
Generation of Obligation and Prohibition Dilemmas

Using Knowledge Models

Azzeddine Benabbou, Domitile Lourdeaux and Dominique Lenne
Sorbonne universités, Université de technologie de Compiègne, CNRS UMR 7253 Heudiasyc

57 Av. Landshut – 60203 COMPIEGNE Cedex, France

{azzeddine.benabbou – domitile.lourdeaux – dominique.lenne}@hds.utc.fr

Abstract—Under the project MacCoy Critical, we would like to

train individuals, in virtual environments, to handle critical

situations such as dilemmas. These latter refer to situations where

there is no “good” solution. In other words, situations that lead to

negative consequences whichever choice is made. Our objective is

to develop a Scenario Orchestration System that generates
dilemma situations dynamically without having to write them

beforehand. The approach consists in using Knowledge Models to

extract necessary properties for dilemmas to emerge. In this article

we present this approach and expose a proof of concept of the

generation process.

Keywords— Scenario Orchestration, Dilemma, Knowledge
Models, Virtual Environments

I. INTRODUCTION

Sometimes individuals face critical situations where internal
(e.g. tiredness, lack of concentration) and external (e.g. extreme

weather conditions, incompetence of colleagues) factors make
them difficult to handle. In order to prevent disastrous

consequences from happening, individuals need to be trained for
such situations. They must be confronted to various situations

where they will have to understand their environment and act,

sometimes urgently, to develop the needed competencies.

A. Virtual Environments for training

While training for “normal” situations (e.g. repairing a car

engine) in genuine conditions can be an easy exercise to

reproduce, training for critical situations represents a serious
challenge. Virtual Reality can address this issue. It provides

tools and techniques that enable the systems to simulate such
complex situations especially when cost, accessibility and

dangerousness prevent learners from being put in genuine
situations. In order to foster the development of new skills, the

situations have to be adapted for each learner. It means that the

criticality of the situations has to be adjusted according to his/her
actions. Also, the situations must involve not only the mastered

skills but also new skills that are close to the ones already
acquired [1]. To support this kind of learning, it is necessary to

generate a broad spectrum of scenarios. A first approach consists
in writing all the possible scenarios taking into consideration all

the parameters (e.g. actions, events, user’s profile). This insures
a total control of the simulation. However, as far as complex

domains are concerned (large number of objects, agents,

possible actions etc…) this approach leads to what is called
Authoring Bottleneck [2]. In order to address this issue, it is

necessary to put in place a Scenario Orchestration System
capable of creating adaptable environments without having to

define, explicitly, all the possible scenarios. Wedefines an
Orchestration System as a system that is composed of one or

several orchestration languages used to model the scenario
content and/or the scenario goals. It is also composed of an

Orchestration Engine that manages dynamically the realization
of the scenario. We make the hypothesis that it is possible to

generate situations dynamically using Knowledge Models that
underlay the simulation.

B. Context and objectives

 Under the project MacCoy Critical, we are interested in

generating critical situations in order to train for non-technical

skills[3]. Dilemma is one of these situations. According to
Oxford Dictionary, a dilemma is a “situation in which a difficult

choice has to be made between two or more alternatives,
especially ones that are equally undesirable”. Dilemmas are

faced on workplaces on a daily basis. In healthcare for example,
nurses, are confronted to difficult situations where there is no

“good” solution. If they are not trained to handle such situations,
they will certainly not be able to deal with them when they occur.

Lecomte listed several reasons why these nurses should be

trained to face what are called “ethical dilemmas” [4]. For
example, she spoke about being able to step back and look at the

overall picture before taking a decision, being able to argue,
negotiate and make compromises. Dilemmas are also

encountered in other fields such as car driving. The most
common one is when the drivers have to choose between two

evils, running over pedestrians or sacrificing themselves and

their passengers. This dilemma has been the subject of several
studies such as [5] to determine which behavior a driverless car

should adopt.

Designing a Virtual Environment for training does not only

involve computer scientists, but it also involves instructors,
experts, ergonomists etc. Usually these actors manipulates

different Knowledge Models (e.g. Tasks models, World

Models) according to their field of expertise. Our purpose is to
design a Scenario Orchestration System capable of using these

different expert models to identify potential dilemma situations
and thus generate them dynamically. In this article, we present

our approach of dynamic generation of dilemma situations. In
the first section, we discuss some related work. In the second

section, we detail some dilemma properties and propose a
formalization. Then, in the fourth section, we present the global

architecture of the system. After that, in the fifth section we

expose the Knowledge Models used by the Orchestration
System. In the sixth section, we detail our approach of dilemma

generation. Finally, in the last two sections, we present a proof

of concept of our system and discuss the results of our

evaluation. All along this article, our work is illustrated by
examples on car driving.

