-Cahn

equation. Their idea was to consider a generalization of the Laplacian in n-dimension for which, each

component ∂2
xi of ∆ is approximated by the convolution operator −u+ J ∗xi u. They obtain an equation

of form

∂tu =
n∑
i=1

(−u+ J ∗xi u) + f(u), (1.12)

with

J ∗xi u(x) :=

∫
R
J (y)u(x1, · · · , xi − y, · · · , xn)dy.

The kernel J satisfies the following Hypothesis.

Hypothesis (H3) We suppose that the kernel J satisfies the following properties:

(i) J ≥ 0, is even;
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(ii) J ∈W 1,1
η (R) for η > 0.

Here W 1,1
η (R) denotes the exponentially weighted function space defined as

W 1,1
η (R) :=

{
u ∈W 1,1(R) | eη|·|u ∈ L1(R) and eη|·|∂xu ∈ L1(R)

}
.

A direct consequence of Hypothesis (H3) is that Ĵ (k) = 1 − d0k
2 + o(k2) as k → 0 for d0 > 0. In this

setting, the traveling wave ϕ is solution of (1.4) with K0 = J and the linearized operator L0 has the same

expression as in equation (1.6) and thus Lemma 1.1 is also verified provided that f satisfies Hypothesis

(H1).

To study the stability of the traveling wave ϕ, we work with the same decomposition

u(x, t) = ϕ(ξ − ρ(z, t)) + v(ξ − ρ(z, t),x, t), t ≥ 0, (1.13)

with ρ : Rn−1 → R ∈ Hk(Rn−1) and v : Rn → R ∈ Hk(Rn) is in the range of the operator L0 that is

Pv = 0. We also set

Ẽ0 := ‖v0‖L1(Rn) + ‖v0‖Hk(Rn) + ‖ρ0‖W 1,1(Rn−1) + ‖ρ0‖Hk+1(Rn−1).

As a bi-product of our proof, we obtain the following result.

Theorem 2. Let n ≥ 2 and k ≥
[
n+1

2

]
. Suppose that Hypotheses (H1) and (H3) are satisfied. There exists

C > 0 such that if Ẽ0 is sufficiently small, then the traveling wave solution ϕ of equation (1.12) is stable

in the sense that the perturbation (ρ, v) given in (1.13) satisfies the decay estimates for all t ≥ 0

‖v(t)‖Hk(Rn) ≤ C(1 + t)−
n+1
2 Ẽ0, (1.14a)

‖ρ(t)‖Hk(Rn−1) ≤ C(1 + t)−
n−1
4 Ẽ0, (1.14b)

‖∇z · ρ(t)‖Hk(Rn−1) ≤ C(1 + t)−
n+1
4 Ẽ0. (1.14c)

Note that Bates and Chen [1] only proved Theorem 2 in dimension n ≥ 4 and thus our result generalizes

their analysis to the remaining dimensions n = 2, 3. Compared to Theorem 1, we obtain a sharper decay

of v component of the perturbation. This is a consequence of the fact that the projection P commutes

with each linear operator −u+ J ∗xi u for i = 2 · · ·n.

Outline. The paper is organized in three parts. In section 2, we prove Theorem 1 in dimension n ≥ 4.

In the following section we study the semigroup associated to the linear operator L and derive estimates

crucial for our nonlinear stability analysis. Finally, in section 4, we prove Theorem 1 for the remaining

dimensions n = 2, 3 and Theorem 2 is proved in section 5.

2 Stability in high dimension

In this section, we give a simple proof of Theorem 1 in the high-dimensional case n ≥ 4, following ideas that

have been developed for the multidimensional local Allen-Cahn equations [13, 18] and then, generalized to
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reaction-diffusion systems for example [10]. The main ingredient of the proof is an estimate (see (2.4)) for

the linearized evolution operator L which will be established in the following section 3.

We consider a solution u(x, t) = ϕ(ξ) + v(x, t) of (1.1) which satisfies the equation

∂tv(x, t) = Lv(x, t) +H(v(x, t)), (2.1)

where

H(v) := f(ϕ+ v)− f(ϕ)− f ′(ϕ)v. (2.2)

The Cauchy problem associated to equation (2.1) with initial condition v0 ∈ Hk(Rn) ∩ L1(Rn), with k ≥
n+1 and n ≥ 4 is locally well-posed in Hk(Rn). This is equivalent to say that for any v0 ∈ Hk(Rn)∩L1(Rn)

there exists a time T > 0 such that (2.1) as a unique mild solution in Hk(Rn) defined on [0, T ] satisfying

v(0) = v0. The integral formulation of (2.1) is given by

v(t) = SL(t)v0 +

∫ t

0
SL(t− s)H(v(s))ds, (2.3)

where SL is the semigroup associated to the linear operator L. Anticipating the estimates derived in the

following sections (see (3.21)), there exist positive constants C and θ such that

‖SL(t)v‖Hk(Rn) ≤ C
(

(1 + t)−
n−1
4 ‖v‖L1(Rn) + e−θt‖v‖Hk(Rn)

)
. (2.4)

The nonlinear contribution H(v) is at least quadratic in v close to the origin. As a consequence, we can

find a positive nondecreasing function κ : R+ → R+ such that, for all t ∈ [0, T ],

|H(v)| ≤ κ(R)|v|2, for |v| ≤ R.

Let T∗ > 0 be the maximal time of existence of a solution v ∈ Hk(Rn) with initial condition v0 ∈
Hk(Rn) ∩ L1(Rn). For t ∈ [0, T∗) we define

Φ(t) = sup
0≤s≤t

(1 + s)
n−1
4 ‖v(s)‖Hk(Rn).

Using estimate (2.4) directly into the integral formulation (2.3) yields

‖v(t)‖Hk(Rn) ≤ ‖SL(t)v0‖Hk(Rn) +

∫ t

0
‖SL(t− s)H(v(s))‖Hk(Rn)ds

. (1 + t)−
n−1
4 ‖v0‖L1(Rn) + e−θt‖v0‖Hk(Rn) + κ(Φ(t))

∫ t

0
(1 + t− s)−

n−1
4 ‖v(s)‖2Hk(Rn)ds

+ κ(Φ(t))

∫ t

0
e−θ(t−s)‖v(s)‖2Hk(Rn)ds.

Here, and throughout the paper we use the notation A . B whenever A ≤ κB for κ > 0 a constant

independent of time t. From Lemma A.1, there exist constants C1 > 0 and C2 > 0 so that∫ t

0
(1 + t− s)−

n−1
4 (1 + s)−

n−1
2 ds ≤ C1(1 + t)−

n−1
4 ,∫ t

0
e−θ(t−s)(1 + s)−

n−1
2 ds ≤ C2(1 + t)−

n−1
4 .

6



Note that the first inequality is a consequence of our careful choice of n. Indeed, this inequality is only

true for n−1
4 > 1

2 (n ≥ 4). Then, for all t ∈ [0, T∗) we have

Φ(t) ≤ C0

(
‖v0‖L1(Rn) + ‖v0‖Hk(Rn)

)
+ C̃0κ(Φ(t))Φ(t)2,

for some positive constants C0 and C̃0. Suppose that the initial condition v0 is small enough so that

2C0

(
‖v0‖L1(Rn) + ‖v0‖Hk(Rn)

)
< 1 and 4C0C̃0κ(1)

(
‖v0‖L1(Rn) + ‖v0‖Hk(Rn)

)
< 1,

then

Φ(t) ≤ 2C0

(
‖v0‖L1(Rn) + ‖v0‖Hk(Rn)

)
< 1,

for all t ∈ [0, T∗). This implies that the maximal time of existence is T∗ = +∞ and the solution v of (2.1)

satisfies:

sup
t≥0

(1 + t)
n−1
4 ‖v(t)‖Hk(Rn) ≤ 2C0

(
‖v0‖L1(Rn) + ‖v0‖Hk(Rn)

)
.

