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Abstract—Under the project MacCoy Critical, we would like to 

train individuals, in virtual environments, to handle critical 

situations such as dilemmas. These latter refer to situations where 

there is no “good” solution. In other words, situations that lead to 

negative consequences whichever choice is made. Our objective is 

to develop a Scenario Orchestration System that generates 
dilemma situations dynamically without having to write them 

beforehand. The approach consists in using Knowledge Models to 

extract necessary properties for dilemmas to emerge. In this article 

we present this approach and expose a proof of concept of the 

generation process. 
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I.  INTRODUCTION  

Sometimes individuals face critical situations where internal 
(e.g. tiredness, lack of concentration) and external (e.g. extreme 

weather conditions, incompetence of colleagues) factors make 
them difficult to handle. In order to prevent disastrous 

consequences from happening, individuals need to be trained for 
such situations. They must be confronted to various situations 

where they will have to understand their environment and act, 

sometimes urgently, to develop the needed competencies.  

A. Virtual Environments for training 

While training for “normal” situations (e.g. repairing a car 

engine) in genuine conditions can be an easy exercise to 

reproduce, training for critical situations represents a serious 
challenge. Virtual Reality can address this issue. It provides 

tools and techniques that enable the systems to simulate such 
complex situations especially when cost, accessibility and 

dangerousness prevent learners from being put in genuine 
situations. In order to foster the development of new skills, the 

situations have to be adapted for each learner. It means that the 

criticality of the situations has to be adjusted according to his/her 
actions. Also, the situations must involve not only the mastered 

skills but also new skills that are close to the ones already 
acquired [1]. To support this kind of learning, it is necessary to 

generate a broad spectrum of scenarios. A first approach consists 
in writing all the possible scenarios taking into consideration all 

the parameters (e.g. actions, events, user’s profile). This insures 
a total control of the simulation. However, as far as complex 

domains are concerned (large number of objects, agents, 

possible actions etc…) this approach leads to what is called 
Authoring Bottleneck [2]. In order to address this issue, it is 

necessary to put in place a Scenario Orchestration System 
capable of creating adaptable environments without having to 

define, explicitly, all the possible scenarios. Wedefines an 
Orchestration System as a system that is composed of one or 

several orchestration languages used to model the scenario 
content and/or the scenario goals. It is also composed of an 

Orchestration Engine that manages dynamically the realization 
of the scenario. We make the hypothesis that it is possible to 

generate situations dynamically using Knowledge Models that 
underlay the simulation.  

B. Context and objectives 

 Under the project MacCoy Critical, we are interested in 

generating critical situations  in order to train for non-technical 

skills[3]. Dilemma is one of these situations. According to 
Oxford Dictionary, a dilemma is a “situation in which a difficult 

choice has to be made between two or more alternatives, 
especially ones that are equally undesirable”. Dilemmas are 

faced on workplaces on a daily basis. In healthcare for example, 
nurses, are confronted to difficult situations where there is no 

“good” solution. If they are not trained to handle such situations, 
they will certainly not be able to deal with them when they occur. 

Lecomte listed several reasons why these nurses should be 

trained to face what are called “ethical dilemmas” [4]. For 
example, she spoke about being able to step back and look at the 

overall picture before taking a decision, being able to argue, 
negotiate and make compromises. Dilemmas are also 

encountered in other fields such as car driving. The most 
common one is when the drivers have to choose between two 

evils, running over pedestrians or sacrificing themselves and 

their passengers. This dilemma has been the subject of several 
studies such as [5] to determine which behavior a driverless car 

should adopt.  

Designing a Virtual Environment for training does not only 

involve computer scientists, but it also involves instructors, 
experts, ergonomists etc. Usually these actors manipulates 

different Knowledge Models  (e.g. Tasks models, World 

Models) according to their field of expertise. Our purpose is to 
design a Scenario Orchestration System capable of using these 

different expert models to identify potential dilemma situations 
and thus generate them dynamically. In this article, we present 

our approach of dynamic generation of dilemma situations. In 
the first section, we discuss some related work. In the second 

section, we detail some dilemma properties and propose a 
formalization. Then, in the fourth section, we present the global 

architecture of the system. After that, in the fifth section we 

expose the Knowledge Models used by the Orchestration 
System. In the sixth section, we detail our approach of dilemma 

generation. Finally, in the last two sections, we present a proof 



of concept of our system and discuss the results of our 

evaluation. All along this article, our work is illustrated by 
examples on car driving. 