II. RELATED WORK

In several works of the Institute of Creative Technologies at

the University of Southern California [6], researchers
implemented an Army peacekeeping scenario where the user

plays the role of a U.S. Army lieutenant. He is confronted with
the following dilemma: he must choose between sending his

troops to help his platoon downtown and securing a landing zone
for a medevac helicopter in order to assist a local boy in critical

situation. In medical field, Gratch and Marsella [7] modeled the

behavior of a doctor who must choose between administrating
large doses of morphine to his young boy patient to reduce the

pain, but hasten his death (family will) , and extending the
patient’s “painful” life (doctor duty). In the literature, we also

find several works related to the Trolley dilemma. Its original
version1 was stated by Philippa Foot [8] in 1967. It has been

subject, as well as its derivatives, to several paper studies [9],

[10] and virtual environments based ones [11], [12]. In all the
work listed above, the dilemmas are written in advance before

the execution of the simulation. This “scripted” approach
enables the authors to describe precisely and accurately the

dilemma situations. Another approach consists in generating the
dilemma dynamically during the simulation. GADIN [13], for

example, is an interactive narrative engine that unfolds a story
based on a user’s response to dilemma situations. The authors

propose five dilemma categories: Betrayal, Sacrifice, Greater

Good, Take Down and Favor.

The scripted approach enables the authors to describe

accurately the dilemma situations to present to the user. It might
be relevant for social sciences experiments and training for

specific and restricted situations. However, it remains unsuitable
for training to various situations. In fact, the necessity of giving

the learner a freedom of action and ensuring the variability of

situations, makes it difficult (if not impossible) to write all the
possible dilemma situations. To remedy this problem, GADIN

proposes an interesting generative approach. However it suffers
from two limitations: (1) the freedom of action of the user is

limited and (2) the dilemma categories depend on the social
relationships (friends or enemies) that the user have with the

other characters. Therefore, it is impossible to generate

dilemmas if the user is the only character in the environment or
if s/he does not have any social relationship with the others.

Unlike the “scripted” approaches, ours consists in generating
dynamically the dilemma situations without having to write

them in advance. It enables the system to adjust the criticality
during the simulation, and therefore, to adapt the nature of the

dilemma according to the learner’s actions and his/her dynamic
profile. Moreover, the approach relies on an algorithm that does

not restrict dilemmas to categories based on the social relations

between the characters.

1 The protagonist is a driver of a runaway tram which he can

only steer from one narrow track on to another; five men are

III. DILEMMA MODEL

A dilemma situation can be easily determined by humans.
Thus, an instructor, using an appropriate user interface, can

identify a dilemma situation and propose it to the learner during
the training session. However, since we adopt a dynamic

generation approach, this has to be automated by the
Orchestration System, and this is difficult without any semantic.

Therefore, it raises the following questions: How do we model

semantically a dilemma situation? And how can a Scenario
Orchestration System generate it dynamically using this

semantic? The Oxford Dictionary definition of dilemma points
out an important property about dilemma situation. It says that

there are always negative consequences whatever choices are
made by the agent. In the literature, some authors differentiate

between obligation dilemma and prohibition dilemma [14]. The

former refers to situations in which all the feasible actions are
obligatory but can’t all be realized. While the latter refers to

cases in which all the feasible actions are forbidden but at least
one has to be realized.

A. Necessary conditions

In obligation dilemmas, the necessary condition is that the

actions can’t all be performed. In other words, the choice
presented to the agent is exclusive. Because if an agent is able to

realize all the actions, without any negative consequence, there
will be no dilemma at all. The challenge for the Orchestration

System, in this case, is to prescribe a World State that guarantees

this condition. Thus, we propose to generate situations that
require contradictory actions. Two actions are contradictory if

they are incompatible and requested to be performed at the same
time (e.g. “to turn left” and “to turn right”). In this case, the agent

will face a situation where he cannot achieve both actions, which
makes the choice exclusive. We distinguish two types of

incompatibility between the actions:

 Nomological: it refers to actions that are incompatible
by nature (e.g. “to increase” vs “to decrease”, “to open”

vs “to close”, “to move forward” vs “to move
backward”).

 Scenaristic/Regulatory: it refers to actions that are
nomologically compatible, but, in a particular context,

become incompatible due to scenario or regulatory
constraints (e.g. an order, an instruction or a rule). For

example, “speaking on the phone” and “driving” are two

compatible actions in a nomological point of view.
However, in a particular context, according to the

Highway Code of certain countries, they become
incompatible.