3 Linear estimates

We first start this section by deriving the nonlinear problem that we will be solving in the next section

and then derive estimates of the corresponding linear parts.

3.1 Setup of the problem

We represent each solution u(x, t) of (1.2) through the decomposition

u(x, t) := ϕ(ξ − ρ(z, t)) + v(ξ − ρ(z, t), z, t) (3.1)

where ρ : Rn−1 → R ∈ H1(Rn−1) and v : Rn → R ∈ H1(Rn). Note that the perturbation v can be written

as

v(x, t) = u(ξ + ρ(z, t), z, t)− ϕ(ξ),

and v is in range of L0 such that Pv = 0. Note that such a decomposition (1.10) is always possible. Indeed,

suppose that w ∈ Hk(Rn) is given and small enough. In order to use the decomposition (1.10), we need to

find a unique pair (ρ(w), v(w)) ∈ Hk(Rn−1)×Hk(Rn) with Pv = 0 that satisfies

ϕ+ w = Tρ · (ϕ+ v) ,

where Tρ ·ϕ(ξ) = ϕ(ξ−ρ) and Tρ ·v(ξ, z, t) = v(ξ−ρ, z, t). Reproducing the standard argument of Kapitula

in [13], we use Taylor’s theorem to write

ϕ− T−ρ · ϕ = −ρ
∫ 1

0
Tsρ · ϕ′ds,

so that we obtain the equivalent equation

T−ρ · w = v − ρ
∫ 1

0
Tsρ · ϕ′ds.
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Taking the inner product with ψ the eigenfunction of the adjoint operator L∗0 associated to the zero

eigenvalue yields

〈T−ρ · w,ψ〉 = −ρ
〈∫ 1

0
Tsρ · ϕ′ds, ψ

〉
.

Here, we have used the fact that we look for solution v so such that Pv = 0. We can then define the

functional F : Hk(Rn)×Hk(Rn−1)→ Hk(Rn−1) by

F (w, ρ) = 〈T−ρ · w,ψ〉+ ρ

〈∫ 1

0
Tsρ · ϕ′ds, ψ

〉
,

with F (0, 0) = 0 and Fréchet derivative DρF (0, 0) = id where id is the identity operator. By the implicit

function theorem with have on a neighborhood of (0, 0) the existence of ρ(w) such that F (w, ρ(w)) = 0.

We then apply the projection Q to the equation T−ρ · w = v − ρ
∫ 1

0 Tsρ · ϕ
′ds and obtain

v = QT−ρ(w) · w +Q
(
ρ(w)

∫ 1

0
Tsρ(w) · ϕ′ds

)
,

which clearly admits a solution v(w) with Pv(w) = 0. As a conclusion, all sufficiently small perturbation

can be written as in equation (1.10).

We can now substitute the Ansatz (3.1) into (1.2) to get the evolution equation:

−∂tρϕ̇ρ − cϕρ + ∂tvρ − c∂ξvρ − ∂tρ∂ξvρ = −ϕρ − vρ +K ∗x ϕρ +K ∗x vρ + f(ϕρ + vρ),

with ϕρ = ϕ(· − ρ) and vρ = v(· − ρ, ·, ·). As ϕ is solution of (1.4), we obtain:

(∂t − L) v = (∂t − L) (ρϕ̇) +H(v) +N (ρ, v) +R(ρ, v) (3.2)

where the nonlinear term H has been defined in (2.2), R(ρ, v) := ∂tρ∂ξv and the remaining term N is split

into two different parts

N (ρ, v) := N1(ρ) +N2(ρ, v), (3.3)

where

N1(ρ)(x, t) :=

∫
Rn
K(x− x′)ϕ

(
ξ′ + ρ(z, t)− ρ(z′, t)

)
dξ′dz′ −

∫
Rn
K(x− x′)ϕ(ξ′)dξ′dz′

−
∫
Rn
K(x− x′)ϕ̇(ξ′)

(
ρ(z, t)− ρ(z′, t)

)
dξ′dz′, (3.4)

and

N2(ρ, v)(x, t) :=

∫
Rn
K(x− x′)v

(
ξ′ + ρ(z, t)− ρ(z′, t), z′, t

)
dξ′dz′

−
∫
Rn
K(x− x′)v(ξ′, z′, t)dξ′dz′. (3.5)

One can check that the third term of N1(ϕ, ρ) is actually L(ρϕ̇) as

L(ρϕ̇) = −ρϕ̇+K ∗x (ρϕ̇) + cρϕ̈+ f ′(ϕ)ρϕ̇

= K ∗x (ρϕ̇)− ρK0 ∗ ϕ̇

= −
∫
Rn
K(x− x′)ϕ̇(ξ′)

(
ρ(z, t)− ρ(z′, t)

)
dξ′dz′.
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Finally, if we denote SL(t) the semigroup generated by the linear operator L, applying Duhamel’s formula

to (3.2), we obtain

v(t) = SL(t)v0 + ρ(t)ϕ̇− SL(t)(ρ0ϕ̇) +

∫ t

0
SL(t− s) (H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))) ds.

As v is in the range of L0, we must have

v(t) = QSL(t)v0 −QSL(t)(ρ0ϕ̇) +

∫ t

0
QSL(t− s) (H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))) ds, (3.6a)

ρ(t) = 〈SL(t)(ρ0ϕ̇− v0), ψ〉 −
∫ t

0
〈SL(t− s) (H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))) , ψ〉ds. (3.6b)

In the following sections, we will derive estimates on SL(t).

3.2 Study of SL(t)

We consider the initial value problem

∂tu = Lu, u( · , 0) = u0 ∈ Hk(Rn), (3.7)

which has the solution u(ξ, z, t) = SL(t)u0(ξ, z). From its definition, L can be written as

L = L0 +A,

where the operator A is defined as

Au := −K0 ∗ξ u+K ∗x u, u ∈ L2(Rn). (3.8)

Let û represent the Fourier transform of u in z:

û(ξ, k̃, t) =

∫
Rn−1

u(ξ, z, t)e−iz·k̃dz

so that (3.7) is transformed into

∂tû(ξ, k̃, t) = L0û(ξ, k̃, t) + B(k̃)û(ξ, k̃, t),

where

B(k̃)û(ξ, k̃) := −K̂n−1(0n−1) ∗ξ û(ξ, k̃) + K̂n−1(k̃) ∗ξ û(ξ, k̃),

with

K̂n−1(ξ, k̃) :=

∫
Rn−1

K(x)e−iz·k̃dz.

We have used the fact that K̂n−1(ξ,0n−1) = K0 by definition. We readily note that for each k̃ ∈ Rn−1, the

operator

L(k̃) : H1(R) −→ L2(R)

u 7−→ L0u+ B(k̃)u

defines a C0 semigroup with L(0n−1) = L0.
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Lemma 3.1. The family of operators L(k̃) satisfies the following properties.

(i) Near k̃ = 0n−1, the only eigenvalue λ is a smooth function of k̃ and the expression of λ(k̃) reads:

λ(k̃) = −A‖k̃‖2 + o
(
‖k̃‖3

)
, (3.9)

with A := d0 〈K0 ∗ξ ϕ′, ψ〉.

(ii) σ
(
L(k̃)

)
⊂ {<(λ) < 0}, for k̃ 6= 0n−1.

