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Abstract

We show existence and uniqueness of traveling front solutions to a class of neural field

equations set on a lattice with infinite range interactions in the regime where the kinetics of

each individual neuron is of bistable type. The existence proof relies on a regularization of

the traveling wave problem allowing us to use well-known existence results for traveling front

solutions of continuous neural field equations. We then show that the traveling front solutions

which have nonzero wave speed are unique (up to translation) by constructing appropriate sub

and super solutions. The spectral properties of the traveling fronts are also investigated via

a careful study of the linear operator around a traveling front in co-moving frame where we

crucially use Fredholm properties of nonlocal differential operators previously obtained by the

author in an earlier work. For the spectral analysis, we need to impose an extra exponential

localization condition on the interactions.

1 Introduction

For n ∈ Z, we consider the following lattice differential equation

u̇n(t) = −un(t) +
∑
j∈Z

KjS(un−j(t)), t > 0, (1.1)

where u̇n stands for
dun
dt

and un(t) represents the membrane potential of neuron labelled n at time

t. Here Kj represents the strength of interactions associated to the neural network at position j

on the lattice and the firing rate of neurons S(u) is a nonlinear function. Such an equation can be

seen as a Hopfield neural network model with infinite range interactions [19] or more simply as a

discrete neural field equation [12] where each neuron is set on the lattice Z with all to all couplings.
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In that later respect, we will call equation such as (1.1) Lattice Neural Field Equations (LNFEs).

The continuous counter-part of (1.1) is (see [2, 26])

∂tu(t, x) = −u(t, x) +

∫
R
K(x− y)S(u(t, y))dy, t > 0, x ∈ R. (1.2)

Such a class of equations has received much attention in the past decades and has been very

successful at reproducing a number of biological phenomena, including in particular visual hallu-

cinations, binocular rivalry or working memory. We refer to the recent surveys [7, 8, 11] for more

developments on neural field models and applications in neuroscience. Equations such as (1.2) can

also support a rich repertoire of phenomena, such as traveling waves, spatially periodic patterns,

oscillatory dynamics and localized activity [8].

Our aim is to initiate a series of work on neural field dynamics set on various types of networks

and equation (1.1) is one of the very first model to study as it consists of a network composed of

infinite neurons indexed on Z with all to all couplings represented by the interaction communication

rates Kj for j ∈ Z. There is a second natural motivation for studying LNFEs which stems from

the numerical study of the continuous neural field equation (1.2). Indeed, if one is looking for a

numerical approximation of the solutions of (1.2), one may discretize space and recover an equation

similar to (1.1) depending on the quadrature rule used to approximate the integral in (1.2).

In the present paper, we would like to study special entire solutions of (1.1). Let first suppose

that there exists two homogeneous stationary states (un(t))n∈Z = (u)n∈Z with u = 0 and u = 1

for the dynamics of (1.1). Hence, we are interested in particular solutions of (1.1) of the form

un(t) = u(n− ct) for some c ∈ R where the profile u : R→ R satisfies

−cu′(x) = −u(x) +
∑
j∈Z

KjS(u(x− j)), x ∈ R, (1.3a)

lim
x→−∞

u(x) = 1 and lim
x→+∞

u(x) = 0, (1.3b)

where we set x := n− ct and u′ stands for
du

dx
. It is understood that when c = 0, a stationary wave

solution of (1.1) is a sequence (un(t))n∈Z = (ũn)n∈Z, independent of time, which verifies

ũn =
∑
j∈Z

KjS(ũn−j), n ∈ Z, (1.4a)

lim
n→−∞

ũn = 1 and lim
n→+∞

ũn = 0. (1.4b)

The understanding of propagation phenomena in neural networks is crucial from a modeling point

of view. Indeed, in the past few years, electrode recordings and imaging studies have revealed that

the visual cortex can support a variety of cortical waves including standing waves, traveling pulses

and spiral waves which are not only elicited by localized visual stimuli across the visual cortex but

they are also present during spontaneous activity. We refer to [24] for recent review on the subject.

It is thus important to understand the underlying mechanisms which allow the propagation of

coherent structures such as traveling waves in neural network of the form of (1.1).
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The mathematical study of traveling waves in neural networks goes back to the pioneering work

of Ermentrout and McLeod [13] for the continuous neural field equation (1.2) when the kinetics of

the system is of bistable type. In [13], existence and uniqueness (up to translation) of monotone

traveling front solutions were established. More recent works of the author deal with the existence

of traveling fronts for monostable type of kinetics [14] and traveling pulses, i.e. non-monotone

traveling waves connecting the same homogeneous stationary state, for continuous neural field

models with a recovery variable, such as linear adaptation [17] or synaptic depression [15]. To

the best of our knowledge, there are no available results regarding the existence, uniqueness and

spectral stability of traveling front solutions for the LNFE (1.1) with infinite range interactions. If

the support of the interactions were to be finite, then one could rely on the theory developed by

Mallet-Paret [23] for the study of traveling front solutions in general lattice differential equations.

Let us also mention the work of Bates and coauthors [4, 5] who studied traveling waves in infinite

range lattice differential equations with bistable dynamics. The main difference between these

works and our setting is that the nonlinearity appears within the infinite sum in (1.1) making the

results of [4, 5] not readily available. Nevertheless, we will see that some of the ideas developed in

[4] can be adapted to our setting.

Outline. The remainder of the paper is organized as follows. We give a precise statement of

our assumptions and state our main results in Section 2. In Section 3, we prove the existence and

uniqueness (up to translation) of monotone traveling front solutions of (1.1) (see Theorem 1 and

2). Section 4 is dedicated to the spectral properties of traveling front solutions with non zero wave

speed (see Theorem 3). We conclude with a discussion in Section 5.

2 Main results

Throughout the paper, we will suppose that the following condition on the weights Kn is satisfied∑
n∈Z

Kn = 1. (2.1)

Then, steady homogeneous states of the form (un(t))n∈Z = (u)n∈Z for some u ∈ R satisfy the

equation

0 = −u+ S(u) := f(u). (2.2)

We will assume the following hypotheses for the nonlinear function S.

Hypothesis (H1) - Bistable nonlinearity. We suppose that:

(i) S ∈ C r
b (R) for r ≥ 2 with S(0) = 0 and S(1) = 1 together with S′(0) < 1 and S′(1) < 1;

(ii) there exists a unique θ ∈ (0, 1) such that S(θ) = θ with S′(θ) > 1;
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(iii) u 7→ S(u) is strictly nondecreasing on [0, 1] and there exists sm > 1 > s0 > 0 such that

s0 < S′(u) ≤ sm for all u ∈ [0, 1].

The assumption (i)-(ii) ensures that (un(t))n∈Z = (u)n∈Z with u ∈ {0, θ, 1} are stationary homoge-

neous solutions of the LNFE (1.1) and that the function f in (2.2) is of bistable type. The third

condition ensures that S is an increasing function, which is natural for a firing rate function. We

also ask for some regularity for S, at least C 2
b (R). This will be necessary in order to prove our

uniqueness result. Regarding the interaction weights (Kn)n∈Z, we will work with the following

conditions.

Hypothesis (H2) - Weights. We suppose that:

(i) the normalization condition (2.1) is satisfied;

(ii) for all n ∈ Z, we have Kn = K−n ≥ 0 and K±1 > 0;

(iii)
∑

n∈Z |n|Kn <∞.

The second condition is a natural biological assumption and expresses the symmetric and excitatory

nature of the considered neural network. The third condition is a technical assumption that is

necessary in the process of proving the existence and uniqueness of traveling front solutions. Let

us remark that our results cover both the case finite and infinite range interactions, although we

are primarily interested in the later one where one may further assume that Kn > 0 for all n ∈ Z.

We are now in position to state the main results of the paper. The first result is about the existence

of monotone traveling front solutions of (1.1).

Theorem 1 (Existence of monotone traveling waves). Suppose that the Hypotheses (H1)-(H2) are

satisfied then there exists a traveling wave solution un(t) = u∗(n−c∗t) of (1.1) such that the profile

u∗ satisfies (1.3) when c∗ 6= 0 or (1.4) if c∗ = 0. In the later case, we denote (ũ∗n)n∈Z the stationary

wave solution. Moreover,

(i) sgn(c∗) = sgn
∫ 1

0 f(u)du if c∗ 6= 0;

(ii) if
∫ 1

0 f(u)du = 0 then c∗ = 0;

(iii) if c∗ 6= 0 then u∗ ∈ C r+1(R) and u′∗ < 0 on R;

(iv) if c∗ = 0 then (ũ∗n)n∈Z is a strictly decreasing sequence.

The proof of Theorem 1 relies on a strategy developed by Bates and Chmaj [4] for a discrete

convolution model for phase transitions where the idea is to regularize the traveling wave problem

(1.3). This amounts at considering a sequence of traveling waves problems for continuous neural

field equations of the form of (1.2) and applying the results of Ermentrout & McLeod [13]. The
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final step is to pass to the limit and verify that the limiting front profiles satisfy all the properties

stated in Theorem 1.

The second result is about the uniqueness of traveling front solutions having nonzero wave speed.

Theorem 2 (Uniqueness of traveling waves with nonzero speed). Let (u∗, c∗) be a solution to (1.3)

as given in Theorem 1, such that c∗ 6= 0. Let (û, ĉ) be another solution to (1.3). Then c = ĉ and,

up to a translation, u∗ = û.

