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Preamble - Jan. 2018
This report was first prepared for a book publication back in 2010. The book project
was finally canceled years later, and this paper was never published. In early 2018, it
was decided to publish it online as a research report, and the text was slightly updated.
But most of the papers related to agent-based map generalisation are not included and
discussed in this report.

Abstract

Cartographic generalization is a highly local and contextual process where decisions are
taken locally to better adjust the transformations used to the local geography. Thus, carto-
graphic generalization fits well with the multi-agents paradigm that promotes decentralized
and autonomous decision-making. The past years of research in cartographic generalization
showed several successful attempts to use multi-agents systems, and this paper provides a
feedback on these attempts. We extracted a core modeling of a multi-agents system for
generalization and highlighted its main components. Previous propositions of multi-agents
generalization processes are described in relation to this core modeling, and feedbacks from
experimentations with these processes are discussed to define a research agenda in multi-agents
modeling for generalization.

1 Introduction
This paper proposes a feedback on the use of multi-agent approaches for cartographic generaliza-
tion. Several research studies made these last twenty years in automated generalization rely on
this approach [Baeijs et al., 1996], [Ruas, 1999], [Lamy et al., 1999], [Galanda and Weibel, 2002],
[Duchêne, 2003], [Jabeur et al., 2003], [Gaffuri, 2007], [Sabo et al., 2008], [Zhang and Guilbert, 2011],
[Renard and Duchêne, 2014], [Maudet et al., 2014]. Some of them have also been successfully used
for production. Basing especially on the studies we have been involved in, we identify the com-
ponents that are needed in a generalization model based on the multi-agents approach, and draw
lessons on the relevance of this approach for generalization. In this paper, we use the classical terms
Digital Landscape Model (DLM) and Digital Cartographic Model (DCM) introduced by Grünreich
[Grünreich, 1985]. A DLM is a geographic database where geographic features are “in place”, while
a DCM is a geographic database where the objects have been distorted to cope with a given sym-
bolization. We name “classical topographic DLM to DCM problem”, the classical generalization
problem encountered by the National Mapping Agencies (NMAs) that consists in deriving, from a
topographic DLM, a topographic DCM having a lower level of detail but the same data model (no
model generalization). In other words, the intended symbolization scale of the DCM belongs to the
scale range that can be obtained from the DLM without any model generalization. The paper is
organized as follows. Section 2 goes back over the “lineage” of the multi-agent based approaches for
generalization. Section 3 identifies the components necessary for a multi-agent based generalization
while trying to connect them to modeling elements already identified in previous generalization
frameworks. Section 4 presents an overview of several multi-agent approach implementations in
which we have been involved. Basing in these experiments, section 5 discusses the characteristics,
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advantages and limits of the multi-agent modeling for automated generalization, and defines a
research agenda. Finally, section 6 concludes and draws some perspectives.

2 From Step by Step, Knowledge Based Approaches to Multi-
Agent Approaches

2.1 Step by Step, Knowledge Based, Local Approach
Most of the agent based generalization approaches have their origin in the step by step, knowledge
based, local approach initially proposed by [Brassel and Weibel, 1988], [Mcmaster and Shea, 1988].
In these approaches, the generalization process consists in progressively transforming the objects by
means of generalization algorithms. These algorithms are chosen and applied locally according to
the cartographic conflicts to solve. Moreover, these generalization processes take into account the
identified objectives (or specifications) of the target generalized data. Beard [Beard, 1991] proposes
to represent explicitly these specifications by constraints. Generalization is seen as a constraint sat-
isfaction problem - the constraints guide the process. Ruas and Plazanet [Ruas and Plazanet, 1996]
propose to use geographic object constraint violation values to monitor the generalization. They
also propose to let the generalization process operate at different levels (object, group of objects,
part of object), and with cycles including choice of algorithm, actual transformation and vali-
dation. The matching between a constraint violation and possible generalization algorithm to
correct it can be expressed by rules and the generalization is then managed by an expert system
[Nickerson, 1988], [Mackaness and Fisher, 1987], [Buttenfield and Mark, 1991].

