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ANOMALOUS INVASION SPEED IN A SYSTEM OF COUPLED
REACTION-DIFFUSION EQUATIONS∗

GRÉGORY FAYE† AND GWENAËL PELTIER‡

Abstract. In this paper, we provide a complete description of the selected spreading speed of
systems of reaction-diffusion equations with unilateral coupling and prove the existence of anomalous
spreading speeds for systems with monostable nonlinearities. Our work extends known results for
systems with linear and quadratic couplings, and Fisher-KPP type nonlinearities. Our proofs rely on
the construction of appropriate sub- and super-solutions.
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1. Introduction
In this article we study the spreading properties of the following system of coupled

reaction diffusion equations,
ut=duxx+f(u)+βvp(1−u) , t>0, x∈R,
vt=vxx+v(1−v) , t>0, x∈R,
u(0,x) =u0(x), v(0,x) =v0(x) , x∈R,

(1.1)

with d,β,p>0 and f ∈C2 a monostable function, that is


f(0) =f(1) = 0,

0<f(u) , 0<u<1,

f ′(0)>0>f ′(1).

(1.2)

Given initial conditions 0≤u0,v0≤1 being compactly supported perturbations of
the Heaviside step function 1x≤0, such systems typically present front-like solutions that
propagates to the right with a certain spreading speed. In this study, we are interested
in the asymptotic speed of propagation for the u component. That is, if we define the
invasion point

κ(t) = sup
x∈R

{
x |u(t,x)≥ 1

2

}
,

we want to know the expression of the so-called selected speed or spreading speed,

ssel = lim
t→∞

κ(t)

t
,

with respect to f and the parameters. Note that, given our initial conditions,
an application of the comparison principle gives that the solutions of (1.1) satisfy
0≤u(t,x),v(t,x)≤1 for all t>0 and x∈R, so that the threshold 1/2 in the defini-
tion of κ(t) is arbitrary and we shall see that the selected speed is identical for any
threshold in (0,1).

∗Received date, and accepted date (The correct dates will be entered by the editor).
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2 ANOMALOUS INVASION SPEEDS IN REACTION-DIFFUSION SYSTEMS

The v component. Observe that the coupling only occurs in the u equation, thus
we can first look at the v equation in isolation :

vt=vxx+v(1−v). (1.3)

This is the well-known scalar Fisher-KPP equation, and has been the object of numerous
studies, see [1, 2, 5, 9] among others. Given our compactly supported, positive initial
condition, a classical result established in [1] proves that this component will spread at
asymptotical speed s∗= 2 in the following sense :

inf
x≤st

v(t,x) −→
t→∞

1, for all s<2,

and

sup
x≥st

v(t,x) −→
t→∞

0, for all s>2.

Here s∗= 2 is also the minimal speed of monotone traveling wave solutions having the
form v(t,x) =ϕ(x−st) and satisfying

ϕ′′+sϕ′+ϕ(1−ϕ) = 0 in R, ϕ(−∞) = 1, ϕ(+∞) = 0. (1.4)

In fact, one can show [2, 10] that there exists a constant x∞ depending on the initial
condition only such that κ(t) has the following asymptotics

κ(t) = 2t− 3

2
lnt+x∞+ϕ−1

∗ (1/2)− 2
√
π√
t

+O

(
1

t1−γ

)
, (1.5)

as t−→+∞, for any γ >0 and ϕ∗ denotes the critical traveling front solution of (1.4)
at s∗= 2.

The uncoupled case. We now turn our attention to the u component. We first
look at the decoupled case β= 0. The u equation in isolation shares many properties
with the Fisher-KPP equation (1.3). More specifically, from [1], we know the existence
of a spreading speed s0≥2

√
df ′(0) in the sense explained above:

inf
x≤st

u(t,x) −→
t→∞

1, for all s<s0,

sup
x≥st

u(t,x) −→
t→∞

0, for all s>s0.

In general, there is no explicit expression for the spreading speed s0 with the hypothesis
that f is monostable only. However, this speed is linearly determined if f is of Fisher-
KPP type, that is f monostable (see (1.2)) and

f(u)≤f ′(0)u, for all 0≤u≤1. (1.6)

In that case, given our initial condition, the component u will spread at speed s0 =
2
√
df ′(0) as it is the case for equation (1.3) where d=f ′(0) = 1. Thus, for Fisher-KPP

type nonlinearity, the selected speed depends on f only through its derivative at u= 0.
From now on we denote α :=f ′(0).
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The coupled case – Main result. We now consider (1.1) in the coupled case
β>0, with f of Fisher-KPP type satisfying (1.2) and (1.6). At first, one could expect
that the selected speed for the u component is given by max(2,2

√
dα). For instance,

if we consider values of (d,α) such that 2
√
dα>2, and place ourselves in a window

y=x−2
√
dαt, the v component will converge to zero as t→∞, locally uniformly in

y. Thus one could think that replacing v by zero in the u equation would give the
spreading speed. This turns out to not always be the case, and there exists a domain
for our parameters that leads to a selected speed strictly superior than max(2,2

√
dα).

This phenomenon was first observed in [11] and given the label of anomalous spreading,
and rigorously studied in [7, 8]. In fact, we are going to prove the following theorem.

Theorem 1.1. Consider (1.1) with f of Fisher-KPP type satisfying (1.2) & (1.6) and
with d,β,p>0 and α=f ′(0)>0. Fix initial data 0≤u(0,x)≤1 and 0≤v(0,x)≤1, each
consisting of a compactly supported perturbation of the Heaviside step function 1x≤0.
Then, there exist domains I,II,III, depending on p, so that the selected speed ssel(p) is
given by

ssel(p) =


2 , (d,α)∈ I,

2
√
dα , (d,α)∈ II,

sanom(d,α,p) , (d,α)∈ III,

with

sanom(d,α,p) =

√
α−p
p−dp2

+

√
p−dp2

α−p
, (1.7)

and

I =

{
α≤p(2−dp) | d≤ 1

p

}
∪
{
α≤ 1

d
| d> 1

p

}
,

II =

{
α≥ dp2

2dp−1
| 1

2p
<d≤ 1

p

}
∪
{
α≥ 1

d
| d> 1

p

}
,

III=

{
α>p(2−dp) | d< 1

2p

}
∪
{
p(2−dp)<α< dp2

2dp−1
| 1

2p
<d≤ 1

p

}
.