In prohibition dilemmas, the necessary condition is that the
agent ought to do one action at least. The challenge for the

Orchestration System is to push the agent to choose an action,
knowing that each of them leads to negative consequences. To

achieve that, we propose to generate situations where there are

also negative consequences when the agent does not make a
choice.

working on one track and one man on the other; anyone on the

track he enters is bound to be killed

B. Formalization

1) Obligation dilemma
Let a1 and a2 be two actions that an agent AG can perform.

For some reasons, AG ought to do a1. In other words, not doing
a1 leads to negative consequences 𝑁𝐶¬𝑎1 (discussed in

section C). For some other reasons AG ought to do a2. In other

words, not doing a2 leads to negative consequences 𝑁𝐶¬𝑎2. The

necessary condition in an obligation dilemma states, that only

one action can be performed. If not so, performing the two
actions leads to negative consequences too. Thus, S is an

obligation dilemma situation if:

¬𝑎1
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→ 𝑁𝐶¬𝑎1

¬𝑎2
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→ 𝑁𝐶¬𝑎2

(𝑎1 ∨ 𝑎2
) ∧¬(𝑎1 ∧ 𝑎2

) 𝑂𝑅 (𝑎1 ∧ 𝑎2
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→ 𝑁𝐶𝑎1∧𝑎2)

This can be generalized for n actions as follows. 𝑆 is an

obligation dilemma situation if:

∃ 𝐴𝑛𝑐 ⊂ 𝐴 𝑤𝑖𝑡ℎ 𝐴𝑛𝑐 = ⋃𝑎𝑖

𝑛

𝑖=1

 , 𝑛 ≥ 2

𝑠𝑢𝑐ℎ 𝑎𝑠 ∀ 𝑎 ∈ 𝐴𝑛𝑐 , ¬𝑎
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→ 𝑁𝐶¬𝑎

 (⋁ 𝑎𝑖
𝑛
1 ∧ ¬⋀ 𝑎𝑖

𝑛
1) 𝑂𝑅 (⋀ 𝑎𝑖

𝑛
𝑖

𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→ 𝑁𝐶⋀ 𝑎𝑖

𝑛
𝑖
)

Where 𝐴 is the set of actions, 𝐴𝑛𝑐 is the set of actions that lead

to negative consequences if not performed and 𝑁𝐶𝑎 is the

negative consequences of doing an action 𝑎.

2) Prohibition dilemma
Let a1 and a2 be two actions that an agent AG can perform.

For some reasons, AG ought not to do a1. In other words, doing

a1 leads to negative consequences (discussed in C). For some
other reasons AG ought not to do a2. In other words, doing a2

leads to negative consequences. A necessary condition in a
prohibition dilemma situation is that at least one action has to be

performed. Thus, S is a prohibition dilemma situation if:

𝑎1
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→ 𝑁𝐶𝑎1

𝑎2
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→ 𝑁𝐶𝑎2

¬𝑎1 ∧ ¬𝑎2
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→ 𝑁𝐶¬𝑎1∧¬𝑎2

This can be generalized for n actions as follows. 𝑆 is an

prohibition dilemma situation if:

∃ 𝐴𝑛𝑐 ⊂ 𝐴 𝑤𝑖𝑡ℎ 𝐴𝑛𝑐 = ⋃𝑎𝑖

𝑛

𝑖=1

 , 𝑛 ≥ 2

𝑠𝑢𝑐ℎ 𝑎𝑠 ∀ 𝑎 ∈ 𝐴𝑛𝑐 , 𝑎
𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→ 𝑁𝐶𝑎

⋀ ¬𝑎𝑖
𝑛
𝑖

𝐿𝑒𝑎𝑑𝑠 𝑡𝑜
→ 𝑁𝐶⋀ ¬𝑎𝑖

𝑛
𝑖

C. Negative consequences

Let us recall that an important property of a dilemma is that

there is always negative consequences that follow the choice of
the agent. The consequences can be observed in terms of:

 Severity: degree of injury, number of victims or material

damage (e.g. hit a pedestrian, a tree or another vehicle),

 Violations: law-breaking, value violation or non-respect

of norms, rules or instructions etc. (e.g. running a red
light),

 Points: performance points, driving license points etc.

IV. GLOBAL ARCHITECTURE

In our architecture, the Orchestration Engine is composed of
the Scenario Engine module and the Planner. The former is

responsible of generating critical situations such as dilemmas. It
receives pedagogical instructions from the Learner diagnosis

module. These instructions are composed of (1) a pedagogical
intention such as “verify”, “reinforce” or “destabilize” a

competence and (2) a level of criticality. The instruction is

transformed by the Scenario Engine to scenario goals that are
sent to the Planner. The latter communicates directly with the

Virtual Environment. It is responsible of performing the
adequate adjustments in order to direct the simulation towards

the situation that fulfills the scenario goals. The Orchestration
System uses three Knowledge Models. These models are

presented in the next section. The Virtual Environment as well

as the Learner diagnosis module are managed by our partners in
the project Figure 1 gives an overview of our architecture.

