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a b s t r a c t

This paper presents an architecture of a 2 Degrees of Freedom pneumatic robot which can be used as a haptic
interface. To improve the haptic rendering of this device, a nonlinear position and stiffness controller without
force measurement based on a Backstepping synthesis is presented. Thus, the robot can follow a targeted
trajectory in Cartesian position with a variable compliant behavior when disturbance forces are applied. An
appropriate tuning methodology of the closed-loop stiffness and closed-loop damping of the robot is given to
obtain a desired disturbance response. The models, the synthesis and the stability analysis of this controller
are described in this paper. Two models are presented in this paper, the first one is an accurate simulation
model which describes the mechanical behavior of the robot, the thermodynamics phenomena in the pneumatic
actuators, and the servovalves characteristics. The second model is the model used to synthesize the controller.
This control model is obtained by simplifying the simulation model to obtain a MIMO strict feedback form.
Finally, some simulation and experimental results are given and the controller performances are discussed and
compared with a classical linear impedance controller.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Many robotic applications require an interaction between the end-
effector of the robot and an uncertain environment. For instance, for
human rehabilitation, for haptic interfaces, or for prosthetic devices,
human–robot interactions are necessary. When these interactions occur,
most of the time, a compliant behavior of the robot is required in order
to avoid human injuries or to avoid damaging the robot itself. But on
the other hand, these robots have to be stiff for some tasks. Therefore
it is necessary to control the stiffness and damping of the robots.
To ensure a compliant behavior of a robot, various Variable Stiffness
Actuators (VSAs) or Variable Impedance Actuators (VIAs) have been
developed during last decades. These actuators allow the equilibrium
position and the stiffness to be tuned independently. Van Ham, Sugar,
Vanderborght, Hollander, and Lefeber (2009) present a state of the art
in the design of VSAs. Most of these actuators are designed with two
internal motors and passive compliant elements. An advantage of this
design is that the position and stiffness control of the VSA is obtained
by controlling the position of two electric motors. The main drawbacks
of this kind of VSAs are the cost and the stiffness range. Indeed, these
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actuator are often expensive because two electric actuators are needed
to control one Degree Of Freedom (DOF). The range of the stiffness is
also often limited (Huang et al., 2013) due to the use of passive stiffness
components.

Another approach to obtain a compliant behavior for the robot is
based on control strategies such as stiffness control (Salisbury, 1980),
impedance control (Hogan, 1987) or hybrid force position control (Hay-
ati, 1986). Most of these strategies have been developed for electrome-
chanically actuated robots. The disadvantages of the electromechanical
actuation are that, in order to implement these control strategies, a
force/torque sensor is needed. This sensor is required to measure the
environment interaction which implies knowing where this interaction
will occur. Moreover, these sensors are often expensive and fragile. If
force/torque sensors are not used, the actuators have to be backdrivable
which mean reducing gear ratio and, consequently, the torque or force
range of the robot.

On the other hand, due to their nonlinear behaviors, pneumatic
cylinders were traditionally only use as bi-stable position actuators. The
recent development of new servovalves and modern robust nonlinear
control laws based on sliding mode and Backstepping allowed the
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Table 1
Main characteristics of the cylinders.

Reference DSNU-25-400-PPV-A-Q DSNU-25-200-PPV-A
Notation cylinder 2 cylinder 1
Position horizontal vertical
Stroke 400 mm 200 mm
Piston diameter 25 mm 25 mm
Theoretical force at 6 bar, advancing 295 N 295 N
Theoretical force at 6 bar, retracting 247 N 247 N
Rod geometry 9 mm ×9 mm (square) ∅10mm (circle)

Fig. 1. 2 DOF actuated pneumatic haptic interface.

development of position or force controller. Thus, since pneumatic
cylinders are inexpensive and have a good power to weight ratio, there
has been a recent surge of interest for this technology. If the independent
force/stiffness or position/stiffness nonlinear controls of one pneumatic
actuator have been addressed in literature (Abry, Brun, Sesmat, Bideaux,
& Ducat, 2015; Shen & Goldfarb, 2007; Taheri, Case, & Richer, 2014),
the extension of these nonlinear control strategies to multi DOF has
not yet been studied. Thus, this article presents an nonlinear posi-
tion/stiffness control strategy for a 2 DOF pneumatic robot adapted
from the Abry et al. position and stiffness controller developed for a
pneumatic cylinder (Abry et al., 2015). The synthesis of this controller
is based on the Backstepping method and a gain tuning strategy which
allows to reach a desired behavior of stiffness and damping.

The presented 2 DOF pneumatic robot is a part of a haptic interface.
This haptic device will be used to develop a childbirth simulator. Herzig,
Moreau, and Redarce (2014) and Herzig, Moreau, Redarce, Abry, and
Brun (2015) give more details about the interest of using this kind of
haptic interface to simulate a childbirth delivery.

This paper is structured as follows: In Section 2 the hardware
architecture of the 2 DOF actuated robot is given. Then the models used
for simulations and for control synthesis are described respectively in
Sections 3 and 4. The controller synthesis based on the Backstepping
method is described in Section 5. In Section 6 response to an external
disturbance force and a strategy to ensure a desired closed-loop stiffness
by control gains tuning are discussed. Simulation results and a compar-
ison with a classical linear impedance controller without force sensor
are presented in Section 7. Section 8 deals with the experimental results
to compare performances of the two controllers for position tracking
and disturbance rejection. Finally, Section 9 provides a conclusion and
describes future works.

2. Robot hardware design

The 2 DOF robot studied in this paper is illustrated in Fig. 1. Its
architecture is based on the BirthSIM (Herzig et al., 2014, 2015) design,
which is composed of two pneumatic cylinders. The main characteristics

Fig. 2. Hardware architecture of the 2 DOF pneumatic robot.

of these two cylinders, respectively denoted cylinder 1 and cylinder 2
for the vertical one and the horizontal one, are given in Table 1. The
second cylinder has been chosen with a square rod in order to prevent
the inner rotation.

Four Festo MPYE-5-M5-010-B proportional servovalves supply the
cylinder chambers. These servovalves control the air mass flow rates
which enter or exit the chambers. Their characterization map is given
in 3.4. The pressures inside the chambers are measured with Honeywell
40PC100G2A sensors. Moreover, the end-effector Cartesian position and
orientation are measured using a Trackstar magnetic tracker. Finally, the
controller board is a dSPACE MicroLabBox which is suitable for control
prototyping. Fig. 2 illustrates the global hardware architecture of the
studied robot.

It has to be noticed that to avoid some usual issues concerning the
compression of air in air tubes, the diameter of the air tubes have been
chosen small and the length of those tubes have been shortened to the
maximum. Indeed, this issue is known for generating delays and also
has an impact on the control strategies.

3. Simulation model

This section presents the models which are used to test the control
law in simulation. To describe the behavior of the robot, mechanical
and thermodynamic models have to be defined.

3.1. Kinematic model

The Forward Kinematic Model (FKM) and Inverse Kinematic Model
(IKM) provide the relations between the location of the end-effector and
the joint coordinates. Indeed, the FKM gives the position and orientation
of the end-effector as a function of the joint variables whereas the
IKM gives the joint variables as a function of the end-effector location.
To obtain these models, the Khalil and Kleinfinger method has been
used (Khalil & Kleinfinger, 1986). This method is particularly suitable
for robots with closed chains. Fig. 3 presents the kinematic scheme of
the studied robot.

27



N. Herzig et al. Control Engineering Practice 73 (2018) 26–39

Fig. 3. Kinematic scheme of the 2 DOF pneumatic robot.

The parameters defined with the Khalil and Kleinfinger method are
given in Table 2.

As the robot has a closed kinematic chain, joint variables can be
separated in three categories. The active joint variables, which are the
variables of actuated joints, the passive joint variables and the cut joint
variables. Here, the active joint vector 𝑞𝑎, the passive joint vector 𝑞𝑝,
and the cut joint vector 𝑞𝑐 are defined as

𝑞𝑎 =

[

𝑟4
𝑟2

]

𝑞𝑝 =

[

𝜃1
𝜃3

]

𝑞𝑐 = 𝜃5. (1)

Then, by solving the constraint equations, the passive joint and cut
joint variables are computed as functions of the active joint variables

𝜃1 = 𝛾3 − arcsin

(

𝑟24 − 𝑑23 − 𝑑26
2𝑑3𝑑6

)

𝜃3 = −arcsin

(

𝑟24 + 𝑑23 − 𝑑26
2𝑟4𝑑3

)

𝜃5 = arcsin

(

𝑟24 + 𝑑26 − 𝑑23
2𝑟4𝑑6

)

.

(2)

It can be noticed that in the working space of the robot, 𝜃1(𝑟4) is bijective.
The FKM can be obtained from the transformation matrix which

models the transformation from the 𝑅0 frame into the 𝑅2 frame (cf.
Fig. 3). As the studied robot is two DOF actuated, only two Cartesian
coordinates can be controlled. 𝑥𝑐 and 𝑦𝑐 denote the coordinates of 𝑂2
(end-effector center) in 𝑅0 frame. It can be deduced that

𝑥𝑐 = 𝑟2 sin 𝜃1
𝑦𝑐 = −𝑟2 cos 𝜃1

(3)

where 𝜃1 is given by (2).
To obtain the IKM, the Paul method (Paul, 1982) has been applied.

It leads to the following equations:

𝜃1 = atan2(𝑥𝑐 ,−𝑦𝑐 )
𝑟2 = −𝑦𝑐 cos 𝜃1 + 𝑥𝑐 sin 𝜃1
𝑟4 =

√

𝑑23 + 𝑑26 − 2𝑑3𝑑6 sin(𝜃1 − 𝛾3).

(4)

3.2. Dynamic model

The dynamic behavior of the two DOF robot presented in this paper
can be modeled by the following Newton–Euler formulation:

𝐌(𝑞𝑎)𝑞𝑎 + C(𝑞𝑎, 𝑞̇𝑎) + D(𝑞̇𝑎) + G(𝑞𝑎) = f𝑝𝑛𝑒𝑢 + f𝑒 (5)

where 𝐌 denotes the symmetric and positive definite inertia matrix, C
is the centrifugal and Coriolis matrix, D is the vector which contains
dissipative terms due to friction, G is the gravity terms vector, f𝑝𝑛𝑒𝑢, and

Table 2
Kinematic parameters of the 2 DOF pneumatic robot.