II. RELATED WORK 

In several works of the Institute of Creative Technologies at 

the University of Southern California [6], researchers 
implemented an Army peacekeeping scenario where the user 

plays the role of a U.S. Army lieutenant. He is confronted with 
the following dilemma: he must choose between sending his 

troops to help his platoon downtown and securing a landing zone 
for a medevac helicopter in order to assist a local boy in critical 

situation. In medical field, Gratch and Marsella [7] modeled the 

behavior of a doctor who must choose between administrating 
large doses of morphine to his young boy patient to reduce the 

pain, but hasten his death (family will) , and extending the 
patient’s “painful” life (doctor duty). In the literature, we also 

find several works related to the Trolley dilemma. Its original 
version1 was stated by Philippa Foot [8] in 1967. It has been 

subject, as well as its derivatives, to several paper studies [9], 

[10] and virtual environments  based ones [11], [12]. In all the 
work listed above, the dilemmas are written in advance before 

the execution of the simulation. This “scripted” approach 
enables the authors to describe precisely and accurately the 

dilemma situations. Another approach consists in generating the 
dilemma dynamically during the simulation. GADIN [13], for 

example, is an interactive narrative engine that unfolds a story 
based on a user’s response to dilemma situations. The authors 

propose five dilemma categories:  Betrayal, Sacrifice, Greater 

Good, Take Down and Favor. 

The scripted approach enables the authors to describe 

accurately the dilemma situations to present to the user. It might 
be relevant for social sciences experiments and training for 

specific and restricted situations. However, it remains unsuitable 
for training to various situations. In fact, the necessity of giving 

the learner a freedom of action and ensuring the variability of 

situations, makes it difficult (if not impossible) to write all the 
possible dilemma situations. To remedy this problem, GADIN 

proposes an interesting generative approach. However it suffers 
from two limitations: (1) the freedom of action of the user is 

limited and (2) the dilemma categories depend on the social 
relationships (friends or enemies) that the user have with the 

other characters. Therefore, it is impossible to generate 

dilemmas if the user is the only character in the environment or 
if s/he does not have any social relationship with the others. 

Unlike the “scripted” approaches, ours consists in generating 
dynamically the dilemma situations without having to write 

them in advance. It enables the system to adjust the criticality 
during the simulation, and therefore, to adapt the nature of the 

dilemma according to the learner’s actions and his/her dynamic 
profile. Moreover, the approach relies on an algorithm that does 

not restrict dilemmas to categories based on the social relations 

between the characters. 

                                                                 
1 The protagonist is a driver of a runaway tram which he can 

only steer from one narrow track on to another; five men are 

III. DILEMMA MODEL 

A dilemma situation can be easily determined by humans. 
Thus, an instructor, using an appropriate user interface, can 

identify a dilemma situation and propose it to the learner during 
the training session. However, since we adopt a dynamic 

generation approach, this has to be automated by the 
Orchestration System, and this is difficult without any semantic. 

Therefore, it raises the following questions: How do we model 

semantically a dilemma situation? And how can a Scenario 
Orchestration System generate it dynamically using this 

semantic? The Oxford Dictionary definition of dilemma points 
out an important property about dilemma situation. It says that 

there are always negative consequences whatever choices are 
made by the agent. In the literature, some authors differentiate 

between obligation dilemma and prohibition dilemma [14]. The 

former refers to situations in which all the feasible actions are 
obligatory but can’t all be realized. While the latter refers to 

cases in which all the feasible actions are forbidden but at least 
one has to be realized. 

A. Necessary conditions 

In obligation dilemmas, the necessary condition is that the 

actions can’t all be performed. In other words, the choice 
presented to the agent is exclusive. Because if an agent is able to 

realize all the actions, without any negative consequence, there 
will be no dilemma at all. The challenge for the Orchestration 

System, in this case, is to prescribe a World State that guarantees 

this condition. Thus, we propose to generate situations that 
require contradictory actions. Two actions are contradictory if 

they are incompatible and requested to be performed at the same 
time (e.g. “to turn left” and “to turn right”). In this case, the agent 

will face a situation where he cannot achieve both actions, which 
makes the choice exclusive. We distinguish two types of 

incompatibility between the actions: 

 Nomological:  it refers to actions that are incompatible 
by nature (e.g. “to increase” vs “to decrease”, “to open” 

vs “to close”, “to move forward” vs “to move 
backward”). 