Let first note that the system (1.1) has already been studied in the case f(u) =
αu(1−u), with p= 1 [7, 8] or p= 2 [4] and Theorem 1.1 is a natural generalization
of those studies to p>0. It is also important to remark that for (d,α)∈ III we have
sanom(d,α,p)>max(2,2

√
dα) and in that respect sanom is referred to as an anomalous

spreading speed. We will see that it is the coupling βvp into the u component of system
(1.1) that induces a resonance in the dynamics leading to this anomalous spreading
speed. We refer to Figure 2.2 for an illustration of the different domains defined in
Theorem 1.1. It is interesting to note that as p→+∞, the domain III of existence of
the anomalous speed shrinks as it is shifted close to axis d= 0 where it imposes large
values for α as we have α≥p(2−dp) in that region. On the other hand, when p→0+,
the domain of existence of the anomalous speed becomes larger and eventually covers the
whole quadrant α>0 and d>0. In that respect, small values of p enhance anomalous
spreading.
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Strategy of the proof. Contrary to the case p= 1 [7, 8], when p 6= 1 a linearization
around the equilibrium state (u,v) = (0,0) is either impossible, or decouples the system.
However, using the fact that f is of Fisher-KPP type and that βvp(1−u)≤βvp whenever
v≥0 and u≥0, we obtain the following system{

ut=duxx+αu+βvp , t>0, x∈R,
vt=vxx+v , t>0, x∈R,

(1.8)

which will serve as a natural super-system for (1.1). It turns out that a thorough study
of (1.8) will help us:

• predict the selected speed for system (1.1) in the spirit of the approach presented
for the case p= 2 in [4];

• devise elementary exponential solutions which will serve in the construction of
sub- and super-solutions for (1.1).

The proof of Theorem 1.1 relies on the fact that each component of (1.1) satisfies the
comparison principle, allowing us to apply the theory of sub- and super-solutions [3]. In
fact, for each domain, we will explicitly construct sub- and super-solutions from which
we will deduce Theorem 1.1.

Application – Monostable nonlinearities. As it will be clear in the proof of
Theorem 1.1, the fact that the nonlinearity f is of Fisher-KPP type plays a crucial role
in our analysis. However, it turns out that Theorem 1.1 still provides valuable insights
when considering nonlinearities that are only monostable (see (1.2)). More specifically,
we will see that anomalous spreading speeds do occur for this type of nonlinearities and
we will apply our results to a specific example. This is a new development compared to
the original studies of [7, 8].

Outline. The outline of this paper is as follows. In Section 2 we determine the
expression of the selected speed ssel(p) for any p>0. By doing so, we highlight the
existence of an anomalous speed depending on parameters d,α,p. Section 3 is devoted
to the proof of Theorem 1.1. Finally, in Section 4 we relax the Fisher-KPP condition
and we consider a particular example of (1.1) for which we establish the existence of an
anomalous speed on a particular domain of parameters.

2. Spreading speeds for system (1.1)
This section is devoted to the existence of a possible anomalous spreading speed for

system (1.1). More specifically, we will explain how such a speed can be computed. We
first start by explaining the case p= 1 for which a linearization around the equilibrium
state (u,v) = (0,0) makes sense. Then, following the approach presented in [4], we derive
the formula (1.7) for the anomalous spreading speed together with the domains I, II
and III appearing in Theorem 1.1.

2.1. Study of (1.8) when p= 1
We place ourselves at p= 1. In that case system (1.8) is precisely the linearized form

of (1.1) around the equilibrium state (u= 0,v= 0), and in a moving frame y=x−st, it
reads {

ut=duyy+suy+αu+βv , t>0, y∈R,
vt=vyy+svy+v , t>0, y∈R.

(2.1)

In the decoupled case β= 0, elementary solutions of (2.1) are exponentials of the form
given by

u(t,y) =eλt
(
C1e

ν+
u (s,λ)y+C2e

ν−
u (s,λ)y

)
,
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v(t,y) =eλt
(
C1e

ν+
v (s,λ)y+C2e

ν−
v (s,λ)y

)
,

with ν±u (s,λ) and ν±v (s,λ) roots of the dispersion relation for the u and v equations
respectively :

Du(ν) :=dν2 +sν+α−λ= 0,

Dv(ν) :=ν2 +sν+1−λ= 0.

When looking at the coupled case β 6= 0 with initial conditions 1x≤0(x), it has been
shown in [7] that the spreading speed of (1.8) can be inferred from the analyticity, or
lack thereof, of the pointwise Green’s function associated to system (2.1). It is obtained
after a Laplace transform in time with parameter λ∈C and when considering delta Dirac
initial conditions. The skew-product nature of the coupling implies that the dispersion
relation of the full system (2.1) is the product of the dispersion relations Du and Dv.
Non-removable singularities of the Green function appear for values of s,λ such that the
full dispersion relation admits pinched double roots, that is when one of these relations
holds

ν+
u (s,λ) =ν−u (s,λ), (2.2a)

ν+
v (s,λ) =ν−v (s,λ), (2.2b)

ν±u (s,λ) =ν∓v (s,λ). (2.2c)

Then the spreading speed of (2.1) is exactly the minimal value of s such that those
singularities are all located in the stable half plane Re(λ)≤0, that is :

slin := sup{s>0 |all couples (s,λ) solutions of (2.2) satisfy Re(λ)>0} .

We refer to it as the linear spreading speed. In fact, solving (2.2) one obtains the
following expression for the linear spreading speed [7]:

slin =


2 , α≤2−d,
2
√
dα , d> 1

2 and α≥ d
2d−1 ,

sanom =
√

α−1
1−d +

√
1−d
α−1 , otherwise.

Due to the fact that f is of Fisher-KPP type, this linear spreading speed usually provides
a good predictor for the selected speed of the nonlinear system. A more thorough study
[8] allows one to show that the selected speed for the nonlinear system (1.1) is equal to

the linear spreading speed except on the domain IV =
{
d>1 ,max(2−d,0)<α< d

2d−1

}
,

where the selected speed is equal to max(2,2
√
dα), and one recovers precisely the state-

ment of Theorem 1.1 with p= 1. What is crucial here is that all values taken by the
selected speed of (1.1) are captured by the linear speeds of (2.1). In that respect, the
system (1.1) when p= 1 is said to be linearly determined.

2.2. An heuristic approach
When p 6= 1, we have already explained that either a linearization is impossible or

it decouples the system. Nevertheless, we would like to proceed along similar lines as
in the case p= 1, and it turns out that system (1.8) is a natural ”generalization” of the
linearized system. Therefore, we rewrite (1.8) in a moving frame y=x−st and obtain{

ut=duyy+suy+αu+βvp , t>0, y∈R,
vt=vyy+svy+v , t>0, y∈R.

(2.3)
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Our goal here is to mimic the step that leads us to compute the linear spreading speed
slin of system (2.1). This heuristic approach on system (2.3) will give us an educated
guess on the expressions of domains I, II, III and the expression of sanom in the general
case p>0. And then, in the next section we will provide a theoretical proof of our guess
using techniques of sub- and super-solutions.

