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Abstract

The main objective of this work was to develop and validate a robust and reliable

“from-benchtop-to-desktop” metabarcoding workflow to investigate the diet of

invertebrate-eaters. We applied our workflow to faecal DNA samples of an inverte-

brate-eating fish species. A fragment of the cytochrome c oxidase I (COI) gene was

amplified by combining two minibarcoding primer sets to maximize the taxonomic

coverage. Amplicons were sequenced by an Illumina MiSeq platform. We developed

a filtering approach based on a series of nonarbitrary thresholds established from

control samples and from molecular replicates to address the elimination of cross-

contamination, PCR/sequencing errors and mistagging artefacts. This resulted in a

conservative and informative metabarcoding data set. We developed a taxonomic

assignment procedure that combines different approaches and that allowed the

identification of ~75% of invertebrate COI variants to the species level. Moreover,

based on the diversity of the variants, we introduced a semiquantitative statistic in

our diet study, the minimum number of individuals, which is based on the number

of distinct variants in each sample. The metabarcoding approach described in this

article may guide future diet studies that aim to produce robust data sets associated

with a fine and accurate identification of prey items.
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1 | INTRODUCTION

In ecology and conservation, reliable diet data sets are critical to the

understanding of prey/habitat relationships and feeding habitats. In

this perspective, the use of DNA-based approaches in trophic ecol-

ogy has grown during the last years (e.g., Razgour et al., 2011; Soini-

nen et al., 2015), especially due to the advent of high-throughput

sequencing (HTS), leading to the development of metabarcoding

(Taberlet, Coissac, Pompanon, Brochmann, & Willerslev, 2012). How-

ever, diet metabarcoding approaches face four main challenges: (i)

amplification bias related to the degradation of DNA (Sint, Raso,

Kaufmann, & Traugott, 2011); (ii) taxonomic coverage of primers

(Gibson et al., 2014); (iii) taxonomic identification and resolution of

DNA barcode sequences (Richardson, Bengtsson-Palme, & Johnson,

2017); and (iv) filtering of HTS data to eliminate artefacts (e.g., PCR/

sequencing errors, mistagging, contamination) that produce false pos-

itives and constitute low-frequency noise (LFN; sensu De Barba

et al., 2014). In diet studies, metabarcoding primers should therefore

target short regions (i.e., <300 bp) of multicopy DNA to tackle the

degradation of DNA (Pompanon et al., 2012). Moreover, binding

sites of primers should be sufficiently conserved to minimize biases

in taxonomic coverage (Clarke, Soubrier, Weyrich, & Cooper, 2014;
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Deagle, Jarman, Coissac, Pompanon, & Taberlet, 2014). Alternatively,

taxonomic coverage can be improved by amplifying several loci (De

Barba et al., 2014) or using several sets of primers that target the

same locus (Gibson et al., 2014). In both cases, the choice of the

PCR primers is critical for optimizing detection of all prey in faeces.

As for the taxonomic identification, a considerable trade-off between

accuracy and sensitivity should be considered when selecting an

assignment procedure (Richardson et al., 2017). Moreover, both the

confidence and the resolution of taxonomic classifiers are highly

dependent on the richness of reference sequence databases of the

targeted loci (Gibson et al., 2014; Porter et al., 2014). Additionally,

producing robust data sets is critical for conducting reliable ecologi-

cal studies. However, most of the current clustering-based methods

for filtering HTS need specific (and partly arbitrary) parameterization

and often overestimate the real number of taxa in samples (Brown,

Chain, Crease, MacIsaac, & Cristescu, 2015; Clare, Chain, Littlefair, &

Cristescu, 2016; Flynn, Brown, Chain, MacIsaac, & Cristescu, 2015).

In fact, even if clustering reads into operational taxonomic units can

partially address the overestimation of taxa, clustering-based meth-

ods do not account for some LFNs, such as cross-sample contamina-

tion and mistagging.