V. KNOWLEDGE MODELS

Designing a Virtual Environment for training is not only the

matter of software developers. It involves also several actors
such as instructors, psychologists, ergonomists etc. Thus, the

description of the domain (e.g. objects, their properties, actions,
events) should be independent from the graphical representation

of the Virtual Environment. In fact, these experts should
manipulate adequate models , according to their field of

expertise, in order to facilitate a collaborative conception of the
training environment. Ideally, it should use at least three models.

A World Model that describes the domain entities, their

properties and the relations between them. A Tasks Model that
describes the set of tasks to be performed, their properties and

the relations between them. And finally, particularly when
training for critical situations, a Causality Model that describes

Figure 1 - System architecture

the causal links between the World events. These models are

presented in the next three sections .

A. World model

The World Model is an ontology intended to be filled by

experts of the domain. It is a set of concepts connected with

subsumption and/or semantic links. This representation is
intelligible and interpretable by a computer system. It provides

a means to represent the World entities (e.g. objects, actions,
events), their properties and the relations between them at

different levels of abstraction. It facilitates the generation of a
variety of situations. Moreover, this semantic representation

enables the Scenario Orchestration System to query the World

base in order to retrieve any relevant information (e.g. what are
the traffic lights that are situated within a 100m radius?). This

ontological representation is paired with rules in order to control
the evolution of the World. Figure 2 shows a fragment of a

World Model composed of an instance of a Traffic light.

Figure 2 - Fragment of a World Model

B. Tasks model

The Tasks Model is to be filled by ergonomists according to
the observed activity in the field. It expresses the cognitive

perception of the tasks by the operators. Thus, it would be
relevant to use a representation that operationalizes cognitive

ergonomics principles. For example, in certain hierarchical
representations, the tasks are composed of subtasks on several

levels. These latter are connected by Constructors that inform
about the logical and temporal relations between the tasks. The

tasks have preconditions and pos tconditions. They are aggregate

of assertions formulated as triples: “Subject Predicate Object”
(e.g. Light has-color Red). This formulation is relevant since we

use ontological representation in the World Model. The
preconditions are the conditions that make the task realization

relevant and/or favorable. The postconditions, also called
satisfactory conditions, are the conditions that have to be

satisfied by the World in order to consider a task as achieved.

Figure 3 shows a fragment of a Tasks Model that describes the
task “Handle_red_light” composed of two subtasks. The task is

relevant only if there is a red traffic light (precondition), and it
is considered achieved if the vehicle stopped.

Figure 3 - Fragment of a Tasks model

C. Causality model

The Causality Model is an acyclic and oriented graph that

expresses the causality chains of the World that are relevant for
the scenario. The nodes refer to specific events or actions that

are defined in the World Model. They can be tagged with any

relevant information such as semantic (e.g. severity = 3). They

are connected by causality and/or subsumption links. Thus, we
can easily represent the causality chains that leads to the

negative consequences presented in section III.C. The model is
composed of AND and OR gates that enable the authors to model

events caused by more than one action or event . Another
component of the Causality Model is the Prevention Barriers.

They are means that prevent an event from happening (e.g. “Stop

at red traffic light” prevent from having a “Contravention”).
With this barriers representation, an Orchestration Engine can

identify which actions lead to negative consequences if not
realized. Figure 4 shows a fragment of a Causality Model that

illustrates the fact that there could be a Highway Code violation
if the agent runs a Stop Sign or a Red Traffic Light. This can be

prevented by the barriers “Handle_stop” and
“Handle_red_light”. The events are represented by rectangles

while the actions are represented by rounded rectangles .

Figure 4 - Fragment of a Causality model

VI. DILEMMAS GENERATION

We described above the different types of dilemmas and
stated the necessary conditions that these situations have to

satisfy. We also presented the different models used by the

Orchestration Engine to generate such situations. In this section,
we detail the different steps of the dilemma generation process

(Figure 5). We explain how the Orchestration Engine uses the
Knowledge Models to extract the necessary properties, and thus

enabling dilemma situations to emerge.

Figure 5 - Dilemma generation steps

A. Fetch actions/barriers with negative consequences

The Causality Model enables us to represent the World’s
events and their consequences (positive, negative or neutral).