Proof. For the first property (i), we apply perturbation theory to the linear operator L(k̃) for k̃ near

zero. To this end, we define

F : Rn−1 × C ×H1
⊥(R) −→ L2(R)

(k̃, λ, w) 7−→
(
L(k̃)− λ

)
(ϕ̇+ w),

where H1
⊥(R) =

{
u ∈ H1(R) | 〈u, ϕ̇〉 = 0

}
. Applying the implicit function theorem, we see that there exist

a small neighborhood of the origin and smooth functions λ(k̃) and w(k̃) such that F(k̃, λ(k̃), w(k̃)) = 0

on that neighborhood. We denote q(k̃) = ϕ̇ + w(k̃). Similarly for the adjoint operator L∗(k̃), we have a

smooth continuation of ψ given by q∗(k̃) so that

〈q(k̃), q∗(k̃)〉 = 1.

Differentiating F(k̃, λ(k̃), w(k̃)) = 0 with respect to k̃j , for any j, we find

∂
k̃j
λ(0) = ∂

k̃j

(
〈B(k̃)ϕ′, ψ〉

)
k̃=0n−1

= 0.

Indeed, if ` ∈ R, we have that

B̂(k̃)u(`) =

∫
R
B(k̃)u(ξ)e−ξ`dξ

=
(
−K̂(`,0n−1) + K̂(`, k̃)

)
û(`)

∼ −d0‖k̃‖2û(`)

as ‖k̃‖ → 0. Similarly, we find that for any j and l,

∂2
k̃j k̃l

λ(0) = 0.

Finally, for any j, we have that

∂2
k̃j k̃j

λ(0) = −2d0

〈
K0 ∗ξ ϕ′, ψ

〉
,

which gives the desired expansion.

For the second property (ii), we have just seen that λ(k̃) 6= 0 for small values of k̃. For any u ∈ H1(R) we

have that

〈L(k̃)u, u〉 = −〈u, u〉+ 〈K̂n−1(k̃) ∗ξ u, u〉+ 〈f ′(ϕ)u, u〉

≤

(
−1 + K̂n−1(0, k̃) + sup

ϕ∈[0,1]
f ′(ϕ)

)
〈u, u〉.
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As K̂n−1(0, k̃)→ 0 as ‖k̃‖ → ∞, there exist M > 0 and cM > 0 so that for all ‖k̃‖ ≥M ,

−1 + K̂n−1(0, k̃) + sup
ϕ∈[0,1]

f ′(ϕ) < −cM .

This implies that <(λ) < −cM < 0 for all λ ∈ σ(L(k̃)) with ‖k̃‖ ≥ M . For the region in-between,

compactness and local robustness of the spectrum ensure that σ
(
L(k̃)

)
⊂ {<(λ) < 0}.

Based on Lemma 3.1, there exists ε > 0, so that λ(k̃) is a simple eigenvalue of L(k̃) in ‖k̃‖ ≤ 2ε. As a

consequence, there exists a smooth spectral projection operator, P(k̃), given by

P(k̃)u =
1

2πi

∫
Γ

(
L(k̃)− λ

)−1
udλ, (3.10)

where Γ is a simple closed curve in the complex plane enclosing the zero eigenvalue. More conveniently,

we write P(k̃) as

P(k̃)u(ξ) =

(∫
R
q∗(k̃, ξ)u(ξ)dξ

)
q(k̃, ξ) := 〈q∗(k̃), u〉q(k̃), ‖k̃‖ ≤ 2ε. (3.11)

Following some ideas developed in [12, 17] for viscous conservation laws, we introduce a smooth cutoff

function χ(k̃) that is identically one for ‖k̃‖ ≤ ε and identically zero for ‖k̃‖ ≥ 2ε. We can then split the

solution operator SL(t)u0 into a low-frequency part

SIL(t)u0(ξ, z) :=
1

(2π)n−1

∫
Rn−1

eik̃·zeL(k̃)t
[
χ(k̃)P(k̃)û0(ξ, k̃)

]
dk̃ (3.12)

and the associated high-frequency part

SIIL (t)u0(ξ, z) :=
1

(2π)n−1

∫
Rn−1

eik̃·zeL(k̃)t
[(

id− χ(k̃)P(k̃)
)
û0(ξ, k̃)

]
dk̃, (3.13)

where id denotes the identity. One can easily check that we have SL(t) = SIL(t) + SIIL (t).

3.2.1 Low-frequency bounds

We introduce the Green kernel associated with SIL(t) as

GI(x, t; x′) := SIL(t)δx′(x), (3.14)

where x = (ξ, z) and x′ = (ξ′, z′).

Proposition 3.1. The Green kernel GI satisfies

GI(x, t; x′) =
1

(2π)n−1

∫
Rn−1

eik̃·(z−z
′)χ(k̃)eλ(k̃)tq(k̃, ξ)q∗(k̃, ξ′)dk̃. (3.15)

Proof. First of all, through a direct computation, we have

δ̂x′(ξ, k̃) =

∫
Rn−1

e−ik̃·zδ(ξ′,z′)(ξ, z)dz = e−ik̃·z
′
δξ′(ξ).

Using the properties of the spectral projection P(k̃), we further have

P(k̃)δ̂x′(ξ, k̃) = q∗(k̃, ξ′)q(k̃, ξ).

Finally, noticing that eL(k̃)tq(k̃, ξ) = eλ(k̃)tq(k̃, ξ), we obtain the desired formula.
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Proposition 3.2. The low-frequency Green function GI(x, t; x′) of (3.14) can be decomposed as GI(x, t; x′) :=

ϕ̇(ξ)Ψ(z− z′, t; ξ′) + G̃I(x, t; x′), for which the following estimates hold:

sup
ξ′
‖Ψ(·, t; ξ′)‖L2(Rn−1) . (1 + t)−

n−1
4 , (3.16a)

sup
ξ′
‖Ψ(·, t)‖Hk(Rn−1) . (1 + t)−

n−1
4
− |α|

2 , (3.16b)

sup
x′
‖G̃I(·, t; x′)‖L2(Rn) . (1 + t)−

n−1
4
−1, (3.16c)

sup
x′
‖G̃I(·, t; x′)‖Hk(Rn) . (1 + t)−

n−1
4
− |α|+2

2 . (3.16d)

for α ∈ Zn−1
+ with |α| ≤ k. Moreover, PG̃I(x, t; x′) = 0.

Proof. The idea of the proof is based on the remark that for ‖k̃‖ ≤ 2ε, the smooth eigenfunctions q(k̃, ξ)

and q∗(k̃, ξ) have an expansion of the form

q(k̃, ξ) = ϕ̇(ξ) +O
(
‖k̃‖2

)
,

q∗(k̃, ξ′) = ψ(ξ′) +O
(
‖k̃‖2

)
.