The strategy of proof of Theorem 2 is to use a ”squeezing” technique developed by Chen in [10]

by constructing appropriate sub and super solutions for (1.1). The principal difficulty here is that

the nonlinearity enters in a non trivial way in the infinite sum, and thus we need to adapt all the

arguments in our specific context. We rely on some comparison principles whose proofs are given

in appendix.

Regarding the spectral stability of the traveling waves, we first require an extra assumption on the

sequence of weights (Kj)j∈Z.

Hypothesis (H2η) - Exponential localization. We suppose that:

• (Kj)j∈Z satisfies (H2);

• there exists η > 0, such that
∑

j∈ZKje
η|j| <∞.

Our spectral result will be obtained for the continuous version of (1.1). That is we interpret

solutions of (1.1) as un(t) = u(t, n− c∗t) for some function u ∈ C 1([0,∞)×R,R), intuitively filing

the gap between each lattice sites, which satisfies a nonlocal partial differential equation of the form

∂tu(t, x) = c∗∂xu(t, x)− u(t, x) +

∫
R
KjS(u(t, x− j)), (t, x) ∈ (0,∞)× R.

By definition, u∗ from Theorems 1 & 2 is a stationary solution of the above equation and we will

be interested by the spectral properties of its associated linear operator

Lv := c∗v
′ − v +Kδ ∗ [S′(u∗)v], (2.3)

where Kδ∗v :=
∑

j∈ZKjv(·−j). From its definition, the operator L is a closed unbounded operator

on L2(R) with dense domain H1(R) in L2(R). Furthermore, it is not difficult to check that L is the

infinitesimal generator of a strongly continuous semigroup on L2(R) (see Lemma 4.1). Our main

result regarding L reads as follows.

Theorem 3 (Spectral properties of L). Suppose that the Hypotheses (H1)-(H2η) are satisfied and

let (u∗, c∗), with c∗ 6= 0, be the unique (up to translation) strictly monotone traveling wave solution

to (1.1) as given in Theorem 1. Let L : H1(R)→ L2(R) be the operator defined in (2.3). We have:

(i) 0 is an algebraically simple eigenvalue of L with a negative eigenfunction u′∗;
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(ii) the adjoint operator L∗ has a negative eigenfunction, denoted q ∈ C 1(R), corresponding to

the simple eigenvalue 0;

(iii) for all 0 < κ < min {1− S′(0), 1− S′(1)} the operator L−λ is invertible as an operator from

H1(R) to L2(R) for all λ ∈ C\2πic∗Z such that <(λ) ≥ −κ;

(iv) there exist η∗, η∗∗ ∈ (0, η) and some constants C∗ > 0, C∗∗ > 0 such that

|u′∗(x)| ≤ C∗e−η∗|x|‖u‖L∞(R), and |q(x)| ≤ C∗e−η∗|x|‖q‖L∞(R),

for all x ∈ R.

The main ingredient of the proof is to show that the operator L−λ is Fredholm on the some region in

the complex plane. This analysis relies on some recent work [16] on Fredholm properties of nonlocal

differential operators with infinite range interactions. Theorem 3 can be seen as preliminary result

towards the nonlinear stability of traveling fronts of equation (1.1) (see the Discussion 5).

3 Existence and uniqueness of monotone traveling waves

In this section, we present the proofs of Theorems 1 & 2.

3.1 Existence of monotone traveling waves – Proof of Theorem 1

We follow the strategy developed by Bates & Chmaj in [4] and define

Kδ(x) :=
∑
j∈Z

Kjδ(x− j) (3.1)

where δ(x− j) stands for the delta Dirac mass at x = j. Using this notation, we can write∑
j∈Z

KjS(u(x− j)) = Kδ ∗ S(u)[x],

where ∗ denotes the convolution on the real line. As a consequence, the traveling wave problem

(1.3) can be written as

−cu′ = −u +Kδ ∗ S(u), on R, (3.2a)

lim
x→−∞

u(x) = 1 and lim
x→+∞

u(x) = 0. (3.2b)

Now, in order use the known results on the existence of monotone traveling waves of Ermentrout

& McLeod [13], we need to regularize the kernel Kδ in the following way. Let Ψ ∈ C∞(R), Ψ ≥ 0,∫
R Ψ(x)dx = 1, even and with compact support. Finally, define ρm(x) := mΨ(mx) for all x ∈ R

and

Km(x) :=

m∑
j=−m

1

ωm
Kjρm(x− j), (3.3)
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where ωm :=
∑m

j=−mKj . It then is easy to check (see [4]) that for all φ ∈ C∞c (R) we have

Km ∗ φ →
m→∞

Kδ ∗ φ

uniformly on compact sets. As a consequence, we can consider the sequence of traveling waves

problems

−cmu′m = −um +Km ∗ S(um), on R, (3.4a)

lim
x→−∞

um(x) = 1 and lim
x→+∞

um(x) = 0. (3.4b)

With the definition of Km in (3.3) we can also easily check that all the conditions listed in [13] are

satisfied:

• Km is absolutely continuous, with K′m ∈ L1(R);

• Km is even, of mass one and positive;

for all m ≥ 0. Then, there exists a unique solution (modulo translation) (um, cm) of (3.4) which

further satisfies u′m < 0 on R. Moreover, we have that cm = 0 if and only if
∫ 1

0 f(u)du = 0 and

otherwise sgn(cm) = sgn
∫ 1

0 f(u)du. The solutions (um, cm) are of course weak solutions of (3.4),

i.e. for any φ ∈ C∞c (R) they satisfy

− cm
∫
R

umφ
′dx+

∫
R

(−um +Km ∗ S(um))φdx = 0. (3.5)

Let suppose that cm ≥ 0 and take α ∈ (0, θ) and translate each um so that um(0) = α. As (um)m≥0

is a sequence of strictly monotone functions, by Helly’s theorem, we can extract a subsequence of

um, which we still denote by um, converging pointwise to a monotone function u∗ as m→∞. Note

that by construction, we have 0 ≤ um ≤ 1 and thus 0 ≤ u∗ ≤ 1. Lets us show that the sequence

(cm)m≥0 is also uniformly bounded. Assume the contrary, that there is a sequence cm → +∞ as

m→∞. From (3.4) we have

| − cmu′m(x)| = | − um(x) +Km ∗ S(um)(x)| ≤ 2, for all x ∈ R and m ≥ 0,

and thus ‖u′m‖∞ → 0 as m → ∞. This implies that u∗ is constant and thus u∗ = α. This is a

contradiction. Indeed, as α ∈ (0, θ), we have f(α) = −α+ S(α) < 0 but

−cmu′m = −um +Km ∗ S(um) = −um +Km ∗ um +Km ∗ f(um) ≥ 0 on R,

and we deduce

−Km ∗ f(um) ≤ −um +Km ∗ um,

that is

0 < −f(α) = lim
m→∞

(−Km ∗ f(um)) ≤ lim
m→∞

(−um +Km ∗ um) = 0.
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Finally, by passing to another subsequence, we also have that cm → c∗, for some c∗ ≥ 0, as m→∞.

We can now pass to the limit in (3.5), and we obtain that u∗ is a weak solution of (3.2) as it satisfies

− c∗
∫
R

u∗φ
′dx+

∫
R

(−u∗ +Kδ ∗ S(u∗))φdx = 0, (3.6)

for all φ ∈ C∞c (R). This follows from Lebesgue’s dominated convergence theorem, the continuity

of S and the limit∫
R

(Km ∗ S(um))φdx =

∫
R

(Km ∗ φ)S(um)dx −→
m→∞

∫
R

(Kδ ∗ φ)S(u∗)dx =

∫
R

(Kδ ∗ S(u∗))φdx.

As a consequence, when c∗ 6= 0, the equality (3.6) implies that u∗ ∈W 1,∞(R). A boostrap argument

then show that u∗ ∈ C r+1(R) and thus a traveling wave solution (1.1). If c∗ = 0, then∫
R

(−u∗ +Kδ ∗ S(u∗))φdx = 0, for all φ ∈ C∞c (R),

so that

u∗ = Kδ ∗ S(u∗) a.e. on R.

Note that Kδ is not a regularization kernel and thus u∗ need not be continuous. However, u∗ is

monotone with 0 ≤ u∗ ≤ 1, therefore it has only jump discontinuities and the set of these jump

discontinuities is at most countable. Thus we can find a sequence (ιk)k≥0 with ιk → 0 as k → ∞
such that u∗(n+ ιk) is continuous at n+ ιk for all n ∈ Z and k > 0. We get that

u∗(n+ ιk) = Kδ ∗ S(u∗)(n+ ιk) =
∑
j∈Z

KjS(u∗(n+ ιk − j))

for all n ∈ Z and k > 0. It follows that the sequence

ũ∗n := lim
k→∞

u∗(n+ ιk), n ∈ Z,

satisfies

ũ∗n =
∑
j∈Z

KjS
(
ũ∗n−j

)
,

so is a stationary solution of (1.1).