 Scenaristic/Regulatory: it refers to actions that are 
nomologically compatible, but, in a particular context, 

become incompatible due to scenario or regulatory 
constraints (e.g. an order, an instruction or a rule). For 

example, “speaking on the phone” and “driving” are two 

compatible actions in a nomological point of view. 
However, in a particular context, according to the 

Highway Code of certain countries, they become 
incompatible. 

In prohibition dilemmas, the necessary condition is that the 
agent ought to do one action at least. The challenge for the 

Orchestration System is to push the agent to choose an action, 
knowing that each of them leads to negative consequences. To 

achieve that, we propose to generate situations where there are 

also negative consequences when the agent does not make a 
choice. 

working on one track and one man on the other; anyone on the 

track he enters is bound to be killed 



B. Formalization 

1) Obligation dilemma 
Let a1 and a2 be two actions that an agent AG can perform. 

For some reasons, AG ought to do a1. In other words, not doing 
a1 leads to negative consequences 𝑁𝐶¬𝑎1 (discussed in  

section C). For some other reasons AG ought to do a2. In other 

words, not doing a2 leads to negative consequences  𝑁𝐶¬𝑎2. The 

necessary condition in an obligation dilemma states, that only 

one action can be performed. If not so, performing the two 
actions leads to negative consequences too. Thus, S is an 

obligation dilemma situation if:   

¬𝑎1
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→     𝑁𝐶¬𝑎1

¬𝑎2
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→     𝑁𝐶¬𝑎2

(𝑎1 ∨ 𝑎2 
) ∧¬(𝑎1 ∧ 𝑎2 

)  𝑂𝑅  (𝑎1 ∧ 𝑎2  
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→     𝑁𝐶𝑎1∧𝑎2) 

 

This can be generalized for n actions as follows. 𝑆 is an 

obligation dilemma situation if: 

∃  𝐴𝑛𝑐  ⊂ 𝐴 𝑤𝑖𝑡ℎ 𝐴𝑛𝑐 =  ⋃𝑎𝑖

𝑛

𝑖=1

 ,  𝑛 ≥ 2 

𝑠𝑢𝑐ℎ  𝑎𝑠 ∀ 𝑎 ∈ 𝐴𝑛𝑐  , ¬𝑎
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→     𝑁𝐶¬𝑎 

 (⋁ 𝑎𝑖
𝑛
1  ∧  ¬⋀ 𝑎𝑖 

𝑛
1 )  𝑂𝑅  (⋀ 𝑎𝑖

𝑛
𝑖

𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→       𝑁𝐶⋀ 𝑎𝑖

𝑛
𝑖
) 

Where 𝐴 is the set of actions, 𝐴𝑛𝑐  is the set of actions that lead 

to negative consequences if not performed and 𝑁𝐶𝑎 is the 

negative consequences of doing an action 𝑎.  

2) Prohibition dilemma 
Let a1 and a2 be two actions that an agent AG can perform. 

For some reasons, AG ought not to do a1. In other words, doing 

a1 leads to negative consequences (discussed in C). For some 
other reasons AG ought not to do a2. In other words, doing a2 

leads to negative consequences. A necessary condition in a 
prohibition dilemma situation is that at least one action has to be 

performed. Thus, S is a prohibition dilemma situation if:   

𝑎1
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→     𝑁𝐶𝑎1

𝑎2
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→     𝑁𝐶𝑎2

¬𝑎1 ∧ ¬𝑎2  
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→     𝑁𝐶¬𝑎1∧¬𝑎2

 

This can be generalized for n actions as follows. 𝑆 is an 

prohibition dilemma situation if: 

∃ 𝐴𝑛𝑐 ⊂ 𝐴 𝑤𝑖𝑡ℎ 𝐴𝑛𝑐 =  ⋃𝑎𝑖

𝑛

𝑖=1

 ,  𝑛 ≥ 2 

𝑠𝑢𝑐ℎ 𝑎𝑠 ∀ 𝑎 ∈ 𝐴𝑛𝑐  , 𝑎
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→     𝑁𝐶𝑎 

⋀ ¬𝑎𝑖
𝑛
𝑖

𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→       𝑁𝐶⋀ ¬𝑎𝑖

𝑛
𝑖

  

C. Negative consequences 

Let us recall that an important property of a dilemma is that 

there is always negative consequences that follow the choice of 
the agent. The consequences can be observed in terms of: 

 Severity: degree of injury, number of victims or material 

damage (e.g. hit a pedestrian, a tree or another vehicle), 

 Violations: law-breaking, value violation or non-respect 

of norms, rules or instructions etc. (e.g. running a red 
light), 

 Points: performance points, driving license points  etc. 