First, recall that when p= 1, the spreading speed can be computed by looking at the
resonance between decay rates ν±u,v(s,λ) corresponding to equations u and v isolated.
If one considers exponential solutions of the form

u(t,y) =eΛteνu(s,Λ)y,

v(t,y) =eλteνv(s,λ)y,

then in order for those functions to satisfy (2.3) we necessarily need

Λ =pλ,

νu(s,Λ) =pνv(s,λ).

The heuristic is the following : for fixed values of (d,α,p), we seek the couples (s,λ)
solutions of any of the four equations

ν+
u (s,λ) =ν−u (s,λ), (2.4a)

ν+
v (s,λ) =ν−v (s,λ), (2.4b)

ν±u (s,pλ) =pν∓v (s,λ), (2.4c)

and we want to find the value of the speed

slin(p) = sup{s>0|all couples (s,λ) solutions of (2.4) satisfy Re(λ)>0}. (2.5)

We will call that speed the linear speed despite (2.3) not being linear. That is because
it will play a similar role of predictor for the selected speed of the nonlinear system, just
like the case p= 1. Obviously, slin(1) =slin.
Remark 2.1. It is important to note that when p= 2, we recover the ”2 : 1- resonant
spreading speed” from [4]. Actually, for any p≥1 being an integer, the spreading speed
(2.5) can be interpreted as a ”p : 1- resonant spreading speed”. However, for general
p>0 we could not use the definition [4, Definition 2.1] and this is why we proposed the
natural generalization (2.5).

2.3. Expression of the spreading speed slin(p)
In this section, we prove the following result which is a first step in proving our

main Theorem 1.1.
Proposition 2.1. The linear speed defined by (2.5) is given by

slin(p) =


2 , α≤2p−dp2,

2
√
dα , d> 1

2p and α≥ dp2

2dp−1

sanom(d,α,p) , otherwise,

, (2.6)

with

sanom(d,α,p) =

√
α−p
p−dp2

+

√
p−dp2

α−p
.
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Proof. We solve explicitly each equation. Solutions of (2.4a) and (2.4b) are respec-
tively {(

s,λ=α− s
2

4d

)
|s>0

}
, and

{(
s,λ= 1− s

2

4

)
|s>0

}
.

Thus it requires slin(p)≥max(2,2
√
dα). Equations (2.4c) involve more work. We first

consider the particular case d= 1/p. One checks it implies that α=p and the solutions
are {(

s,λ= 1− s
2

4

)
|s>0

}
,

meaning that the case d= 1/p does not impose more restrictive conditions for slin(p)
than the ones previously derived. From now on, we suppose that d 6= 1/p, and we define

X :=
α−dp2

p−dp2
, Y :=

α−p
p−dp2

.

Using these notations, we obtain a parametrization of the solutions of (2.4c) as a function
of the speed s, namely two curves in the complex plane

λ±(s) =X±s
√
Y . (2.7)

More precisely, couples (s,λ±(s)) are exactly the solutions of one of the four equations

ν±u (s,pλ) =pν±v (s,λ),

ν±u (s,pλ) =pν∓v (s,λ).

Recall that only (2.4c) leads to an anomalous speed, from an heuristical point of view.
From there, one can in fact compute explicitly the values ν±u,v(s,λ) when λ satisfies
(2.7),

ν+
u (s,pλ±(s)) =− s

2d
+

1

2d

√
s2−4dα+4dp

(
α−dp2

p−dp2
±s
√
Y

)
,

=− s

2d
+

1

2d

√
s2±4dp

√
Y s+4d2p2

(
α−p
p−dp2

)
,

=− s

2d
+

√( s
2d

)2

± p
d

√
Y s+p2Y ,

=− s

2d
+

√( s
2d
±p
√
Y
)2

,

and as a consequence, we have

ν+
u (s,pλ±(s)) =

±p
√
Y , if Re

(
s
2d±p

√
Y
)
≥0,

− s
d∓p

√
Y , if Re

(
s
2d±p

√
Y
)
≤0.

Note that we used the convention that a square root of a complex number z is the
only complex number ζ which satisfies ζ2 =z and arg(ζ)∈ (−π2 ,

π
2 ] if ζ 6= 0. One can do
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the same calculation for all the roots. We obtain the following expressions, depending
on Y ′ := Re(

√
Y )∈R+,

ν+
u (s,pλ±(s)) =

{
− s
d∓p

√
Y , if s≤∓2dpY ′,

±p
√
Y , if s≥∓2dpY ′,

ν−u (s,pλ±(s)) =

{
±p
√
Y , if s≤∓2dpY ′,

− s
d∓p

√
Y , if s≥∓2dpY ′,

and

pν+
v (s,λ±(s)) =

{
−sp∓p

√
Y , if s≤∓2Y ′,

±p
√
Y , if s≥∓2Y ′,

pν−v (s,λ±(s)) =

{
±p
√
Y , if s≤∓2Y ′,

−sp∓p
√
Y , if s≥∓2Y ′.

From there, one can directly solve (2.4c) for each λ(s) =λ±(s). The case Y ≤
0 implies Y ′= 0, and leads to only one solution, (s,λ) = (0,X). As we already have
slin(p)≥max(2,2

√
dα)>0, there is no additional condition on slin(p) if Y ≤0. Thus

slin(p) = max(2,2
√
dα) on {Y ≤0}.

We now restrict ourselves to the domain

{Y >0}={α>p, d<1/p}∪{α<p, d>1/p}.

Note that it implies Y ′>0. The couples (s,λ±(s)) play symmetric roles regarding the
sign of s. In fact, a necessary condition for (s,λ+(s)) to be solution of (2.4c) is s<0.
Thus it has no impact on slin(p). However, note that if we took initial conditions of the
form 1x≥0, we would propagate to the left at nonpositive speed and we would exclude
(s,λ−(s)) instead. Consider now the couple (s,λ−(s)). We find the following solutions,{

(s,X−s
√
Y )|s∈ [2dpY ′;2Y ′]

}
, if Y >0 and d<1/p, (2.8){

(s,X−s
√
Y )|s∈ [2Y ′;2dpY ′]

}
, if Y >0 and d>1/p, (2.9)

with (2.8) being solution of ν+
u (s,pλ−(s)) =pν−v (s,pλ−(s)) and (2.9) being solution of

ν−u (s,pλ−(s)) =pν+
v (s,pλ−(s)).

Note that

Re(λ−(s))≤0⇔ s≥sanom :=
X√
Y

=
√
Y +

1√
Y
.