𝑗 𝑎(𝑗) 𝜎 𝜇 b d r 𝛾 𝛼 𝜃

1 0 0 0 0 0 0 0 0 𝜃1
2 1 1 1 0 0 𝑟2 0 𝜋

2
0

3 0 0 0 0 −𝑑3 0 𝛾3 0 𝜃3
4 3 1 1 0 0 𝑟4 0 − 𝜋

2
0

5 4 0 0 0 0 0 0 − 𝜋
2

𝜃5
6 1 2 0 0 −𝑑6 0 − 𝜋

2
0 0

f𝑒 are respectively the vector of pneumatic forces and external forces
generated by the environment or the user in the case of haptic interface.

To simplify the dynamic model and to reduce the parameters which
have to be identified, the following assumptions have been taken:

∙ All the links are assumed to be rigid
∙ The friction in all revolute joints are neglected compared to the

friction of the pistons in cylinders (prismatic joints)
∙ Only the end-effector mass is taken into account. It is denoted 𝑀

and is assumed to be a point mass at 𝑂2. All moments of inertia
are neglected.

With these assumptions, 𝐌 and C matrices can be obtained as
follows:

𝐌(𝑞𝑎) =

⎡

⎢

⎢

⎢

⎣

𝑀𝑟22𝑟4
𝑑3𝑑26 cos(𝜃1 − 𝛾3) cos 𝜃5

0

0 𝑀

⎤

⎥

⎥

⎥

⎦

C(𝑞𝑎, 𝑞̇𝑎) =
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑀𝑟2 𝑟̇4

2𝑟̇2𝑟4 + 𝑟2 𝑟̇4

(

𝑟24
(

𝑟24−𝑑
2
3−𝑑

2
6

)

2𝑑23𝑑
2
6 cos

2(𝜃1−𝛾3)
+ 1

)

𝑑3𝑑26 cos(𝜃1 − 𝛾3) cos 𝜃5

−
𝑀𝑟̇24𝑟

2
4𝑟2

𝑑23𝑑
2
6cos

2(𝜃1 − 𝛾3)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6)

where cos(𝜃1 − 𝛾3) and cos 𝜃5 can be deduced from (2)

cos(𝜃1 − 𝛾3) =

√

√

√

√

√1 −

(

𝑟24 − 𝑑23 − 𝑑26
2𝑑3𝑑6

)2

cos 𝜃5 =

√

√

√

√

√1 −

(

𝑟24 − 𝑑23 + 𝑑26
2𝑟4𝑑6

)2

.

(7)

The friction model used takes into account the Coulomb friction and
the viscous friction. Thus, the parameters 𝐹𝑐𝑖 and 𝐹𝑣𝑖 denote respectively
the Coulomb and viscous friction parameters of the cylinder 𝑖.1 These
parameters have been identified experimentally with a dedicated test
bench. Furthermore, the cylinders used here are not symmetrical so the
pneumatic forces have to be modeled as sums of two phenomena. Indeed
𝐹𝑝𝑛𝑒𝑢𝑖 and 𝐹𝑝𝑒𝑥𝑡𝑖 respectively represent the pneumatic force due to the
pressure difference between the two chambers and the force applied by
the atmospheric pressure on the rod of the cylinder. These two forces
are given by the following expressions:

𝐹𝑝𝑛𝑒𝑢𝑖 = 𝑃𝑝𝑖𝑆𝑝𝑖 − 𝑃𝑛𝑖𝑆𝑛𝑖

𝐹𝑝𝑒𝑥𝑡𝑖 = 𝑃𝑎𝑡𝑚(𝑆𝑝𝑖 − 𝑆𝑛𝑖)
(8)

where 𝑃𝑝𝑖 and 𝑃𝑛𝑖 are the absolute pressures in the P and N chambers,
𝑃𝑎𝑡𝑚 is the atmospheric pressure, and 𝑆𝑝𝑖 and 𝑆𝑛𝑖 are the effective piston
areas in chambers P and N.

Thus, the remaining elements of (5) which describe the dynamic
behavior of the robot are given by

1 In the rest of this paper, the indices 𝑖 refer to cylinder 𝑖 with 𝑖 ∈ {1, 2}.
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𝐷(𝑞̇𝑎) =

[

𝐹𝑐1sgn(𝑟̇4) + 𝐹𝑣1 𝑟̇4
𝐹𝑐2sgn(𝑟̇2) + 𝐹𝑣2 𝑟̇2

]

=

[

𝐹𝑓1

𝐹𝑓2

]

G(𝑞𝑎) =
⎡

⎢

⎢

⎣

−
𝑀𝑔𝑟2 sin 𝜃1
𝑑6 cos 𝜃5

−𝑀𝑔 cos 𝜃1

⎤

⎥

⎥

⎦

f𝑝𝑛𝑒𝑢 =
[

𝐹𝑝𝑛𝑒𝑢1 − 𝐹𝑝𝑒𝑥𝑡1

𝐹𝑝𝑛𝑒𝑢2 − 𝐹𝑝𝑒𝑥𝑡2

]

f𝑒 =
[

𝐹𝑒1

𝐹𝑒2

]

(9)

where 𝑔 is the Earth gravity coefficient, sgn is the sign function, and 𝐹𝑒1
and 𝐹𝑒2 are respectively the forces exerted by the environment on the
piston of cylinder 1 and 2.

For the sake of clarity, a new couple of variable 𝑦1 and 𝑦2 is defined
as follows:

𝑦1 = 𝑟4 − 𝑘1
𝑦2 = 𝑟2 − 𝑘2

(10)

where 𝑘1 and 𝑘2 are positive constants. 𝑦1 ∈
[

−𝑙1∕2; 𝑙1∕2
]

and 𝑦2 ∈
[

−𝑙2∕2; 𝑙2∕2
]

are respectively the cylinder 1 and 2 piston positions. 𝑙1
and 𝑙2 are the strokes of the cylinders.

3.3. Thermodynamic model

In this section, the objective is to model the thermodynamic behavior
of a cylinder chamber. This kind of model has been addressed in
literature (Shearer, 1956). Fig. 4 shows a scheme of a pneumatic
cylinder chamber. 𝑃 denotes the air pressure in the chamber, 𝑉 is the
chamber volume, 𝑇 , 𝑇𝑒𝑛𝑣, and 𝑇𝑠 are respectively the temperature of
the air inside the chamber, the temperature of the environment and
the temperature of the pressure source. 𝑞𝑚 is the mass flow rate. It
is defined as positive for an entering air flow. 𝛿𝑄 denotes the heat
exchange between the air inside the chamber and the environment. It
has to be noticed that the heat exchange between the two chambers is
neglected. The assumptions made to model the thermodynamic behavior
of the chamber are as follows:

∙ Air is a perfect gas
∙ Only the convection is taken into account to model the heat

exchanges
∙ Air leakages are neglected

With these assumptions, the states equations which model the
thermodynamic phenomena are

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑃
𝑑𝑡

=
𝛾
𝑉

(

𝑟𝑇𝑚𝑞𝑚 − 𝑃 𝑑𝑉
𝑑𝑡

)

+
𝛾 − 1
𝑉

ℎ𝑆𝑐𝑜𝑛𝑣
(

𝑇𝑒𝑛𝑣 − 𝑇
)

𝑑𝑇
𝑑𝑡

= 𝑇
𝑃𝑉

(

(1 − 𝛾) 𝑑𝑉
𝑑𝑡

𝑃 + 𝑟
(

𝛾𝑇𝑚 − 𝑇
)

𝑞𝑚

+ℎ𝑆𝑐𝑜𝑛𝑣
(

𝑇𝑒𝑛𝑣 − 𝑇
)

(𝛾 − 1)
)

𝑇𝑚 = 𝑇𝑠, for 𝑞 > 0
𝑇𝑚 = 𝑇 , for 𝑞 ≤ 0

(11)

where 𝛾 is the heat capacity ratio of a perfect gas, 𝑟 is the specific
gas constant of air, ℎ is the heat transfer coefficient, and 𝑆𝑐𝑜𝑛𝑣 is the
convective heat transfer surface. These equations have been written
for a chamber. In the case of the studied robot there are four distinct
chambers, so the thermodynamic variables will be distinguished with
the subscripts 𝑛1, 𝑝1, 𝑛2, and 𝑝2 which refer to the eponymous chambers.

3.4. Servovalves model

In literature, two methods are described to model the servovalves
behavior. Both are based on an experimental characterization. The first

Fig. 4. Model of a cylinder chamber.

Fig. 5. Characterization map of a Festo MYPE5 servovalve.

one consists in defining a function (most of the time polynomial) fitting
the behavior of the servovalve (Bobrow & McDonell, 1998). The second
one consists in an experimental characterization map of the servovalve.
To simulate the behavior of the four servovalves of the studied system,
the second method has been chosen. Fig. 5. shows the experimental
characterization map obtained. It gives the mass flow rate entering the
chamber for a given control voltage and a chamber pressure. It can be
noticed that once again the behavior of these components is not linear.

4. Control model

The model described in the previous section is not adapted to apply
the Multi-Input Multi-Output (MIMO) Backstepping method. Indeed, the
latter is based on a recursive control design (Freeman & Kokotovic,
1993; Yao & Tomizuka, 2001). To apply this method, it is suitable to
rewrite the state model in a strict-feedback form. The strict-feedback
form MIMO 𝑛 order system can be described by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑥̇𝑖𝑘 = 𝑓𝑖𝑘 (𝑥1,… , 𝑥𝑖𝑘 , 𝑢1,… , 𝑢𝑘−1) + 𝑔𝑖𝑘 (𝑥1,… , 𝑥𝑖𝑘 ,

𝑢1,… , 𝑢𝑘−1)𝑥𝑖𝑘+1 + 𝛿𝑖𝑘 ,𝑗𝑘𝑔𝑖𝑘 ,𝑘(𝑥1,… , 𝑥𝑖𝑘 ,

𝑢1,… , 𝑢𝑘−1)𝑢𝑘
𝑦𝑘 = ℎ𝑘(𝑥1,… , 𝑥𝑗𝑘 )

(12)

where

𝑘 ∈ {1,… , 𝑚}
𝑖𝑘 ∈ {𝑗𝑘−1,… , 𝑗𝑘}

𝑗𝑘 =
𝑘
∑

𝑏=1
𝑛𝑏

𝑛 =
𝑚
∑

𝑘=1
𝑛𝑘

29
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𝑥𝑗𝑘−1 ,… , 𝑥𝑗𝑘 are the 𝑛𝑘 states of the 𝑘th block, 𝑢1,… , 𝑢𝑚, and 𝑦1,… , 𝑦𝑚
define the 𝑚 control inputs and outputs. 𝛿𝑖𝑘 ,𝑗𝑘 denotes the Kronecker
delta. Finally 𝑓 , 𝑔, and ℎ denote nonlinear functions.