IV. GLOBAL ARCHITECTURE 

In our architecture, the Orchestration Engine is composed of 
the Scenario Engine module and the Planner. The former is 

responsible of generating critical situations such as dilemmas. It 
receives pedagogical instructions from the Learner diagnosis 

module. These instructions are composed of (1) a pedagogical 
intention such as “verify”, “reinforce” or “destabilize” a 

competence and (2) a level of criticality. The instruction is 

transformed by the Scenario Engine to scenario goals that are 
sent to the Planner. The latter communicates directly with the 

Virtual Environment. It is responsible of performing the 
adequate adjustments in order to direct the simulation towards 

the situation that fulfills the scenario goals. The Orchestration 
System uses three Knowledge Models. These models are 

presented in the next section. The Virtual Environment as well 

as the Learner diagnosis module are managed by our partners in 
the project Figure 1 gives an overview of our architecture. 

V. KNOWLEDGE MODELS 

Designing a Virtual Environment for training is not only the 

matter of software developers. It involves  also several actors 
such as instructors, psychologists, ergonomists etc. Thus, the 

description of the domain (e.g. objects, their properties, actions, 
events) should be independent from the graphical representation 

of the Virtual Environment. In fact, these experts should 
manipulate adequate models , according to their field of 

expertise, in order to facilitate a collaborative conception of the 
training environment. Ideally, it should use at least three models. 

A World Model that describes the domain entities, their 

properties and the relations between them. A  Tasks Model that 
describes the set of tasks to be performed, their properties and 

the relations between them. And finally, particularly when 
training for critical situations, a Causality Model that describes 

  
Figure 1 - System architecture 



the causal links between the World events. These models are 

presented in the next three sections . 

A. World model 

The World Model is an ontology intended to be filled by 

experts of the domain. It is a set of concepts connected with 

subsumption and/or semantic links. This representation is 
intelligible and interpretable by a computer system. It provides 

a means to represent the World entities (e.g. objects, actions, 
events), their properties and the relations between them at 

different levels of abstraction. It facilitates the generation of a 
variety of situations. Moreover, this semantic representation 

enables the Scenario Orchestration System to query the World 

base in order to retrieve any relevant information (e.g. what are 
the traffic lights that are situated within a 100m radius?). This 

ontological representation is paired with rules in order to control 
the evolution of the World. Figure 2 shows a fragment of a 

World Model composed of an instance of a Traffic light. 

 

Figure 2 - Fragment of a World Model 

B. Tasks model 

The Tasks Model is to be filled by ergonomists according to 
the observed activity in the field. It expresses the cognitive 

perception of the tasks by the operators. Thus, it would be 
relevant to use a representation that operationalizes cognitive 

ergonomics principles. For example, in certain hierarchical 
representations, the tasks are composed of subtasks on several 

levels. These latter are connected by Constructors that inform 
about the logical and temporal relations between the tasks. The 

tasks have preconditions and pos tconditions. They are aggregate 

of assertions formulated as triples: “Subject Predicate Object” 
(e.g. Light has-color Red). This formulation is relevant since we 

use ontological representation in the World Model. The 
preconditions are the conditions that make the task realization 

relevant and/or favorable. The postconditions, also called 
satisfactory conditions, are the conditions that have to be 

satisfied by the World in order to consider a task as achieved. 

Figure 3 shows a fragment of a Tasks Model that describes the 
task “Handle_red_light” composed of two subtasks. The task is 

relevant only if there is a red traffic light (precondition), and it 
is considered achieved if the vehicle stopped. 

 

Figure 3 - Fragment of a Tasks model 

C. Causality model 

The Causality Model is an acyclic and oriented graph that 

expresses the causality chains of the World that are relevant for 
the scenario. The nodes refer to specific events or actions that 

are defined in the World Model. They can be tagged with any 

relevant information such as semantic (e.g. severity = 3). They 

are connected by causality and/or subsumption links. Thus, we 
can easily represent the causality chains that leads to the 

negative consequences presented in section III.C. The model is 
composed of AND and OR gates that enable the authors to model 

events caused by more than one action or event . Another 
component of the Causality Model is the Prevention Barriers. 