In this context, and following the recommendations by Murray,

Coghlan, and Bunce (2015), we developed a “from-benchtop-to-desk-

top” metabarcoding workflow to investigate the diet of invertebrate-

eaters. We particularly focused on two main objectives. Our first objec-

tive was data reliability, which involves both minimizing false-negatives

and false-positives. This was achieved by ensuring the efficiency of the

combined use of two primer sets, by performing several PCR replicates

and by developing a clustering-free filtering method based on control

samples and nonarbitrary thresholds. Second, we developed an

approach that should maximize the taxonomic resolution of molecular

identification of prey by combining four assignment procedures

and three reference databases. Our workflow was applied to the

biodiversity assessment of prey ingested by Zingel asper (Linnaeus,

1758), a critically endangered benthic freshwater fish. Using this model,

we demonstrated the application of our workflow on faecal samples

and illustrated its interest for a better characterization of feeding

habitats.

2 | MATERIAL AND METHODS

2.1 | Faecal sample collection

Thirty-five Z. asper specimens from which faeces could be collected

were sampled on 5 September 2014 in the Durance River (France:

44°20014″N, 5°54046″E). Fishes were caught by electrofishing and

their abdomen was squeezed by hand in order to drain their faeces.

Collected faeces were stored in a 1.5-ml vial containing 96% ethanol.

After sampling, individuals were immediately released within the

fishing area. Faeces were stored at �20°C until DNA extraction.

Additionally, five faecal samples from a fish species living in brack-

ish-water habitats, Pomatoschistus microps (Krøyer, 1838), were also

analysed to assess the versatility of the workflow and to control for

mistagging in our HTS data set (see below). These individuals were

sampled in the Vaccar�es Lagoon (French Mediterranean coast:

44°20014″N, 5°54046″E).

2.2 | Faecal DNA extraction and controls

All faecal DNA extraction steps were conducted in a room dedicated

to the handling of degraded DNA (“Plateforme ADN D�egrad�e” of the

Institut des Sciences de l’Evolution de Montpellier, France) and follow-

ing the specific safety measures described by Monti et al. (2015).

Before DNA extraction, faeces were dried using the Eppendorf Con-

centrator Plus (Eppendorf, Germany). One volume of dried faeces, one

volume of zirconium oxide beads (0.5 mm) and ½ volume of sterile

water were mixed to crush samples using a Bullet Blender (Next

Advance, USA). The DNeasy� mericon Food Kit (QIAGEN, Germany)

was used to extract DNA from faecal samples to minimize the level of

co-extracted products and improve PCR success (Zarzoso-Lacoste,

Corse, & Vidal, 2013). Each extraction series included (i) 23 faecal sam-

ples, (ii) a negative control for extraction (Text) that consisted of 50 ll

of DNA-free water subjected to DNA extraction protocol and (iii) a

negative control for DNA aerosols (Tpai) that consisted of a 1.5-ml vial

containing 50 ll of DNA-free water that remained open but otherwise

untouched during the extraction protocol. DNA concentrations were

quantified using a Qubit Fluorometer (Invitrogen, Darmstadt, Ger-

many) and standardized to max. 20 ng/ll.

2.3 | Local DNA library construction

A local (noncomprehensive) DNA library (lcDNA samples) was con-

structed using invertebrates sampled in the Durance River and inver-

tebrate samples from our laboratory collections. The sample

composition and laboratory protocols are detailed in Table S1 and

Appendix S1, respectively. We successfully sequenced 301 samples,

representing 209 distinct species.

2.4 | Minibarcoding protocol and taxonomic
coverage

Two DNA primer pairs were initially selected. They both amplify a

short fragment from the 50 end of the mitochondrial cytochrome c

oxidase I (COI): ZBJ-ArtF1c and ZBJ-ArtR2c (Arthropods “universal”;

Zeale, Butlin, Barker, Lees, & Jones, 2011), hereafter abbreviated as

ZF and ZR; and Uni-MinibarF1 and Uni-MinibarR1 (Eukaryotes “uni-

versal”; Meusnier et al., 2008), hereafter abbreviated as MF and MR.