2.2 Why to Use Multi-Agent Approaches for Generalization?
The multi-agent paradigm appeared in the 1990’s. This approach federates the object oriented
approach and the expert systems. Weiss [Weiss, 1999], defines an agent as an entity that has a goal
and acts autonomously in order to reach this goal thanks to capacities of perception, deliberation,
action, and possibly communication with other agents. A multi-agent system is a set of interacting
agents. Multi-agent systems are used in complex systems simulation and also for complex problems
solving. The power of this approach is to distribute the complexity among a set of relatively
simple interacting agents instead of using a single central intelligent system dealing with the whole
complexity. Each agent has limited capacities of perception and action toward the problem to
solve, but the complexity emerges from the agent actions and their potential interactions. The
agent paradigm is particularly adapted to problems that are naturally distributed and hard to
solve in a centralized approach. Because generalization is a complex problem distributed over
the geographic space, the multi agent paradigm seems rather adapted to generalization. In the
step by step knowledge based local approach, the generalization is seen as a set of local actions
applied to progressively solve local conflicts. Using a multi-agent approach for generalization can
be considered as a “natural” evolution of this approach.

2.3 Geo-Agents for Generalization
In generalization multi-agent based approaches, the local transformations are seen as actions per-
formed by the agents on themselves depending on what they perceive from their context. The
agents are used to model the geographic features of the Digital Cartographic Model being gener-
alized: a single object, a group of object, a part of object or a point. That way, the geographic
features generalize themselves, seeking for a solution that is satisfying at a collective level.

3 Components of a Multi-Agent Based Generalization Model
Figure 1 shows the “brain” of a geographic agent for generalization. This brain is decomposed into
three main kinds of components: its capacities, its mental representation of the world and himself,
and its knowledge. The figure also shows the common resources shared by the agents. Sections 3.1
to 3.5 describe each of these components.
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Figure 1: Modelling of a geo-agent in our multi-agent generalization approach.

3.1 Capacities
Agents usually have capacities of perception, deliberation, action and communication. These
capacities can be more or less developed depending on the purpose each agent is designed for. For
a generalization agent, the required capacities are the following:

• Perception: the agent needs to perceive its own state and also the state of its surrounding
space. Neighboring agents that can influence each other because they share constraints have
to be aware of their mutual existence. Such perception capacity requires spatial analysis
methods. Spatial analysis methods have been identified by [Shea and Mcmaster, 1989] as a
key component in generalization. For instance, building block agents are able to compute
Delaunay triangulation between their components to identify proximities and congestions
[Ruas, 1998]. These methods are embedded in the agent’s perception capabilities.

• Self-evaluation: based on its perception, the agents need to be able to analyze how far
they are from a well-generalized state. The analysis is performed by computing constraints
satisfaction values, and aggregating these values to have an overall numeric evaluation of
the agent’s state. The self-evaluation capacity is also useful for assessing an evolution of the
agent status (i.e. the evolution between before and after an action application, in order to
validate the action). The “Structure recognition” step of [Brassel and Weibel, 1988] is carried
out by the perception and self-evaluation capacities of the agent.

• Action: of course, the agents need to act in order to improve their state. These actions
are mainly geometrical transformation operations. Other possible actions a decomposition
into parts, or an aggregation with other agents. Such operations also require spatial analyses
methods.

• Communication and interaction: the geo-agents may simply interact through mutual
influences or forces (i.e. point agent interaction in GAEL, see 4.3) or communicate in evolved
ways by exchanging messages. Communication may be used to encourage an agent to do
something (i.e. an action to solve a common problem) or to inform another agent of a
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Figure 2: How dead end road agents model space around them for several instances [Duchêne, 2004].

particular fact so that it might update its mental representation of the world (i.e. an agent
is informed by a neighbor agent that it eliminated itself which changes the situation around).

• Life cycle: the geo-agents generic behavior is integrated in their life cycle that sequences
the perception, self-evaluation, action and communication steps. The life-cycle integrates the
decision-making capacities of the agents and is guided by procedural knowledge. The life cycle
particularly encapsulates the trial/error mechanism required by [Ruas and Plazanet, 1996],
i.e. an agent tries an action, evaluates its effect, and tries another one or backtracks if the
action aggravated the situation.