At this point, we cannot conclude yet that slin(p)≥sanom whenever Y >0. Indeed,
for either (2.8) or (2.9) to be satisfied there are three possibilities, depending on the
values (d,α,p):

• If we have sanom≤min(2dpY ′,2Y ′), then the couples (s,λ−(s)) already satisfy
Re(λ−(s))≤0. That is, there is no additional condition for slin(p) (see Figure
2.1(a)). Hence slin(p) = max(2,2

√
dα).
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2 2.5 3 3.5 4 4.5 5
−5

−4.9

−4.8

−4.7

−4.6

−4.5

−4.4

−4.3

−4.2

−4.1

−4

s

ν

(a) (d,α,p) =(0.4,4,2)

0.8 1 1.2 1.4 1.6 1.8 2 2.2
−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

s

ν

(b) (d,α,p) =(0.4,2.2,2)

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

−4.5

−4

−3.5

−3

−2.5

−2

s

ν

(c) (d,α,p) =(0.1,7.2,2)

Fig. 2.1. Variations of the roots ν±u,v with respect to s. In red, ν+u (s,pλ−(s)), in blue,

ν−u (s,pλ−(s)), in green, pν−v (s,λ−(s)), in yellow pν+v (s,λ−(s)). The two blue dotted lines repre-

sent s= 2 and s= 2
√
dα. The black one represents s= sanom. We have ν+u =pν−v or ν−u =pν+v only

if s∈I := [min(2dpY ′,2Y ′),max(2dpY ′,2Y ′)]. On each figure, I is precisely the intersection of the red
and the green curves. In (a) and (b), we have that s= sanom does not intersect the segment I, so that
no we do not have additional conditions on slin. In (c), s= sanom intersects I and we need to have
slin≥ sanom and an anomalous speed can appear.

• If we have sanom≥max(2dpY ′,2Y ′), then we are then forced to have slin(p)≥
max(2dpY ′,2Y ′), but a stronger condition is not needed, since beyond that
point (s,λ−(s)) is not a solution anymore. Using the fact that

sanom =
√
Y +

1√
Y

=dp
√
Y +

α

p

√
1

Y
,

the condition sanom≥max(2dpY ′,2Y ′) can be rewritten as Y ≤min(1,α/dp2).
Thus 2Y ′≤1 and 2dpY ′≤2

√
dα. This leads to the condition slin(p)≥

max(2,2
√
dα), thus does not imply an anomalous speed (Figure 2.1(b)).

• If we have min(2dpY ′,2Y ′)<sanom<max(2dpY ′,2Y ′), then we are forced to
have slin(p)≥sanom (see Figure 2.1(c)). This is the only case where an anoma-
lous speed is susceptible to appear.

As a consequence, we place ourselves in the last case. First, we check that sanom

is indeed an anomalous speed. One can check that for every (d,α)∈{Y >0} we have
sanom≥max(2,2

√
dα). Moreover, we can prove the following facts :

sanom = 2⇔Y = 1⇔α= 2p−dp2⇔sanom = 2Y ′, (2.10)
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sanom = 2
√
dα⇔Y =

α

dp2
⇔
(
d>

1

2p
and α=

dp2

2dp−1

)
⇔sanom = 2dpY ′. (2.11)

This means that in the last case, we have sanom>max(2,2
√
dα), thus an anomalous

speed. This also proves that slin(p) given by (2.6) is a continuous expression with
respect to parameters d,α,p.

Now we want to know for which values of (d,α) we are in the last case. Note
that it happens if and only if (sanom,λ−(sanom)) is a solution of (2.8) or (2.9), and
sanom /∈{2Y ′,2dpY ′}. Thus it is equivalent to find the couples (d,α) for which

ν+
u (sanom,pλ−(sanom)) =pν−v (sanom,λ−(sanom)),

ν−u (sanom,pλ−(sanom)) =pν+
v (sanom,λ−(sanom)),

and remove from our set of solutions the points which satisfy sanom∈{2Y ′,2dpY ′}, that

is the two curves (d,2p−dp2) and (d, dp2

2dp−1 ) in the first quadrant of the (d,α) plane,

according to (2.10) & (2.11). As a consequence, if we set

Ĩ :=
{
α≤2p−dp2

}
, ĨI :=

{
d>

1

2p
, α≥ dp2

2dp−1

}
,

together with

ĨII :=

{
d<

1

p
, 2p−dp2≤α

}
∩
{

1

2p
<d<

1

p
, α≤ dp2

2dp−1

}
,

ĨV :=

{
1

p
<d, 2p−dp2≤α≤ dp2

2dp−1

}
.

then slin(p) =sanom precisely on domains ĨII and ĨV, while we have slin(p) = 2 on domain

Ĩ and slin(p) = 2
√
dα on domain ĨI. This ends the proof of Proposition 2.1.

As we have already mentioned, the computation of the linear spreading speed given
by Proposition 2.1 will help us get an estimate of the selected speed sKPP

sel (p) for system
(1.1). In the following section, we will prove that the spreading speed of the nonlinear

system sKPP
sel (p) is equal to the linear spreading speed slin(p) for (d,α) in domains Ĩ, ĨI, ĨII,

but is equal to max(2,2
√
dα) for (d,α) in ĨV. For this reason, we shall call ĨII the

relevant domain, with ν+
u ,ν

−
v associated relevant double roots, and ĨV the irrelevant

domain, with ν−u ,ν
+
v associated irrelevant double roots. We illustrate the differences

between slin(p) and sKPP
sel (p) in Figure 2.2.

3. Proof of Theorem 1.1
In order to prove Theorem 1.1, we will construct explicit sub- and super-solutions

in every domain Ĩ-ĨV. Some of these have already been done in [7, 8] in the case p= 1
and f(u) =αu(1−u). In that event, we will only explain how to adapt the proof in the
general case. For the next two sections, given v, we define for any function u

N(u) :=ut−duxx−f(u)−βvp(1−u).

Let us already recall that whenever v≥0 and u≥0, we have

N(u)≥ut−duxx−αu−βvp.

Finally, throughout the sequel we will simply denote ssel instead of ssel(p).
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Fig. 2.2. Differences between the speeds slin(p) (left) and sKPP
sel (p) (right) with p= 1.5. On the

domains I and Ĩ both speeds are equal to 2. On the domains II and ĨI both speeds are equal to 2
√
dα. On

domains ĨII, ĨV and III both speeds are equal to sanom>max(2,2
√
dα). Notice that when considering

the selected speed sKPP
sel (p) for the full system (1.1), the domain ĨV disappears, and in that region of

parameters the selected speed is simply equal to max(2,2
√
dα).

3.1. Super-solutions
For the sake of readability, we will write νu,v(s), and if not confusing only νu,v,

instead of νu,v(s,0). Furthermore, for this section, we define slightly different domains
in the first quadrant of the (d,α) plane

Î :=
{
α<2p−dp2

}
, ÎI :=

{
d>

1

2p
, α>

dp2

2dp−1

}
,

ÎII :=

{
d<

1

p

}
\(̂I ∪ ÎI), ÎV :=

{
d>

1

p

}
\(̂I ∪ ÎI),

and the point V̂ :=
{
d= 1

p ,α=p
}

.