This leads us to introduce an auxiliary function Ψ̃(z, t) of the form

Ψ̃(z, t) :=
1

(2π)n−1

∫
Rn−1

eik̃·zχ(k̃)eλ(k̃)tdk̃,

so that we formally have

GI(x, t; x′)− ϕ̇(ξ)ψ(ξ′)Ψ̃(z− z′, t) =
1

(2π)n−1

∫
Rn−1

eik̃·(z−z
′)χ(k̃)eλ(k̃)tO

(
‖k̃‖2

)
dk̃. (3.17)

On the one hand, a simple Fourier transform computation shows that

1

(2π)n−1

∫
Rn−1

eik̃·(z−z
′)e−A‖k̃‖

2tdk̃ = (4πAt)−
n−1
2 exp

(
−‖z− z′‖2

4At

)
,

where A = d0 〈K0 ∗ξ ϕ′, ψ〉, which directly gives us bounds for Ψ̃(·, t) that are similar to the standard

diffusive bounds satisfied for the heat equations:

‖Ψ̃(·, t)‖L2(Rn−1) . (1 + t)−
n−1
4 , (3.18a)

‖Ψ̃(·, t)‖Hk(Rn−1) . (1 + t)−
n−1
4
− |α|

2 , (3.18b)

for α ∈ Zn−1
+ with |α| ≤ k. On the other hand, because of the presence of terms of the form ‖k̃‖2e−A‖k̃‖2t

in the rest term of equation (3.17), the decay rate is improved by factor (1 + t)−1 so that we have the

following estimates for G̃I := GI − ϕ̇ψΨ̃.

sup
x′
‖G̃I(·, t; x′)‖L2(Rn) . (1 + t)−

n−1
4
−1, (3.19a)

sup
x′
‖G̃I(·, t; x′)‖Hk(Rn) . (1 + t)−

n−1
4
− |α|

2
−1, (3.19b)
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for α ∈ Zn−1
+ with |α| ≤ k. Now, we can define Ψ(z− z′, t; ξ′) as

Ψ(z− z′, t; ξ′) :=
1

(2π)n−1

∫
Rn−1

eik̃·zχ(k̃)eλ(k̃)tq∗(k̃, ξ′)〈q(k̃, ·), ψ〉k̃ (3.20)

and set G̃I(x, t; x′) := GI(x, t; x′)− ϕ̇(ξ)Ψ(z− z′, t; ξ′). And all the estimates (3.16) are readily obtained

from (3.18) and (3.19).

Proposition 3.3. The linear operator SIL(t) satisfies the decay estimate∥∥SIL(t)u
∥∥
Hk(Rn)

. (1 + t)−
n−1
4 ‖u‖L1(Rn).

Furthermore, we have ∥∥QSIL(t)u
∥∥
Hk(Rn)

. (1 + t)−
n−1
4
−1‖u‖L1(Rn).

Proof. The proof of the proposition easily follows from the estimates (3.16) by first noticing that

SIL(t)u(x) =

∫
Rn

GI(x, t; x′)u(x′)dx′, x ∈ Rn,

and ∫
Rn

∣∣SIL(t)u(x)
∣∣2 dx ≤

(
sup
x′
‖GI(·, t; x′)‖L2(Rn)

)2(∫
Rn
|u(x′)|dx′

)2

.

The estimates in Hk(Rn) are obtained via similar computations. Finally, we recall the decomposition of

GI(x, t; x′) implies that

QGI(x, t; x′) = G̃I(x, t; x′),

which completes the proof of the proposition.

3.2.2 High-frequency bounds

We now study the high-frequency bounds associated to SIIL (t). By definition, we have

SIIL (t)u(ξ, z) :=
1

(2π)n−1

∫
Rn−1

eik̃·zeL(k̃)t
[(

id− χ(k̃)P(k̃)
)
û(ξ, k̃)

]
dk̃,

where P(k̃) is such that∫
R

∣∣∣eL(k̃)t
[(

id− χ(k̃)P(k̃)
)
û(ξ, k̃)

]∣∣∣2 dξ ≤ e−2θt
∥∥∥u(·, k̃)

∥∥∥2

L2(R)
,

where θ > 0 is a positive constant which depends only on ε. Then, using Parseval’s inequality, one obtains∥∥SIIL (t)u
∥∥
L2(Rn)

. e−θt ‖u‖L2(Rn) ,

from which one can deduce Hk(Rn)-estimates.

Proposition 3.4. The linear operator SIIL (t) satisfies the decay estimate∥∥SIIL (t)u
∥∥
Hk(Rn)

. e−θt‖u‖Hk(Rn).
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As a conclusion, combining Proposition 3.3 and 3.4, we arrive at the linear estimate for semigroup SL(t)

of L. For u ∈ Hk(Rn), we have

‖SL(t)u‖Hk(Rn) . (1 + t)−
n−1
4 ‖u‖L1(Rn) + e−θt‖u‖Hk(Rn). (3.21)

As a consequence of our analysis, we also have

‖QSL(t)u‖Hk(Rn) . (1 + t)−
n−1
4
−1‖u‖L1(Rn) + e−θt‖u‖Hk(Rn), (3.22)

and

‖∇z · SL(t)u‖Hk(Rn) . (1 + t)−
n−1
4
− 1

2 ‖u‖L1(Rn) + t−
1
2 e−θt‖u‖Hk(Rn). (3.23)

4 Nonlinear stability in dimension 2 and 3

In this section, we prove Theorem 1 for the remaining dimensions 2 and 3.

4.1 Some nonlinear estimates

We first give estimates on the nonlinear terms that appear in our system (3.6). More precisely, we will

prove the following lemma.

Lemma 4.1. Let k ≥
[
n+1

2

]
. There exists a δ > 0 such that for any v ∈ Hk(Rn) and ρ ∈ Hk+1(Rn−1)

with ‖v‖Hk(Rn) ≤ δ, ‖ρ‖Hk(Rn−1) ≤ δ and ‖∇z · ρ‖Hk(Rn−1) ≤ δ we have

‖H(v)‖L1(Rn) , ‖H(v)‖Hk(Rn) ≤ C ‖v‖
2
Hk(Rn) , (4.1a)

‖N1(ρ)‖L1(Rn) , ‖N1(ρ)‖Hk(Rn) ≤ C ‖∇z · ρ‖2Hk(Rn−1) , (4.1b)

‖N2(ρ, v)‖L1(Rn) , ‖N2(ρ, v)‖Hk(Rn) ≤ C ‖ρ‖Hk(Rn−1) ‖v‖Hk(Rn) , (4.1c)

‖R(ρ, v)‖L1(Rn) , ‖R(ρ, v)‖Hk(Rn) ≤ C
(
‖v‖2Hk(Rn) + ‖ρ‖Hk(Rn−1) ‖v‖Hk(Rn) + ‖∇z · ρ‖2Hk(Rn−1)

)
. (4.1d)

Proof. Throughout the proof we will use that from Sobolev embedding we have

‖uv‖Hk(Rn) ≤ C ‖u‖Hk(Rn) ‖v‖Hk(Rn) and ‖u‖L∞(Rn) ≤ C ‖u‖Hk(Rn) .

Note that in order to obtain the nonlinear estimates (4.1), we will only use the above Sobolev embedding

and Taylor’s theorem together with the fact that both f and ϕ are smooth with the a priori bounds on v

and ρ. As the proofs of each estimate are almost similar, we will present only the key points.

• For H(v). We use Taylor’s formula to write

H(v) = f(ϕ+ v)− f(ϕ)− f ′(ϕ)v = v2

∫ 1

0
(1− s)f ′′(ϕ+ sv)ds. (4.2)

As ϕ and v are both bounded, we have

‖H(v)‖L1(Rn) ≤ C ‖v‖
2
Hk(Rn) and ‖H(v)‖L2(Rn) ≤ C ‖v‖

2
Hk(Rn) .
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In order to obtain the Hk(Rn) bound, we take the successive derivatives of H(v) with respect to x.

To illustrate the computations, we present only the computations for the derivative with respect to

ξ. Taking the partial derivative of (4.2) yields

∂ξH(v) = 2v∂ξv

∫ 1

0
(1− s)f ′′(ϕ+ sv)ds+ v3

∫ 1

0
s(1− s)f ′′′(ϕ+ sv)ds+ v2ϕ̇

∫ 1

0
(1− s)f ′′′(ϕ+ sv)ds.