3.2 Mental Representation
Following the principles of the constraint based generalization approach [Harrie and Weibel, 2007],
the agents have a mental representation of the constraints they aim at satisfying. The agents’ per-
ception capacities that use spatial analysis tools allow filling this representation with current values
of the constraints (e.g. building current granularity is 0.05 map mm). The agents’ auto-evaluation
capacities allow to compute the constraints satisfaction as a part of the mental representation (e.g.
if building current granularity is 0.05 map mm, the auto-evaluation capacity helps to represent
granularity constraint satisfaction as ‘not satisfied’). The geo-agents may also be able to repre-
sent space around them with abstraction. It may help the agent to evaluate some constraints.
For instance, Figure 2 shows the dead end agent mental representation of the space around him.
Thanks to this abstraction, it is able to evaluate if a building is still in the right end corner of
his space representation in order to satisfy a relative positioning constraint. The environment in a
multi-agents system is the set of all elements that are not agents in the system, but which surround
the agents and interact with them. To allow this mental representation of space around (i.e. the
environment) by the agents, the environment has to be formalized to give the agents a topology
and a position in space [Ricci et al., 2010], [Mathieu et al., 2014], which is done by using the GIS
capabilities of our systems.

The agent happiness corresponds to the closeness to his own goal. It is computed thanks to his
auto-evaluation capacity and may be used to make decisions during the agent life cycle. But the
agent happiness may also be used to monitor the generalization process either by some other agent
or a dedicated entity of the system. The other agents a geo-agent knows about may be peers, e.g.
buildings for a building agent, components of the agents, e.g. roads and buildings for block agent
(Figure 3), or a container agent when the agent is the component of a higher level agent (a city
for a block agent).

A geo-agent is able to communicate through messages with the agents he knows and though
keeps traces of the unfinished conversations: he knows if he is waiting for an answer or if he has
to answer to known agent. For instance, if a road agent has been asked to move by some other
agents, he first needs to store the conversations, then analyze its situation before answering he
accepts to move or not. Finally, the agent is able to store the actions he has tried and if they have
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Figure 3: Three ways to know other agents for a geo-agent: a peer, a component or a container.

succeeded or failed. It helps the agent to avoid keeping on trying a failing action. It also helps the
agent to update his procedural knowledge that guide the choice of the best action to try in a given
situation.

3.3 Procedural Knowledge
Procedural knowledge was defined by [Armstrong, 1991] as the knowledge "which is necessary
to select appropriate operators for performing generalization tasks". In the agent context, this
knowledge are the knowledge used by an agent to choose how acting at a given moment of the
generalization process. Procedural knowledge is included in the “controls” of Brassel and Weibel
[Brassel and Weibel, 1988] and the “Computational elements” and “Transformation controls” of
McMaster and Shea [Mcmaster and Shea, 1988], [Shea and Mcmaster, 1989] (choice of an operator,
an algorithm, and parameters) are part of it. The procedural knowledge can be defined per agent, or
shared by all the agents of the same kind (e.g. all of the building agents have the same procedural
knowledge). Generalizing an area with poor procedural knowledge can lead to non-satisfactory
generalization results or/and take too much time to be acceptable. Defining and maintaining
good procedural knowledge is thus very important. Unfortunately, transferring the knowledge
used by the cartographic expert to generalize data into generalization systems is a complex task
[Rieger and Coulson, 1993], [Weibel et al., 1995], [Kilpelainen, 2000]. Moreover, knowledge has to
be regularly updated in order to take new elements (e.g. new generalization operations) into
account or new user needs (e.g. modification of the map specification). In Section 4.4, we present
an approach to automatically revise procedural knowledge.