To write the previous model in a strict-feedback form and then
synthesize the Backstepping controller, a change of variables and some
model reductions are needed. These reductions can be justified by more
assumptions. The first step to reduce the model consists in simplifying
the thermodynamics model. Indeed, common assumptions taken to
obtain a control model for a pneumatic cylinder are that air inside
the chambers of the cylinder follow a polytropic behavior without
heat exchange (Andersen, 1967). The second assumption is that the
temperature variation of this air is neglected so 𝑇 is assumed to be
constant. These two assumptions lead to replace (11) by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑃𝑝𝑖

𝑑𝑡
= 𝑘

𝑆𝑝𝑖𝐿𝑝𝑖(𝑦𝑖)
(𝑟𝑇 𝑞𝑚𝑝𝑖 − 𝑃𝑝𝑖𝑆𝑝𝑖𝑣𝑖)

𝑑𝑃𝑛𝑖
𝑑𝑡

= 𝑘
𝑆𝑛𝑖𝐿𝑛𝑖(𝑦𝑖)

(𝑟𝑇 𝑞𝑚𝑛𝑖 + 𝑃𝑛𝑖𝑆𝑛𝑖𝑣𝑖)
(13)

with

𝐿𝑛𝑖(𝑦𝑖) =
𝑙𝑖
2
− 𝑦𝑖 𝐿𝑝𝑖(𝑦𝑖) =

𝑙𝑖
2
+ 𝑦𝑖

where 𝑘 is the polytropic coefficient chosen experimentally, 𝑙𝑖 is the
stroke of the cylinder, 𝑟 is the specific gas constant for dry air, 𝑇 is the
ambient temperature, 𝑞𝑚𝑝𝑖 and 𝑞𝑚𝑛𝑖 are the respective mass flow rates
defined as positive entering the chambers P and N.

Secondly, the A-T transform is applied to change the variables of the
system. This transform have been presented by Abry et al. (2015). It
can be compared to the Park transform which is used for electric motor
control but this transform is adapted to pneumatic actuators control. For
each cylinder, the A-T transform introduces two virtual flow rates 𝑞𝑚𝐴𝑖
and 𝑞𝑚𝑇 𝑖 which respectively are the active and pressurization mass flow
rates. These latter can be defined as follows:

[

𝑞𝑚𝐴𝑖
𝑞𝑚𝑇 𝑖

]

=
𝑙𝑖
2

⎡

⎢

⎢

⎢

⎣

1
𝐿𝑝𝑖(𝑦𝑖)

− 1
𝐿𝑛𝑖(𝑦𝑖)

1
𝐿𝑝𝑖(𝑦𝑖)

1
𝐿𝑛𝑖(𝑦𝑖)

⎤

⎥

⎥

⎥

⎦

[

𝑞𝑚𝑝𝑖
𝑞𝑚𝑛𝑖

]

. (14)

The aim of this change of variables is to define two new states 𝐹𝑝𝑛𝑒𝑢𝑖
the pneumatic force given in (8), and 𝐾𝑝𝑛𝑒𝑢𝑖 the pneumatic stiffness. The
pneumatic stiffness is the position derivative of the pneumatic force free
response. Thus

𝐾𝑝𝑛𝑒𝑢𝑖 = −
𝑑𝐹𝑝𝑛𝑒𝑢𝑖

𝑑𝑦𝑖
= 𝑘

( 𝑃𝑝𝑖𝑆𝑝𝑖

𝐿𝑝𝑖(𝑦𝑖)
+

𝑃𝑛𝑖𝑆𝑛𝑖
𝐿𝑛𝑖(𝑦𝑖)

)

. (15)

So the pneumatic model becomes

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑑𝐹𝑝𝑛𝑒𝑢𝑖

𝑑𝑡
= 2𝑘𝑟𝑇

𝑙𝑖
𝑞𝑚𝐴𝑖 −𝐾𝑝𝑛𝑒𝑢𝑖𝑣𝑖

𝑑𝐾𝑝𝑛𝑒𝑢𝑖

𝑑𝑡
=

𝐴1𝑣𝑖𝑦𝑖𝐾𝑝𝑛𝑒𝑢𝑖 − 𝐴2𝑣𝑖𝐹𝑝𝑛𝑒𝑢𝑖 − 𝐵1,𝑖𝑦𝑖𝑞𝑚𝐴𝑖
𝐿𝑝𝑖(𝑦𝑖)𝐿𝑛𝑖(𝑦𝑖)

+
𝐵2𝑞𝑚𝑇 𝑖

𝐿𝑝𝑖(𝑦𝑖)𝐿𝑛𝑖(𝑦𝑖)

(16)

with

𝐴1 = 2(𝑘 + 1) 𝐴2 = 𝑘(𝑘 + 1)

𝐵1,𝑖 =
2𝑘2𝑟𝑇
𝑙𝑖

𝐵2 = 𝑘2𝑟𝑇

On the other hand, to simplify the dynamic model, the first and
second time derivatives of 𝜃1 are linearized around the equilibrium point

denoted 𝑥𝑒 where 𝑦1 =
√

𝑑23 − 𝑑26 − 𝑘1, 𝑣1 = 0, and 𝑣̇1 = 0

𝜃̇1 ≃
𝜕𝜃̇1
𝜕𝑣1

|

|

|

|

|𝑥𝑒

𝑣1 +
𝜕𝜃̇1
𝜕𝑦1

|

|

|

|

|𝑥𝑒

𝑦1

𝜃̇1 ≃ −
𝑣1
𝑑6

𝜃̈1 ≃
𝜕𝜃̈1
𝜕𝑣̇1

|

|

|

|

|𝑥𝑒

𝑣̇1 +
𝜕𝜃̈1
𝜕𝑣1

|

|

|

|

|𝑥𝑒

𝑣1 +
𝜕𝜃̈1
𝜕𝑦1

|

|

|

|

|𝑥𝑒

𝑦1

𝜃̈1 ≃ −
𝑣̇1
𝑑6

.

(17)

It has to be noticed that this simplification is not needed to obtain the
MIMO strict-feedback form. This linearization have been done in this
paper in order to reduce the size of the equation obtained.

Finally, it is assumed that the weight projection and the centrifugal
and Coriolis accelerations on the second cylinder are neglected. Indeed,
as this cylinder works around an horizontal position, the weight influ-
ence on the dynamic behavior can be neglected. Centrifugal and Coriolis
accelerations can be neglected by assuming that the first piston velocity
and acceleration stay low. These assumptions lead to rewrite the 𝐌, C,
and G matrices given in (6) and (9) as follows:

𝐌(𝑞𝑎) =

⎡

⎢

⎢

⎢

⎣

𝑀𝑟22
𝑑26 cos 𝜃5

0

0 𝑀

⎤

⎥

⎥

⎥

⎦

C(𝑞𝑎, 𝑞̇𝑎) =

⎡

⎢

⎢

⎢

⎣

2𝑀𝑟2 𝑟̇2 𝑟̇4
𝑑26 cos 𝜃5

0

⎤

⎥

⎥

⎥

⎦

G(𝑞𝑎) =
⎡

⎢

⎢

⎣

−
𝑀𝑔𝑟2 sin 𝜃1
𝑑6 cos 𝜃5

0

⎤

⎥

⎥

⎦

.

(18)

By defining the state and control vectors 𝐗 and 𝐔 as follows:

𝐗 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8]𝑇 𝐔 = [𝑢1 𝑢2 𝑢3 𝑢4]𝑇 (19)

where

𝑥1 = 𝑦2 𝑥5 = 𝑦1 𝑢1 = 𝑞𝑚𝐴2
𝑥2 = 𝑣2 𝑥6 = 𝑣1 𝑢2 = 𝑞𝑚𝑇 2
𝑥3 = 𝐹𝑝𝑛𝑒𝑢2 𝑥7 = 𝐹𝑝𝑛𝑒𝑢1 𝑢3 = 𝑞𝑚𝐴1
𝑥4 = 𝐾𝑝𝑛𝑒𝑢2 𝑥8 = 𝐾𝑝𝑛𝑒𝑢1 𝑢4 = 𝑞𝑚𝑇 1.

(20)

The state model can be written

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑥̇1 = 𝑥2
𝑥̇2 = 𝑓2(𝑥1, 𝑥2) + 𝑔2𝑥3
𝑥̇3 = 𝑔3(𝑥2)𝑥4 + 𝑔3,1𝑢1
𝑥̇4 = 𝑓4(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑢1) + 𝑔4,2(𝑥1)𝑢2
𝑥̇5 = 𝑥6
𝑥̇6 = 𝑓6(𝑥1, 𝑥2, 𝑥5, 𝑥6) + 𝑔6(𝑥1, 𝑥5)𝑥7
𝑥̇7 = 𝑔7(𝑥6)𝑥8 + 𝑔7,3𝑢3
𝑥̇8 = 𝑓8(𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑢3) + 𝑔8,4(𝑥5)𝑢4

. (21)

It has to be noticed that the forces 𝐹𝑒1 and 𝐹𝑒2 are not taken
into account in the control model. Indeed these forces are defined
as disturbances and they are not measured. With these assumptions
the state model given in (21) respects the MIMO strict feedback form
introduced in (12), so the control synthesis by Backstepping method is
now applicable.