All four pairwise combinations of the primers were tested for PCR

success on lcDNA samples, and only MFZR and ZFZR were selected

as a result (see Appendix S2). These two primer pairs produce over-

lapping amplicons (from ~210 to ~230 bp including primers) with

MFZR amplicons being 18 bp longer in the 50 region. The COI region

of the predator (Z. asper) was not amplified using either ZFZR or

MFZR; however, the MFZR primer pair amplified an unspecific frag-

ment (~850 bp). Therefore, a blocking primer (BlNupRan) was devel-

oped to inhibit the amplification of the nontargeted locus (see



Appendix S2). The taxonomic coverage of both primer sets was

assessed by in vitro tests using the lcDNA samples and in silico using

EcoPCR, EcoTaxStat and EcoTaxSpecificity (Ficetola et al., 2010) (see

Appendix S2).

2.5 | PCR-based enrichment of prey DNA and high-
throughput sequencing

To track amplicons back to the samples and to avoid flashes of light

during HTS, 12–14 nucleotide-long sequence tags were added onto

the 50 end of each primer (eight distinct tags for the ZF and MF pri-

mers, and 12 tags for ZR), creating 96 forward and reverse potential

tag combinations (Table S2). Three PCR replicates were conducted in

a volume of 25 ll for each minibarcode primer pair, resulting in six

independent PCR enrichments per sample. Template DNA consisted

of 2.5 ll of faecal standardized DNA extracts. For the primer pair

MFZR, blocking primer BlNupRan was added in the PCR mix at

400 nM. Additionally, several control samples were subjected to the

PCR enrichment step: (i) Text and Tpai (see above) are controls for

cross-sample or exogenous contaminations during the DNA extrac-

tions; (ii) TPCR indicates the level of cross-contamination during the

preparation of the PCR mix and plates (tagged primers but no DNA

template in the PCR vial); (iii) one negative control (Ttag) was

included to assess the level of mistagging due to the recombination

of sequences from different samples (see Schnell, Bohmann, & Gil-

bert, 2015). The Ttag consisted of an empty vial on the PCR plate

that did not contain any tagged primers or DNA. This creates an

extra tag combination that is not used for any samples or controls

(as in: Esling, Lejzerowicz, & Pawlowski, 2015); (iv) finally, two mock

faecal samples were also amplified (Tpos1 and Tpos2) and they con-

sisted of identical artificial mixes of the DNA obtained from six

potential prey (Caenis pusilla, Baetis rhodani, Orthocladiinae sp., Chi-

ronomidae sp., Hydropsyche pellucidula, Phoxinus cf. phoxinus) and

from Z. asper. The DNA concentration of Tpos1 and Tpos2 was

0.2 ng/ll for each potential prey, and 0.8 ng/ll for Z. asper. Tpos1

and Tpos2 were used to gauge sequencing or PCR artefacts and eval-

uate reliability of our metabarcoding analyses (see De Barba et al.,

2014). The DNA from the specimens used for our mock samples

was extracted in a room free of DNA handling. Moreover, the COI

reference sequences of each specimen were originally obtained by

amplification using CK4 primer set (see Appendix S1) and Sanger

sequencing (except the Chironomidae sp. sample that failed to be

amplified with CK4).

Amplicons were checked by gel electrophoresis and were then

pooled by replicate series, that is, 48 samples for each of the six

replicate series (two primer pairs, three replicates each). Elec-

trophoretic migrations were carried out using 20 ll of each pool on

an agarose gel at 1.25%. The amplicons with expected sizes were

isolated using a sterile scalpel, and the DNA was purified using the

PureLink� Quick Gel Extraction Kit (Life Technologies, Germany).

About 20 ng of purified DNA from each replicate series was used to

generate six Illumina sequencing libraries using the TruSeq� Nano

DNA Sample Preparation Kit (Illumina, San Diego, CA, USA). The

library preparation included DNA end-repairing, A-tailing, Illumina

adapter ligation, and limited amplification (12 PCR cycles). Illumina

libraries were distinguished by the ligation of distinct adapters. The

libraries were controlled for size and quality using the Agilent Bioan-

alyzer DNA 1000 Kit (Agilent Technologies, Palo Alto, CA, USA) and

for DNA concentrations with the Kapa Library Quantification Kit for

Illumina� platforms (KapaBiosystems, Wilmington, MA, USA). The six

libraries were pooled at equimolar concentration (4 nM) and

sequenced on an ILLUMINA MISEQ v3 platform as paired-end 250-

nucleotide reads.