3.1.1. Domain ÎV
Lemma 3.1. For any (d,α)∈ ÎV, we have ssel≤max(2,2

√
dα).

Proof. A similar proof was done in [7] in the case p= 1. However, to give the reader
more insight about how we construct those super-solutions which will be used later on,
we write it all here.

We consider s>max(2,2
√
dα) and (d,α)∈ ÎV. Then for any Cv>0, a super-solution

for the v equation is given by

v(t,x) = min
(

1,Cve
ν−
v (s)(x−st)

)
.

Notice that v changes its expression at the point yv = 1
ν−
v (s)

log
(

1
Cv

)
in the moving frame

y=x−st. It is also a sub-solution at y=yv since

0 = lim
y→y−v

∂yv> lim
y→y+v

∂yv.

We then take Cv>0 large enough so that v(0,x)≥v(0,x). Thus v(t,x)≤v(t,x) for all
(t,x).
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We now turn our attention to the u component and construct a similar super-
solution. We seek u(t,x) so that N(u)≥0 for all t>0 and x∈R. We claim that for any
Cv>0, we can find C∗u(Cv)>0 and τ(Cu,Cv) so that

u(t,x) =

{
1 , x−st≤ τ,
Cue

ν−
u (x−st) +Cpvκe

pν−
v (x−st) , x−st>τ,

is a super-solution whenever Cu>C
∗
u. One easily verifies that u is a super-solution

when x−st≤ τ . If τ is taken larger than yv, then for x−st>τ we have the following
inequality for N(u), assuming u∈ [0,1] :

N(u)≥
[
ut−duxx−αu−βCpvepν

−
v (x−st)

]
+β(vp−vp).

For (d,α)∈ ÎV, we have pν−v (s)<ν−u (s)<0, which implies that

Du(pν−v ) =d(pν−v )2 +spν−v +α>0.

If we now consider the equation

ut=duxx+αu+βCpve
pν−

v (x−st),

we find a solution

ũ(t,x) =Cue
ν−
u (x−st) +Cpvκe

pν−
v (x−st),

with

κ=
−β

Du(pν−v )
<0.

Therefore, we have N(ū)≥β (v̄p−vp) if τ >yv. On the other hand, the fact that pν−v <
ν−u implies ũ(t,x)>0 for x sufficiently large. Moreover, ũ(x−st) has a unique maximum
at

ξmax =− 1

ν−u −pν−v
log

(
−Cuν−u
Cpvκpν

−
v

)
.

From there, when Cu→+∞, we have ξmax→−∞. Thus there exists C∗u(Cv)>0 such
that for any Cu>C

∗
u, the following two conditions are satisfied: (i) ξmax<yv(Cv) and

(ii) ũ(t,yv+st)>1. Then, as ũ(t,x)→0+ as x→+∞, there exists τ(Cu,Cv)>yv such
that ũ(t,τ+st) = 1. This guarantees the continuity of u. Since ũx<0 for ξ >ξmax, we
have that ũ<1 for x−st>τ . Thus u propagates to the right with speed s.

In addition, for ξ >ξmax, we have ũ>0. Indeed, if there exists ξ0>ξmax such that
u(t,ξ0 +st) = 0, then it would be in contradiction with ũx<0 and ũ(t,x)→0+. Thus we
also have u>0. As v>v, we have that N(u)≥0 for all (t,x). It is also straightforward
to check that u is also a super-solution on x−st= τ .

Finally, given u(0,x) =1x≤0, we can take C∗u even larger to ensure that u(0,x)≥
u(0,x). Therefore we have u(t,x)≥u(t,x) for any t>0 and x∈R, so the spreading
speed of the u component is bounded above by s. This construction holds for any
s>max(2,2

√
dα) and thus ssel≤max(2,2

√
dα).
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3.1.2. Domain ÎI
Lemma 3.2. For any (d,α)∈ ÎI, we have ssel≤2

√
dα.

Proof. We can do the exact same proof as with (d,α)∈ ÎV, by considering (d,α)∈ ÎI
and s>2

√
dα>2 instead. We just have to make sure that in that domain pν−v (s)<

ν−u (s), which will then imply that Du(pν−v )>0. Thus, in order to have the same proof,
all that is needed is to have

pν−v (2
√
dα)<ν−u (2

√
dα).

Indeed, if s is taken close enough to 2
√
dα, we will have

pν−v (s)<ν−u (s),

and the same proof can hold. We know that ν−u (2
√
dα) =−

√
α
d . Thus we solve

pν−v (2
√
dα) =−p

√
dα−p

√
dα−1<−

√
α

d
,√

1− 1

dα
>

1

dp
−1.

One can check this is always true for (d,α)∈ ÎI, and the proof is complete.
Note that the last inequality does not hold when α= 1/d=p. This is partly the

reason why we had to redefine our domains Î-V̂.

3.1.3. Domain ÎII
Lemma 3.3. For any (d,α)∈ ÎII, we have ssel≤sanom.

Proof. A similar proof was given in [8] with a coupling term βv instead of βvp(1−u).

Our super-solution will be similar to the one constructed for (d,α)∈ ÎV, and the proof
is also simpler. For this reason we will briefly mention the different steps.

Consider (d,α)∈ ÎII and s>sanom. Then we can choose Cv>0 so that

v(t,x) = min
(

1,Cve
ν−
v (s)(x−st)

)
,

is a super-solution of the v equation and satisfies v(t,x)≥v(t,x) for all t>0 and x∈R.

Notice that v changes its expression at the point yv = 1
ν−
v (s)

log
(

1
Cv

)
in the moving frame

y=x−st. Then, we can find C∗u(Cv) such that for all Cu>C
∗
u there exists a τ(Cu,Cv)

for which

u(t,x) =

{
1 , x−st≤ τ,
Cue

ν+
u (s)(x−st) +κCpve

pν−
v (s)(x−st) , x−st≥ τ,

is a super-solution for the u component, with

κ=
−β

Du(pν−v )
.

Note that for (d,α)∈ ÎII we have pν−v (s)<ν+
u (s) and Du(pν−v )<0, so that κ>0. Then

the sum of exponentials in u expression is a positive non increasing function that tends
to infinity as x−st→−∞ and to zero as x−st→∞. Therefore we can choose τ as the
unique value that makes u continuous. Then we can choose C∗u large enough so that
for every Cu>C

∗
u we have both τ >yv(Cv) and u(0,x)>u(0,x). In the end we have

u(t,x)≤u(t,x) for all (t,x). As u propagates to the right at speed s taken arbitrarily

close to sanom, we have ssel≤sanom for (d,α)∈ ÎII.