5. Controller synthesis

The model obtained previously is now in a strict feedback form. The
Backstepping method can be, therefore, applied to synthesize the control
laws. The presented method is based on Abry et al. works (Abry et al.,
2015) but has been adapted to the 2 DOF robot presented in Section 2.
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The four virtual mass flow rates are the control inputs. The two active
mass flow rates 𝑞𝑚𝐴1 and 𝑞𝑚𝐴2 will be designed to track the desired
position of the pistons 𝑦𝑑1 and 𝑦𝑑2 respectively for cylinder 1 and 2. To
define the trajectory, the derivatives of these positions are needed, thus
𝑦𝑑1 and 𝑦𝑑2 are required to be 𝐶3 function of time. The time derivatives
of 𝑦𝑑1 and 𝑦𝑑2 are defined as follows:

𝑑𝑦𝑑1
𝑑𝑡

= 𝑣𝑑1
𝑑2𝑦𝑑1
𝑑𝑡2

= 𝑎𝑑1
𝑑3𝑦𝑑1
𝑑𝑡3

= 𝑗𝑑1

𝑑𝑦𝑑2
𝑑𝑡

= 𝑣𝑑2
𝑑2𝑦𝑑2
𝑑𝑡2

= 𝑎𝑑2
𝑑3𝑦𝑑2
𝑑𝑡3

= 𝑗𝑑2.
(22)

The two pressurization mass flow rates 𝑞𝑚𝑇 1 and 𝑞𝑚𝑇 2 will be designed to
track respectively the desired pneumatic stiffnesses 𝐾𝑝𝑛𝑒𝑢𝑑1 and 𝐾𝑝𝑛𝑒𝑢𝑑2
trajectories, this two reference trajectories must be 𝐶1 functions of time.

5.1. Cylinder 2 position tracking

Step 1: The cylinder 2 position tracking error 𝑧1 is defined as

𝑧1 = 𝑦2 − 𝑦𝑑2. (23)

The open loop dynamics of 𝑧1 is given by

𝑧̇1 = 𝑣2 − 𝑣𝑑2 (24)

where 𝑣2 is seen as a virtual input. The latter is chosen as

𝑣∗2 = 𝑣𝑑2 − 𝐶1𝑧1 (25)

where 𝐶1 is a strictly positive constant.
Step 2: the cylinder 2 velocity tracking error 𝑧2 is defined as

𝑧2 = 𝑣2 − 𝑣∗2 . (26)

The closed-loop dynamics of the cylinder 2 position error and the open-
loop dynamics of the velocity error are respectively

𝑧̇1 = 𝑧2 − 𝐶1𝑧1

𝑧̇2 =
𝐹𝑝𝑛𝑒𝑢2 − 𝐹𝑝𝑒𝑥𝑡2 − 𝐹𝑓2

𝑀
− 𝑎𝑑2 + 𝐶1𝑧̇1

(27)

where 𝐹𝑝𝑛𝑒𝑢2 is assumed to be a virtual input. It is chosen as

𝐹 ∗
𝑝𝑛𝑒𝑢2 = 𝐹𝑝𝑒𝑥𝑡2 + 𝐹𝑓2 +𝑀

(

𝑎𝑑2 + 𝑧1
(

𝐶2
1 − 1

)

−𝑧2
(

𝐶1 + 𝐶2
))

(28)

where 𝐶2 is a strictly positive constant.
Step 3: the cylinder 2 pneumatic force tracking error 𝑧3(𝑡) and its

integral are defined as

𝑧3 = 𝐹𝑝𝑛𝑒𝑢2 − 𝐹 ∗
𝑝𝑛𝑒𝑢2 𝑧3𝑖 = ∫ 𝑧3𝑑𝑡. (29)

So the closed-loop dynamic of 𝑧2 error and the open-loop dynamic of 𝑧3
are given by

𝑧̇2 =
𝑧3
𝑀

− 𝑧1 − 𝐶2𝑧2

𝑧̇3 = 𝐹̇𝑝𝑛𝑒𝑢2 − 𝑏2
𝐹𝑝𝑛𝑒𝑢2 − 𝐹𝑝𝑒𝑥𝑡2 − 𝐹𝑓2

𝑀
−𝑀

(

𝑗𝑑2

+
(

𝐶2
1 − 1

) (

𝑧2 − 𝐶1𝑧1
)

−
( 𝑧3
𝑀

− 𝑧1

−𝐶2𝑧2
) (

𝐶1 + 𝐶2
))

.

(30)

The first real control input 𝑞𝑚𝐴2 is designed as follows:

𝑞𝑚𝐴2 = 𝑓0 + 𝑓1𝑧1 + 𝑓2𝑧2 + 𝑓3𝑧3 + 𝑓4𝑧3𝑖 (31)

with

𝑓0 =
𝑙2
(

𝑏2
(

𝐹𝑝𝑛𝑒𝑢2 − 𝐹𝑝𝑒𝑥𝑡2 − 𝐹𝑓2
)

+𝑀𝐾𝑝𝑛𝑒𝑢2𝑣2
)

2𝑀𝑘𝑟𝑇

+
𝑙2𝑀𝑗𝑑2
2𝑘𝑟𝑇

𝑓1 =
𝑀𝑙2

(

2𝐶1 + 𝐶2 − 𝐶3
1
)

2𝑘𝑟𝑇

𝑓2 =
𝑙2
(

𝑀2 (𝐶2
1 + 𝐶1𝐶2 + 𝐶2

2 − 1
)

− 1
)

2𝑀𝑘𝑅𝑇

𝑓3 = −
𝑙2
(

𝐶1 + 𝐶2 + 𝐶3
)

2𝑘𝑟𝑇

𝑓4 = −
𝐾𝑖3𝑙2
2𝑘𝑟𝑇

where 𝐶3 and 𝐾𝑖3 are strictly positive constants. 𝑧3𝑖 error is added in
order to eliminate the steady state error of 𝐹𝑝𝑛𝑒𝑢2. Then a Lyapunov
function candidate, denoted 𝑉1, is chosen as

𝑉1 =
𝑧21
2

+
𝑧22
2

+
𝑧23
2

+𝐾𝑖3
𝑧23𝑖
2
. (32)

Using (27), (30) and (31), the derivative can be computed

𝑉̇1 = −𝐶1𝑧
2
1 − 𝐶2𝑧

2
2 − 𝐶3𝑧

2
3. (33)

5.2. Cylinder 2 pneumatic stiffness tracking

Step 4: the cylinder 2 pneumatic stiffness error 𝑧4 is defined as

𝑧4 = 𝐾𝑝𝑛𝑒𝑢2 −𝐾𝑝𝑛𝑒𝑢𝑑2. (34)

The open-loop dynamic of this error is given by

𝑧̇4 =
𝐴1𝑣2𝑦2𝐾𝑝𝑛𝑒𝑢2 − 𝐴2𝑣2𝐹𝑝𝑛𝑒𝑢2 − 𝐵1,2𝑦2𝑞𝑚𝐴2

𝐿𝑝2(𝑦2)𝐿𝑛2(𝑦2)

+
𝐵2𝑞𝑚𝑇 2

𝐿𝑝2(𝑦2)𝐿𝑛2(𝑦2)
− 𝐾̇𝑝𝑛𝑒𝑢𝑑2.

(35)

The second real input 𝑞𝑚𝑇 2 is designed as follows:

𝑞𝑚𝑇 2 =
𝐾̇𝑝𝑛𝑒𝑢2 − 𝐶4𝑧4

𝐵2
𝐿𝑝𝑖(𝑦𝑖)𝐿𝑛𝑖(𝑦𝑖) +

𝐴2𝑣2𝐹𝑝𝑛𝑒𝑢2

𝐵2

−
𝐴1𝑣2𝑦2𝐾𝑝𝑛𝑒𝑢2

𝐵2
+

2𝑦2𝑞𝑚𝐴2
𝑙2

(36)

where 𝐶4 is a strictly positive constant. Due to the particular form of the
model, it can be noticed that this input depends on 𝑞𝑚𝐴2 the previous
input designed during the first step. Then a second Lyapunov function
candidate 𝑉2 is chosen as

𝑉2 =
𝑧24
2
. (37)

By substituting 𝑞𝑚𝑇 2 with the expression obtained in (36), the time
derivative of 𝑉2 is

𝑉̇2 = −𝐶4𝑧
2
4. (38)

5.3. Cylinder 1 position tracking

Step 5: As for the cylinder 2 the cylinder 1 position and velocity
errors, respectively 𝑧5 and 𝑧6 are defined as

𝑧5 = 𝑦1 − 𝑦𝑑1
𝑧6 = 𝑣1 − 𝑣∗1

(39)

where 𝑣∗1 is a virtual control. The open-loop dynamic of 𝑧5 is given by
the equation

𝑧̇5 = 𝑣1 − 𝑣𝑑1. (40)
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Then the virtual control 𝑣∗1 is designed as

𝑣∗1 = 𝑣𝑑1 − 𝐶5𝑧5 (41)

where 𝐶5 is a strictly positive constant. Thus the closed-loop dynamic
of the cylinder 1 piston position obtained is given by

𝑧̇5 = 𝑧6 − 𝐶5𝑧5. (42)

Step 6: The tracking error dynamic of the cylinder 1 piston position
can be written as follows:

𝑧̇6 =
𝑑6

𝑦2 + 𝑘2

(

𝑔 sin 𝜃1 −
𝑑6 cos 𝜃5

𝑀(𝑦2 + 𝑘2)
(

𝐹𝑓1 + 𝐹𝑝𝑒𝑥𝑡1

−𝐹𝑝𝑛𝑒𝑢1
))

−
𝑣1𝑣2

𝑦2 + 𝑘2
− 𝑎𝑑1 + 𝐶5𝑧̇5

(43)

where 𝐹𝑝𝑛𝑒𝑢1 is assumed to be a virtual input and is chosen as

𝐹 ∗
𝑝𝑛𝑒𝑢1 = 𝐹𝑝𝑒𝑥𝑡1 + 𝐹𝑓1 +

𝑀(𝑦2 + 𝑘2)2

𝑑26 cos 𝜃5

(

𝑎𝑑1 + (𝐶2
5

−1)𝑧5 − (𝐶5 + 𝐶6)𝑧6
)

+
𝑀𝑣1𝑣2(𝑦2 + 𝑘2)

𝑑26 cos 𝜃5

−
𝑀𝑔 sin 𝜃1(𝑦2 + 𝑘2)

𝑑6 cos 𝜃5

(44)

where 𝐶6 is a strictly positive constant.
Step 7: the pneumatic effort tracking error 𝑧7 is defined as

𝑧7 = 𝐹𝑝𝑛𝑒𝑢1 − 𝐹 ∗
𝑝𝑛𝑒𝑢1. (45)

The closed-loop dynamic of 𝑧6 and respectively the open-loop of 𝑧7 are
given by

𝑧̇6 =
𝑑26 cos 𝜃5

𝑀(𝑦2 + 𝑘2)2
𝑧7 − 𝑧5 − 𝐶6𝑧6

𝑧̇7 = 𝐹̇𝑝𝑛𝑒𝑢1 − 𝐹̇ ∗
𝑝𝑛𝑒𝑢1.