So far, we have shown the existence of a monotone traveling wave solution u∗(n− c∗t) of (1.1), and

it remains to show that

lim
x→−∞

u∗(x) = 1 & lim
x→+∞

u∗(x) = 0,

u′∗ < 0 on R

when c∗ 6= 0 and

lim
n→−∞

ũ∗n = 1 & lim
n→+∞

ũ∗n = 0,

(ũ∗n)n∈Z is strictly decreasing ,

when c∗ = 0.
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Case c∗ 6= 0. Without loss of generality, let assume that c∗ > 0, the argument for c∗ < 0 being

the same. First, let us suppose that there exists x0 ∈ R such that u′∗(x0) = 0, with u′∗(x) ≤ 0, we

must have u′′∗(x0) = 0. Differentiating

−c∗u′∗ = −u∗ +Kδ ∗ S(u∗),

and evaluating at x = x0 we get

0 = −c∗u′′∗(x0) = −u′∗(x0) +Kδ ∗ (u′∗S
′(u∗))[x0] =

∑
j∈Z

Kju
′
∗(x0 − j)S′(u∗(x0 − j)).

From the strict monotonicity of S, we get S′(u∗(x0 − j)) > 0 for all j ∈ Z and thus u′∗(x0 − j) = 0

for all j such that Kj > 0. Since, we assumed that K±1 > 0 we deduce that u′∗(x0 + n) = 0 for

all n ∈ Z by induction. We can now obtain a contradiction as in [4], by considering the following

initial value problem:

ẇn(t) = −wn(t) +
∑
j∈Z

KjS(wn−j(t)), t > 0 and n ∈ Z, (3.7a)

wn(−x0/c∗) = u∗(n+ x0). (3.7b)

We readily check that u∗(x − c∗t) is solution of (3.7) and since u′∗(x0 + n) = 0 for all n ∈ Z, the

constant wn(t) = u∗(n+ x0) also solves (3.7), contradicting the uniqueness of the solutions of the

initial boundary value problem (3.7). As a consequence, we have u′∗(x) < 0 for all x ∈ R.

On the other hand, from the monotonicity of u∗, we readily obtain that

f(u∗(±∞)) = 0,

and as u∗(0) = α ∈ (0, θ) we necessarily have that u∗(+∞) = 0 and u∗(−∞) ∈ {θ, 1}. Let us

suppose that u∗(−∞) = θ, then for all x ∈ R we have, by strict monotonicity of u∗,

0 < u∗ < θ,

and thus f(u∗(x)) < 0 for all x ∈ R. Finally, from the equality

−c∗u′∗ = −u∗ +Kδ ∗ u∗ +Kδ ∗ f(u∗)

we get for all N ≥ 0

c∗

∫ N

−N
u′∗(x)dx+

∫ N

−N
(−u∗ +Kδ ∗ u∗)(x)dx = −

∫ N

−N
Kδ ∗ f(u∗)(x)dx > 0.

As ∫ N

−N
(−u∗ +Kδ ∗ u∗)(x)dx −→ 0, (3.8)
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as N → +∞, we get that −c∗θ ≥ 0 which is a contradiction. To obtain the limit (3.8), it is enough

to remark that∫ N

−N
(−u∗ +Kδ ∗ u∗)(x)dx =

∫ N

−N

∑
j∈Z

Kj (u∗(x− j)− u∗(x)) dx

= −
∑
j∈Z

jKj

∫ N

−N

(∫ 1

0
u′∗(x− jτ)dτ

)
dx

= −
∑
j∈Z

jKj

∫ 1

0
(u∗(N − jτ)− u∗(−N − jτ)) dτ

−→
N→∞

θ
∑
j∈Z

jKj = 0.

where we have used Lebesgue’s dominated convergence theorem, Fubini’s theorem, and [4, Lemma

2.1], together with the facts that
∑

j∈Z |j|Kj <∞ and Kj = K−j for all j ∈ Z.

Case c∗ = 0. Let us first suppose that there exists n0 ∈ Z such that ũ∗n0+1 = ũ∗n0
, where the

sequence ũ∗n is solution of

ũ∗n =
∑
j∈Z

KjS(ũ∗n−j),

for all n ∈ Z. Thus, we have ∑
j∈Z

Kj

(
S(ũ∗n0+1−j)− S(ũn0−j)

∗) = 0,

and then

S(ũ∗n0+1−j) = S(ũ∗n0−j)

for any j ∈ Z where Kj > 0. As S is strictly monotone and as we supposed that K±1 > 0, by

induction, it then follows that ũ∗n is constant, a contradiction.

As in the case c∗ 6= 0, we have that

f

(
lim

n→±∞
ũ∗n

)
= 0,

and thus lim
n→+∞

ũ∗n = 0 and lim
n→−∞

ũ∗n ∈ {θ, 1}. Let us suppose that lim
n→−∞

ũ∗n = θ, then by strict

monotonicity of ũ∗n we have 0 < ũ∗n < θ for all n ∈ Z and

−ũ∗n +
∑
j∈Z

Kjũ
∗
n−j = −

∑
j∈Z

Kjf(ũ∗n−j) > 0.

But as for any j ∈ Z and all N ≥ 1 we have that, by monotonicity of the sequence ũ∗n,∣∣∣∣∣
N∑

n=−N
(ũ∗n−j − ũ∗n)

∣∣∣∣∣ ≤ 2θ|j| and lim
N→∞

N∑
n=−N

(ũ∗n−j − ũ∗n) = jθ,
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we have that

N∑
n=−N

−ũ∗n +
∑
j∈Z

Kjũ
∗
n−j

 =
∑
j

Kj

(
N∑

n=−N
(ũ∗n−j − ũ∗n)

)
,

−→
N→∞

θ
∑
j∈Z

jKj = 0,

we readily obtain a contradiction.

Proof of statements (i)-(ii) of Theorem 1. Suppose that c∗ 6= 0. Then multiply (3.2a) by

S′(u∗)u
′
∗ as in [13] to obtain

−c∗(u′∗)2S′(u∗) = (−u∗ + S(u∗))S
′(u∗)u

′
∗︸ ︷︷ ︸

:=I1

+ (Kδ ∗ S(u∗))S
′(u∗)u

′
∗ − S(u∗)S

′(u∗)u
′
∗︸ ︷︷ ︸

:=I2

.

Note that the last two terms of the previous equation can be written

I2(x) =

∫
R
Kδ(x− y) (S(u∗(y))− S(u∗(x)))S′(u∗(x))u′∗(x)dy

and thus if we integrate over R we find∫
R
I2(x)dx =

1

2

∫
R

∫
R
Kδ(x−y) (S(u∗(y))− S(u∗(x)))

(
S′(u∗(x))u′∗(x)− S′(u∗(y))u′∗(y)

)
dydx = 0.

As a consequence, we have that

−c∗
∫
R

(u′∗(x))2S′(u∗(x))dx =

∫
R
I1(x)dx = −

∫ 1

0
(−u+ S(u))S′(u)du.

Finally, using the fact that
∫ 1

0 (−u+ S(u))(S′(u)− 1)du = 0, we obtain that

c∗

∫
R

(u′∗(x))2S′(u∗(x))dx =

∫ 1

0
f(u)du.

It then follows that sgn(c∗) = sgn
∫ 1

0 f(u)du whenever c∗ 6= 0 and that
∫ 1

0 f(u)du = 0 implies

c∗ = 0. This concludes the proof of Theorem 1.

3.2 Uniqueness of traveling waves with nonzero speed – Proof of Theorem 2

Throughout this sequel, we suppose that (u∗, c∗) is the strictly monotone traveling wave solution

given by Theorem 1 and without loss of generality we may assume c∗ > 0. Let (û, ĉ) be another

solution of (1.3). Before starting the proof of Theorem 2, we make the following remark. By

construction, we know that u∗ ∈ (0, 1) and and it is also true that

0 ≤ û ≤ 1, on R. (3.9)
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Suppose first that ĉ 6= 0, the case ĉ = 0 can be handled in a similar way. By contradiction, if (3.9)

were not satisfied, there would exist x0 ∈ R such that max
x∈R

û(x) = û(x0) > 1. We obviously have

û′(x0) = 0 and f(û(x0)) < 0, and so

0 ≥ Kδ ∗ S(û)(x0)− S(û(x0)) = −f(û(x0)) > 0,

gives a contradiction. Here we have used the monotonicity of S. Thus, we have û ≤ 1 and a similar

argument for the case where min
x∈R

û(x) = û(x0) < 0 completes the proof of (3.9).

3.2.1 Uniqueness of the wave speed

Here, we are going to follow the strategy developed by Chen in [10], see also [1, 4]. The idea is

to construct appropriate sub and super solutions for (1.1) based on the traveling wave solution u∗

which will ”squeeze” the other solution û. We also recall that a sub solution of (1.1) is a sequence

(un(t))n∈Z which satisfies for all n ∈ Z and all t > 0

u̇n(t) ≤ −un(t) +
∑
j∈Z

KjS(un−j(t)). (3.10)

A super solution is defined by reversing the inequality in (3.10).

We introduce two sequences

w±n (t) := u∗

(
n− c∗t+ ξ0 ∓ σγ(1− e−βt)

)
± γe−βt, ∀n ∈ Z (3.11)

for some well chosen parameters ξ0, σ, γ and β. More precisely, we are going to prove the following

key result.

Lemma 3.1. Assume that Hypotheses (H1)-(H2) hold and let (u∗, c∗) with c∗ 6= 0 be as in Theorem

(1). Then, there exists a small positive constant γ0 and a large positive constant σ such that for any

γ ∈ (0, γ0] and every ξ0 ∈ R, the sequences w±n (t) defined by (3.11) are a respectively sub (w−n (t))

and super (w+
n (t)) solutions with β := 1

2 min {1− S′(0); 1− S′(1)} > 0.