They are means that prevent an event from happening (e.g. “Stop 

at red traffic light” prevent from having a “Contravention”). 
With this barriers representation, an Orchestration Engine can 

identify which actions lead to negative consequences if not 
realized.  Figure 4 shows a fragment of a Causality Model that 

illustrates the fact that there could be a Highway Code violation 
if the agent runs a Stop Sign or a Red Traffic Light. This can be 

prevented by the barriers “Handle_stop” and 
“Handle_red_light”. The events are represented by rectangles 

while the actions are represented by rounded rectangles . 

 

Figure 4 - Fragment of a Causality model 

VI. DILEMMAS GENERATION 

We described above the different types of dilemmas and 
stated the necessary conditions that these situations have to 

satisfy. We also presented the different models used by the 

Orchestration Engine to generate such situations. In this section, 
we detail the different steps of the dilemma generation process  

(Figure 5). We explain how the Orchestration Engine uses the 
Knowledge Models to extract the necessary properties, and thus 

enabling dilemma situations to emerge.  

 

Figure 5 - Dilemma generation steps 

A. Fetch actions/barriers with negative consequences 

The Causality Model enables us to represent the World’s 
events and their consequences (positive, negative or neutral). 

The first step consists in identifying the relevant actions for each 
dilemma type. With regards to obligation dilemmas, we are 

interested in identifying the actions that, if not performed, lead  
to negative consequences. In other words, the ones that lead to 

the nodes “Severity”, “Violation” and/or “Points”. These actions 
correspond to the Barriers. In fact, if a Barrier is not put in place 



by the agent, it triggers the events posterior to it. Thus, we select 

all the barriers which posterior events could lead to one or more 
type(s) of negative consequences. There has to be no other 

barrier between the selected one and the consequence nodes. 
Otherwise, the agent will be able to avoid the consequences. In 

this case, it is the last barrier that is selected. Regarding 
prohibition dilemmas, we are interested in identifying the 

actions that leads to negative consequences . For that, we list all 

the actions nodes that are linked to the nodes “Severity”, 
“Violation” and/or “Points”. Same in this case, there has to be 

no Barrier between the action node and the negative 
consequences nodes. Otherwise the agent will be able to avoid 

the consequences. For both types of dilemmas, at this stage, we 
can already refine the lists of actions according to the 

pedagogical instructions  (e.g. severity > 2). To illustrate what 
was said above, let us take Figure 6 as an example. 

  

Figure 6 – Barriers and actions selection 

In this example, Barrier 1 is discarded because its posterior 
events don’t lead to any of the negative consequences nodes. 

Barrier 3 is also rejected because there is another Barrier 

between it and the negative consequences nodes. At the end, 
only the Barriers 2 and 4 are retained. Same things applies for 

the actions. Thus, only a2 is retained. 

B. Contradictory pair of taks (For Obligation dilemma) 

The extraction of potential contradictory tasks is done using 
the Tasks Model (Algorithm 1). We scan by pairs the set of the 

selected Barriers from the Causality Model (tasks that lead to 
negative consequences if not realized). For each pair of tasks, 

we examine their postconditions (satisfactory conditions). If 

they are incompatible, then the pair is nomologically  
incompatible. We consider that two conditions are incompatible 

if, for the same couple (subject predicate), the object is different 
(e.g. “Vehicle is-stopped true” and “Vehicle is -stopped false”). 

This algorithm is to be generalized for n tasks. We will then use 
lists of contradictory tasks instead of pairs. 

C. Pair of actions with negative consequences (For 

Obligation dilemma) 

If the pair of actions are not contradictory, the system tries to 
find if the actions lead to negatives consequences if performed 

together. Algorithm 2 details this process. 

D. Pair of actions with negative consequences (For 

Prohibition dilemma) 

The necessary condition of a Prohibition dilemma is that the 

agent has to choose one action at least. We explained that to push 
him/her to do that, not making a choice must be penalizing too. 

In other words not doing any of the feasible actions leads to 

negative consequences. To identify such actions, the 
Orchestration System uses the Causality Model. It fetches for 

barriers that are connected by an AND gate according to 
Algorithm 3. 