3.4 Resources Shared by the Agents
Some resources are not specific to one agent but are shared by all the geo-agents. First, some
tool libraries are made available to allow the agents perception and action capacities (Figure 1).
The spatial analysis tools allow the agent to perceive its environment through measures such as
its distance to another object and structures such as triangulation to measure proximities. The
spatial analysis tools allow the “structure recognition” in [Brassel and Weibel, 1988] and corre-
spond to “spatial and holistic measures” in [Shea and Mcmaster, 1989]. The agents also share
generalization algorithms on which the actions rely to transform the agent and satisfy its con-
straints (Figure 1). The more algorithms the library contains, the more effective the general-
ization is, as the agent can really adapt its generalization to its context. The generalization
algorithms correspond to “process library” in [Brassel and Weibel, 1988] and “spatial and attribute
transformations” in [Shea and Mcmaster, 1989]. Finally, the agents also share common knowl-
edge on map specifications. Map specifications gather cartographic legibility and map objectives
and are translated into constraints and satisfaction methods. It corresponds to the “controls” of
[Brassel and Weibel, 1988] and gathers the “Theoretical elements”, “Application-specific elements”
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Figure 4: (a) initial data. (b) generalization with a conflicting area emerging in the middle..

of [Mcmaster and Shea, 1988] and the “Geometric conditions” of [Shea and Mcmaster, 1989].

3.5 Other Components of the System
Additional components are necessary to allow the agent-based generalization besides the geo-
agent and the shared resources. First, a scheduler agent is required to decide which agent to
activate at a given step of the generalization process. Depending on the scheduling strategies, the
results may drastically differ [Duchêne, 2004]. Moreover, in order to improve geo-agents procedural
knowledge, a machine learning and knowledge management component is necessary. Although the
improvement is not mandatory to provide generalization results, such a component has proven very
useful to improve the efficiency and effectiveness of our agent-based system. Finally, a system to
identify emerging conflicting areas can be useful to optimize the quality of generalization results.
In this iterative process, close unsolved conflicts might occur and the agents will not be able to
solve them (Figure 4), unless there is a change of perspective: only by treating the conflicting
agents as a group, we can clean the area. Emergence in multi-agents systems [Müller, 2004] is
the appearance of a higher level entity from the behavior of lower level entities, identified by an
observation on a long period of time.

4 Implementations of the Multi-Agent Approach in Gener-
alization at IGN

As an illustration of the principles presented in the previous section, this section presents four agent
based generalization models dedicated to different application contexts. One associated model for
the automated revision of the control knowledge is also presented, and finally an overview of agent
based generalization systems used in research or production is given.

4.1 AGENT
The AGENT model has been proposed by Ruas [Ruas, 1999] and then used and refined in a
European project named AGENT [Barrault et al., 2001]. It translates the model by Ruas and
Plazanet [Ruas and Plazanet, 1996] (possibility to focus on objects, groups or parts of objects,
expression of the constraints on each object, see section 2) into a multi-agent paradigm, while
extending it. Three levels of geographic agents are considered. Micro agents correspond to single
geographic objects. Meso agents correspond to groups of objects and can be nested: a town
(meso) is composed of building blocks (meso), in turn composed of buildings (micro). Macro
agents correspond to entire populations of geographic objects (all roads, all buildings) and are
used to monitor indicators like the quantities of objects by theme in the DCM.

Each agent has a representation of its constraints and their satisfaction in the form of a set
of constraints objects (in the computer science meaning), each constraint object being in charge
of monitoring a given constraint of the agent and proposing possible actions (generalization algo-
rithms) to improve its satisfaction. The life-cycle of the geographic agent consists in assessing its
constraints, choosing and trying an action among the ones identified by its constraint objects, eval-
uating the progression, committing or backtracking the action, and so on until it reaches a perfect

6



Technical report IGN France, LaSTIG - COGIT team, 2018

Figure 5: Generalization of topographic data from the IGN France BD Topo R© database (reference
scale 1:15 000) to a 1: 50 000 map. Result obtained with the AGENT model [Barrault et al., 2001].

state or no more action can be tried. A depth first mechanism including backtracking enables to
temporary accept less good solutions on the way to the best possible one. An agent knows the
meso agent it is a component of, and meso agents also know their components. Communications
are hierarchical: meso agents trigger their components, can give orders to them or change the
target satisfaction of their constraints [Ruas, 2000].