Now, since ϕ̇ is bounded, we have

‖∂ξH(v)‖L2(Rn) ≤ C
(
‖v‖2Hk(Rn) + ‖v‖3Hk(Rn)

)
.

Finally, as f and ϕ are both smooth and as ϕ(k) is bounded for all k, we can continue the above

procedure for as many spatial derivatives as necessary and thus obtain the desired estimate.

• For N1(ρ). From the definition of N1 in (3.4), we have that

N1(ρ)(x, t) =

∫
Rn
K(x− x′)

(
ρ(z, t)− ρ(z′, t)

)2(∫ 1

0
(1− s)ϕ̈

(
ξ′ + s

(
ρ(z, t)− ρ(z′, t)

))
ds

)
dξ′dz′,

from which we further note that

ρ(z, t)− ρ(z′, t) = (z− z′)

∫ 1

0
∇z · ρ(z′ + τ(z− z′), t)dτ.

As a consequence,

‖N1(ρ)‖L1(Rn) ≤
1

2
‖ϕ̈‖L∞(R) ‖∇z · ρ‖2L2(Rn−1)

∫
Rn

z2K(x)dξdz,

≤ C ‖∇z · ρ‖2Hk(Rn−1) .

Here we have used the fact ϕ is a smooth function and that ϕ̈(ξ) → 0 as ξ → ±∞ to conclude that

ϕ̈ ∈ L∞ and that ∣∣∣∣∫ 1

0
(1− s)ϕ̈

(
ξ′ + s

(
ρ(z, t)− ρ(z′, t)

))
ds

∣∣∣∣ ≤ 1

2
‖ϕ̈‖L∞(R).

• For N2(ρ, v). From the definition of N2 in (3.5), we have that

N2(ρ, v)(x, t) =

∫
Rn
K(x− x′)

(
ρ(z, t)− ρ(z′, t)

) ∫ 1

0
∂ξv(ξ + s

(
ρ(z, t)− ρ(z′, t)

)
, z′, t)dξ′dz′.

Using Cauchy-Schwarz inequality directly yields

‖N2(ρ, v)‖L1(Rn) ≤ C ‖ρ‖Hk(Rn−1) ‖v‖Hk(Rn) ,

and the other estimates follow easily.

• For R(ρ, v). For the last estimates on R(ρ, v), we project equation (3.2) along ψ so that we obtain

−〈Av, ψ〉 = ∂tρ (1 + 〈∂ξv, ψ〉)− 〈A(ρϕ̇), ψ〉+ 〈H(v) +N (ρ, v), ψ〉.

Provided that ‖v‖Hk(Rn) is small enough we can write

∂tρ =
1

1 + 〈∂ξv, ψ〉
(−〈Av, ψ〉+ 〈A(ρϕ̇), ψ〉 − 〈H(v) +N (ρ, v), ψ〉) . (4.3)

Then, multiplying the above equation by ∂ξv and integrating over Rn, one obtains the desired estimate

‖R(ρ, v)‖L1(Rn) . ‖v‖
2
Hk(Rn) + ‖ρ‖Hk(Rn−1) ‖v‖Hk(Rn) + ‖∇z · ρ‖2Hk(Rn−1) .
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Remark 4.1. Note that the evolution equation (4.3) that we obtained for ρ is equivalent to equation (3.6b)

that was previously derived, provided that ‖v‖Hk(Rn) is small enough.

4.2 Proof of Theorem 1

We can now turn to the proof of our main Theorem 1. We first augment the system (3.6) with an additional

equation for ω := ∇z · ρ, so that we have the system of equations

v(t) = QSL(t)v0 −QSL(t)(ρ0ϕ̇) +

∫ t

0
QSL(t− s) (H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))) ds, (4.4a)

ρ(t) = 〈SL(t)(ρ0ϕ̇− v0), ψ〉 −
∫ t

0
〈SL(t− s) (H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))) , ψ〉ds, (4.4b)

ω(t) = 〈SL(t)(ω0ϕ̇−∇z · v0), ψ〉 −
∫ t

0
∇z · 〈SL(t− s) (H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))) , ψ〉ds.

(4.4c)

In the above equation, we used the fact that ∇z · SL(t)f = SL(t)∇z · f and set w0 := ∇z · ρ0. We now

define the Banach space X := Hk(Rn) × Hk(Rn−1) × Hk(Rn−1). Using standard semigroup theory, we

obtain the following existence result for the system (4.4).

Lemma 4.2. Suppose that the initial condition for (4.4) satisfies (v0, ρ0, ω0) ∈ X for k ≥
[
n+1

2

]
. Then,

there exists T > 0 such that there exists a unique solution to (4.4) with (v(t), ρ(t), ω(t)) ∈ X for all

t ∈ [0, T ).

Let T∗ > 0 be the maximal time of existence of a solution (v, ρ, ω) ∈ X with initial condition v0 ∈
Hk(Rn) ∩W 1,1(Rn), and ρ, ω0 ∈ Hk(Rn−1) ∩ L1(Rn−1). For t ∈ [0, T∗) we define

Φv(t) := sup
0≤s≤t

(1 + s)
n−1
4

+1‖v(s)‖Hk(Rn),

Φρ(t) := sup
0≤s≤t

(1 + s)
n−1
4 ‖ρ(s)‖Hk(Rn−1),

Φω(t) := sup
0≤s≤t

(1 + s)
n+1
4 ‖ω(s)‖Hk(Rn−1)

and

E0 := ‖v0‖W 1,1(Rn) + ‖v0‖Hk(Rn) + ‖ρ0‖W 1,1(Rn−1) + ‖ρ0‖Hk+1(Rn−1).
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Estimate for the v component. We apply our semigroup estimates to the first equation of system

(4.4) to obtain

‖v(t)‖Hk(Rn) . (1 + t)−
n−1
4
−1E0 + e−θtE0 +

∫ t

0
e−θ(t−s) ‖H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))‖Hk(Rn) ds

+

∫ t

0
(1 + t− s)−

n−1
4
−1 ‖H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))‖L1(Rn) ds

. (1 + t)−
n−1
4
−1E0 + e−θtE0 +

∫ t

0
e−θ(t−s)

(
‖v(s)‖2Hk(Rn) + ‖ρ(s)‖Hk(Rn−1) ‖v(s)‖Hk(Rn)

)
ds

+

∫ t

0
e−θ(t−s) ‖ω(s)‖2Hk(Rn−1) ds+

∫ t

0
(1 + t− s)−

n−1
4
−1 ‖v(s)‖2Hk(Rn) ds

+

∫ t

0
(1 + t− s)−

n−1
4
−1
(
‖ρ(s)‖Hk(Rn−1) ‖v(s)‖Hk(Rn) + ‖ω(s)‖2Hk(Rn−1)

)
ds.

We can now use the definition of Φv, Φρ and Φω to obtain the inequality

‖v(t)‖Hk(Rn) . (1 + t)−
n−1
4
−1E0 + e−θtE0 + Φ2

v(t)

∫ t

0
e−θ(t−s)(1 + s)−

n−1
2
−2ds

+ Φv(t)Φρ(t)

∫ t

0
e−θ(t−s)(1 + s)−

n−1
2
−1ds+ Φ2

ω(t)

∫ t

0
e−θ(t−s)(1 + s)−

n+1
2 ds

+ Φ2
v(t)

∫ t

0
(1 + t− s)−

n−1
4
−1(1 + s)−

n−1
2
−2ds+ Φ2

ω(t)

∫ t

0
(1 + t− s)−

n−1
4
−1(1 + s)−

n+1
2 ds

+ Φv(t)Φρ(t)

∫ t

0
(1 + t− s)−

n−1
4
−1(1 + s)−

n−1
2
−1ds.