E. Instantiation compatibility 

To ensure that the system can instantiate a situation 

involving the selected pair of tasks, these latters have to be 
contextually compatible. It means that they must have 

compatible preconditions. For example, let us consider two tasks 

“Open_the_door” and “Close_the_door” that have respectively 
the preconditions “Door is-open false” and “Door is-open true” 

and the postconditions “Door is -open true” and “Door is-open 
false”. These tasks are nomologically incompatible (analysis of 

the postconditions). Therefore, they could possibly be used for 
generating a dilemma. However, they are contextually 

incompatible (analysis of the preconditions). In fact, the 

instantiation of such situation requires the door to be opened and 
closed at the same time, which is impossible. The pair of task is 

then discarded. 

Furthermore, the pair of tasks has to be temporally  

compatible. It means that the realization of one task needs to be 
independent of the realization of the other. In the Tasks Model, 

the tasks are connected by the Temporal Constructors of their 

parent. They can be Independent, Sequential or Parallel. Having 

Algorithm 1: Search for contradictory actions 

Function fetchContradictoryActions(Tasks ⊂ Barriers) 
Begin 

  PCT ← {} /* set of Pairs of Contradictory Tasks*/  

    For all t1 ∈ Tasks do  

      For all t2  ∈ Tasks do  
        If ( t1.postCondition.subject = t2. postCondition.subject and 

              t1.postCondition.predicate = t2. postCondition.predicate and 

              t1.postCondition.object ≠ t2. postCondition.object ) 

          If {t1,t2} ∉ PCT then  

              PCT ← PCT ∪ {{t1,t2}}  
   Return PCT;  
End  

Algorithm 3: Search for pair of barriers that leads to negative 

consequences 

Function fetchBarriersConnectedWithAND(Barriers) 
Begin 

  PB ← {} /* set of Pairs of Barriers*/  

    For all b1 ∈ Barriers do  

      For all b2  ∈ Barriers do  

        If ( {“AND”}  ∈ CommonDescendant(b1,b2) ) 

           PB ← PB ∪ {{b1,b2}}  
   Return PB;  

End  

Algorithm 2: Pair of actions that leads to negative consequences 

Function fetchActionsConnectedWithAND(Actions) 
Begin 

  PA ← {} /* set of Pairs of Actions*/  

    For all a1 ∈ Actions do  

      For all a2  ∈ Actions do  

        If ( {“AND”}  ∈ CommonDescendant(a1,a2) ) 

           PA ← PA ∪ {{a1,a2}}  
   Return PA;  

End  



tasks that are sequentially related means that the realization of 

one task is an implicit precondition of the other. Thus, we 
discard the tasks that have a common ancestor with a Sequential 

Constructor. 

F. Pair of tasks selection 

At this stage, the Orchestration Engine possesses two lists of 
filtered pair of tasks. In order to identify which pair is the most 

relevant, we attribute a score to each pair according to 
Pedagogical and Scenario Constraints. The Pedagogical 

Constraints consist of: the minimum or maximum degree of 
Severity, the difference of Severity between the two tasks of the 

pair and finally the type of negative consequences . The Scenario 

Constraints refer to the probability of occurrence of a situation 
involving the tasks of the pair. Each constraint has a weight 

according to which the score is calculated. This latter enables the 
Orchestration Engine to rank the pairs and thus to be able to 

propose to most suitable dilemma with respect to the 
Pedagogical and Scenario constraints.  

G. Extract partial World State 

Finally, once a pair is selected, the Orchestration Engine 

extracts the preconditions of the tasks. These preconditions 
represent a partial description of the World. It corresponds to a 

World State that needs to be instantiated. This state is 

transmitted as a goal to the Planner that is in charge of directing 
the scenario to the given state. At the end, the instruction are sent 

to the Virtual Environment in order to instantiate the situation 
graphically. 

VII. PROOF OF CONCEPT  

The approach described above has been subject to a first 

implementation in a vehicle driving simulation. We developed a 
first version of our Scenario Engine module and a virtual 

environment using Unity3D (Figure 7). The environment is 
composed of city buildings, road signs, traffic lights and other 

virtual agents (vehicles and pedestrians). The player controls a 
first-person vehicle using a keyboard-mouse or a driving set 

configuration. At this stage of our work, there is no initial 

instruction given to the player. S/he is free to drive anywhere 
s/he wants. 

We used the Tasks Model presented in Figure 8. The model is 
fairly simple for the sake of clarity. It describes three 

independent tasks: “Handle_aquaplaning”, “Handle_red_light” 
and “Handle_stop”.  