14 ANOMALOUS INVASION SPEEDS IN REACTION-DIFFUSION SYSTEMS

3.1.4. Domain Î
Lemma 3.4. For any (d,α)∈ Î, we have ssel≤2.

Proof. We can do the exact same proof as for (d,α)∈ ÎII, by considering (d,α)∈ Î and
s>2>2

√
dα instead. We just have to make sure that pν−v (s)<ν+

u (s) and Du(pν−v )<0.
All that is needed is to have

ν+
u (2)≥pν−v (2)>ν−u (2).

Indeed, using the fact that ν+
u is increasing with s and ν−v is decreasing with s, if s is

taken close enough to 2, we will have

ν+
u (s)>pν−v (s)>ν−u (s),

and the same proof holds. We know that pν−v (2) =−p. Thus we solve

ν+
u (2) =

1

d

(
−1+

√
1−dα

)
≥−p,

√
1−dα≥1−dp,

ν−u (2) =
1

d

(
−1−

√
1−dα

)
<−p,

√
1−dα>dp−1.

One can check this is true when (d,α)∈ Î, which ends the proof.
Remark 3.1. Note that a similar proof as the one for Lemma 3.4 does not hold
for (d,α)∈{d>1/p, α= 2p−dp2}. Indeed, recall that for those values we have both
ν+
u (sanom) =pν−v (sanom) and sanom = 2. Thus we have ν+

u (2) =pν−v (2) =ν−u (2). Also, as
d>1/p, we have α<1/d thus 2

√
dα<2. So we have

lim
s→2+

∂sν
−
v (s) = lim

s→2+

(
−1

2
− 1

2

s√
s2−4

)
=−∞,

∂sν
−
u (2) =− 1

2d
− 1

2d

2√
4−4dα

>−∞.

As a consequence, we have ν−u (s)>pν−v (s) when s→2. This is why we removed this

curve from the domain Î. However, note that this case was dealt within the proof of
Lemma 3.1 on the domain ÎV.

3.1.5. Point V̂
Lemma 3.5. Let d= 1

p and α=p, then we have ssel≤2 = 2
√
dα.

Proof. As α= 1/d=p, we have ν±u =pν±v for all s. Thus none of the previous proofs
work because they rely on the fact that Du(pνv) 6= 0. Yet, we can construct a similar
super-solution for this case.

We consider s>2, and νv(s) =− s2 ∈]ν−v (s),ν+
v (s)[. It is still true that

v(t,x) = min(1,Cve
νv(s)(x−st)),

is a super-solution of the v equation for any Cv>0. We also have

ν−u (s)<pνv(s)<ν
+
u (s),
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so that we have Du(pνv)<0. Let

u(t,x) =

{
1 , x−st≤ τ,
Cue

ν+
u (s)(x−st) +κCpve

pνv(s)(x−st) , x−st≥ τ.

We can proceed the same way as when (d,α)∈ ÎII and show that u is a super-solution,
concluding the proof of the lemma.

3.2. Sub-solutions
We come back to our former definitions of the domains Ĩ-ĨV given in Section 2. In

order to have the lower bound of Theorem 1.1, we prove that ssel≥2 and ssel≥2
√
dα

for any (d,α), then ssel≥sanom for (d,α)∈ ĨII.

3.2.1. Lower bound ssel≥2
√
dα

Lemma 3.6. For any d>0 and α>0, we have ssel≥2
√
dα.

Proof. Let’s consider the u equation in isolation, that is

ut=duxx+f(u). (3.1)

A phase-plane analysis (see for example [1]) shows that this equation admits solutions of
the form Us(x−st), unique up to a translation for every fixed s∈R. If we consider 0<
s<2

√
dα, then 1 is an unstable saddle-node point, while 0 is a stable focus. Thus those

solutions tend to 1 as x−st→−∞ and converge to 0 by oscillating when x−st→∞.
In particular, they attain 0 in finite time. For any s∈ (0,2

√
dα) we define Uosc(x−st)

as a solution of (3.1), cut off and set equal to zero for all x−st greater than its smallest
zero. Then one can check that Uosc is a sub-solution of (3.1). Since, for the full system
(1.1), we only add the negative contribution −βvp(1−u) when considering N(u), it is
also a sub-solution for the coupled equation. Using the invariance by translation, we
can ensure that Uosc(x)≤u(0,x), so that we have Uosc(x−st)≤u(t,x) for every (t,x).
Since we can choose s arbitrarily close to 2

√
dα, we have ssel≥2

√
dα.

3.2.2. Lower bound ssel≥2
Lemma 3.7. For any d>0 and α>0, we have ssel≥2.

While we obtained a sub-solution by removing the coupling in the proof of the previ-
ous lemma, this does not work here. We have to use the coupling term in the expression
of our sub-solution, otherwise it would mean that the selected speed of (3.1) with com-
pactly supported initial condition would also be greater than 2, which is obviously false.
There are multiple ways to achieve it, and we present here a simple one.

Proof. Consider s<2. We define the following function depending on y=x−st :

ψ(y) = 1−Acosh(B(y−C)),

with A∈ (0,1), B>0 and C ∈R. The maximum of ψ is ψ(C) = 1−A<1, and there
exists y+>C such that ψ(y+) = 0 and ψy(y+) =ψx(y+)<0. In fact, we have

y+ =
Argcosh(1/A)

B
+C.

Thus one can define the continuous function

u(t,x) =u(y) =


1−A , y≤C,
ψ(y) , C≤y≤y+,

0 , y≥y+.
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It is obvious that u is a sub-solution when y /∈ (C,y+). We also note that at the matching
points y=C and y=y+, we have

lim
y→C−

∂yu= lim
y→C+

∂yu,

lim
y→y−+

∂yu< lim
y→y++

∂yu.

On the other hand, since f(u)≥0, one can check that

N(u)≤ut−duyy−suy−f(u)−βvp(1−u),

≤
[
dB2−βvp

]
Acosh(B(y−C))+sAB sinh(B(y−C)),

≤
[
dB2 +sB−βvp

]
Acosh(B(y−C)),

with v≤v a sub-solution of the v equation. So we need dB2 +sB−βvp(t,y)≤0 when
y∈ [C,y+].

As s<2, let us consider Vosc(x−st) the sub-solution of the v equation, with Vosc

constructed the exact same way as Uosc above. One can choose a translate of Vosc such
that its first zero occurs when y= 0. Then we have Vosc(x−st)≤v(t,x) for all (t,x).
This allows us to choose v=Vosc.

As we have Vosc(y) −→
y→−∞

1, there exists y0(s)<0 such that Vosc(y)≥ 1
2 whenever

y≤y0. The parameters d,s,β,p being fixed, we can select a B small enough so that

dB2 +sB−β
(

1

2

)p
≤0.

Thus we have N(u)≤0 if we can ensure that Vosc(y)≥ 1
2 for y∈ [C,y+], that is if y+≤y0.