Proof. On only consider w+
n (t) as the proof for w−n (t) is analogous. By assumption on the sequence

(Kj)j∈Z, there exists M0 > 0 such that ∑
|j|≥[M0]

Kj ≤
β

8s2
,

where [M0] stands for nearest integer close to M0. We define γ0 > 0 by

γ0 := min

{
1,

β

8s2

}
,

where s2 = sup
u∈[−1,2]

|S′′(u)|. Let M1 > 0 be a constant such that

u∗(x) > 1− γ0 for all x ≤ −M1, u∗(x) < γ0 for all x ≥M1.

12



We define

σ :=
β + s1 − 1

min
|x|≤M0+M1

(−βu′∗(x))
> 0, (3.12)

where s1 = sup
u∈[−1,2]

|S′(u)| > sm > 1 by Hypothesis (H1) on the nonlinearity. If we denote

ξ := n− c∗t+ ξ0 − σγ(1− e−βt), then we have

Pn(t) := ẇ+
n (t) + w+

n (t)−
∑
j∈Z

KjS(w+
n−j(t)) =

(
−c∗ − σγβe−βt

)
u′∗(ξ)− γβe−βt + u∗(ξ) + γe−βt

−
∑
j∈Z

KjS
(
u∗(ξ − j) + γe−βt

)
= − σγβe−βtu′∗(ξ)− γβe−βt + u∗(ξ) + γe−βt

+
∑
j∈Z

Kj

[
S(u∗(ξ − j))− S

(
u∗(ξ − j) + γe−βt

)]
.

Let us then remark that∑
j∈Z

Kj

[
S(u∗(ξ − j))− S

(
u∗(ξ − j) + γe−βt

)]
= −γe−βt

∑
j∈Z

Kj

∫ 1

0
S′
(
u∗(ξ − j) + τγe−βt

)
dτ

with ∣∣∣∣∣∣
∑
j∈Z

Kj

∫ 1

0
S′
(
u∗(ξ − j) + τγe−βt

)
dτ

∣∣∣∣∣∣ ≤ s1. (3.13)

We can then write using the Lebesgue’s dominated convergence theorem that

Pn(t) = γe−βt

−βσu′∗(ξ)− β + 1−
∫ 1

0

∑
j∈Z

KjS
′
(
u∗(ξ − j) + τγe−βt

)
dτ

 .
We are going to consider three separate regions:

(i) |ξ| ≤M0 +M1, (ii) ξ > M0 +M1, and (iii) ξ < −M0 −M1.

Region (i). For |ξ| ≤M0 +M1, we use the bound (3.13) to obtain

Pn(t) ≥ γe−βt
[
−βσu′∗(ξ)− β + 1− s1

]
≥ 0

by definition of σ.

Region (ii). For ξ > M0 +M1, we have 0 < u∗(ξ) < γ0. Furthermore, for all τ ∈ [0, 1] we have

that ∣∣∣∣∣∣
∑
j∈Z

Kj

[
S′
(
u∗(ξ − j) + τγe−βt

)
− S′(0)

]∣∣∣∣∣∣ ≤ s2

∑
j∈Z

Kj

∣∣∣u∗(ξ − j) + τγe−βt
∣∣∣

≤ 2s2

∑
|j|≥[M0]

Kj + 2s2γ0

∑
|j|≤[M0]−1

Kj

≤ β

2
.
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As a consequence, we have that

Pn(t) = γe−βt

−βσu′∗(ξ)− β + 1− S′(0)−
∫ 1

0

∑
j∈Z

Kj

{
S′
(
u∗(ξ − j) + τγe−βt

)
− S′(0)

}
dτ


≥ γe−βt

[
−βσu′∗(ξ)− β + 1− S′(0)− β

2

]
.

Then, by definition of β we have −β + 1− S′(0) > β and thus Pn(t) ≥ 0 as −βσu′∗(ξ) ≥ 0.

Similarly, we can show that Pn(t) ≥ 0 in the region (iii). This completes the proof of the lemma.

We can now conclude the proof of Theorem 2 regarding the uniqueness of the wave speed.

Proof of Theorem 2 - Uniqueness of wave speed. Let us first suppose that ĉ 6= 0. We

can then use Lemma 3.1 and a comparison principle (see Lemma A.1 in Appendix A) to squeeze û

between two translates of u∗. First, since u∗ and û have the same limit at ±∞, there exists h� 1

such that

u∗(n)− γ0 < û(n) < u∗(n− h) + γ0, ∀n ∈ Z.

We thus obtain for all n ∈ Z and all t > 0 that

u∗

(
n− c∗t+ σγ(1− e−βt)

)
− γe−βt ≤ û(n− ĉt) ≤ u∗

(
n− c∗t− h− σγ(1− e−βt)

)
+ γe−βt.

Then, we have in particular that

u∗

(
n− ĉt+ (ĉ− c∗)t+ σγ(1− e−βt)

)
− γe−βt ≤ û(n− ĉt)

and by letting t → +∞ while keeping x = n − ĉt fixed, we obtain that ĉ ≥ c∗. Indeed assume

otherwise, then one gets 1 ≤ û(x) for all x ∈ R which is a contradiction. From the other inequality,

we deduce that ĉ ≤ c∗. As a conclusion, we have shown that ĉ = c∗. In addition, we also have that

u∗(x+ σγ0) ≤ û(x) ≤ u∗(x− h− σγ0), x ∈ R. (3.14)

When ĉ = 0, we use a similar argument by first noting that there also exists h� 1 such that

u∗(n)− γ0 < ũ∗n < u∗(n− h) + γ0, ∀n ∈ Z,

and using Lemma 3.1 and a comparison principle, we get

u∗

(
n− c∗t+ σγ(1− e−βt)

)
− γe−βt ≤ ũ∗n ≤ u∗

(
n− c∗t− h− σγ(1− e−βt)

)
+ γe−βt.

Letting t→ +∞ gives that 1 ≤ ũ∗n for all n ∈ Z, which is a contradiction, and thus ĉ 6= 0 which in

turn implies c∗ = ĉ from the previous step.
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3.2.2 Uniqueness of the profile up to translation

To conclude the proof of Theorem 2, we need to show that u∗ = û, up to a translation. From

(3.14), there exists a minimal z̄ such that

u∗(x+ z) ≤ û(x) for all z > z̄ and x ∈ R.

Let us suppose that u∗(· + z̄) 6= û and show that it leads to a contradiction. We proceed in two

steps.

Step 1. If u∗(·+ z̄) 6= û then necessarily u∗(x+ z̄) < û(x) for all x ∈ R. Otherwise, there exists

some x0 ∈ R such that u∗(x0 + z̄) = û(x0). Let w(x) := u∗(x + z̄) − û(x). Then, at x = x0, we

have w(x0) = w′(x0) = 0 and as both profiles û and u∗ satisfy the traveling wave equation (3.2a)

for c∗ = ĉ, we deduce that

0 = Kδ ∗ S(u∗)(x0 + z̄)−Kδ ∗ S(û)(x0) =
∑
j∈Z

Kj (S(u∗(x0 − j + z̄))− S(û(x0 − j))) ≤ 0,

and by positivity of Kj and monotonicity of S we have

S(u∗(x0 − j + z̄))− S(û(x0 − j)) = 0,

for all j ∈ Z where Kj > 0. As by assumption K±1 > 0, we have that S(u∗(x0 + n + z̄)) =

S(û(x0 + n)) for all n ∈ Z and the strict monotonicity of S implies that

w(x0 + n) = u∗(x0 + n+ z̄)− û(x0 + n) = 0, n ∈ Z.

But, for all n ∈ Z, the sequence of functions wn(t) = w(x0 + n− c∗t) satisfies the following initial

value problem

ẇn(t) = −wn(t) +
∑
j∈Z

KjS
′(ζn−j(t))wn−j(t), t > 0 and n ∈ Z,

wn(0) = 0,

for some ζn−j(t) ∈ (u∗(x0 + n− j − c∗t+ z̄), û(x0 + n− j − c∗t)) which has a unique solution

wn(t) = 0 and hence w ≡ 0, a contradiction. As a consequence, we have u∗(x + z̄) < û(x)

for all x ∈ R.

Step 2. Now, since u′∗(±∞) = 0, there exists a large positive constant M2 > 0 such that

−2σu′∗(ξ) ≤ 1, if |ξ| ≥M2,

with σ > 0 given in (3.12). Then by continuity of both u∗ and û, and the fact that u∗(x+z̄) < û(x),

there exists a small constant ĥ ∈ (0, 1
2σ ] such that

u∗(x+ z̄ − 2σĥ) < û(x), x ∈ [−M2 − 1− z̄,M2 + 1− z̄].
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As a consequence, when |x+ z̄| ≥M2 + 1,

u∗(x+ z̄ − 2σĥ)− û(x) < u∗(x+ z̄ − 2σĥ)− u∗(x+ z̄) = −2σĥu′∗(x+ z̄ − 2σĥε) ≤ ĥ,

for some ε ∈ (0, 1). As a consequence, we have

u∗(x+ z̄ − 2σĥ)− ĥ ≤ û(x) for all x ∈ R,

so that, using Lemma 3.1 and the comparison principle,

u∗(x− c∗t+ z̄ − 2σĥ+ σĥ(1− e−βt))− ĥe−βt ≤ û(x− c∗t) for all x ∈ R and t > 0.

Then, keeping ξ = x− c∗t fixed and sending t→ +∞, we get

u∗(ξ + z̄ − σĥ) ≤ û(ξ), ∀ξ ∈ R.