 

Figure 8 - Driving Task Model 

We also used the Causality Model presented in Figure 9. It 
describes several events such as “Running a Stop Sign” and 

“Running a Red Light” that leads to a Highway Code violation 
if the appropriate Barriers “Handle_Stop” and 

“Handle_red_light” are not realized. The Highway Code 

violation can also be caused by “Driving” and “Answering a 
phone call” at the same time. The model describes also the risk 

of losing the control of the vehicle if the aquaplaning are not well 
handled. Finally another type of violation: “Breaking a promise” 

can be caused by arriving late at home or by making the mother 
angry. 

 

Figure 9 - Causality Model 

The execution of the dilemma generation algorithm (Figure 5) 
is detailed below: 

Step 1.1: Fetch Barriers with negative consequences 
(Obligation dilemmas)   

According to the Causality Model, the Barriers that, if not put in 

place, could lead to negative consequences are: “Handle_stop”, 
“Handle_red_light”, “Handle_aquaplaning”, “Answer a phone 

call” and “Drive fast”. 

Step 1.2: Fetch actions with negative consequences (prohibition 

dilemmas) 

According to the Causality Model, the actions that could lead to 

negative consequences are “Approach a Stop sign”, “Approach 

a Red light”, “Drive fast”, “Drive slowly”, “Answer a phone 
call” and “leave late from work”. The first two actions are 

discarded because there are Barriers between them and the 
negative consequences nodes.  

 
Figure 7 - Screenshot of the virtual environment 

 



Step 2.1.a: Fetch pairs of contradictory tasks. 

Using the list of Step 1.1, the system looks for the possible 
contradictory tasks. It returns the following pairs: 

In fact, the postconditions of the tasks, for both pairs, are 
incompatible: (Vehicle is-stopped false vs Vehicle is-stopped 

true). The pair {“Handle_stop”, “Handle_red_light”} is rejected 
because the postconditions of the tasks are compatible: (Vehicle 

is-stopped true vs Vehicle is -stopped true). 

Step 2.1.b: Fetch pairs of actions with negative consequences. 

Using the list of Step 1.1, the system looks for actions that, if 

performed together, leads to negative consequences. The system 
returns the following pair: 

In fact, “Answer a phone call” and “Drive fast” has a common 
descendent AND node. 

Step 2.1.c: Fetch pairs of barriers with negative consequences. 

From the list returned in Step 1.2, the system looks for pair of 

Barriers that leads to negative consequences. The system returns 
no pair. In fact, no Barriers have a common descendent AND 

node. 

Step 3: Check instantiation compatibility (for both types of 
dilemma). 

The common ancestor of the tasks of Pair1 is the task “Drive” 
that has an independent Temporal Constructor (IND). The same 

thing applies for the tasks of Pair2. Pair3 tasks are independent 
too, they have no temporal connection. Furthermore, the 

preconditions of the tasks of Pair1 are compatible (Sign is-a 

Stop vs Vehicle has-state aquaplaning). The same thing applies 
for Pair2 and Pair3. Consequently, Pair1, Pair2 and Pair3 are 

retained because they are temporally and contextually 
compatible. 

Step 4: Order the pairs and Select (for both types of dilemmas) 

At this stage, there are three candidate pairs. The dilemmas 

created by each pair would be the following: 

 Pair1: In aquaplaning situation, should the agent brake 

to stop (respect the Stop sign) with the risk of losing 

the control of the vehicle or should s/he not to brake 
and runs the Stop sign (violate the Highway Code) to 

keep the control of the vehicle?  

 Pair2: In aquaplaning situation, should the agent brake 

to stop (respect the Red traffic light) with the risk of 
losing the control of the vehicle or should s/he not to 

brake and runs the Red light (violate the Highway 

Code) to keep the control of the vehicle? 

 Pair3: While driving, should the agent answer his /her 

mother important phone call (Highway Code violation) 
to prevent her from being angry and to arrive home at 

                                                                 
2 https://www.youtube.com/watch?v=Qz80sBjasfU 

time. Should s/he stop somewhere to answer the call 

but arrive late. Or should s/he ignore the call to arrive 
home at time (Braking a promise in both cases). 

For this example, the pairs are supposed equally relevant (have 
the same score). Thus a pair is selected randomly. We suppose 

that is Pair2. 