The AGENT model has successfully been applied to the generalization of data having a hierar-
chical structure, like urban zones in the “classical topographic DLM to DCM problem” at medium
scales (with a hierarchy of buildings, building blocks and town). Mountainous roads have also been
successfully handled with this model because they can be generalized by being decomposed into
homogeneously coalesced parts (the hierarchy is then part of road, road). Figure 5 shows examples
of results obtained with the AGENT model.

4.2 CartACom
The CartACom model [Duchêne, 2003], [Duchêne, 2004] is dedicated to the expression and res-
olution of relational constraints, defined as constraints on a relation between two agents (e.g.
proximity, relative orientation). While in the AGENT model, constraints concern one agent (and
constraints concerning two agents are expressed and solved at the level of the meso agent they
belong to), in the CartACom model constraints can be shared by two agents, represented and
solved at the level of these agents. A CartACom agent perceives a portion of space around itself in
order to identify its neighboring agents and the constraints shared with them. The representation
of constraints of the AGENT model has been extended to deal with relational constraints. When
necessary to assess its constraints, an agent has an explicit modelling of the space around him, e.g.
the dead ends in networks have an explicit representation of their left and right sides (see figure 2,
section 3.2). A CartACom agent knows all agents with which it is sharing a relational constraint.
As actions, on top of being able to apply a generalization algorithm to itself, a CartACom agent
can also ask an agent with which it is sharing a constraint to apply a given generalization algo-
rithm to itself. The CartACom agents have therefore communication capacities, in order to send
requests of actions to their neighbors, answer to such requests, and send information on their own
modifications. Their life-cycle includes a stage where the agent handles its received messages and
a stage where it handles its relational constraints in a way similar to the AGENT life-cycle. The
life-cycle is interrupted when the agent sends a request for action to another agent, until an answer
is received. A hook to the AGENT model enables the CartACom agent to also handle its internal
constraints, but the AGENT life-cycle is seen as a black box from the CartACom life-cycle. The
CartACom life-cycle also provides an observation mechanism to stop the process when conflicting
areas emerge (Section 3.5) [Duchêne and Touya, 2010].

The CartACom model has been successfully applied to the generalization of rural zones in the
“classical topographic DLM to DCM problem” at medium scales (figure 6).

4.3 GAEL
Spatial data are usually represented as objects and fields. Object representation is suitable for
well delimited entities, like buildings and roads, while fields represent distributed phenomena, like
the relief and the land use cover. The GAEL model [Gaffuri, 2007] introduces fields into the
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Figure 6: Generalization of topographic data from the IGN France BD Topo R© database (reference
scale 1:15 000) to a 1: 50 000 map. Result obtained with the CartACom model [Duchêne, 2004].

Figure 7: Relationship between the usual geo-agents and the field in GAEL.

generalization process by enabling field-object relations preservation. For example, river objects
outflow on the relief field has to be preserved. The GAEL model is composed of two components:

• A field-object interaction model [Gaffuri, 2008]: Fields are agents; they have their own gen-
eralization constraints to satisfy. CartACom relational constraint model is extended to re-
lational constraints between objects and fields. Objects perceive the state of their relation
with the fields, and fields also perceive how the objects above them evolve. Field-object re-
lational constraints are satisfied by enabling field-object interactions: fields constrain object
transformations, while objects trigger local field deformations (Figure 7).

• A deformation model [Gaffuri, 2009]: In order to introduce local deformations into the gener-
alization process, fields can become deformable. These deformable agents have the capability
to decompose themselves into small parts (points, segments, and triangle) and instantiate
some suitable constraints on these parts depending on the purpose of the deformation. The
local deformation is obtained with progressive points displacements using an agent-based
engine: each point is an agent, whose purpose is to balance constraints instantiated on
the small parts it belongs to. This physical approach is comparable to the one used by
[Baeijs et al., 1996], and [Bader et al., 2005]. This deformation model is generic and has been
specialized for other generalization cases where deformations are required [Gaffuri, 2009].

The GAEL model has been applied to relations between rivers, buildings and the relief. Now,
during the generalization process, buildings and rivers can deform the relief under them to preserve
respectively their elevation value and their outflow.