2.6 | Sequence processing and filtering

We developed a pipeline (see Figure 1) to filter the obtained MiSeq

data (see Appendix S3 for a detailed version of the filtering pipeline).

Unless specified otherwise, bioinformatics processing of reads was

performed using custom Perl scripts (Dryad; https://doi.org/10.

5061/dryad.f40v5) and statistical analyses were conducted using R

software (R Development Core Team 2014). Reads from the differ-

ent primer pairs and replicate series were sorted according to the

Illumina adapter sequences. PEAR v0.9.5 (Zhang, Kobert, Flouri, &

Stamatakis, 2014) was used to merge read pairs and discard low-

quality reads (Figure 1, Step 1). Merged reads were then assigned to

samples and replicates using a BLAST-based approach, and tags and

primers were trimmed from the reads. Only reads that had a perfect

match to tags were accepted. This constituted an additional step to

eliminate low-quality reads. Strictly identical trimmed reads within

each of the six replicate series were pooled into variants (i.e. derepli-

cated reads) and singletons (i.e. only one read in a replicate series)

were discarded (Figure 1, Step 2). Variants of the three replicate ser-

ies obtained from the same primer set (MFZR or ZFZR) were pooled.

The read number associated with each variant–replicate combination,

however, was kept.

The following filtering steps were done separately for MFZR and

ZFZR. Variants that did not comply with our BLAST conditions (E-

value threshold: 1e-10; minimum query coverage: 80%) against our

custom COI database (COI-filtering-DB; Dryad, https://doi.org/10.

5061/dryad.f40v5) were considered as non-COI sequences and dis-

carded (Figure 1, Step 3).

Then, LFN filters were used to discard variants with low read

counts, likely originating from contamination, mistagging or sequenc-

ing/PCR errors bias. All variant–replicate combinations were consid-

ered independently. For each replicate of a sample, all the variants

associated with a read count or a relative frequency that were under

one of the LFN thresholds (i.e., not distinguishable from the noise

inherent to the HTS data) were removed. Three different thresholds

were considered. In fact, a variant can be rare in a given replicate (i)

compared to the total number of reads in the replicate (Nrepl), (ii)

compared to its total number of reads in the run (Nvar) or (iii) if it

has few reads in a replicate in absolute terms (Nvar-repl). The first

threshold (LFNpos = 0.3%) was based on the relative frequency

(Nvar-repl/Nrepl) of the least frequent expected variant in all mock

community replicates. This threshold helps to eliminate most low-

https://doi.org/10.5061/dryad.f40v5
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frequency variants due to the bias cited above (Figure 1, Step 4a).

The second threshold (LFNtag = 0.25%) was determined based on (i)

freshwater prey variants present in samples of brackish-water fish

samples (P. microps), (ii) brackish-water prey variants present in sam-

ples of freshwater fish samples (Z. asper) and (iii) unexpected variants

present in the mock samples. The LFNtag allowed discarding variants

that appear by mistagging or cross-sample contamination due to

their high frequency in the run (Figure 1, Step 4b). Finally, for repli-

cates that had a low number of reads, contamination could not nec-

essarily be discarded with LFNpos and LFNtag filters. Therefore, a last

threshold (LFNneg) based on the maximum read count (Nvar-repl)

among all variants of all negative controls replicates was used

(LFNneg: 31 and 53 for MFZR and ZFZR, respectively; Figure 1, Step

4c). The three LFN filters were run in parallel on the merged and

dereplicated COI variants and only variant–replicate combinations

that passed all three LFN filters were retained (Figure 1, Step 4),

except those that were present in only one replicate within a sample

(Figure 1, Step 5).

When occurring early in PCR cycles, errors can generate variants

with quite high frequency compared to the error-free sequences.

We therefore used the Obiclean program (Obitools package; Boyer

et al., 2016) to further filter out variants resulting from PCR and/or

sequencing errors. Based on the known variants of mock samples, a

20% threshold was determined, and all variants classified as “inter-

nal” (see: Shehzad et al., 2012; De Barba et al., 2014; Appendix S3)

were discarded (Figure 1, Step 6).