Step 5: Extract World State. 

Finally the World State is extracted. It consists of the 

preconditions of the Pair2: {(Vehicle has-state aquaplaning) 
AND (Light has-color Red)}. These preconditions correspond to 

a Goal State. It is transmitted to the Planner that directs the 
simulation to a state where there is an aquaplaning and a red 

traffic light. Then, the Virtual Environment, that was developed, 
instantiates visually this situation. A demonstration video is 

available in the footnote link2.  

VIII. EXPERIMENT AND RESULT S 

To evaluate our Scenario Engine. We conducted a first 
evaluation without the Virtual Environment. It consists in an 

online questionnaire to see if the generated situations were 

perceived as dilemmas by the participants. Among these 
situations, we included “normal” situations. For this evaluation, 

the Scenario Engine used Knowledge Models that were slightly 
different from the ones used in the proof of concept. It generated 

the following pairs of tasks: 

 {“Handle_stop”, “Handle_aquaplaning”} 

 {“Handle_red_light”, “Handle_aquaplaning”}, 

 {“Handle_close_car_behind”, “Handle_stop” } 

 {“Handle_close_car_behind”,“Handle_pedestrian” }, 

 {“Handle_close_car_behind”,“Handle_red_light” },  

 {“Handle_aquaplaning”,“Handle_pedestrian”}. 

For each pair we described a little situation (two sentences at 

most). In addition to these, we added three “normal” situations:  

 {“Handle_red_light”, “Handle_clear_road”} 

 {“Handle_no_entry”, “Follow_passenger_advice”} 

 {“Handle_green_light”,“Handle_pedestrian”} 

The nine situations were presented randomly to the participants. 

They had to answer the following questions:  

 What would you do in this situation?  

 Did you hesitate before making your decision? Why? 

 Do you think that there is a solution without negative 

consequences?  

 Do you think that there is a “good” solution? 

For this evaluation we had a totasl of 67 participants. Figure 10 

shows the results. 

Pair1: {“Handle_stop”, “Handle_aquaplaning”} 

Pair2: {“Handle_red_light”, “Handle_aquaplaning”} 

 

Pair3: {“Answer a phone call”, “Drive fast”} 



 

Figure 10 - Evaluation results 

In comparison with “normal” situations, we noted that the 

participants were more hesitant in the situations generated by the 
system. In theory, we expected a higher level of hesitation. After 

analyzing the participants’ responses, it showed that this lower 

level of hesitation was due to certain elements that were not 
taken into consideration by our system, which made the 

participants’ decision easier and immediate (e.g. “most of the 
cars today are equipped with technologies that prevent 

aquaplaning, so I will brake to stop in the red light”). In the 
generated situations, 60% of the participants said that there was 

no solution without negative consequences, while for the 

“normal” situations only 12% stated that. Furthermore, 93% 
stated that there was a good solution in “normal” situations 

against 58.25% for the generated situations. Therefore, we can 
conclude that our system was able to generate situations that, 

compared to “normal” ones, were more complicated in terms of 
decision making, were perceived to have negative effects 

whichever the participant choice and present no good solution. 

And that corresponds to dilemmas situations. 

IX. DISCUSSION AND CONCLUSION 

The dynamic generation of training situations is a solution 

that addresses the problem of the “Authoring Bottleneck”. We 

adopted this approach for the generation of critical situations. In 
particular, we were interested in generating dilemma situations 

without having to write them in advance. We identified 
properties that characterize dilemma situations and formalized  

them. We proposed a dynamic generation approach that uses 
these properties and relies on Knowledge Models. This approach 

has been implemented and showed encouraging results. The 

work presented in this article concerns only the specification of 
dilemma as scenario goals (the “Scenario Engine” module). The 

planning part was not detailed here. It goes without saying that 
the role of the “Planner” is crucial. In fact, the events temporality 

is critical because it can jeopardize the dilemma. In the example 
presented in the proof of concept, the dilemma is compromised  

if the traffic light turns red after the player passes the light.  

We plan now to take into consideration the agent’s profile 

and uncertainties in the Causality Models. This will enable the 

system to present more personalized dilemmas and to propose 
the most probable ones. In the future, we also envisage 

integrating the generation of moral and ethical dilemmas . 

Currently, we are investigating which values model to use. The 

Theory of Universal Values of Schwartz [15] seems to be a 
serious track to consider.  
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