The first step consists in identifying the relevant actions for each
dilemma type. With regards to obligation dilemmas, we are

interested in identifying the actions that, if not performed, lead
to negative consequences. In other words, the ones that lead to

the nodes “Severity”, “Violation” and/or “Points”. These actions
correspond to the Barriers. In fact, if a Barrier is not put in place

by the agent, it triggers the events posterior to it. Thus, we select

all the barriers which posterior events could lead to one or more
type(s) of negative consequences. There has to be no other

barrier between the selected one and the consequence nodes.
Otherwise, the agent will be able to avoid the consequences. In

this case, it is the last barrier that is selected. Regarding
prohibition dilemmas, we are interested in identifying the

actions that leads to negative consequences . For that, we list all

the actions nodes that are linked to the nodes “Severity”,
“Violation” and/or “Points”. Same in this case, there has to be

no Barrier between the action node and the negative
consequences nodes. Otherwise the agent will be able to avoid

the consequences. For both types of dilemmas, at this stage, we
can already refine the lists of actions according to the

pedagogical instructions (e.g. severity > 2). To illustrate what
was said above, let us take Figure 6 as an example.

Figure 6 – Barriers and actions selection

In this example, Barrier 1 is discarded because its posterior
events don’t lead to any of the negative consequences nodes.

Barrier 3 is also rejected because there is another Barrier

between it and the negative consequences nodes. At the end,
only the Barriers 2 and 4 are retained. Same things applies for

the actions. Thus, only a2 is retained.

B. Contradictory pair of taks (For Obligation dilemma)

The extraction of potential contradictory tasks is done using
the Tasks Model (Algorithm 1). We scan by pairs the set of the

selected Barriers from the Causality Model (tasks that lead to
negative consequences if not realized). For each pair of tasks,

we examine their postconditions (satisfactory conditions). If

they are incompatible, then the pair is nomologically
incompatible. We consider that two conditions are incompatible

if, for the same couple (subject predicate), the object is different
(e.g. “Vehicle is-stopped true” and “Vehicle is -stopped false”).

This algorithm is to be generalized for n tasks. We will then use
lists of contradictory tasks instead of pairs.

C. Pair of actions with negative consequences (For

Obligation dilemma)

If the pair of actions are not contradictory, the system tries to
find if the actions lead to negatives consequences if performed

together. Algorithm 2 details this process.

D. Pair of actions with negative consequences (For

Prohibition dilemma)

The necessary condition of a Prohibition dilemma is that the

agent has to choose one action at least. We explained that to push
him/her to do that, not making a choice must be penalizing too.

In other words not doing any of the feasible actions leads to

negative consequences. To identify such actions, the
Orchestration System uses the Causality Model. It fetches for

barriers that are connected by an AND gate according to
Algorithm 3.

E. Instantiation compatibility

To ensure that the system can instantiate a situation

involving the selected pair of tasks, these latters have to be
contextually compatible. It means that they must have

compatible preconditions. For example, let us consider two tasks

“Open_the_door” and “Close_the_door” that have respectively
the preconditions “Door is-open false” and “Door is-open true”

and the postconditions “Door is -open true” and “Door is-open
false”. These tasks are nomologically incompatible (analysis of

the postconditions). Therefore, they could possibly be used for
generating a dilemma. However, they are contextually

incompatible (analysis of the preconditions). In fact, the

instantiation of such situation requires the door to be opened and
closed at the same time, which is impossible. The pair of task is

then discarded.

Furthermore, the pair of tasks has to be temporally

compatible. It means that the realization of one task needs to be
independent of the realization of the other. In the Tasks Model,

the tasks are connected by the Temporal Constructors of their

parent. They can be Independent, Sequential or Parallel. Having

Algorithm 1: Search for contradictory actions

Function fetchContradictoryActions(Tasks ⊂ Barriers)
Begin

 PCT ← {} /* set of Pairs of Contradictory Tasks*/

 For all t1 ∈ Tasks do

 For all t2 ∈ Tasks do
 If (t1.postCondition.subject = t2. postCondition.subject and

 t1.postCondition.predicate = t2. postCondition.predicate and

 t1.postCondition.object ≠ t2. postCondition.object)

 If {t1,t2} ∉ PCT then

 PCT ← PCT ∪ {{t1,t2}}
 Return PCT;
End

Algorithm 3: Search for pair of barriers that leads to negative

consequences

Function fetchBarriersConnectedWithAND(Barriers)
Begin

 PB ← {} /* set of Pairs of Barriers*/

 For all b1 ∈ Barriers do

 For all b2 ∈ Barriers do

 If ({“AND”} ∈ CommonDescendant(b1,b2))

 PB ← PB ∪ {{b1,b2}}
 Return PB;

End

Algorithm 2: Pair of actions that leads to negative consequences

Function fetchActionsConnectedWithAND(Actions)
Begin

 PA ← {} /* set of Pairs of Actions*/

 For all a1 ∈ Actions do

 For all a2 ∈ Actions do

 If ({“AND”} ∈ CommonDescendant(a1,a2))

 PA ← PA ∪ {{a1,a2}}
 Return PA;

End

tasks that are sequentially related means that the realization of

one task is an implicit precondition of the other. Thus, we
discard the tasks that have a common ancestor with a Sequential

Constructor.