We can now use the estimates of the Lemma A.1 to rewrite the above inequalities as

‖v(t)‖Hk(Rn) . (1 + t)−
n−1
4
−1E0 + e−θtE0 + Φ2

v(t)(1 + t)−
n−1
2
−2 + Φv(t)Φρ(t)(1 + t)−

n−1
2
−1

+ Φ2
ω(t)(1 + t)−

n+1
2 + Φ2

v(t)(1 + t)−
n−1
4
−1 + Φv(t)Φρ(t)(1 + t)−

n−1
4
−1

+ Φ2
ω(t)(1 + t)−

n−1
4
−1.

As a consequence, there exists a constant Cv > 0 such that for all t ∈ [0, T∗) we have

Φv(t) ≤ Cv
(
E0 + Φ2

v(t) + Φv(t)Φρ(t) + Φ2
ω(t)

)
. (4.5)
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Estimate for the ρ component. We repeat the procedure of the previous paragraph for the ρ compo-

nent of system (4.4) to obtain

‖ρ(t)‖Hk(Rn−1) . (1 + t)−
n−1
4 E0 + e−θtE0 +

∫ t

0
e−θ(t−s)

(
‖v(s)‖2Hk(Rn) + ‖ρ(s)‖Hk(Rn−1) ‖v(s)‖Hk(Rn)

)
ds

+

∫ t

0
e−θ(t−s) ‖ω(s)‖2Hk(Rn−1) ds+

∫ t

0
(1 + t− s)−

n−1
4 ‖v(s)‖2Hk(Rn) ds

+

∫ t

0
(1 + t− s)−

n−1
4

(
‖ρ(s)‖Hk(Rn−1) ‖v(s)‖Hk(Rn) + ‖ω(s)‖2Hk(Rn−1)

)
ds

. (1 + t)−
n−1
4 E0 + e−θtE0 + Φ2

v(t)(1 + t)−
n−1
2
−2 + Φv(t)Φρ(t)(1 + t)−

n−1
2
−1

+ Φ2
ω(t)(1 + t)−

n+1
2 + Φ2

v(t)

∫ t

0
(1 + t− s)−

n−1
4 (1 + s)−

n−1
2
−2ds

+ Φv(t)Φρ(t)

∫ t

0
(1 + t− s)−

n−1
4 (1 + s)−

n−1
2
−1ds+ Φ2

ω(t)

∫ t

0
(1 + t− s)−

n−1
4 (1 + s)−

n+1
2 ds

. (1 + t)−
n−1
4 E0 + e−θtE0 + Φ2

v(t)(1 + t)−
n−1
2
−2 + Φv(t)Φρ(t)(1 + t)−

n−1
2
−1

+ Φ2
ω(t)(1 + t)−

n+1
2 + Φ2

v(t)(1 + t)−
n−1
4 + Φv(t)Φρ(t)(1 + t)−

n−1
4 + Φ2

ω(t)(1 + t)−
n−1
4 .

As a consequence, there exists a constant Cρ > 0 such that for all t ∈ [0, T∗) we have

Φρ(t) ≤ Cρ
(
E0 + Φ2

v(t) + Φv(t)Φρ(t) + Φ2
ω(t)

)
. (4.6)

Estimate for the ω component. Finally, for the ω component, we obtain using the same technique

‖ρ(t)‖Hk(Rn−1) . (1 + t)−
n+1
4 E0 + t−

1
2 e−θtE0 +

∫ t

0
(t− s)−

1
2 e−θ(t−s) ‖ρ(s)‖Hk(Rn−1) ‖v(s)‖Hk(Rn) ds

+

∫ t

0
(t− s)−

1
2 e−θ(t−s)

(
‖v(s)‖2Hk(Rn) + ‖ω(s)‖2Hk(Rn−1)

)
ds

+

∫ t

0
(1 + t− s)−

n+1
4

(
‖v(s)‖2Hk(Rn) + ‖ρ(s)‖Hk(Rn−1) ‖v(s)‖Hk(Rn) + ‖ω(s)‖2Hk(Rn−1)

)
ds

. (1 + t)−
n+1
4 E0 + t−

1
2 e−θtE0 + Φ2

v(t)(1 + t)−
n−1
2
−2− 1

2 + Φv(t)Φρ(t)(1 + t)−
n−1
2
−1− 1

2

+ Φ2
ω(t)(1 + t)−

n+1
2
− 1

2 + Φ2
v(t)(1 + t)−

n+1
4 + Φv(t)Φρ(t)(1 + t)−

n+1
4 + Φ2

ω(t)(1 + t)−
n+1
4 .

As a consequence, there exists a constant Cω > 0 such that for all t ∈ [0, T∗) we have

Φω(t) ≤ Cω
(
E0 + Φ2

v(t) + Φv(t)Φρ(t) + Φ2
ω(t)

)
. (4.7)

Conclusion of the proof of Theorem 1. We can now define

Φ(t) := Φv(t) + Φρ(t) + Φω(t).

From inequalities (4.5), (4.6) and (4.7), we have that there exists a constant C > 0 such that for all

t ∈ [0, T∗) we have

Φ(t) ≤ C
(
E0 + Φ2(t)

)
,
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from which it can be deduced that if E0 is small enough, then Φ(t) ≤ CE0 for all t ∈ [0, T∗). This implies

that the maximal time of existence T∗ = +∞ and that the solution (v, ρ, ω) of system (4.4) satisfies:

sup
t≥0

(1 + t)
n−1
4

+1‖v(t)‖Hk(Rn) ≤ CE0,

sup
t≥0

(1 + t)
n−1
4 ‖ρ(t)‖Hk(Rn−1) ≤ CE0,

sup
t≥0

(1 + t)
n+1
4 ‖ω(t)‖Hk(Rn−1) ≤ CE0.

5 Extension to the Bates and Chen model

In this section, we modify our method to prove the multidimensional stability of traveling front solution

for the Bates and Chen’s model discussed in the introduction. In this case, the traveling wave ϕ is solution

of (1.4) with K0 = J . One of the key feature in that case is the fact that the projection P now commutes

with linearized operator Lbc

Lbc : H1(Rn) −→ L2(Rn)

u 7−→ −u+ J ∗ξ u+ c d
dξ + f ′(ϕ)u+

n∑
j=2

(
−u+ J ∗xj u

)
.