Given the expression of y+, and as y0 depends only on s, one can choose C very negative
so that y+≤y0. Thus u is a sub-solution.

Finally, we have to verify if u(0,x)≤u0(x). We have u≤1−A, y+<0, and u= 0
outside of (−∞,y+). By choosing C possibly even more negative, we can ensure that
u(0,x)≤u0(x). So that eventually we have u(x−st)≤u(t,x) for every (t,x).

In the end, any threshold h∈ (0,1−A) travels at speed at least equal to s. As we
can choose A arbitrarily close to 0, we have ssel≥s. The same construction holds for
any s<2, thus ssel≥2. This ends the proof of the lemma.

3.2.3. Lower bound ssel≥sanom

Lemma 3.8. For any (d,α)∈ ĨII, we have ssel≥sanom.
A similar proof has been done in [8] with a coupling term βv instead of βvp(1−u).

The adaptation to p>0 is somehow straightforward, but the positive contribution βvpu
in the expression of N(u) requires some specific attention. This is why we will sketch
the main lines of the proof. We first quote a result from [8].
Lemma 3.9. Fix σ>2 and 0≤v0≤1 a compactly supported perturbation of the Heaviside
step function 1x≤0. Let δ>0. There exist τ±(t;δ,σ,v0) and a T ∗(δ,σ,v0)>0 such that
the function

v(t,x) =eν
−
v (σ)(x−σt)e−δt,

is a sub-solution of the v component (1.3) for y∈ [τ−(t),τ+(t)] and t>T ∗.
Proof. [of Lemma 3.8] We now turn our attention to the u component. Consider

(d,α)∈ ĨII and max(2,2
√
dα)<s<σ<sanom. We will prove that there exist Tδ>0 such
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that

u(t,x) =


Ur(x−st) , x<σt,

Ur((σ−s)t)ψ(x−σt,t) , σt≤x<σt+Θ+(t)

0 , x≥σt+Θ+(t),

,

is a sub-solution of the u equation for any t≥Tδ. The different terms in u are as follows.
• The family of fronts Ur(·) indexed by r∈R represents the solutions of the u

equation in isolation. Using the invariance by translation, we can parameterize
this family with the identity

Ur(r) =h.

with h∈ (0,1) fixed. As we choose s>2
√
dα, those are indeed fronts that tend

to one as x−st→−∞, and decay to zero as x−st→+∞. In particular, a
phase-plane analysis shows that

U ′r(y) =ν+
u (s)Ur [1+R(Ur)],

with |R(Ur)|<CUr for Ur small enough.
• The function ψ is given by

ψ(y,t) = c1(t)eν
+
u (σ)y− β

Du(pν−v (σ))+δ
epν

−
v (σ)ye−pδt,

with c1(t) =
(

1+ β

Du(pν−
v (σ))+δ

e−δt
)

where Du(pν−v (σ))+δ>0 for the values

of parameters under consideration. Note that ψ(y,t)→0− when y→∞, and
ψ(0,t) = 1. Finally, there exists Θ+(t)∈ (0,∞) such that ψ(Θ+(t),t) = 0 and
ψ(y,t)>0 on [0,Θ+(t)).

As a consequence, if one chooses,

δ= δc=
1

p

√
σ2−4(pν−v (σ)−ν+

u (σ))>0,

then one can ensure that

τ−(t;δ,σ,v0)<Θ+(t)<τ+(t;δ,σ,v0),

holds for all t greater than some Tδ(σ,v0)≥T ∗(δ,σ,v0). Besides, if σ is close enough to
sanom, then τ−(t)>0 for t>Tδ. Then, for all t>Tδ, in a moving frame y=x−σt, the
real line can be decomposed into

Ia= (−∞,0], Ib= (0,τ−(t)], Ic= (τ−(t),Θ+(t)], Id= (Θ+(t),∞).

We now prove that u is a sub-solution on each interval. Regions Ia and Id are trivial.
Furthermore, an easy computation shows that u is a sub-solution at the matching point
=x−σt= 0. In both regions Ib and Ic we have

N(u) = (σ−s)U ′r(·)ψ+Ur(·)c′1(t)eν
+
u (σ)(x−σt)

+Ur(·)βvp−βvp(t,x)(1−Urψ)+F (Urψ) ,
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where F(u) :=f(u)−αu=O(u2) as u→0. Since σ>s, by taking Tδ perhaps even larger,
we have that Ur(x−st) is very close to 0 when x∈ Ib∪Ic. Thus we can simplify the
expression and we obtain

N(u) =
[
(σ−s)ν+

u (s)+R(Ur)+βvp(t,x)
]
Urψ+F (Urψ)

+
[
Ur(·)c′1(t)eν

+
u (σ)(x−σt)

]
+[βUr(·)vp(t,x)−βvp(t,x)].

Sub-solution on Ic. Note first that we have c′1(t)<0. Since Ur→0 as r→−∞,
there exists r0(s,σ,v0) such that for all r<r0(s,σ,v0) and t>Tδ(σ,v0) we have for all
x∈ Ic that [

(σ−s)ν+
u (s)+R(Ur)+βvp(t,x)+CUrψ

]
<0

as (σ−s)ν+
u (s)<0 is a fixed negative number and βvp(t,x) converges to zero uniformly

for x∈ Ic and F(u)≤Cu2 as u→0 for some positive constant C>0. We have thus
proved that N(u)<0 on Ic.

Sub-solution on Ib. The same reasoning does not hold on region Ib, since v is
not a sub-solution here. However, it remains true that the first and second bracket are
negative if Tδ is large enough. Indeed, it is enough to control βUr(·)vp. If we divide and
multiply this term by ψ, we can enter it into the first bracket. Then similarly to the
control we applied in region Ic, it suffices to show that βUrv

p/ψ can be made arbitrarily
small, which is satisfied by taking Tδ possibly even larger. Thus N(u)<0 on Ib.

Conclusion of the proof. The last step is to prove there exists Tu(s,σ,q0)≥Tδ
such that u(Tu,x)≤u(Tu,x). As the proof is identical to the one in [8] we do not detail
it here. Thus we obtain u≤u for all t≥Tu and x∈R. For any threshold h∈ (0,1),
we have chosen Ur so that Ur(r) =h. For large values of t we have σt>r so that
the invasion point of u associated to the threshold h satisfies κh(t) =st+r. Then the
selected speed of u is equal to s for any h∈ (0,1). This implies ssel≥s. As s<sanom

was taken arbitrarily, we deduce ssel≥sanom. This ends the proof.