F. Pair of tasks selection

At this stage, the Orchestration Engine possesses two lists of
filtered pair of tasks. In order to identify which pair is the most

relevant, we attribute a score to each pair according to
Pedagogical and Scenario Constraints. The Pedagogical

Constraints consist of: the minimum or maximum degree of
Severity, the difference of Severity between the two tasks of the

pair and finally the type of negative consequences . The Scenario

Constraints refer to the probability of occurrence of a situation
involving the tasks of the pair. Each constraint has a weight

according to which the score is calculated. This latter enables the
Orchestration Engine to rank the pairs and thus to be able to

propose to most suitable dilemma with respect to the
Pedagogical and Scenario constraints.

G. Extract partial World State

Finally, once a pair is selected, the Orchestration Engine

extracts the preconditions of the tasks. These preconditions
represent a partial description of the World. It corresponds to a

World State that needs to be instantiated. This state is

transmitted as a goal to the Planner that is in charge of directing
the scenario to the given state. At the end, the instruction are sent

to the Virtual Environment in order to instantiate the situation
graphically.

VII. PROOF OF CONCEPT

The approach described above has been subject to a first

implementation in a vehicle driving simulation. We developed a
first version of our Scenario Engine module and a virtual

environment using Unity3D (Figure 7). The environment is
composed of city buildings, road signs, traffic lights and other

virtual agents (vehicles and pedestrians). The player controls a
first-person vehicle using a keyboard-mouse or a driving set

configuration. At this stage of our work, there is no initial

instruction given to the player. S/he is free to drive anywhere
s/he wants.

We used the Tasks Model presented in Figure 8. The model is
fairly simple for the sake of clarity. It describes three

independent tasks: “Handle_aquaplaning”, “Handle_red_light”
and “Handle_stop”.

Figure 8 - Driving Task Model

We also used the Causality Model presented in Figure 9. It
describes several events such as “Running a Stop Sign” and

“Running a Red Light” that leads to a Highway Code violation
if the appropriate Barriers “Handle_Stop” and

“Handle_red_light” are not realized. The Highway Code

violation can also be caused by “Driving” and “Answering a
phone call” at the same time. The model describes also the risk

of losing the control of the vehicle if the aquaplaning are not well
handled. Finally another type of violation: “Breaking a promise”

can be caused by arriving late at home or by making the mother
angry.

Figure 9 - Causality Model

The execution of the dilemma generation algorithm (Figure 5)
is detailed below:

Step 1.1: Fetch Barriers with negative consequences
(Obligation dilemmas)

According to the Causality Model, the Barriers that, if not put in

place, could lead to negative consequences are: “Handle_stop”,
“Handle_red_light”, “Handle_aquaplaning”, “Answer a phone

call” and “Drive fast”.

Step 1.2: Fetch actions with negative consequences (prohibition

dilemmas)

According to the Causality Model, the actions that could lead to

negative consequences are “Approach a Stop sign”, “Approach

a Red light”, “Drive fast”, “Drive slowly”, “Answer a phone
call” and “leave late from work”. The first two actions are

discarded because there are Barriers between them and the
negative consequences nodes.

Figure 7 - Screenshot of the virtual environment

Step 2.1.a: Fetch pairs of contradictory tasks.

Using the list of Step 1.1, the system looks for the possible
contradictory tasks. It returns the following pairs:

In fact, the postconditions of the tasks, for both pairs, are
incompatible: (Vehicle is-stopped false vs Vehicle is-stopped

true). The pair {“Handle_stop”, “Handle_red_light”} is rejected
because the postconditions of the tasks are compatible: (Vehicle

is-stopped true vs Vehicle is -stopped true).

Step 2.1.b: Fetch pairs of actions with negative consequences.

Using the list of Step 1.1, the system looks for actions that, if

performed together, leads to negative consequences. The system
returns the following pair:

In fact, “Answer a phone call” and “Drive fast” has a common
descendent AND node.

Step 2.1.c: Fetch pairs of barriers with negative consequences.