(5.1)

As a consequence, with our Ansatz of form

u(x, t) := ϕ(ξ − ρ(z, t)) + v(ξ − ρ(z, t), z, t)

where ρ : Rn−1 → R ∈ H1(Rn−1) and v : Rn → R ∈ H1(Rn) with Pv = 0, we obtain the equation

−∂tρϕ̇+ ∂tv = Lbcv − ϕ̇An−1ρ+H(v) + Ñ (ρ, v) +R(ρ, v),

where H and R were defined in the previous section and

An−1v =
n∑
j=2

(
−u+ J ∗xj u

)
,

Ñ (ρ, v) = Ñ1(ρ) + Ñ2(ρ, v),

with

Ñ1(ρ)(z, t) =

n∑
i=2

(∫
R
J (y)ϕ(ξ + ρ(z, t)− ρ(x2, · · · , xi − y, · · · , xn, t))dy

)

+ ϕ̇(ξ)

n∑
i=2

(∫
R
J (y)ρ(x2, · · · , xi − y, · · · , xn, t)dy

)
,

Ñ2(ρ, v)(x, t) =

n∑
i=2

(∫
R
J (y)v(ξ + ρ(z, t)− ρ(x2, · · · , xi − y, · · · , xn, t), x2, · · · , xi − y, · · · , xn, t)dy

)

+
n∑
i=2

(∫
R
J (y)v(ξ, x2, · · · , xi − y, · · · , xn, t)dy

)
.
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Using the projection P, we obtain the system

∂tv = Lbcv +Q
(
H(v) + Ñ (ρ, v) +R(ρ, v)

)
, (5.2a)

(1 + 〈∂ξv, ψ〉)∂tρ = An−1ρ− 〈H(v) + Ñ (ρ, v), ψ〉. (5.2b)

Note that Lbc = L0 +An−1 with

L0v = −u+ J ∗ξ u+ c
d

dξ
+ f ′(ϕ)u,

and that ψ ∈ H1(R) is such that L∗0ψ = 0 and
∫
R ϕ̇(ξ)ψ(ξ)dξ = 1, L∗0 being the adjoint of L0.

As long as ‖v‖Hk(Rn) remains small, we can rewrite the second equation of system (5.2) as

∂tρ = An−1ρ−
1

1 + 〈∂ξv, ψ〉

(
〈∂ξv, ψ〉An−1ρ+ 〈H(v) + Ñ (ρ, v), ψ〉

)
:= An−1ρ+M(ρ, v).

Setting ω := ∇z · ρ, we finally obtain the initial value problem

∂tv = Lbcv +Q
(
H(v) + Ñ (ρ, v) +R(ρ, v)

)
, (5.3a)

∂tρ = An−1ρ+M(ρ, v), (5.3b)

∂tω = An−1ω +∇z · M(ρ, v), (5.3c)

v(0) = v0, ρ(0) = ρ0, ω(0) = ω0. (5.3d)

5.1 Linear and nonlinear estimates

In this section, we derive linear estimates for the semigroups generated by the linear operators Lbc and

An−1 together with estimates for the nonlinear terms.

5.1.1 Study of SLbc(t)

We consider the initial value problem

∂tu = Lbcu, u( · , 0) = u0 ∈ Hk(Rn), (5.4)

which has the solution u(ξ, z, t) = SLbc(t)u0(ξ, z). Taking the Fourier transform in z on both side of (5.4)

yields

∂tû(ξ, k̃, t) = L0û(ξ, k̃, t) +

n−1∑
j=1

(
−1 + Ĵ (k̃j)

)
û(ξ, k̃, t), k̃ =

(
k̃1, · · · , k̃n−1

)
. (5.5)

Setting SL0(t) to represent the semigroup generated by L0, the solution of (5.4) are given by

u(x, t) =
1

(2π)n−1

∫
Rn−1

eik̃zSL0(t)e
∑n−1
j=1 (−1+Ĵ (k̃i))tû0(ξ, k̃, t)dk̃.

By Lemma 1.1, there exists γ0 > 0 such that

‖SL0(t)Qu‖L2(Rn) . e−γ0t‖Qu‖L2(Rn).

Note that the linear problem (5.4) is homogeneous in z so that SLbc(t) can be differentiated with respect to

xj , j = 2 . . . n. Estimates for the ξ derivative follow from the regularity of solution (5.5). As a consequence,

we have obtained the following Lemma.
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Lemma 5.1. The semigroup generated by the linear operator Lbc satisfies the decay estimate

‖SLbc(t)Qu‖Hk(Rn) . e−γ0t‖Qu‖Hk(Rn).

5.1.2 Study of SAn−1(t)

The study of semigroup generated by An−1 has already been done in [1, 4] and we only quote their results.

Lemma 5.2. The semigroup generated by the linear operator An−1 satisfies the decay estimate

‖SAn−1(t)u‖Hk(Rn−1) . (1 + t)−
n−1
4 ‖u‖L1(Rn−1) + e−θt‖u‖Hk(Rn−1),

‖∇z · SAn−1(t)u‖Hk(Rn−1) . (1 + t)−
n−1
4
− 1

2 ‖u‖L1(Rn−1) + t−
1
2 e−θt‖u‖Hk(Rn−1).

5.2 Nonlinear estimates

One can easily check that similar estimates as the one presented in Lemma 4.1 hold for the nonlinear terms

Ñ1(ρ) and Ñ2(ρ, v). More precisely, we have the following Lemma.

Lemma 5.3. Let k ≥
[
n+1

2

]
. There exists a δ > 0 such that for any v ∈ Hk(Rn) and ρ ∈ Hk+1(Rn−1)

with ‖v‖Hk(Rn) ≤ δ, ‖ρ‖Hk(Rn−1) ≤ δ and ‖∇z · ρ‖Hk(Rn−1) ≤ δ we have∥∥∥Ñ1(ρ)
∥∥∥
L1(Rn)

,
∥∥∥Ñ1(ρ)

∥∥∥
Hk(Rn)

. ‖∇z · ρ‖2Hk(Rn−1) , (5.6a)∥∥∥Ñ2(ρ, v)
∥∥∥
L1(Rn)

,
∥∥∥Ñ2(ρ, v)

∥∥∥
Hk(Rn)

. ‖ρ‖Hk(Rn−1) ‖v‖Hk(Rn) , (5.6b)

‖M(ρ, v)‖L1(Rn−1) , ‖M(ρ, v)‖Hk(Rn−1) . ‖v‖
2
Hk(Rn) + ‖∇z · ρ‖2Hk(Rn−1) + ‖∇z · ρ‖2Hk(Rn−1) . (5.6c)

Proof. Most of the proof is similar to that of Lemma 4.1 and is thus omitted. We only present, part of

the computations for the estimate of the nonlinear term Ñ1(ρ). For each element of the sum in Ñ1(ρ), we

use Taylor’s formula and obtain

Ñ1(ρ)(z, t) =

n∑
j=2

∫
R
J (y)

(
ρ(z, t)− T jy · ρ(z, t)

)2(∫ 1

0
(1− s)ϕ̈

(
ξ + ρ(z, t)− T jy · ρ(z, t)

)
ds

)
dy,

with T jy · ρ(z, t) = ρ(x2, ·, xj − y, ·, xn). Now, we note that

ρ(z, t)− T jy · ρ(z, t) = y

∫ 1

0
∂xjρ(z′ + τy)dτ.

As a consequence,

‖N1(ρ)‖L1(Rn) ≤
∫
R |ϕ̈|
2
‖∇z · ρ‖2L2(Rn−1)

∫
R
y2J (y)dy,

≤ C ‖∇z · ρ‖2Hk(Rn−1) .