(46)

To simplify the expression, 𝐹̇ ∗
𝑝𝑛𝑒𝑢1 is not given here but in Appendix A.

The design of the third real control 𝑞𝑚𝐴1 is given by

𝑞𝑚𝐴1 =
𝑙1

2𝑘𝑟𝑇

(

𝐹̇ ∗
𝑝𝑛𝑒𝑢1 +𝐾𝑝𝑛𝑒𝑢1𝑣1 − 𝐶7𝑧7 −𝐾𝑖7𝑧7𝑖

−
𝑑6 cos 𝜃5

𝑀(𝑦2 + 𝑘2)2
𝑧6

) (47)

where 𝐶7 and 𝐾𝑖7 are strictly positive constants. 𝑧7𝑖 is the integral of 𝑧7
error and is given by 𝑧7𝑖 = ∫ 𝑧7𝑑𝑡. This integral error is added in order
to eliminate the steady state error of 𝐹𝑝𝑛𝑒𝑢1. Then a Lyapunov function
candidate denoted 𝑉3 is chosen as

𝑉3 = 𝐶5
𝑧25
2

+ 𝐶6
𝑧26
2

+ 𝐶7
𝑧27
2

+𝐾𝑖7
𝑧27𝑖
2
. (48)

By using the results obtained in (42), (46) and (47) The derivative of
this function is

𝑉̇3 = −𝐶5𝑧
2
5 − 𝐶6𝑧

2
6 − 𝐶7𝑧

2
7. (49)

5.4. Cylinder 1 pneumatic stiffness tracking

Step 8: The cylinder 1 pneumatic stiffness tracking error 𝑧8 is defined
as

𝑧8 = 𝐾𝑝𝑛𝑒𝑢1 −𝐾𝑝𝑛𝑒𝑢𝑑1. (50)

The open-loop dynamic of 𝑧8 is given by its time derivative

𝑧̇8 =
𝐴1𝑣1𝑦1𝐾𝑝𝑛𝑒𝑢1 − 𝐴2𝑣1𝐹𝑝𝑛𝑒𝑢1 − 𝐵1,1𝑦1𝑞𝑚𝐴1

𝐿𝑝1(𝑦1)𝐿𝑛1(𝑦1)

+
𝐵2𝑞𝑚𝑇 1

𝐿𝑝1(𝑦1)𝐿𝑛1(𝑦1)
− 𝐾̇𝑝𝑛𝑒𝑢1.

(51)

Then the last real control is chosen as follows:

𝑞𝑚𝑇 1 =
𝐾̇𝑝𝑛𝑒𝑢1 − 𝐶8𝑧8

𝐵2
𝐿𝑝1(𝑦1)𝐿𝑛1(𝑦1) +

𝐴2𝑣1𝐹𝑝𝑛𝑒𝑢1

𝐵2

−
𝐴1𝑣1𝑦1𝐾𝑝𝑛𝑒𝑢1

𝐵2
−

2𝑦1𝑞𝑚𝑎1
𝑙1

(52)

where 𝐶8 is a strictly positive constant. Finally a last Lyapunov function
is chosen

𝑉4 =
𝑧28
2
. (53)

Using (52), its derivative can be computed

𝑉̇4 = −𝐶8𝑧
2
8. (54)

5.5. Stability analysis

Using the Backstepping method, the four controls 𝑞𝑚𝐴1, 𝑞𝑚𝑇 1, 𝑞𝑚𝐴2,
and 𝑞𝑚𝑇 2 have been designed in order to ensure the closed-loop global
asymptotic convergence of the positions and pneumatic stiffnesses of
cylinders 1 and 2 tracking errors. Indeed, the following Lyapunov
candidate is chosen for the whole system:

𝑉 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4. (55)

It can be noticed that 𝑉 is positive definite. Its time derivative can be
deduced from (33), (38), (49), (54)

𝑉̇ = −
8
∑

𝑖=1
𝐶𝑖𝑧

2
𝑖 . (56)

As the time derivative of 𝑉 is negative definite the Lyapunov theory
ensures the global asymptotic convergence of the system.

6. Disturbance rejection and closed-loop stiffness

The controller synthesis method has been chosen because Abry et al.
have shown that the tuning of some gains allows to control the system
disturbance response (Abry et al., 2015). Indeed, it is possible to tune
the closed-loop stiffness and damping of each actuator by adapting the
control gains. It is important to distinguish the pneumatic stiffness and
the closed-loop stiffness. Indeed, the pneumatic stiffness described in
(15) is a state of the system. This state represents the actuator natural
tendency to counteract an external effort applied on the piston. This
response depends on the piston position but also on the chambers
pressures. On the other hand, the closed-loop stiffness describe how the
controlled actuator will react to a position error due to an external force
or disturbance. Thus for the two pneumatic actuators the closed-loop
stiffnesses can be expressed as

𝐾𝑐𝑙2 =
𝑑𝐹𝑒2
𝑑𝑧1

𝐾𝑐𝑙1 =
𝑑𝐹𝑒1
𝑑𝑧4

(57)

with 𝑧1 = 𝑦1 − 𝑦𝑑1 et 𝑧4 = 𝑦2 − 𝑦𝑑2. 𝐹𝑒1 and 𝐹𝑒2 are respectively the
external or disturbance forces apply on cylinder 1 and 2. By assuming
that the disturbance rejection is quasi-static, the external forces become

𝐹𝑒2 = −(𝐹𝑝𝑛𝑒𝑢2 − 𝐹𝑝𝑒𝑥𝑡2 − 𝐹𝑓2)

𝐹𝑒1 = 𝐹𝑓1 −
𝑀(𝑦2 + 𝑘2)
𝑑6 cos 𝜃5

(

𝑔 sin 𝜃1 −
𝑣1𝑣2
𝑑6

)

−𝐹𝑝𝑛𝑒𝑢1 + 𝐹𝑝𝑒𝑥𝑡1.

(58)

Then, thanks to the integral actions introduced in (31) and (47) the
pneumatic efforts 𝑧3 et 𝑧7 converge quickly to zero. Therefore, it can
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be assumed that 𝐹𝑝𝑛𝑒𝑢1 = 𝐹 ∗
𝑝𝑛𝑒𝑢1 and 𝐹𝑝𝑛𝑒𝑢2 = 𝐹 ∗

𝑝𝑛𝑒𝑢2. Thus, (57) can be
expressed as follows:

𝐾𝑐𝑙2 = −𝑀
𝑑
(

𝑎𝑑2 + 𝑧1
(

𝐶2
1 − 1

)

− 𝑧2
(

𝐶1 + 𝐶2
))

𝑑𝑧1

𝐾𝑐𝑙1 = −
𝑑
(

𝑀(𝑦2+𝑘2)2

𝑑26 cos 𝜃5

(

𝑎𝑑1 + (𝐶2
5 − 1)𝑧5

)

)

𝑑𝑧5

+
𝑑
(

𝑀(𝑦2+𝑘2)2

𝑑26 cos 𝜃5
(𝐶5 + 𝐶6)𝑧6

)

𝑑𝑧5
.

(59)

By taking into account that 𝑧2 = 𝑣2 − 𝑣𝑑2 + 𝐶1𝑧1 et 𝑧6 = 𝑣1 − 𝑣𝑑1 + 𝐶5𝑧5,
and neglecting the variation of cos 𝜃5 in 𝐾𝑐𝑙2

𝐾𝑐𝑙2 = 𝑀(𝐶1𝐶2 + 1)

𝐾𝑐𝑙1 =
𝑀(𝑦2 + 𝑘2)2

𝑑26 cos 𝜃5
(𝐶5𝐶6 + 1).

(60)

Identically, the closed-loop dampings of the two cylinders can be defined
as

𝐵𝑐𝑙2 =
𝑑𝐹𝑒2
𝑑𝑣̃2

𝐵𝑐𝑙1 =
𝑑𝐹𝑒1
𝑑𝑣̃1

(61)

with 𝑣̃𝑖 = 𝑣𝑖 − 𝑣𝑑𝑖. After simplifications, the closed-loop dampings are
given by

𝐵𝑐𝑙2 = 𝑀(𝐶1 + 𝐶2)

𝐵𝑐𝑙1 =
𝑀(𝑦2 + 𝑘2)2

𝑑26 cos 𝜃5
(𝐶5 + 𝐶6).

(62)

By solving the Eqs. (60) and (62) for desired closed-loop stiffnesses
and dampings, 𝐶1, 𝐶2, 𝐶5, and 𝐶6 can be computed

𝐶1 =
𝐵𝑐𝑙2 +

√

𝐵2
𝑐𝑙2 − 4𝑀

(

𝐾𝑐𝑙2 −𝑀
)

2𝑀

𝐶2 =
𝐵𝑐𝑙2 −

√

𝐵2
𝑐𝑙2 − 4𝑀

(

𝐾𝑐𝑙2 −𝑀
)

2𝑀

𝐶5 = 𝑑26 cos 𝜃5
𝐵𝑐𝑙1 +

√

𝛥
2𝑀(𝑦2 + 𝑘2)2

𝐶6 = 𝑑26 cos 𝜃5
𝐵𝑐𝑙1 −

√

𝛥
2𝑀(𝑦2 + 𝑘2)2

(63)

with

𝛥 = 𝐵2
𝑐𝑙1 − 4

𝑀(𝑦2 + 𝑘2)2

𝑑26 cos 𝜃5

(

𝐾𝑐𝑙1 −
𝑀(𝑦2 + 𝑘2)2

𝑑26 cos 𝜃5

)

.