From the list returned in Step 1.2, the system looks for pair of

Barriers that leads to negative consequences. The system returns
no pair. In fact, no Barriers have a common descendent AND

node.

Step 3: Check instantiation compatibility (for both types of
dilemma).

The common ancestor of the tasks of Pair1 is the task “Drive”
that has an independent Temporal Constructor (IND). The same

thing applies for the tasks of Pair2. Pair3 tasks are independent
too, they have no temporal connection. Furthermore, the

preconditions of the tasks of Pair1 are compatible (Sign is-a

Stop vs Vehicle has-state aquaplaning). The same thing applies
for Pair2 and Pair3. Consequently, Pair1, Pair2 and Pair3 are

retained because they are temporally and contextually
compatible.

Step 4: Order the pairs and Select (for both types of dilemmas)

At this stage, there are three candidate pairs. The dilemmas

created by each pair would be the following:

 Pair1: In aquaplaning situation, should the agent brake

to stop (respect the Stop sign) with the risk of losing

the control of the vehicle or should s/he not to brake
and runs the Stop sign (violate the Highway Code) to

keep the control of the vehicle?

 Pair2: In aquaplaning situation, should the agent brake

to stop (respect the Red traffic light) with the risk of
losing the control of the vehicle or should s/he not to

brake and runs the Red light (violate the Highway

Code) to keep the control of the vehicle?

 Pair3: While driving, should the agent answer his /her

mother important phone call (Highway Code violation)
to prevent her from being angry and to arrive home at

2 https://www.youtube.com/watch?v=Qz80sBjasfU

time. Should s/he stop somewhere to answer the call

but arrive late. Or should s/he ignore the call to arrive
home at time (Braking a promise in both cases).

For this example, the pairs are supposed equally relevant (have
the same score). Thus a pair is selected randomly. We suppose

that is Pair2.

Step 5: Extract World State.

Finally the World State is extracted. It consists of the

preconditions of the Pair2: {(Vehicle has-state aquaplaning)
AND (Light has-color Red)}. These preconditions correspond to

a Goal State. It is transmitted to the Planner that directs the
simulation to a state where there is an aquaplaning and a red

traffic light. Then, the Virtual Environment, that was developed,
instantiates visually this situation. A demonstration video is

available in the footnote link2.

VIII. EXPERIMENT AND RESULT S

To evaluate our Scenario Engine. We conducted a first
evaluation without the Virtual Environment. It consists in an

online questionnaire to see if the generated situations were

perceived as dilemmas by the participants. Among these
situations, we included “normal” situations. For this evaluation,

the Scenario Engine used Knowledge Models that were slightly
different from the ones used in the proof of concept. It generated

the following pairs of tasks:

 {“Handle_stop”, “Handle_aquaplaning”}

 {“Handle_red_light”, “Handle_aquaplaning”},

 {“Handle_close_car_behind”, “Handle_stop” }

 {“Handle_close_car_behind”,“Handle_pedestrian” },

 {“Handle_close_car_behind”,“Handle_red_light” },

 {“Handle_aquaplaning”,“Handle_pedestrian”}.

For each pair we described a little situation (two sentences at

most). In addition to these, we added three “normal” situations:

 {“Handle_red_light”, “Handle_clear_road”}

 {“Handle_no_entry”, “Follow_passenger_advice”}

 {“Handle_green_light”,“Handle_pedestrian”}

The nine situations were presented randomly to the participants.

They had to answer the following questions:

 What would you do in this situation?

 Did you hesitate before making your decision? Why?

 Do you think that there is a solution without negative

consequences?

 Do you think that there is a “good” solution?

For this evaluation we had a totasl of 67 participants. Figure 10

shows the results.

Pair1: {“Handle_stop”, “Handle_aquaplaning”}

Pair2: {“Handle_red_light”, “Handle_aquaplaning”}

Pair3: {“Answer a phone call”, “Drive fast”}

Figure 10 - Evaluation results

In comparison with “normal” situations, we noted that the

participants were more hesitant in the situations generated by the
system. In theory, we expected a higher level of hesitation. After

analyzing the participants’ responses, it showed that this lower

level of hesitation was due to certain elements that were not
taken into consideration by our system, which made the

participants’ decision easier and immediate (e.g. “most of the
cars today are equipped with technologies that prevent

aquaplaning, so I will brake to stop in the red light”). In the
generated situations, 60% of the participants said that there was

no solution without negative consequences, while for the

“normal” situations only 12% stated that. Furthermore, 93%
stated that there was a good solution in “normal” situations

against 58.25% for the generated situations. Therefore, we can
conclude that our system was able to generate situations that,

compared to “normal” ones, were more complicated in terms of
decision making, were perceived to have negative effects

whichever the participant choice and present no good solution.