4. Existence of anomalous spreading speed in monostable systems – A
case study

In this section, we investigate the existence of anomalous spreading speed in sys-
tem (1.1) when we relax the Fisher-KPP condition (1.6) and only suppose that f is
monostable i.e. only satisfies (1.2). As already explained in the introduction, in gen-
eral, for the u component in isolation there is no explicit expression for the selected
spreading speed s0. Also, recall that in that case s0 verifies s0≥2

√
df ′(0). In order to

slightly simplify our presentation and better illustrate our result, we consider (1.1) with
a specific f . Namely, we will suppose throughout this sequel that

f(u) =αu(1−u)(1+au), (4.1)

where a>0 is a varying parameter. The motivation for such a choice comes from the fact
that one can exactly compute the spreading speed s0 as shown in the following section.
Of course, all results of this section can be generalized to any monostable nonlinearities
but one cannot get as fine statements as the ones we present here (see Conjecture 1 &
2).

4.1. Equation u in isolation
For the moment, we consider the u component in isolation

ut=duxx+αu(1−u)(1+au).
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Fig. 4.1. Selected speed of (1.1) with f(u) =αu(1−u)(1+au), p= 0.6, a= 5.5 as stated in Con-

jecture 2. The domain Ĩa corresponds to smsel(p) =2, the domain ĨIa corresponds to smsel(p) =s0, and

the domain ĨIIa corresponds to the anomalous speed smsel(p) =sanom>max(2,c0). The dotted lines rep-
resent the shifted boundaries of the domains when a≤2, that is when smsel(p) is linearly determined
(see Conjecture 1). In that case, the respective domains do not depend on a∈ (0,2].

We look for solutions of the form u(t,x) =Us(x−st) which connects monotonically the
homogeneous states u= 0 and u= 1. Such solutions satisfy

dU ′′s +sU ′s+αUs(1−Us)(1+aUs) = 0, U ′s<0 with Us(−∞) = 1 and Us(+∞) = 0.

A phase-plane analysis [1,6] shows that there exists such Us, unique up to a translation,
for any s≥s0 where

s0 :=

{
2
√
dα , if a≤2,(

2+a√
2a

)√
dα , if a≥2.

Note that s0>2
√
dα whenever a>2. As shown in [1], compactly supported, positive

initial condition, will spread at speed s0, and thus for the full system (1.1) we necessarily
have that sm

sel(p)≥s0 where we denote by sm
sel(p) the selected speed for system (1.1) the

subscript m referring to the monostable nature of the nonlinearity f .
Remark 4.1. Notice that f can be written

f(u) =αu−αau3 +αu2(a−1),

such that for any a∈ (0,1], f naturally satisfies the Fisher-KPP condition (1.6). And
one can also note that even for a∈ (1,2], the spreading speed s0 is linearly determined.

4.2. Anomalous spreading speed
Let us first remark that for any a>0, one can find f̃ ∈C2 such that f̃(u)≤αu(1−

u)(1+au) for all u∈ [0,1] and f̃ satisfies (1.2) and (1.6) with f̃ ′(0) =f ′(0) =α. In fact,
this a general statement for monostable nonlinearities which verify conditions (1.2). We
will denote by s̃KPP

sel (p) the selected speed for system (1.1) when the nonlinearity is

given by f̃ satisfying the above conditions. As a consequence, we can apply our main
Theorem 1.1 and we readily obtain that

sm
sel(p)≥ s̃KPP

sel (p) =


2 , (d,α)∈ I,

2
√
dα , (d,α)∈ II,

sanom(d,α,p) , (d,α)∈ III,
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with sanom(d,α,p)>max(2,2
√
dα) for (d,α)∈ III. From there, if a≤2, we can conclude

the existence of an anomalous speed sm
sel(p)>max(2,s0) for (d,α)∈ III. Besides, that

anomalous speed is at least greater or equal than sanom(d,α,p). On the other hand, when
a>2, we have s0>2

√
dα and a speed is considered anomalous if strictly greater than

max(2,s0). By solving sanom(d,α,p)>max(2,s0) for (d,α)∈ III, one is able to conclude
the existence of an anomalous speed on the domain

IIIa=

{
2p−dp2<α, dp≤ 2

a+2

}
∪
{

2p−dp2<α<
adp2

(2+a)dp−2
,

2

a+2
<dp<

4

a+2

}
.

This is illustrated in Figure 4.1 and for (d,α)∈ IIIa, we have an anomalous speed sm
sel(p)≥

sanom(d,α,p)>max(2,s0).

4.3. Conjectures & numerical illustrations
We conclude our study by stating two conjectures that we illustrate with numerical

simulations.
Conjecture 1 (Case 1<a≤2). Consider (1.1) with f defined in (4.1) with a∈

(1,2] and d,β,p,α>0. Fix initial data 0≤u(0,x)≤1 and 0≤v(0,x)≤1, each consisting
of a compactly supported perturbation of the Heaviside step function 1x≤0. Then, the
selected speed sm

sel(p) of (1.1) is given by

sm
sel(p) =


2 , (d,α)∈ I,

2
√
dα , (d,α)∈ II,

sanom(d,α,p) , (d,α)∈ III,

with sanom(d,α,p) defined in (1.7) and domains I, II and III defined in Theorem 1.1.
Let us define the following two domains

Ia=

{
α≤2p−dp2 , dp≤ 4

a+2

}
∪
{
α≤ 8a

d(2+a)2
, dp≥ 4

a+2

}
,

IIa=

{
α≥ adp2

(2+a)dp−2
,

2

a+2
<dp<

4

a+2

}
∪
{
α≥ 8a

d(2+a)2
, dp≥ 4

a+2

}
.

Conjecture 2 (Case a>2). Consider (1.1) with f defined in (4.1) with a>2
and d,β,p,α>0. Fix initial data 0≤u(0,x)≤1 and 0≤v(0,x)≤1, each consisting of a
compactly supported perturbation of the Heaviside step function 1x≤0. Then, the selected
speed sm

sel(p) of (1.1) is given by

sm
sel(p) =


2 , (d,α)∈ Ia,(

2+a√
2a

)√
dα , (d,α)∈ IIa,

sanom(d,α,p) , (d,α)∈ IIIa,

with sanom(d,α,p) defined in (1.7).
The two conjectures 1 & 2 assess that the lower bound sm

sel(p)≥max
(
s̃KPP

sel (p),s0

)
that we found is actually also an upper-bound. And as consequence, the linear anoma-
lous spreading speed we derived in the previous sections is also the selected spreading
speed for system (1.1) when f is given by (4.1) in the monostable regime. In Figure
4.2, we confirm these conjectures numerically by direct simulations of (1.1) where we
compare the numerical spreading speed with selected speed given in conjectures 1 &
2. It will be the subject of future work to prove these two conjectures. Actually, we
suspect that such results should also apply to general monostable nonlinearities.
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Fig. 4.2. Simulations of the selected speed with parameters a= 5.5, p= 0.6, α= 1.1, β= 1, and for
d∈ [0.05,1.25]. The maximum relative error is inferior to 9.10−3.
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