It can be noticed that the values of 𝐶1 and 𝐶2, and respectively 𝐶5
and 𝐶6 are interchangeable. Moreover, to ensure stability 𝐶1, 𝐶2, 𝐶5,
and 𝐶6 have to be strictly positive. Therefore, the following condition
are necessary

𝐾𝑐𝑙1 >
𝑀(𝑦2 + 𝑘2)2

𝑑26 cos 𝜃5
𝐾𝑐𝑙2 > 𝑀

𝐵𝑐𝑙1 ≥ 2

√

𝑀(𝑦2 + 𝑘2)2

𝑑26 cos 𝜃5
(𝐾𝑐𝑙1 −

𝑀(𝑦2 + 𝑘2)2

𝑑26 cos 𝜃5
)

𝐵𝑐𝑙2 ≥ 2
√

𝑀(𝐾𝑐𝑙2 −𝑀).

(64)

The presented method is used to tune some of the control gains in
order to set the closed-loop stiffness and damping of each actuator. Most
of the time, the part which will interact with the environment is the end-
effector. So, in order to tune the equivalent stiffness of the end-effector
in Cartesian space 𝐾𝑐𝑙𝑥 and 𝐾𝑐𝑙𝑦, the closed-loop stiffnesses 𝐾𝑐𝑙1 and 𝐾𝑐𝑙2

Table 3
Robot parameters.

Mechanical parameters

𝑀 2 kg 𝑆𝑝1 4.91 × 10−4 m2

𝑔 9.81 m.s−2 𝑆𝑛1 4.12 × 10−4 m2

𝐹𝑐1 15 N 𝑆𝑝2 4.91 × 10−4 m2

𝐹𝑣1 50 N.s.m−1 𝑆𝑛2 4.10 × 10−4 m2

𝐹𝑣2 50 N.s.m−1 𝑑3 644 × 10−3 m
𝐹𝑐2 15 N 𝑑6 477.5 × 10−3 m
𝑙1 0.2 m2 𝑘1 457 × 10−3 m
𝑙2 0.4 m2 𝑘2 250 × 10−3 m
𝛾5 0.7401 rad

Thermodynamic parameters

𝑟 287 J. kg−1.K−1 𝑇𝑒𝑛𝑣 298 K
𝛾 1.4 SI 𝑃𝑎𝑡𝑚 105 Pa

have to be computed. To do so it is necessary to introduce the kinematic
Jacobian matrix denoted 𝐉(𝑦1, 𝑦2).
[

𝑑𝑥𝑐
𝑑𝑦𝑐

]

= 𝐉(𝑦1, 𝑦2)
[

𝑑𝑦1
𝑑𝑦2

]

(65)

where 𝑑𝑥𝑐 and 𝑑𝑦𝑐 are respectively the Cartesian end-effector positions
𝑥𝑐 and 𝑦𝑐 differentials.

By assuming that the only disturbances applied on the cylinders are
the result of a disturbance applied on the end-effector, because of the
force velocity duality it comes
[

𝐹𝑒1
𝐹𝑒2

]

= 𝐉𝑇
[

𝐹𝑒𝑥
𝐹𝑒𝑦

]

. (66)

The equivalent closed-loop stiffnesses are obtained by computing the
following equations:

𝐾𝑐𝑙1 =

[

1
0

]𝑇

𝐉𝑇
[

𝐾𝑐𝑙𝑥 0
0 𝐾𝑐𝑙𝑦

]

𝐉
[

1
0

]

𝐾𝑐𝑙2 =

[

0
1

]𝑇

𝐉𝑇
[

𝐾𝑐𝑙𝑥 0
0 𝐾𝑐𝑙𝑦

]

𝐉
[

0
1

]

.

(67)

The global architecture of the controller is shown on Fig. 6.

7. Simulation results

The aim of this section is to compare the performances of the control
law defined in Section 5 with a classical linear impedance controller (see
Fig. 7). Indeed, two simulations with different objectives are presented
in the following subsections. These simulations have been obtained
using the simulation model presented in Section 3. The first simulation
have been set in order to compare the accuracy of the controllers
while tracking desired position and pneumatic stiffness trajectories. The
second simulation have been done to illustrate the controllers ability to
reject disturbances with the desired stiffness behavior.

The chosen parameters for the simulation have been identified on the
BirthSIM robot (Herzig et al., 2014, 2015) and are presented in Table 3.

It can be noticed that for all simulations presented in this paper, the
control gains 𝐶3, 𝐶4, 𝐾𝑖3, 𝐶7, 𝐶8, and 𝐾𝑖8 which are not dependent of
the closed-loop stiffness and damping tuning are set to the following
constant values: 𝐶3 = 150, 𝐶4 = 200, 𝐾𝑖3 = 1500, 𝐶7 = 150, 𝐶8 = 200 ,
𝐾𝑖8 = 1500.

7.1. Position and pneumatic stiffness tracking

In this simulation, the objective is to compare the tracking perfor-
mances of desired trajectories in position and pneumatic stiffness of
both controllers. The following position trajectories have been chosen
as 𝑥𝑐𝑑 (𝑡) = 0.3 + 0.004𝑡 and 𝑦𝑐𝑑 (𝑡) = −0.03 + 0.025 sin(500𝑥𝑐𝑡(𝑡)). The
pneumatic stiffness trajectory of each actuator has been defined as a
succession of random steps. The transition between these steps have
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Fig. 6. Architecture of the Backstepping position and stiffness controller.

Fig. 7. Architecture of the linear impedance controller.

been smoothed with tanh function to respect the𝐶1 continuity for𝐾𝑝𝑛𝑒𝑢𝑑1
and 𝐾𝑝𝑛𝑒𝑢𝑑2. The initial conditions are 𝑥𝑐 (0) = 0.281 m, 𝑦𝑐 (0) = −0.010 m,
𝐾𝑝𝑛𝑒𝑢1(0) = 1091 N∕m, and 𝐾𝑝𝑛𝑒𝑢2(0) = 540 N∕m. Fig. 8 shows the results
of the position and pneumatic stiffness tracking. For this simulation, the
closed-loop stiffnesses and dampings have been set to constant values
𝐾𝑐𝑙𝑥(𝑡) = 2000 N∕m, 𝐾𝑐𝑙𝑦(𝑡) = 2000 N∕m, 𝐵𝑐𝑙1(𝑡) = 300 N.s/m, and
𝐵𝑐𝑙2(𝑡) = 400 N.s/m.

Figs. 8(a) and 8(b) show that the targeted Cartesian positions and
pneumatic stiffnesses are reached relatively quickly for both controllers.
According to Fig. 8(c) the Backstepping controller is more accurate
than the linear impedance controller, in particular on the Cartesian 𝑦
axis. Indeed, the Backstepping controller takes into account a part of
the nonlinear inertial dynamic whereas the linear impedance controller
does not. Concerning the tracking performances of pneumatic stiffnesses
trajectories, both controller have similar accuracy. Finally Fig. 8(d)
illustrates the motion of the end-effector in the Cartesian plane and the
robot workspace.

7.2. Disturbance rejection

The aim of the second simulation is to show the behavior of the two
DOF robot and the controller when submitted to a disturbance. Thus, the
references of Cartesian positions and pneumatic stiffnesses have been
set to constant values which are 𝑥𝑐𝑑 (𝑡) = 0.350 m, 𝑦𝑐𝑑 (𝑡) = −5 × 10−3 m,

𝐾𝑝𝑛𝑒𝑢𝑑1 = 6000 N∕m, and 𝐾𝑝𝑛𝑒𝑢𝑑2 = 3000 N∕m. During the simulation,
disturbance forces are applied on the robot end-effector. These forces
denoted 𝐹𝑒𝑥, and 𝐹𝑒𝑦 are respectively applied along the Cartesian 𝑥 and
𝑦 axis. The two disturbances are repeated 6 times during the simulation
with a 90◦phase shift between them. For the three first disturbances,
the closed-loop dampings 𝐵𝑐𝑙1 and 𝐵𝑐𝑙2 are set respectively at 250
N.s/m and 500 N.s/m whereas the closed-loop stiffnesses vary gradually
between each disturbance from 1500 N/m up to 3000 N/m. Then, for
the three last disturbances, the sequences of closed-loop stiffnesses are
repeated whereas the closed-loop dampings are doubled. These settings
are illustrated on Fig. 9(a).

According to Fig. 9(b), the behaviors expected for closed-loop
stiffnesses and dampings tuning are successful. Indeed, increasing the
closed-loop stiffness reduces the displacement due to a disturbance
forces and increasing the damping increases the settling time of this
displacement. Fig. 9(c) shows the position of the end-effector in Carte-
sian plane. On this figure, the first second which corresponds to the
stabilization time has been removed. Finally, Fig. 9(d) illustrates the
joint position. On this figure the expected joint positions 𝑦1𝑒𝑥𝑝 and 𝑦2𝑒𝑥𝑝,
𝑥𝑐𝑒𝑥𝑝 and 𝑦𝑐𝑒𝑥𝑝 are obtained by adding the estimated displacement due
to perturbations to the targeted trajectories. Thus

𝑦1𝑒𝑥𝑝 = 𝑦𝑑1 +
𝐹𝑒1
𝐾𝑐𝑙1

𝑦2𝑒𝑥𝑝 = 𝑦𝑑2 +
𝐹𝑒2
𝐾𝑐𝑙2

𝑥𝑐𝑒𝑥𝑝 = 𝑥𝑐𝑑 +
𝐹𝑒𝑥
𝐾𝑐𝑙𝑥

𝑦𝑐𝑒𝑥𝑝 = 𝑦𝑐𝑑 +
𝐹𝑒𝑦

𝐾𝑐𝑙𝑦
.

(68)
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(a) Cartesian position tracking. (b) Pneumatic stiffness tracking.

(c) Tracking errors. (d) End-effector trajectory in the Cartesian plane.