This contradicts the minimality of z̄ and thus u∗(x+ z̄) = û(x) for all x ∈ R, which concludes the

proof of Theorem 2.

4 Spectral analysis – Proof of Theorem 3

Throughout this section, we will assume that both Hypotheses (H1)-(H2η) are satisfied and that

there exists a unique (up to translation) traveling wave solution of (1.1) denoted u∗(t) = (u∗(n −
c∗t))n∈Z with c∗ 6= 0. Without loss of generality, we shall assume that c∗ > 0. Let us recall that

the profile u∗ ∈ C r+1(R) and that is satisfies the limits

lim
x→−∞

u∗(x) = 1 and lim
x→+∞

u∗(x) = 0,

together with the property u′∗ < 0. We are interested by the spectral properties of the following

linear operator L given by

Lv = c∗v
′ − v +Kδ ∗ [S′(u∗)v].

We will consider L as an operator from H1(R) to L2(R). An easy preliminary result is the following.

Lemma 4.1. The operator L defined by (2.3) is the infinitesimal generator of a strongly continuous

semigroup on L2(R).

Proof. This a consequence of the Hille-Yosida theorem and since L is closed with dense domain,

it is enough to prove that its resolvent set contains of ray {λ ∈ (M,+∞)} with resolvent estimate

‖(λ− L)−1‖ ≤ 1

λ−M
, for λ > M.

So assume that (λ− L)v = w. Taking the inner product with v, we find

(λ+ 1)‖v‖2L2(R) −
∫
R

∑
j∈Z

KjS
′(u∗(x− j))v(x− j)

v(x)dx = 〈v,w〉L2(R).
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Using Cauchy-Schwartz inequality and the invariance of the L2 norm under translation we get

(λ+ 1− sm) ‖v‖L2(R) ≤ ‖w‖L2(R).

It is important to note that a direct consequence of the shift symmetry of the profile u ∗ (t)

u∗n(t) = u∗n−1

(
t− 1

c∗

)
, n ∈ Z,

is that the spectrum of L is invariant under the operation λ 7→ λ + 2πic∗. This is reminiscent of

the discrete invariance by translation of (1.1). Indeed, fix p ∈ Z and define ω = 2πip together with

the exponential shift operator eω

eωv(x) = eωxv(x), ∀x ∈ R.

Then, we have that

e−ωLeωv(x) = e−ωx

c∗ωv(x) + c∗v
′(x)− v(x) +

∑
j∈Z

KjS
′(u∗(x− j))eωxe−ωjv(x− j)


= (L+ c∗ω)v(x),

as e−ωj = e−2πipj = 1 for all (j, p) ∈ Z2. Now, since e±ω are invertible operators on H1(R) and

L2(R), we know that the spectrum σ(L) of L equals that of e−ωLeω and thus that of L+ c∗ω. As

Lu′∗ = 0, we automatically have that 2πic∗Z ⊂ σ(L).

With this shift symmetry in hand, we can return to the proof of Theorem 3. This will be accom-

plished by a series of Lemma essentially proving each assertions of the theorem.

Lemma 4.2. 0 is an eigenvalue of L with corresponding eigenvector u′∗ and it is geometrically and

algebraically simple.

Proof. By translation invariance, we have that Lu′∗ = 0 with u′∗ ∈ H1(R). Actually, we have that

u′∗ ∈ C r
b (R) for r ≥ 2 given in Hypothesis (H1).

Let us first show that 0 is geometrically simple. Let suppose that Lv = 0 for some v ∈ H1(R) such

that v(x0) < 0 for some x0. For α > 0 we let wα = v− αu′∗ and recall that u′∗ < 0. Let fix M > 0

such that x0 ∈ [−M,M ]. Then for all α large enough we have wα > 0 on [−M,M ] with Lwα = 0.

As a consequence, we can use the comparison principle A.2 to the operator ∂t −L and obtain that

wα > 0 on R. We denote ᾱ = inf {α | wα > 0 on R}. We then have wᾱ ≥ 0 on R with some x̄ ∈ R
where w′ᾱ(x̄) = wᾱ(x̄) = 0. Thus,

0 = Lwᾱ(x̄) =
∑
j∈Z

KjS
′(u∗(x̄− j))wᾱ(x̄− j),
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which implies that wᾱ(x̄− j) = 0 where Kj > 0 and by induction wᾱ(x̄+n) = 0 for all n ∈ Z. But

now, the sequence wn(t) = wᾱ(x̄+ n− c∗t) satisfies the initial value problem

ẇn(t) = −wn(t) +
∑
j∈Z

KjS
′(u∗(x̄+ n− j − c∗t))wn−j(t), t > 0 and n ∈ Z,

wn(0) = 0,

which admits the unique solution wn(t) = 0 and thus wᾱ(x̄+n−c∗t) = 0 for all t > 0 which implies

that wᾱ ≡ 0 and thus v = ᾱu′∗.

Let us finally show that 0 is algebraically simple. Suppose that there exists v ∈ H1(R) such that

Lv = u′∗ such that v(x0) < 0 for some x0. As above let us define wα = v − αu′∗ and let α be

large enough such that we have wα > 0 on [−M,M ] with (∂t − L)wα = −u′∗ > 0 for all x ∈ R.

Thus, applying the comparison principle to wα with the operator ∂t − L we get that wα > 0 on

R. Let ᾱ be the infimum of all such α. Then we have wᾱ ≥ 0 on R with some x̄ ∈ R where

w′ᾱ(x̄) = wᾱ(x̄) = 0. As a consequence,

0 ≤
∑
j∈Z

KjS
′(u∗(x̄− j))wᾱ(x̄− j) = Lwᾱ(x̄) = u′∗(x̄) < 0.

This gives a contradiction and thus v ≡ 0 on R.

Lemma 4.3. L : H1(R)→ L2(R) is a Fredhlom operator of index 0.

Proof. We are going to apply [16, Theorems 2 & 3]. To do so, we shall verify that all hypotheses

of [16, Theorems 2 & 3] are satisfied for the operator T : H1(R)→ L2(R) defined as

T v(x) =
d

dx
v(x)−

∑
j∈Z

Aj(x)v(x− j),

where A0(x) = (1 −K0S
′(u∗(x)))/c∗ and Aj(x) = −KjS

′(u∗(x − j))/c∗ for all j 6= 0 and x ∈ R.

Let us note that x 7→ Aj(x) ∈ C 1
b (R) for all j ∈ Z and that, because of Hypothesis (H2η), we have

that ∑
j∈Z
‖Aj‖C 1

b (R)e
η|j| ≤ C

∑
j∈Z

Kje
η|j| <∞,

for some constant C > 0. Furthermore, there existsA±j = lim
x→±∞

Aj(x) whereA−0 = (1−K0S
′(1))/c∗,

A+
0 = (1 −K0S

′(0))/c∗, A
−
j = −KjS

′(1)/c∗ and A+
j = −KjS

′(1)/c∗ for j 6= 0. And we also have

that ∑
j∈Z
|A±j |e

η|j| <∞, and lim
x→±∞

∑
j∈Z
|Aj(x)−A±j |e

η|j| = 0.

Note that in order to obtain the last equality, we have used the fact that

Aj(x)−A−j = −Kj

c∗
S′′(ζj(x))(u∗(x− j)− 1) for some ζj(x) ∈ (u∗(x− j), 1)
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and remarked that |Aj(x) − A−j | ≤ s2Kj for all j ∈ Z to be able to pass to the limit inside the

infinite sum. It is also straightforward to check that

ν 7→
∑
j

A±j e
νj ,

is a bounded analytic function in the stripe Sη = {|<(ν)| < η} because of (H2η). Finally, we need

to show that for all ` ∈ R
d±(i`) := i`−

∑
j∈Z

A±j e
−i`j 6= 0.

We only show that d+(i`) 6= 0, the other case being handled similarly. Suppose it is not the case,

then there exists `0 ∈ R such that

0 = c∗i`0 − 1 + S′(0)
∑
j∈Z

Kje
−i`0j ,

and taking the real part we get that

0 = −1 + S′(0) + S′(0)
∑
j∈Z

Kj (cos(`0j)− 1) .

But we have 0 < S′(0) < 1 and Kj (cos(`0j)− 1) ≥ 0 for all j ∈ Z, a contradiction.

As a conclusion, we can apply [16, Theorem 2] which shows T : H1(R) → L2(R) is Fredholm and

thus L : H1(R) → L2(R) is also Fredholm as c∗ 6= 0. To compute the Fredholm index of L, we

rely on [16, Theorem 3] which states that the Fredholm index of T only depends on the limiting

operators T ± defined by T ±v = v′ −
∑

j∈ZA
±
j v(· − j). Moreover, the spectral flow formula (see

[16, Theorem 2]) states that the Fredholm index of T is gevin by the formula

indT = −cross(T ρ)

where T ρ, defined by T ρv := v′ −
∑

j∈ZA
ρ
jv(· − j), is a generic homotopy of constant operators

joining T − at ρ = −1 and T + at ρ = +1 and cross(T ρ) counts the number of roots of the

characteristic equation dρ(z) := z −
∑

j∈ZA
ρ
je
−zj = 0 which cross the imaginary axis along this

homotopy. Here, we consider T ρ = ((1− ρ)T −+ (1 + ρ)T +)/2 for ρ ∈ [−1, 1]. It is clear that there

exists no root of dρ(z) = 0 on the imaginary axis for all ρ ∈ [−1, 1]. Indeed, if there exists `0 ∈ R
such that dρ(i`0) = 0 then

0 = −2 +
(
(1− ρ)S′(1) + (1 + ρ)S′(0)

)∑
j∈Z

Kj cos(`0j)

= (1− ρ)

−1 + S′(1) + S′(1)
∑
j∈Z

Kj (cos(`0j)− 1)


+ (1 + ρ)

−1 + S′(0) + S′(0)
∑
j∈Z

Kj (cos(`0j)− 1)


< 0,

a contradiction. As a conclusion, we have indL = indT = 0.
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We define L∗ : H1(R)→ L2(R) as the formal adjoint of L by

L∗v = −c∗v − v + S′(u∗)Kδ ∗ v.