Here we have used the fact that ϕ̈ is exponentially localized which is a direct consequence of the fact that

J ∈W 1,1
η (R) [7].
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5.3 Proof of Theorem 2

We can now conclude the proof of Theorem 2. By the variation of constants formula, the solution to (5.3)

can be written as

v(t) = SLbc(t)v0 +

∫ t

0
SLbc(t− s)Q

(
H(v(s)) + Ñ (ρ(s), v(s)) +R(ρ(s), v(s))

)
ds, (5.7a)

ρ(t) = SAn−1(t)ρ0 +

∫ t

0
SAn−1(t− s)M(ρ(s), v(s))ds, (5.7b)

ω(t) = SAn−1(t)ω0 +

∫ t

0
∇z · SAn−1(t− s)M(ρ(s), v(s))ds. (5.7c)

In the last component of the above system, we used the fact that ∇z · SAn−1(t)f = SAn−1(t)∇z · f . Once

again, using standard semigroup theory, we obtain the local existence of solutions for the system (5.7)

for initial condition (v0, ρ0, ω0) ∈ X . Thus, let T∗ > 0 be the maximal time of existence of a solution

(v, ρ, ω) ∈ X with initial condition v0 ∈ Hk(Rn) ∩ L1(Rn), and ρ, ω0 ∈ Hk(Rn−1) ∩ L1(Rn−1). For

t ∈ [0, T∗) we define

Φv(t) := sup
0≤s≤t

(1 + s)
n+1
2 ‖v(s)‖Hk(Rn),

Φρ(t) := sup
0≤s≤t

(1 + s)
n−1
4 ‖ρ(s)‖Hk(Rn−1),

Φω(t) := sup
0≤s≤t

(1 + s)
n+1
4 ‖ω(s)‖Hk(Rn−1)

and

Ẽ0 := ‖v0‖L1(Rn) + ‖v0‖Hk(Rn) + ‖ρ0‖W 1,1(Rn−1) + ‖ρ0‖Hk+1(Rn−1).

Only the estimates for the v component will significantly changed and thus we only present the details

of the computations in that case and let the ρ and ω estimates to the reader. Note that in that case,

we obtain similar estimates as the one presented by Kapitula in the local setting [13]. By applying the

semigroup estimates derived in the previous section, we obtain

‖v(t)‖Hk(Rn) . e−γ0tE0 +

∫ t

0
e−γ0(t−s)

∥∥∥∥Q(H(v(s)) + Ñ (ρ(s), v(s)) +R(ρ(s), v(s))
∥∥∥
Hk(Rn)

)
ds

. e−γ0tE0 +

∫ t

0
e−γ0(t−s)

(
‖v(s)‖2Hk(Rn) + ‖ρ(s)‖Hk(Rn−1) ‖v(s)‖Hk(Rn) + ‖ω(s)‖2Hk(Rn−1)

)
ds

. e−γ0tE0 + Φ2
v(t)

∫ t

0
e−γ0(t−s)(1 + s)−(n+1)ds+ Φv(t)Φρ(t)

∫ t

0
e−γ0(t−s)(1 + s)−

3n+1
4 ds

+ Φ2
ω(t)

∫ t

0
e−γ0(t−s)(1 + s)−

n+1
2 ds

. e−γ0tE0 + Φ2
v(t)(1 + t)−(n+1) + Φv(t)Φρ(t)(1 + t)−

3n+1
4 + Φ2

ω(t)(1 + t)−
n+1
2 .
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As a consequence, reproducing similar computations for ρ and ω, one can find three constants Cv > 0,

Cρ > 0 and Cω > 0 such that for all t ∈ [0, T∗) we have

Φv(t) ≤ Cv
(
Ẽ0 + Φ2

v(t) + Φv(t)Φρ(t) + Φ2
ω(t)

)
,

Φρ(t) ≤ Cρ
(
Ẽ0 + Φ2

v(t) + Φv(t)Φρ(t) + Φ2
ω(t)

)
,

Φω(t) ≤ Cω
(
Ẽ0 + Φ2

v(t) + Φv(t)Φρ(t) + Φ2
ω(t)

)
.

Using similar arguments to that of Theorem 1, we conclude that the maximal time of existence T∗ = +∞
and that the solution (v, ρ, ω) of system (5.7) satisfies:

sup
t≥0

(1 + t)
n+1
2 ‖v(t)‖Hk(Rn) ≤ CẼ0,

sup
t≥0

(1 + t)
n−1
4 ‖ρ(t)‖Hk(Rn−1) ≤ CẼ0,

sup
t≥0

(1 + t)
n+1
4 ‖ω(t)‖Hk(Rn−1) ≤ CẼ0.

6 Discussion

Summary of main results. In this paper, we have proved the multidimensional stability of planar

traveling waves for scalar nonlocal Allen-Cahn equation (1.1) using semigroup estimates. More precisely,

we have shown that if the traveling wave is spectrally stable in one space dimension, then it is stable in

n-space dimension, n ≥ 2, with perturbations of the wave decaying like t−(n−1)/4 as t→ +∞ in Hk(Rn) for

k ≥
[
n+1

2

]
. We have also obtained similar results by applying our method to a model proposed by Bates

and Chen [1] generalizing to dimensions 2 and 3 their results.

Beyond smooth and small perturbations. One interesting avenue of future work is to investigate

the multidimensional stability of planar traveling waves for equation (1.1) under weaker assumptions for

the perturbations. For example, in the local case, Matano et al. have recently shown that [15] the multi-

dimensional stability of planar traveling waves with possibly large initial perturbations that only decay at

space infinity. It would be interesting to see if their techniques can adapted to our nonlocal setting.

Generalization to other Kernel. One of our key technical assumption for the kernel K is the Taylor

expansion of its Fourier transform close to the origin. Namely, we have supposed

K̂(k) = 1− d0‖k‖2 + o(‖k‖2), as k→ 0.

A natural extension would be to study kernels with different Taylor expansion such as for example

K̂(k) = 1− d0‖k‖s + o(‖k‖s), as k→ 0,

with possibly 0 < s < 2. Then one could conjecture that if the traveling wave is spectrally stable in one

space dimension, then it is stable in n-space dimension, n ≥ 2, with perturbations of the wave decaying

like t−(n−1)/(2s) as t→ +∞ in Hk(Rn) for k ≥
[
n+1

2

]
. We let this question as an open problem.
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Generalization to other nonlocal problems. Recently, Miller and Zeng [16] have shown similar

results in dimension n ≥ 4 for an integrodifference equation of the form

uj+1 = K ∗x g(uj), j ∈ N, (6.1)

with a Gaussian kernel K and a smooth nonlinearity. This type of equation belongs to the class of problems

where the convolution term appears into the equation in a nonlinear fashion as it is often the case in physical

or biological models. Within this class of problems, let for example mention the continuum neuronal model

[9]

∂tu = −u+K ∗x S(u) (6.2)

where the smooth nonlinear function S is such that −u+ S(u) is of bistable type, or the continuum limit

of an interacting particle system with Glauber dynamics and Kac potential [8]

∂tu = −u+ tanh (βK ∗x u+ h) , (6.3)

where β > 1 and h > 0. For both of these last two models (6.2) and (6.3), one can prove the existence and

spectral stability of a traveling wave solution for the one dimensional problem [2, 8, 9]. As a consequence,

under the same Hypothesis (H2) for the kernel, it should be straightforward to adapt our proof of Theorem

1 to show that if equations (6.1), (6.2) and (6.3) admit a traveling wave that is spectrally stable in one

space dimension, then it is stable in n-space dimension, n ≥ 2, with perturbations of the wave decaying

like t−(n−1)/4 as t→ +∞ in Hk(Rn) for k ≥
[
n+1

2

]
.
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A Some estimates

The following lemma can be proved by direct computations, see [18].

Lemma A.1. Suppose α, β, γ > 0, then

(i)
∫ t/2

0 (1 + t− s)−β(1 + s)−γds . (1 + t)−α, if α ≤ β, α ≤ β + γ − 1, γ 6= 1 or if α < β, α ≤ β + γ − 1,

γ = 1;

(ii)
∫ t
t/2(1 + t− s)−β(1 + s)−γds . (1 + t)−α, if α ≤ γ, α ≤ β + γ − 1, β 6= 1 or if α < γ, α ≤ β + γ − 1,

β = 1;

(iii)
∫ t

0 e
−β(t−s)(1 + s)−γds . (1 + t)−γ.
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