Fig. 8. Position and pneumatic stiffness tracking simulation results. The 𝑏𝑠 subscripts refer to the Backstepping position and stiffness controller whereas 𝑐𝑖𝑚𝑝 subscripts refer to the linear
impedance controller.

This simulation shows that the performances of the closed loop
stiffness tuning are similar for both controller. Table 4 compares the
Cartesian closed-loop stiffnesses measured, denoted 𝐾𝑐𝑙𝑥𝑚 and 𝐾𝑐𝑙𝑦𝑚 for
the stiffness on 𝑥 and 𝑦 Cartesian axis respectively, with the Cartesian
closed-loop stiffnesses set, denoted 𝐾𝑐𝑙𝑥 and 𝐾𝑐𝑙𝑦, for each direction
of force disturbance. This table also gives the corresponding relative
errors of Cartesian stiffnesses, denoted 𝐸𝐾𝑐𝑙𝑥

and 𝐸𝐾𝑐𝑙𝑦
. According to

the results, the performances to reject the disturbances with a desired
closed loop stiffness are nearly the same for both controllers.

It can be noticed that even if the joint positions reach the expected
positions, the Cartesian closed-loop stiffnesses are not necessary ob-
tained. This phenomenon can be explained by two reasons, the first
one is that the non-diagonal elements of the joint stiffness matrix have
not been taken into account in the controller synthesis. The second
reason is that the classical transformation used to compute the joint
stiffness matrix from the Cartesian stiffness matrix (c.f. (67)) is not
conservative, so this transformation is valid only when the robot is at
its unloaded equilibrium. Some conservative transformations have been
studied (Chen & Kao, 2000) but these transformations need to measure
or observe the disturbance force value. The results show that the bigger
the position errors are, the bigger the Cartesian closed-loop stiffness
errors are.

8. Experimental results

This section gives some experimental results to compare the two
controllers presented in this paper. As in Section 7, this section will
be divided into two subsections. The Section 8.1 gives the results for a
reference position tracking. The Section 8.2 illustrates the behavior of
the system when a disturbance force is applied.

8.1. Position tracking

For this experiment, the targeted trajectory is a circle in the Cartesian
space. Indeed, the Cartesian coordinate of the end-effector references
are defined as follows: 𝑥𝑐𝑑 (𝑡) = 0.45 + 0.04 cos(2𝜋𝑡∕6) and 𝑦𝑐𝑑 (𝑡) =
0.025 + 0.04 sin(2𝜋𝑡∕6). The closed loop stiffnesses and dampings are
set as 𝐾𝑐𝑙𝑥 = 3000 N∕m, 𝐾𝑐𝑙𝑦 = 3000 N∕m, 𝐵𝑐𝑙1 = 300 N.s/m and
𝐵𝑐𝑙2 = 300 N.s/m. Fig. 10 shows the result for the position tracking
for each controllers. Fig. 11 gives the position error.

According to those figures, the behavior expected on the 𝑦 axis
is obtained. Indeed, the oscillations of the position errors due to the
inertial dynamic can be observed. And for the 𝑦 axis, the Backstepping
position and stiffness controller is more accurate than the impedance
controller, as expected with the simulation results in Section 7.1. On
the other hand, it can be noticed that a stick and slip effect occurred on
the 𝑥 axis. Indeed, for both controllers, the horizontal cylinder piston
is sometimes stuck by the friction. This phenomenon is due to the 2 kg
load added to the end-effector. As shown on the Fig. 1 there is no linear
guide to distribute the load on the end-effector. As a consequence, the
cylinder rod is bending which increase a lot the frictions. To avoid that
issue, a linear guide will be added to the cylinder 2 in the future. It can be
noticed that the Coulomb friction model is not suitable to model the stick
and slip phenomenon. To increase the accuracy of the model, a LuGre
friction model could replace the Coulomb model (Armstrong-Hélouvry,
Dupont, & Canudas De Wit, 1994). As expected in the previous section,
the performances of both controllers for position tracking on 𝑥 axis
are equivalent, but the high peaks on the 𝑥 axis for the Backstepping
controller position error show that the latest is more disturbed by the
stick and slip phenomenon.

35



N. Herzig et al. Control Engineering Practice 73 (2018) 26–39

(a) Disturbance, closed-loop stiffnesses and closed-loop dampings. (b) Cartesian position.

(c) End-effector trajectory in the Cartesian plane. (d) Joint positions.

Fig. 9. Disturbance rejection simulation results. The 𝑏𝑠 subscripts refer to the Backstepping position and stiffness controller whereas 𝑐𝑖𝑚𝑝 subscripts refer to the linear impedance
controller.

Fig. 10. Experimental Cartesian position tracking.

8.2. Disturbance rejection

As in Section 7.2, for this experiment, a constant position reference
is set and some disturbance forces are applied on 𝑥 and 𝑦 axis. Those
disturbances have been applied manually. A NANO25 ATI force and
torque sensor have been added to the end-effector to measure the
disturbance forces applied. Due to the difficulty to apply manually a
constant force on both directions at the same time, it has been decided to
keep the forces applied on the two directions separately. The experiment
has been repeated 5 times for each controller at different position
references.

Fig. 11. Experimental tracking errors.

Figs. 12 and 13 illustrate one of the trials with Backstepping position
and stiffness controller and one of the trials with the impedance
controller respectively. Figs. 12(a) and 13(a) give the disturbance forces
applied and the closed loop stiffness references for the two controllers
respectively. Figs. 12(b) and 13(b) show the time response of end-
effector Cartesian coordinates to the disturbance forces. These figures
show that the two controllers reject the disturbance force as expected.
The manually applied disturbance forces are noisy. Due to this noise, it
is, unfortunately, impossible to conclude on the closed loop damping. It
has to be noticed that the forces are applied directly to the 6 axis force
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(a) Disturbance and closed-loop stiffnesses.

(b) Cartesian position.

Fig. 12. Disturbance rejection experimental results for the Backstepping controller.

(a) Disturbance and closed-loop stiffnesses.

(b) Cartesian position.

Fig. 13. Disturbance rejection experimental results for the impedance controller.

Table 4
Cartesian closed-loop stiffnesses errors.
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𝐾𝑐𝑙𝑦[𝑁∕𝑚] 1500 2250 3000
𝛥𝑦𝑐 [𝑚𝑚] 33.08 22.29 16.58
𝐾𝑐𝑙𝑦𝑚[𝑁∕𝑚] 1511 2243 3001
𝐸𝐾𝑐𝑙𝑦

[%] 0.77 −0.30 0.04

←

𝐾𝑐𝑙𝑥[𝑁∕𝑚] 1500 2250 3000
𝛥𝑥𝑐 [𝑚𝑚] −33 −22 −16.6
𝐾𝑐𝑙𝑥𝑚[𝑁∕𝑚] 1515 2273 3012
𝐸𝐾𝑐𝑙𝑥

[%] 1.01 1.01 0.40

↖

𝐾𝑐𝑙𝑦[𝑁∕𝑚] 1500 2250 3000
𝛥𝑦𝑐 [𝑚𝑚] 36.75 23.64 17.5
𝐾𝑐𝑙𝑦𝑚[𝑁∕𝑚] 1361 2115 2857
𝐸𝐾𝑐𝑙𝑦

[%] −9.30 −6.00 −4.76
𝐾𝑐𝑙𝑥[𝑁∕𝑚] 1500 2250 3000
𝛥𝑥𝑐 [𝑚𝑚] −32.8 −22.1 −16.4
𝐾𝑐𝑙𝑥𝑚[𝑁∕𝑚] 1524 2262 3049
𝐸𝐾𝑐𝑙𝑥

[%] 1.63 0.55 1.63
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↑

𝐾𝑐𝑙𝑦[𝑁∕𝑚] 1500 2250 3000
𝛥𝑦𝑐 [𝑚𝑚] 33.7 22.29 16.66
𝐾𝑐𝑙𝑦𝑚[𝑁∕𝑚] 1483 2243 3001
𝐸𝐾𝑐𝑙𝑦

[%] −1.09 −0.30 0.04

←

𝐾𝑐𝑙𝑥[𝑁∕𝑚] 1500 2250 3000
𝛥𝑥𝑐 [𝑚𝑚] −33 −22 −16.6
𝐾𝑐𝑙𝑥𝑚[𝑁∕𝑚] 1515 2273 3012
𝐸𝐾𝑐𝑙𝑥

[%] 1.01 1.01 0.40

↖

𝐾𝑐𝑙𝑦[𝑁∕𝑚] 1500 2250 3000
𝛥𝑦𝑐 [𝑚𝑚] 37.06 23.85 17.5
𝐾𝑐𝑙𝑦𝑚[𝑁∕𝑚] 1349 2096 2857
𝐸𝐾𝑐𝑙𝑦

[%] −10.06 −6.83 −4.76
𝐾𝑐𝑙𝑥[𝑁∕𝑚] 1500 2250 3000
𝛥𝑥𝑐 [𝑚𝑚] −32.8 −22 −16.4
𝐾𝑐𝑙𝑥𝑚[𝑁∕𝑚] 1524 2273 3049
𝐸𝐾𝑐𝑙𝑥

[%] 1.63 1.01 1.63

Table 5
Summary of the experimental results for the closed loop stiffness tuning.
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𝐾𝑐𝑙𝑥[𝑁∕𝑚] 1000 2000 3000
𝐾𝑐𝑙𝑥𝑚[𝑁∕𝑚] 851 1748 2444
𝐸𝐾𝑐𝑙𝑥

[%] −14.9 −12.6 −18.5
𝜎𝐾𝑐𝑙𝑥

[𝑁∕𝑚] 255.7 245.2 347.7

↓

𝐾𝑐𝑙𝑦[𝑁∕𝑚] 1000 2000 3000
𝐾𝑐𝑙𝑦𝑚[𝑁∕𝑚] 911 1764 2568
𝐸𝐾𝑐𝑙𝑦

[%] −8.9 −11.8 −14.4
𝜎𝐾𝑐𝑙𝑦

[𝑁∕𝑚] 75.1 160.8 378.5

Im
pe

da
nc

e

Di
re

ct
io

n

→

𝐾𝑐𝑙𝑥[𝑁∕𝑚] 1000 2000 3000
𝐾𝑐𝑙𝑥𝑚[𝑁∕𝑚] 1002 1835 2921
𝐸𝐾𝑐𝑙𝑥

[%] 0.2 −8.2 −2.6
𝜎𝐾𝑐𝑙𝑥

[𝑁∕𝑚] 234.7 494.3 847.8

↓

𝐾𝑐𝑙𝑦[𝑁∕𝑚] 1000 2000 3000
𝐾𝑐𝑙𝑦𝑚[𝑁∕𝑚] 997 1787 2885
𝐸𝐾𝑐𝑙𝑦

[%] −0.3 −10.6 −3.8
𝜎𝐾𝑐𝑙𝑦

[𝑁∕𝑚] 182.0 307.9 1173.8

and torque sensor. The 𝑥 component of the disturbance force measured
when a force on 𝑦 axis is applied is due to the grabbing of the sensor.