Corollary 4.4. The adjoint operator L∗ : H1(R) → L2(R) has a negative eigenvector q ∈ H1(R)

corresponding to the simple eigenvalue 0, i.e. dim kerL∗ = 1.

Proof. Since 0 is a simple eigenvalue of L and L is Fredholm of index 0, we readily have that

dim kerL∗ = 1 and thus L∗v = 0 as a nonzero solution in H1(R). We only need to show that v

has a sign. Suppose that v changes sign. Then one can find f ∈ L2(R) such that < f,v >= 0 with

f < 0 on R. Then, by the Fredholm alternative, the equation Lu = f has a solution u. As before,

we can choose α such that wα = u− αu′∗ ≥ 0 on R and w′α(x0) = wα(x0) = 0 for some x0. Then

we have

0 ≤
∑
j∈Z

KjS
′(u∗(x0 − j))wα(x0 − j) = Lwα(x0) = f(x0) < 0.

As a conclusion v has a sign which we choose to be negative.

Corollary 4.5. We have that σess(L) ⊂ {λ | <(λ) ≤ −2β} where β = 1
2 min {1− S′(0), 1− S′(1)} >

0.

Proof. Using similar argument, one can actually show that L − λ : H1(R)→ L2(R) is Fredholm,

with Fredholm index 0, as long as <(λ) > −2β, which gives the conclusion. Indeed, the essential

spectrum of L is the set of all λ ∈ C such that either L− λ is not Fredholm or L− λ is Fredholm,

but ind(L − λ) 6= 0.

Lemma 4.6. There exist η∗, η∗∗ ∈ (0, η) and some constants C∗ > 0, C∗∗ > 0 such that

|u′∗(x)| ≤ C∗e−η∗|x|‖u′∗‖L∞(R), and |q(x)| ≤ C∗∗e−η∗∗|x|‖q‖L∞(R), (4.1)

for all x ∈ R.

Proof. We have proved in the previous lemma that d±(i`) 6= 0 for all ` ∈ R and L is then

asymptotically hyperbolic in the sens of Malet-Parret [9, 22]. Hence, we obtain from [9, Lemma

4.3] that there exist constants η∗ ∈ (0, η) and C∗ > 0 for which

|v(x)| ≤ C∗e−η∗|x|‖u‖L∞(R) + C∗

∫
R
e−η∗|x−y||w(y)|dy, x ∈ R,

holds for each v ∈ H1(R), where w = Lv. Since Lu′∗ = 0 we conclude that

|u′∗(x)| ≤ C∗e−η∗|x|‖u′∗‖L∞(R), x ∈ R.

As L∗ is also asymptotically hyperbolic and since L∗q = 0, we get

|q(x)| ≤ C∗∗e−η∗∗|x|‖q‖L∞(R),

for all x ∈ R.
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Lemma 4.7. We have {λ | <(λ) ≥ 0, λ 6= 2πic∗p, p ∈ Z} ⊂ ρ(L) where ρ(L) is the resolvent set

of L.

Proof. Suppose that λ = λ1 + iλ2 with λ1 ≥ 0 and λ2 6= 2πic∗p for p ∈ Z is an eigenvalue with

a corresponding eigenfunction u = u1 + iu2 6= 0. Without loss of generality, we may assume that

0 < λ2 < 2πic∗, as the spectrum L is invariant under the translation λ 7→ λ + 2πic∗. We consider

the Cauchy problem

∂tv = Lv − λ1v, (4.2a)

v(0) = u1 (4.2b)

which has a solution v(x, t) = u1(x) cos(λ2t) − u2(x) sin(λ2t). Note that v(x, t) ≤ |u(x)| for all

x ∈ R and t ≥ 0. We claim that there α > 0 such that v(x, t) ≤ −αu′∗(x) holds for all x ∈ R
and t ≥ 0. To prove the claim, we follow the strategy in [3] and let θ0 be a constant such that

0 < θ0 < min {1− S′(0), 1− S′(1)}. Then we can choose M > 0 large enough such that

θ0 − 1 +
∑
j∈Z

KjS
′(u∗(x− j)) ≤ 0, for all |x| ≥M

and such that |u(x0)| > 0 for some x0 ∈ [−M,M ]. Since, u∗ < 0 we can always find α > 0 such

that |u(x)| ≤ −αu′∗(x) for |x| ≤ M . We prove that the claim holds with this choice of α. Since

|u(x)| → 0 as x → ±∞, there exists ε > 0 such that v(x, t) ≤ −αu′∗(x) + ε for all x ∈ R and

t ≥ 0 and let ε0 ≥ 0 be the infimum of such ε. We prove that ε0 = 0. Consider the function

w(x, t) = −αu′∗(x) + ε0e
−θ0t. We have

∂tw−Lw+λ1w = −ε0e−θ0t
θ0 − 1 +

∑
j∈Z

KjS
′(u∗(x− j))

+λ1w ≥ 0, for all |x| ≥M and t > 0.

Therefore, v is a super solution of (4.2) on |x| > M and notice that v(x, t) ≤ |u(x)| ≤ −αu′∗(x) ≤
w(x, t) on |x| ≤ M and that v(x, 0) = u1(x) ≤ |u(x)| ≤ −αu′∗(x) + ε0 = w(x, 0) for all x ∈ R.

Then, the comparison principle gives v(x, t) ≤ w(x, t) for all x ∈ R and all t > 0. Therefore, for

all positive integer p > 0, we have

v(x, t) = v(x, t+ 2pπ/λ2) ≤ −αu′∗(x) + ε0e
−θ0(t+2pπ/λ2) −→

p→+∞
−αu′∗(x),

and thus ε0 = 0 and the claim is proved.

Now, we pick ᾱ > 0 such that |u(x)| ≤ −ᾱu′∗(x) for all |x| ≤ M with some x̄ such that |u(x̄)| =

−ᾱu′∗(x̄) > 0 and using the comparison principle we deduce that v(x, t) < −ᾱu′∗(x) for all x ∈ R
and t > 0. If we choose t̄ such that u(x̄)/|u(x̄)| = e−iλ2 t̄, then v(x̄, t̄) = |u(x̄)| = −ᾱu′∗(x̄) > v(x̄, t̄),

which is a contradiction. Therefore u ≡ 0 and λ is not an eigenvalue.

Finally, assume that λ > 0 is an eigenvalue with a real eigenfunction u that possesses a point where

it is positive. Then v(x, t) = u(x) is a solution of (4.2) with λ1 = λ > 0 and initial condition

v(x, 0) = u(x). A similar argument as we did before can be used to prove that u ≡ 0 and so λ > 0

is not an eigenvalue.
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We are now ready to conclude the proof of Theorem 3.

Proof of Theorem 3. Only assertion (iii) of the theorem remains to be proved. From the

previous lemma, we have {λ | <(λ) ≥ 0, λ 6= 2πic∗p, p ∈ Z} ⊂ ρ(L) and we would like to extend

the resolvent set to the stripe Sκ := {λ | − κ ≤ <(λ) < 0} for κ < 2β. As L− λ : H1(R)→ L2(R)

is Fredholm index 0 for <(λ) > −2β it will be enough to show that L − λ is injective in the stripe

Sκ. We claim that there exists λi > 0 such that for all |=(λ)| > λi with −κ ≤ <(λ) < 0, L − λ
is injective. If the claim holds true, then suppose by contradiction that L has an eigenvalue λ0

within the rectangle {λ | − κ ≤ <(λ) < 0}∩{λ | =(λ) ≤ c∗π}. Then, by the shift symmetry, there

exists p0 > 0 large enough such that =(λ0) + 2πc∗p0 > λi. As consequence, L− λ0− 2πc∗p0i is not

injective, as it has a kernel, and we reached a contradiction. To conclude the proof, it only remains

to prove the claim. We thus suppose that there exists u ∈ H1(R) such that (L − λ)u = 0. First,

we rescale this eigenvalue problem by introducing a new variable z = =(λ)x and a new unknown

ũ, such that we obtain

c∗
dũ(z)

dz
+ iũ(z) +

sm
=(λ)

−ũ(z) +
∑
j∈Z

Kjũ(z −=(λ)j)

 =
1

=(λ)
R(z,<(λ), ũ), (4.3)

whenever =(λ) 6= 0 and R(z,<(λ), ũ) collects all the remainder terms and satisfies the estimates:

‖R(z,<(λ), ũ)‖L2(R) ≤ (|<(λ)|+ C)‖ũ‖L2(R), (4.4)

for some constant C > 0 independent of λ. Let us define the operator Hλ : H1(R)→ L2(R) by

Hλv(x) := c∗v
′(x) + iv(x) +

sm
=(λ)

−v(x) +
∑
j∈Z

Kjv(x−=(λ)j)

 ,

which has Fourier symbol

Ĥλ(i`) = c∗i`+ i +
sm
=(λ)

∑
j∈Z

Kj (cos(`=(λ)j)− 1)

 , ` ∈ R.