4.4 RevK
As introduced in Section 3.3, the agent approach is based on the use of procedural knowledge. The
choice of this knowledge has a deep impact on the generalization results. Unfortunately, most of the
time, knowledge definition and evaluation are fastidious. In order to tackle this issue, we propose a
general approach, illustrated in Figure 8, based on the offline revision of the procedural knowledge:
a diagnosis agent has for role to detect, during the normal use of the generalization system, if the
procedural knowledge needs to be revised [Taillandier, 2008], [Taillandier and Taillandier, 2012].
If the agent detects a defect of the procedural knowledge, an offline revision process is triggered.
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Figure 8: General approach of RevK.

Figure 9: Approach for production rule revision.

In [Taillandier et al., 2008], we proposed an approach allowing the revision of the procedural
knowledge of generalization systems based on the exploration of search trees (such as the AGENT
model). Our approach is composed of two stages:

1. Exploration stage: generation of experience,

2. Analysis stage: revision of the procedural knowledge from experience.

The exploration stage consists in selecting a sample of geographic objects (called revision sam-
ple) and in generalizing them with a specific procedural knowledge, the “minimal” knowledge. This
knowledge allows to build all the existing states when generalizing a given object. The analysis
stage consists in revising the procedural knowledge from the analysis of the revision sample. In this
context, we propose an approach, dedicated to the revision of knowledge expressed by production
rules, composed of 3 steps (Figure 9). The first one consists in using the information contains in the
revision sample in order to deduce a partitioning of the initial rules. Each rule is thus decomposed
in a set of sub-rules, each representing an area in which the system has a homogeneous behavior.
The second step consists in searching the best conclusion to assign to each sub-rule. For this step,
we proposed to use local search techniques. The last step consists in simplifying the rule base
obtained in order to improve its readability and its generalization power.

4.5 CollaGen
As it is partly illustrated by the previous parts, many automatic generalization processes have
been developed, but are only relevant for a limited part of the generalization problem, in terms
of landscape or theme. AGENT is completely effective on urban areas and mountain roads while
CartACom is relevant for rural areas for instance. CollaGen [Touya et al., 2010] seeks to benefit
from the rich diversity of available (agent based or not) processes by making them collaborate to
generalize a complete map: data is partitioned into geographic spaces which are generalized by the
most adapted available process (i.e. AGENT for urban areas).
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Figure 10: The best process to generalize this rural space according to the constraints contained
in it depends on the adequacy to the Post-condition constraints.

Figure 11: (a) initial rural space. (b) Conflict cluster emergence during a CartACom process. (c)
A least-squares process is chosen to solve the conflict cluster.

In CollaGen, the geo-agents are the geographic spaces (urban areas, rural areas, the road
network, etc.). As the geographic objects contained in a space are not necessarily generalized
with agent-based processes, they are not considered as agents but are parts of the environment
the space agents can perceive. For the same reason, the constraints are externalized as shared
resources accessible to the space agents that contain the objects constrained. The actions of
space agents are generalization processes rather than simple algorithms. In CollaGen, the shared
resources are formalized to allow the interoperability between processes that were not designed to
collaborate [Touya et al., 2010]. Notably, generalization capabilities are formally described to know
the spaces that can be relevant (‘Pre-conditions’) and the constraints that are a priori satisfied
after generalization (‘Post-conditions’); it helps to choose the best process to generalize a given
space (Figure 10).

CollaGen also provides an observer agent that is able to pause the system when a cluster of
unsolved conflicts emerges in a geographic space. Then, a different process is searched to deal with
the emerging conflicts, and when this local solving is done (Figure 11), the generalization of the
geographic space starts again [Duchêne and Touya, 2010].

As a result, CollaGen allows the generalization of heterogeneous landscapes using several agent-
and not agent-based processes [Touya and Duchêne, 2011]. Figure 12 shows a small town gener-
alized by AGENT and the rural area around by CartACom while roads are generalized by the
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Figure 12: Initial data (a) and generalized data by CollaGen. (b) The urban area is delineated to
show space agents.

Figure 13: Derivation of the 1:100k topographic map (right) from the BD CARTO R© database
(left, 10m resolution) at IGN-France [Lecordix et al., 2005].