Tables B.6 and B.7 give the results for each trial for the Backstepping
position and stiffness controller and the impedance controller respec-
tively. A summary of the results is given on Table 5. Where 𝐾𝑐𝑙𝑥 and 𝐾𝑐𝑙𝑦
are the stiffness references, 𝐾𝑐𝑙𝑥𝑚 and 𝐾𝑐𝑙𝑦𝑚 are the average values of the
stiffnesses computed from the five trials, 𝐸𝐾𝑐𝑙𝑥

and 𝐸𝐾𝑐𝑙𝑦
are the average

values of the stiffness errors computed from the five trials and finally
𝜎𝐾𝑐𝑙𝑥

and 𝜎𝐾𝑐𝑙𝑦
are the standard deviations of the stiffnesses computed

from the five trials.
Table 5 shows that the Impedance controller is, in average more

accurate than the Backstepping position and stiffness controller for the
closed loop stiffness tuning. On the other hand, the standard deviation
of the closed loop stiffnesses obtained is smaller for the Backstepping
controller than for the impedance controller. That means that the
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Table B.6
Experimental results for closed loop stiffness tuning with the Backstepping position and stiffness controller.

Trial 1 2 3 4 5

𝐾𝑐𝑙𝑥[𝑁∕𝑚] 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
𝐹𝑒𝑥[𝑁] 128.1 108 136 66.5 114.3 92.4 97 95.7 126.6 134 125.2 129.3 45.7 91 105.8
𝛥𝑥𝑐 [𝑚𝑚] 119.2 65.8 47.8 94 63.9 46.1 119.5 69.2 49 117.7 62.9 49.4 87.2 46.9 48.9
𝐾𝑐𝑙𝑥𝑚[𝑁∕𝑚] 1074 1640.6 2845.8 707.8 1788.1 2005.3 811.3 1383.1 2585.2 1138.5 1988.8 2619.1 523.9 1938.3 2162.6
𝐸𝐾𝑐𝑙𝑥

[%] 7.4 −18 −5.1 −29.2 −10.6 −33.2 −18.9 −30.8 −13.8 13.9 −0.6 −12.7 −47.6 −3.1 −27.9
𝐾𝑐𝑙𝑦[𝑁∕𝑚] 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
𝐹𝑒𝑦[𝑁] −56.8 −68.2 −74.4 −63.5 −79.3 −77.2 −71.4 −73.1 −76.8 −63.1 −60.8 −74.3 −62.2 −63 −67.6
𝛥𝑦𝑐 [𝑚𝑚] −72.8 −45 −37.9 −68.4 −45.2 −31 −73.4 −37.5 −26.4 −66.9 −34.5 −28.4 −66.9 −34.2 −23.7
𝐾𝑐𝑙𝑦𝑚[𝑁∕𝑚] 780.1 1513.7 1964.4 928.6 1753.7 2494.1 971.9 1951.2 2912.5 943.7 1762.8 2613.5 929.1 1839.4 2855.2
𝐸𝐾𝑐𝑙𝑦

[%] −22 −24.3 −34.5 −7.1 −12.3 −16.9 −2.8 −2.4 −2.9 −5.6 −11.9 −12.9 −7.1 −8 −4.8

Table B.7
Experimental results for closed loop stiffness tuning with the impedance controller.

Trial 1 2 3 4 5

𝐾𝑐𝑙𝑥[𝑁∕𝑚] 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
𝐹𝑒𝑥[𝑁] 151.4 181.3 185.3 154.2 169.5 227.3 100 108.9 119.9 98.4 102.8 160.2 116.1 147.2 142.9
𝛥𝑥𝑐 [𝑚𝑚] 129.1 78.8 64.9 117.2 72.5 53.7 124.1 86.2 64.5 126.6 72.8 56.4 123.4 79 50.7
𝐾𝑐𝑙𝑥𝑚[𝑁∕𝑚] 1172.7 2301.6 2854.4 1315.7 2338.5 4234.7 805.8 1263.7 1858.9 777.1 1410.9 2841.8 940.7 1862.1 2817.3
𝐸𝐾𝑐𝑙𝑥

[%] 17.3 15.1 −4.9 31.6 16.9 41.2 −19.4 −36.8 −38 −22.3 −29.5 −5.3 −5.9 −6.9 −6.1
𝐾𝑐𝑙𝑦[𝑁∕𝑚] 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
𝐹𝑒𝑦[𝑁] −75.1 −64.4 −84.4 −65 −79.6 −83.6 −65.1 −68.3 −64.1 −41.8 −58 −64.4 −56.8 −51.9 −55.3
𝛥𝑦𝑐 [𝑚𝑚] −65.4 −30 −20.2 −53.5 −38.5 −20.4 −76.8 −41.8 −25.9 −52.3 −34.9 −38.3 −58.5 −36.4 −27.7
𝐾𝑐𝑙𝑦𝑚[𝑁∕𝑚] 1147.9 2145.8 4170.7 1216.1 2069.7 4092.8 847.4 1633.9 2478.4 800.2 1660.9 1680.3 971.4 1424.9 2000.5
𝐸𝐾𝑐𝑙𝑦

[%] 14.8 7.3 39 21.6 3.5 36.4 −15.3 −18.3 −17.4 −20 −17 −44 −2.9 −28.8 −33.3

Backstepping controller has a better repeatability on the stiffness tuning
than the impedance controller.

9. Conclusions and future works

In this study, a two DOF pneumatic robot design and model are
proposed. The assumptions and transformations to synthesize a position
controller with the Backstepping method are provided. Then a strategy
of gain tuning, which leads to a closed-loop stiffness and damping
control, is presented. Finally, the performances of this controller are
illustrated with some simulation and experimental results. These per-
formances are discussed and compared to a classical linear impedance
controller with gravity compensation. This simulation approach is gen-
erally used to design a controller for pneumatic or hydraulic actuator be-
fore experimental implementation (Smaoui, Brun, & Thomasset, 2006).
According to the simulation result, the Backstepping position controller
with the closed loop stiffness tuning strategy is more accurate for the
position tracking than the linear impedance controller. Concerning,
the performances for the closed loop stiffness tuning, they are similar
for the two controllers. The experimental results have confirmed those
expectations. Indeed the Backstepping position and stiffness controller
is more accurate for the position tracking in particular on the 𝑦 axis, but
this controller is also more sensitive to stick and slip phenomenon. These
results are in agreement with the experimental results given by Herzig,
Moreau, Leleve, and Pham (2016) for a 1 DOF pneumatic robot.

The performance of the presented controller can be improved by
adding a linear guide to the horizontal cylinder to avoid the bending
of the cylinder rod. Another way to improved the accuracy of the model
and the controller for the position tracking is adding a LuGre model
which is suitable to model the stick and slip phenomenon.

On the other hand, a way to improve the closed-loop stiffness
accuracy of the controller is to use a stiffness matrix transformation
which is conservative. In order to do that without adding a force sensor,
the disturbances have to be observed. So adding a robust observer for
the external disturbance force could be an interesting improvement the
presented controller.

Finally, from the experiment results given in this paper, the damping
tuning cannot be analyzed. Indeed, in the future, the robot will be
coupled to an antagonist robot which will apply the disturbance forces.
This robot will allow disturbance forces without noise to be applied, but
also to study the behavior of the controller to sinusoidal disturbances
and then analyze the dynamic disturbance rejection.
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Appendix A. Calculation of the first pneumatic effort virtual input
time derivative

𝐹̇ ∗
𝑝𝑛𝑒𝑢1 =

𝑀𝑣2𝑑26 cos 𝜃5 +𝑀(𝑦2 + 𝑘2)𝑑26 𝜃̇5
𝑑46cos
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(A.1)

Appendix B. Experimental results for closed loop stiffness tuning
tables

Tables B.6 and B.7 give the results for the closed loop stiffness tuning
for each trials for the Backstepping position and stiffness controller and
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the impedance controller respectively. In those tables 𝐹𝑒𝑥, 𝐹𝑒𝑦, are the
average value of the force on 𝑥 axis and the average value of the force
on 𝑦 axis, respectively, when the disturbance is applied on the relative
direction. 𝛥𝑥𝑐 and 𝛥𝑦𝑐 are the average values of the displacement of
the end-effector due to the disturbance on respectively 𝑥 and 𝑦 axis,
when the relative disturbance is applied. Then the Cartesian closed-
loop stiffnesses measured, denoted 𝐾𝑐𝑙𝑥𝑚 and 𝐾𝑐𝑙𝑦𝑚 and the relative
errors of Cartesian stiffnesses, denoted 𝐸𝐾𝑐𝑙𝑥

and 𝐸𝐾𝑐𝑙𝑦
, are computed as

follows:

𝐾𝑐𝑙𝑥𝑚 =
𝐹𝑒𝑥

𝛥𝑥𝑐
𝐾𝑐𝑙𝑦𝑚 =

𝐹𝑒𝑦

𝛥𝑦𝑐
𝐸𝐾𝑐𝑙𝑥

=
𝐾𝑐𝑙𝑥𝑚 −𝐾𝑐𝑙𝑥

𝐾𝑐𝑙𝑥
𝐸𝐾𝑐𝑙𝑦

=
𝐾𝑐𝑙𝑦𝑚 −𝐾𝑐𝑙𝑦

𝐾𝑐𝑙𝑦
.

(B.1)
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