Let λ∗ > 0 be fixed. We would like to show that there exists a constant C̃ > 0, such that∣∣∣Ĥλ(i`)
∣∣∣ ≥ C̃ for all ` ∈ R and all λ ∈ C with |=(λ)| > λ∗. Let us first remark that∣∣∣Ĥλ(i`)

∣∣∣ = |c∗`+ 1|+ sm
|=(λ)|

A(`=(λ)),

where we set A(y) :=
∑

j∈ZKj (1− cos(yj)). We see that A(y) > 0 for any y ∈ (0, 2π). Because of

the symmetry Kj = K−j , we have A′(0) = 0 and A′′(0) =
∑

jKjj
2 > 0. As a consequence, there

exists some constant d0 > 0 such that A(y) > d0y
2 for all y ∈ (0, 2π). To conclude that

∣∣∣Ĥλ(i`)
∣∣∣ is

bounded away from 0 we argue as follows. Suppose that
∣∣∣=(Ĥλ(i`)

)∣∣∣ = |c∗` + 1| < 1/2, then we

have 1/2 = 1− 1/2 ≤ |c∗`| and thus |`| ≥ 1/2c∗. Now in that case, we observe that∣∣∣<(Ĥλ(i`)
)∣∣∣ =

sm
|=(λ)|

A(`=(λ)) =
sm(`=(λ))2

|=(λ)|(`=(λ))2
A(`=(λ)) ≥ d0smλ∗

4c2
∗

.
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Coming back to (4.3), we have

Hλũ =
1

=(λ)
R(z,<(λ), ũ),

and as a consequence, using the bound in (4.4) and the fact that
∣∣∣Ĥλ(i`)

∣∣∣ is bounded away from 0

for all ` ∈ R and all λ ∈ C with |=(λ)| > λ∗, we have

‖ũ‖L2(R) ≤
(|<(λ)|+ C)

C̃|=(λ)|
‖ũ‖L2(R). (4.5)

Recall that |<(λ)| ≤ κ, then for all λ ∈ C such that |=(λ)| > λi := max
{

2
(
κ+C
C̃

)
, λ∗

}
, the only

solution of (4.3) has to be ũ = 0. As a consequence, we have shown that L − λ : H1(R) → L2(R)

is injective for all |=(λ)| > λi with −κ ≤ <(λ) < 0. This concludes the proof of the claim and thus

of the theorem.

5 Discussion

Summary of main results. In this paper, we have shown the existence of monotone traveling

front solutions for lattice neural field equations of the form

u̇n(t) = −un(t) +
∑
j∈Z

KjS(un−j(t))

with infinite range couplings and when the associated dynamics of each individual neuron is of

bistable type, under mild assumptions on (Kj)j∈Z and S. We also proved that traveling front

solutions having nonzero wave speed are unique up to translation. Furthermore, we have explored

the spectral properties of such nonzero wave speed fronts, provided an extra exponential localization

of the connectivity weights Kj . More precisely, we have interpreted solutions of the LNFEs as

solutions to the following nonlocal partial differential equation

∂tu(t, x) = c∗∂xu(t, x)− u(t, x) +

∫
R
KjS(u(t, x− j)),

and we have studied spectral properties of the linearized operator L given by

Lv = c∗∂xv − v +Kδ ∗ [S′(u∗)v],

round a non zero wave speed traveling front (u∗, c∗). Because of the invariance by translation,

λ = 0 is an algebraically simple eigenvalue of L associated to the eigenvector u′∗ and the spectrum

of L is invariant under the operation λ 7→ λ + 2πic∗ such that 2πic∗Z ⊂ σ(L). The main result

regarding the operator L is that L − λ : H1(R) → L2(R) is invertible for all λ ∈ C\2πic∗Z such

that <(λ) ≥ −κ > min {−1 + S′(0),−1 + S′(1)}.
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Towards nonlinear stability. Our spectral analysis is a preliminary step towards a nonlinear

stability analysis of (1.1) around a traveling front solution. Let us explain how such a spectral

analysis could be used to get insight on the asymptotic behavior of solutions of (1.1) starting from

an initial condition close to a traveling front solution. Let us introduce the nonlinear operator

F : `∞(R) −→ `∞(R)

u 7−→ F(u) = −u +K ∗d S(u),
(5.1)

where for all n ∈ Z we have set

(K ∗d S(u))n :=
∑
j∈Z

KjS(un−j),

and

`∞(R) :=

{
u = (un)n∈Z ∈ RZ | ‖u‖`∞(R) := sup

n∈Z
|un| <∞

}
.

Using this notation, we can then write (1.1) as

u̇(t) = F(u(t)), t > 0. (5.2)

for which u∗(t) = (u∗(n− c∗t))n∈Z with c∗ 6= 0 is a solution, where the existence of the profile u∗ is

given by Theorems 1 and 2. To study the stability of u∗(t), we look for solutions of (5.2) that can

be written as u(t) = u∗(t) + v(t) where v(t) is a perturbation of the traveling wave solution u∗(t).

We then find that v(t) must satisfy the time-dependent lattice neural field equation

v̇(t) = DF(u∗(t))v(t) +N (t, v(t)), (5.3)

in which

N (t, v(t)) = F(u∗(t) + v(t))−F(u∗(t))−DF(u∗(t))v(t). (5.4)

Then the strategy would be to obtain spectral properties for v̇(t) = DF(u∗(t))v(t) from those

of the operator L in order to be able to close a nonlinear stability argument. This method was

introduced and successfully implemented by Benzoni-Gavage and coauthors in [6] by analyzing

associated Green’s functions for the nonlinear stability analysis of semidiscrete shock waves and

more recently reused in the context of nonlinear stability analysis of traveling pulses in the discrete

FitzHugh-Nagumo equations with finite and infinite range interactions [20, 25]. We conjecture the

following result with perturbations measured in the Banach spaces `p(R), which are defined by

`p(R) :=

u = (un)n∈Z ∈ RZ | ‖u‖`p(R) :=

(∑
n∈Z
|un|p

) 1
p

<∞


for 1 ≤ p <∞.

Conjecture 1 (Nonlinear stability). Suppose that the Hypotheses (H1)-(H2η) are satisfied and let

(u∗, c∗), with c∗ 6= 0, be the unique (up to translation) strictly monotone traveling wave solution to

(1.1) as given in Theorem 1. We denote by u∗(t) := (u∗(n− c∗t))n∈Z. Then for all 1 ≤ p ≤ ∞,
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there exist constants δ > 0, C > 0, ω > 0 such that for all sequences u0 = (u0
n)n∈Z which satisfy

‖u0 − u∗(0)‖`p(R) ≤ δ, there exists an asymptotic phase shift ξ0 ∈ R such that the unique solution

t→ u(t) = (un(t))n∈Z of (1.1), with initial condition u(0) = u0, verifies

‖u(t)− u∗(t+ ξ0)‖`p(R) ≤ Ce−ωt‖u0 − ū(0)‖`p(R),

for all t ≥ 0.

Monostable nonlinearities. An interesting extension of the present work would be to look at

another class of nonlinearity. Here, we assumed that the associated dynamics of each individual

neuron is of bistable type, but one could study monostable type of dynamics. Roughly speaking,

in the monostable case, one would suppose that for f defined in (2.2) we have f(0) = f(1) = 0

and f(u) > 0 for all u ∈ (0, 1) with f ′(0) > 0 and f ′(1) < 0. Such a case was recently considered

in [14] for continuous neural field equations and we expect to find similar results in the discrete

setting. In particular, when the connectivity weights Kj are not exponentially localized in the

sens of Hypothesis (H2η), we conjecture that there does not exist any monotone traveling front

solutions and that the level sets of solutions of the LNFE associated to a compactly supported

initial condition propagate with an infinite asymptotic speed. This will be the subject of futur

works.

Linear adaptation & traveling pulses. To study the propagation of pulses, i.e. non-monotone

traveling waves connecting the homogeneous stationary states, one introduces a linear adaptation

mechanism so that the LNFE becomes a system of the form

u̇n(t) = −un(t) +
∑
j∈Z

KjS(un−j(t))− vn(t), (5.5a)

v̇n(t) = ε(un(t)− avn(t)), (5.5b)

where 0 < ε � 1 is a small temporal parameter reflecting the slow nature of the adaptation

mechanism and a > 0 is a fixed parameter chosen such that (u, v) = (0, 0) is the only stationary

homogeneous steady state of (5.5). Proving the existence of nonzero wave speed traveling pulse

solutions of (5.5) amounts at finding profiles u ∈ C 1(R) and v ∈ C 1(R) together with a real c 6= 0

solution of

−cu′ = −u +K ∗δ S(u)− v, (5.6a)

−cv′ = ε(u− av), (5.6b)

verifying the limits

lim
x→±∞

(u(x),v(x)) = (0, 0).