Elastic Beams [Bader et al., 2005].

4.6 Implemented software prototypes and use for actual map production
Some of the agent-based generalization models presented above have been industrialized and are
used in production in European NMAs [Duchêne et al., 2014]. First, the AGENT model has been
implemented in the GIS LAMPS2 from 1Spatial during the AGENT European project. It then has
been re-engineered and forms the core of Clarity, the generalization software of 1Spatial. These
software have been customized for use in production among others at IGN-France, the French NMA:
the 1:100k map production line uses the AGENT engine for the generalization of mountainous roads
([Lecordix et al., 2005], see Figure 13), and the new 1:25k map production line, currently being
finalized, uses the AGENT engine for the generalization of built up areas and the GAEL engine
to ensure the consistency between hydrography and relief ([Lecordix et al., 2007], see Figure 14).
The quality of the results obtained in production show the interest of the agent based approach
for generalization.

Besides the use in production of our models, we are trying to go further in research by tackling
on-demand generalization. We identified a need for a development environment on which we
can completely reimplement our three agent based generalization models AGENT, CartACom
and GAEL while merging their cores, and which would offer specific functionalities dedicated to
research. To answer this need, we developed a new agent based research platform for generalization
named CartAGen [Renard et al., 2010]. It is implemented as a plugin of GeOxygene, the open
source research platform developed in java at the COGIT laboratory [Bucher et al., 2012]. Links to
Clarity are kept to be able to encapsulate basic generalization algorithms and specific mechanisms
relying on Clarity’s topological engine.
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Figure 14: Derivation of the 1:25k topographic map (right) from the BD TOPO R© database (left,
1m resolution) at IGN-France.

4.7 Other Multi-Agents Generalization Models
IGN COGIT team was not the first and the only research team to use multi-agents systems to
automate map generalization, and some other models have been cited in the past sections. This
is not the purpose of this report to detail such research, but an exhaustive review can be found in
[Duchêne, 2016].

5 Discussion - Feedback from experimentations

5.1 Pros and Cons of Multi-Agents Generalization Models
Using geo-agents is not the unique way to develop automatic generalization processes and it can be
interesting to discuss the advantages and the drawbacks of such an approach compared to different
approaches. The first advantage of the agent-based approach is that it really is component-based
(each capacity of the agent can be seen as a component), which makes it quite tolerant to local
failures (i.e. a problem with one building agent does not make the whole town agent fail in the
AGENT model). However, the better the components (and the generalization algorithms) are, the
better the result is. Added to that, the geo-agent approach depends on a complete distributed
model: a small part of the generalization problem is handled by each agent and each agent holds a
part of the solution. It makes a global good solution much easier to obtain. The agents also allow
to model heterogeneous entities with common aspects and specialized ones which fits well with the
generalization problem: a building and a road have common aspects but also quite different ones
as a road is part of network contrary to buildings for instance. Thus, common behaviors can be
implemented at the agent level while specialized ones can be implemented at the road or building
agent level. Then, multi-themes generalizations are possible with the agent approach.

Besides, the dynamics of the agents help to deal with the step-by-step approach as it is pos-
sible to manage online modifications and to update the context of the agent before it makes its
decision. The agents also allow to model geographic hierarchies as in AGENT. The agents allow
to model emergent phenomena: during the step-by-step generalization, unpredicted conflicts may
appear (‘emerge’) and the agent modeling helps to deal with such emerging phenomena without
disturbing the whole generalization process. Finally, as a component based approach, the agents
allow the integration of other approaches as in CollaGen. Global resolution models like the least
squares [Harrie and Sarjakoski, 2002] can be integrated as the action of a meso agent of AGENT
for instance.