And that corresponds to dilemmas situations.

IX. DISCUSSION AND CONCLUSION

The dynamic generation of training situations is a solution

that addresses the problem of the “Authoring Bottleneck”. We

adopted this approach for the generation of critical situations. In
particular, we were interested in generating dilemma situations

without having to write them in advance. We identified
properties that characterize dilemma situations and formalized

them. We proposed a dynamic generation approach that uses
these properties and relies on Knowledge Models. This approach

has been implemented and showed encouraging results. The

work presented in this article concerns only the specification of
dilemma as scenario goals (the “Scenario Engine” module). The

planning part was not detailed here. It goes without saying that
the role of the “Planner” is crucial. In fact, the events temporality

is critical because it can jeopardize the dilemma. In the example
presented in the proof of concept, the dilemma is compromised

if the traffic light turns red after the player passes the light.

We plan now to take into consideration the agent’s profile

and uncertainties in the Causality Models. This will enable the

system to present more personalized dilemmas and to propose
the most probable ones. In the future, we also envisage

integrating the generation of moral and ethical dilemmas .

Currently, we are investigating which values model to use. The

Theory of Universal Values of Schwartz [15] seems to be a
serious track to consider.

ACKNOWLEDGMENT

The authors want to thank the French National Research

Agency (ANR) for the funding of the MacCoy Critical project
(ANR-14-CE24-0021), and all the members of the consortium.

REFERENCES

[1] L. S. Vygotsky, Mind in Society. Cambridge, Harvard

University Press, 1978.

[2] U. Spierling and N. Szilas, “Authoring issues beyond tools,”

in Interactive Storytelling, Springer, 2009, pp. 50–61.

[3] J.-M. Burkhardt, V. Corneloup, C. Garbay, Y. Bourrier, F.

Jambon, V. Luengo, A. Job, P. Cabon, A. Benabbou, and D.

Lourdeaux, “Simulation and virtual reality-based learning of

non-technical skills in driving: critical situations, diagnostic

and adaptation,” IFAC-PapersOnLine, vol. 49, no. 32, pp.

66–71, 2016.

[4] M.-A. Lecomte, “La formation à l’éthique des étudiants en

soins infirmiers (Belgique),” Rech. Soins Infirm., vol. 86, no.

3, p. 4, 2006.

[5] J.-F. Bonnefon, A. Shariff, and I. Rahwan, “The social

dilemma of autonomous vehicles,” Science (80-.)., vol. 352,

no. 6293, 2016.

[6] J. Rickel, S. Marsella, J. Gratch, R. Hill, D. Traum, and W.

Swartout, “Toward a new generation of virtual humans for

interactive experiences,” IEEE Intell. Syst. Their Appl., vol.

17, no. 4, pp. 32–38, 2002.

[7] J. Gratch and S. Marsella, “A Domain-independent

Framework for Modeling Emotion,” J. Cogn. Syst. Res., vol.

5, no. 4, pp. 296–306, 2004.

[8] P. Foot, “The problem of abortion and the doctrine of double

effect,” 1967.

[9] P. Valdesolo and D. Desteno, “Manipulations of emotional

context shape moral judgment,” Psychol. Sci., vol. 17, no. 6,

pp. 476–477, 2006.

[10] M. Hauser, F. Cushman, L. Young, R. K. X. Jin, and J.

Mikhail, “A dissociation between moral judgments and

justications,” Mind Lang., vol. 22, no. 1, pp. 1–21, 2007.

[11] C. D. Navarrete, M. M. McDonald, M. L. Mott, and B.

Asher, “Virtual morality: emotion and action in a simulated

three-dimensional ‘trolley problem’.,” Emotion, vol. 12, no.

2, pp. 364–70, 2012.

[12] A. Skulmowski, A. Bunge, K. Kaspar, and G. Pipa, “Forced-

choice decision-making in modified trolley dilemma

situations: a virtual reality and eye tracking study,” Front.

Behav. Neurosci., vol. 8, no. December, p. 426, 2014.

[13] H. Barber, “Generator of Adaptive Dilemma-based

Interactive Narratives,” no. October, pp. 1–18, 2008.

[14] P. Vallentyne, “Two Types of Moral Dilemmas,” Erkenntnis

(1975-), vol. 30, pp. 301–318.

[15] S. H. Schwartz, Les valeurs de base de la personne: Théorie,

mesures et applications, vol. 47, no. 4. 2006.

0

20

40

60

80

100

I hesitated There was a good
solution

There was a
solution without

negative
consequences

"Normal" situations Generated situations