Suppose that Hypotheses (H1) and (H2η) are satisfied and that there exists a unique (up to transla-

tion) traveling wave front solution uf∗ with nonzero wave speed c∗ > 0 of (5.6a) for v = 0 connecting
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u = 0 and u = 1 at ∓∞, then the spectral properties of the linear operator L(uf∗) associated to

this front (as defined in (2.3)) are given by Theorem 3. If we further suppose that there exists some

v∗ ∈ R for which there is a traveling back solution ub∗ of (5.6a) for v = v∗ with precisely nonzero

wave speed c∗, connecting two states v± at ±∞, we shall expect that the same spectral properties

hold true for the linear operator L(ub∗) associated to this back solution. Under this setting, we

can then rely on [17, Theorem 1] which tells us that for each sufficiently small ε > 0, there exists

profiles uε, vε ∈ C 1(R) and a wave speed cε > 0 such that (uε(n − cεt),vε(n − cεt)) is solution of

(5.6) for all n ∈ Z and t > 0 and further satisfy the limits

lim
x→±∞

(uε(x),vε(x)) = (0, 0).

As a consequence, upon assuming that S (and thus f in (2.2)) has the good properties to support the

existence of a traveling back solution ub∗ whose associated spectral properties are given by Theorem

3, then one gets the existence of traveling pulse solutions for the LNFE with linear adaptation

(5.5).

Approximation of continuous neural field equations. As explained in the introduction,

LNFEs can be obtained by discretizing continuous neural field equations of the form

∂tu(t, x) = −u(t, x) +

∫
R
K(x− y)S(u(t, y))dy, x ∈ R.

Assume a regular discretization of the real line with xj = jh for j ∈ Z and 0 < h� 1. Evaluating

the above equation at x = xn and slightly rewriting the integral, we get

∂tu(t, xn) = −u(t, xn) +
∑
j∈Z

∫ jh+h

jh
K(y)S(u(t, xn − y))dy,

from which we can use for example a rectangle quadrature rule to approximate∫ jh+h

jh
K(y)S(u(t, xn − y))dy ≈ hK(xj)S(u(t, xn−j)),

Eventually, we arrive at the following LNFE for uhn(t), an approximation of u(t, nh),

u̇hn(t) = −uhn(t) +
∑
j∈Z

Kh
j S(uhn−j(t)), (5.7)

where we set Kh
j := hK(jh). One can then use the techniques in [5, 25] together with the results

developed in this paper to study traveling front solutions of (5.7) and analyze under which assump-

tions the corresponding front solution converges as h → 0 to an actual traveling wave solution of

the initial continuous neural field equation.

Other types of networks. In a more exploratory direction, it would also be interesting to study

neuronal dynamics set on other types of networks, such as for example homogeneous trees or Erdös-

Réyni graphs. Let us mention the works of [18, 21] and references therein on the study of traveling

fronts for reaction-diffusion on networks.
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A Comparison principles

In this section, we present comparison principles for the lattice neural field equation (1.1). For any

sequence u = (un)n∈Z ∈ `∞(R), we recall the definition of the nonlinear operator F :

F : `∞(R) −→ `∞(R)

u 7−→ F(u) = −u +K ∗d S(u),

where for all n ∈ Z we have set

(K ∗d S(u))n :=
∑
j∈Z

KjS(un−j).

Lemma A.1. Assume that K and S satisfy Hypotheses (H1)-(H2). Suppose that there exist two

sequences t 7→ u(t) ∈ C 1 (R, `∞(R)) and t 7→ v(t) ∈ C 1 (R, `∞(R)) that satisfy

u̇(t) ≤ F(u(t)), v̇(t) ≥ F(v(t)) ∀t > 0, with u(0) ≤ v(0),

then for all t > 0 we have u(t) ≤ v(t).

Proof. First, we easily see that for all t > 0 we have

d

dt

(
etu(t)

)
≤ etF(u(t)), and

d

dt

(
etv(t)

)
≥ etF(v(t))

such that

u(t)− v(t) ≤ e−t(u(0)− v(0)) +

∫ t

0
e−(t−τ)K ∗d (S(u(τ))− S(v(τ))) dτ,

≤ sm
∫ t

0
e−(t−τ)K ∗d [u(τ)− v(τ)]+ dτ

where [u(t)− v(t)]+ =
(
[un(t)− vn(t)]+

)
n∈Z and [ · ]+ stands for the positive part. We can then

define

ρλ(t) := sup
n∈Z

[un(t)− vn(t)]+ e
−λt,

and ρ̄λ := sup
t∈[0,T ]

ρλ(t) for some arbitrary T > 0 and λ that will be fixed later. We readily obtain

that

ρλ(t) ≤ smρ̄λ
∫ T

0
e−(1+λ)τdτ,

and thus

ρ̄λ

(
1− sm

1 + λ

)
≥ ρ̄λ

(
1− sm

∫ T

0
e−(1+λ)τdτ

)
≥ 0.

Then, there exists λ∗ > 0 large enough such that for all λ ≥ λ∗ we have ρ̄λ ≤ 0. As a conclusion,

we have shown that for any T > 0, u(t) ≤ v(t) for all t ∈ [0, T ], which concludes the proof.
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Now, we are going to extend a result from [3] to our discrete setting. Here we assume that τ0 > τ ,

c 6= 0, R1 ⊂ R is an open set and R2 = R\R1, (x, t) 7→ g(x, t) ∈ L∞(R× [τ, τ0]) and the sequence of

functions ((x, t) 7→ Kj(x, t))j∈Z is such that there exists k0 > 0, k1 so that for any (x, t) ∈ R× [τ, τ0]

the sequence (Kj(x, t))j∈Z satisfies

k0Kj ≤ Kj(x, t) ≤ k1Kj for all j ∈ Z, (A.1)

where (Kj)j∈Z a sequence satisfying Hypothesis (H2). We will denote K·u(x, t) :=
∑

j∈Z Kj(x, t)u(x−
j, t) for all (x, t) ∈ R× [τ, τ0].

Lemma A.2. Assume that u ∈ C 1([τ, τ0], L∞(R)) ∩ C ([τ, τ0],W 1,∞(R)) and suppose that u(x, t) ≥
0 for all t ∈ [τ, τ0] and x ∈ R2 and u satisfies

∂tu− c∂xu− g(x, t)u−K · u(x, t) ≥ 0 (A.2)

t ∈ [τ, τ0] and x ∈ R1. If u(x, τ) ≥ 0 for all x ∈ R, then u(x, t) ≥ 0 for all t ∈ [τ, τ0] and x ∈ R.

Moreover, if u(·, τ) 6= 0 on R then u(x, t) > 0 for all t ∈ [τ, τ0] and x ∈ R1.

Proof. Without loss of generality we may assume that τ = 0. Up to slight modification of

the subset R1 and R2, as outlined in [3], we can also consider the case where c = 0 in (A.2).

By our assumption on the regularity of u, if the first conclusion of the Lemma is not true, then

there exists ε > 0 and T ∈ (0, τ0] such that u(x, t) > −εe2κt for all 0 < t < T and x ∈ R
with inf

x∈R
u(x, t) = −εe2κT where κ = sup

(x,t)∈R×[τ,τ0]
|g(x, t)| + k1. Therefore, there exists an interval

[a, b] such that u(x, T ) ≤ −15
16εe

2κT for x ∈ [a, b]. Following the strategy of [3], we introduce a

smooth function ζ(x) such that ζ(x) = min
x∈R

ζ(x) = 1 for x ∈ [a, b], sup
x∈R

ζ(x) = ζ(±∞) = 3 and

|ζ ′(x)| ≤ 1. We definte wσ(x, t) = −ε
(

3
4 + σζ(x)

)
e2κt for σ ∈ [0, 1]. As by construction we have

w1/4(x, t) ≤ u(x, t) for all t ∈ [0, T ] and x ∈ R and w1/8(x, T ) > u(x, T ) for x ∈ [a, b] there

exists a minimum σ∗ ∈ (1/8, 1/4] such that wσ∗(x, t) ≤ u(x, t) for t ∈ [0, T ] and x ∈ R. We claim

that there exist a sequence (xn, tn) ∈ R1 and (x0, t0) such that inequality (A.2) respectively holds

for (i) (xn, tn); (ii) lim
n→∞

(xn, tn) = (x0, t0); (iii) lim
n→∞

(u(xn, tn)−wσ∗(xn, tn)) = 0 the infimum of

u(x, t) −wσ∗(x, t) on R × [0, T ]. The proof of the claim can be found in [3] and is omitted. As a

consequence, we have

0 ≥ lim
n→∞

∂t(u−wσ∗)(xn, tn)

≥ lim inf
n→∞

(K · u)(xn, tn)− 2κwσ∗(x0, t0) + sup
(x,t)∈R×[τ,τ0]

|g(x, t)|wσ∗(x0, t0)

≥

(
k1 + sup

(x,t)∈R×[τ,τ0]
|g(x, t)| − 2κ

)
wσ∗(x0, t0) > 0,

which is a contradiction, therefore u(x, t) ≥ 0 for all x ∈ R and t ∈ [τ, τ0].

For the last part of the conclusion, we define v(x, t) = eκtu(x, t) then we have ∂tv(x, t) ≥ k0Kδ ∗
v(x, t) = k0

∑
j∈ZKjv(x − j, t) for x ∈ R1 and t ∈ [τ, τ0] since u(x, t) ≥ 0. Then we have

28



v(x, t) ≥ tk0Kδ ∗ v(x, 0) for 0 ≤ t and after N iterations we get

v(x, t) ≥ k0
tN

N !
Kδ ∗ · · · ∗ Kδ ∗ v(x, 0), x ∈ R1.

As we have K±1 > 0 and that u(·, τ) 6= 0 on R there always exists N large enough such that

Kδ ∗ · · · ∗ Kδ ∗ v(x, 0) > 0 and thus u(x, t) > 0 on R1.
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