However, the geo-agent based approach involves some drawbacks that may be related to either
the approach itself or the implementation it requires. First, the distributed aspect of the approach
involves a complexity in the parameterization process. Indeed, each constraint requires its own
parameters as well as each kind of geo-agent and it may be difficult to relate the diffuse parameters
to the global objectives of the generalization. Notably, the translation of map specifications into the
constraints satisfactions has been identified as a hard task: [Taillandier and Gaffuri, 2010] propose
to use generalized samples to help a user translating specifications into satisfaction methods. The
procedural knowledge required to guide agent-based generalization is also very complex (see Section
4.4), and might be specific to certain scale gaps or datasets. Recent research showed some potential
to replace this procedural knowledge by pruning heuristics [Taillandier and Gaffuri, 2012], which
could make agent-based processes more generic. Moreover, the geo-agent approach is heavy to
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implement and may be too much complicated in particular generalization cases where simpler
approaches lead to good results. For instance, road network selection problems have been correctly
solved by several workflow processes and do not need a complex geo-agent implementation. Finally,
the geo-agent approach has proved effective but not very efficient because of the computation time
required by the trial/error system. Such an approach could not be used to provide on-the-fly
generalization services. Nevertheless, the inefficiency is more related to the step-by-step system
rather than the agents as [Jabeur et al., 2006] proposed an agent-based model for online and on-
the-fly generalization.

5.2 Research Agenda on the use of Multi-Agents Systems for General-
ization

• How to generalize (very) large datasets? The agent-based models presented in this report
have mostly been tested on rather small datasets compared to the extent of a country. Re-
search on how to process large datasets with high performance computing techniques emerge
[Thiemann et al., 2013]. Research also exist to distribute the agents of a multi-agents system
into several computer nodes [Rousset et al., 2016]. In the case of agent-based generalization,
it particularly raises communication and coordination issues.

• Multi-level interactions. The presented models handle direct hierarchical interactions between
agents, or interaction between agents of the same level in CartACom, but the generalization
often requires interactions between agents at different levels that are more complex than
direct hierarchy [Maudet et al., 2014].

• Improve collective decision making. When many agents are in play in a situation (following
the vocabulary from [Ruas and Plazanet, 1996], it can be very complex to decide what is
the best sequence of algorithm to trigger. Distributed decision making is one of the main
fields in multi-agents research, and strategies such as coalitions [Jabeur et al., 2003], votes,
or multiple criteria decision techniques should be explored to improve collective decision
making.

• A better integration of novel learning techniques? As generalization has been performed for
years by human cartographers, researchers tried to capture their knowledge with machine
learning techniques [Weibel et al., 1995], [Kilpelainen, 2000], [Taillandier et al., 2008]. Ma-
chine learning research recently made breakthrough advances, and we believe that the use of
such techniques should be revisited to better guide agent-based generalization.

• Agent self-evaluation and map global evaluation. The life-cycle of the geo-agents is based on
self-evaluation and on meso/macro/global evaluations that assess if the map is more legible
after the action of an agent. While research on self-evaluation of micro agents presented
good results [Bard, 2004], [Stoter et al., 2009], the evaluation of meso agents generalization,
and the global evaluation of the map [Touya, 2012] are still research issues to improve the
efficiency of agent-based generalization.

5.3 Additional Remarks
The previous parts showed how much the agent based approach rely on multiple components
like generalization algorithms or spatial analysis tools. To obtain good generalization results, the
components have to be effective. For instance, if the algorithm to eliminate buildings in too dense
areas does not eliminate enough buildings, as good as can be the remaining algorithms, the results
should be poor. Added to that, the agent based approach is not completely adapted to optimally
solve every problem raised by generalization. Mixing it with different approaches may be useful.
Notably, [Touya et al., 2010] shows constraints are not always adapted. Simple condition-action
rules [Harrie and Weibel, 2007] may solve some problems like systematic geometry collapse in a
simpler way. Condition-action or workflow approaches [Petzold et al., 2006] may also be simpler
ways to overcome the difficulties to choose the next entity to generalize in our agent based approach.
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6 Conclusion
To conclude, feedbacks from experience multi-agent based generalization were presented in this
paper. Our approach was described as well as the several models developed at IGN France. Good
results are obtained with this modular and adaptive approach as it optimizes the use of the general-
ization algorithms. The main drawback is the complexity of the distributed parameterization. The
integration of agent-based and other approaches seems a promising to overcome current problems
of the generalization research community. We plan to use the open source platform CartAGen1 as
a medium to foster collaborations on agent-based map generalization.
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