By comparing replicates within samples, we were able to assess

the repeatability of the experimental procedure in two different

ways: (i) only variants present in at least two replicates of a sam-

ple were retained (Figure 1, Step 5), and (ii) distance between

replicates was taken into account (Figure 1, Step 7). To this latter

end, we followed the strategy developed by De Barba et al. (2014)

and used the Renkonen distance (RD) to compare distances

between replicates of the same sample. The threshold was set at

the 10% upper tail of the distribution of the RDs, which corre-

sponds in our data set to RD = 0.157 for MFZR, and RD = 0.088

for ZFZR (Fig. S1). All those replicates separated from the other

replicates by RD above the defined threshold were discarded.

Furthermore, samples with only one replicate were excluded

(Figure 1, steps 7–8).

After the filtering, consensus samples were created by averaging

read counts over replicates (Figure 1, Step 9). The pool of all remain-

ing variants and contigs was filtered for chimeras using UCHIME2

(Edgar, 2016a; Figure 1, Step 10) and for potential pseudogenes

Step 4a
LFNpos

Filter out low frequency
contamination, mistagging

sequencing/PCR errors

Step 4b
LFNtag

Filter out mistagging from
highly amplified variants,

where LFNpos does not work

Step4
All LFN

Accept only
replicate–variant combinations 

that passed all LFN filters

Step5
Variants present in at least 

2 replicates per sample

Ensure consistency
between replicates

Step6
Obiclean

Eliminate frequent PCR errors

Step7
Renkonen

Ensure overall consistency
between replicates

Step8
Variants present in at least 

2 replicates per sample

Ensure variant consistency
between replicates

Step9
Concensus over replicates

Step 4c
LFNneg

Eliminate low frequency
contamination from replicates

with low read count (e.g., in Tneg) 

Step10
Chimera filter

(UCHIME2)

Step11
Pseudogene filter

Step1
Merge read pairs with PEAR

Includes quality filtering

Step2
Assign reads to replicates

Dereplicate
Delete singletons

Accept only reads with perfect match
to tags and delete singletons

Step3
Filter out non-COI reads

F IGURE 1 High-throughput sequencing
filtering pipeline



(Figure 1, Step 11). Variants obtained from ZFZR and MFZR primer

pairs that perfectly matched on their overlapping regions were

merged into contigs. At this stage, the read count values associated

with variants were disregarded, and only the presence/absence of

the variants/contigs was considered in a given sample.

In parallel, the data set that passed filtering steps 1–3 was also

analysed by UNOISE2 (Edgar, 2016b) for denoising reads. UNOISE2

intends to eliminate all noise coming from sequencing and PCR

errors. However, UNOISE2 does not deal with mistagging and con-

tamination. We therefore further filtered the data by UNCROSS

(Edgar, 2016c). The UNOISE2/UNCROSS filtering procedure is

roughly comparable to our filtering steps 4 and 6. To make the

results of this second filtering approach comparable to our pipeline,

we further applied our filtering steps 5, 7 and 8 to ensure repeatabil-

ity within samples, as well as filtering steps 10 and 11 to eliminate

chimeras and pseudogenes variants, respectively.

2.7 | Taxonomic assignation of variants

Four different approaches were used for the taxonomic assignment

of variants and contigs. More detailed descriptions of the methods

are given in Appendix S4. First, the phylogenetic approach imple-

mented in the Statistical Assignment Package (SAP; Munch,

Boomsma, Huelsenbeck, Willerslev, & Nielsen, 2008) was used to

build phylogenetic trees for each of the variants/contigs and their

homologues in GenBank using ≥95%, ≥85% and ≥70% sequence

identity thresholds in three consecutive runs. The posterior probabil-

ity (pp) for the query sequence to belong to a clade was estimated

at different taxonomic levels.

Second, we used an automatic procedure that assigned each vari-

ant/contig to the lowest taxonomic group (LTG) of BLAST hits against a

custom-built local database (Taxassign-DB; Appendix S4). The principle

of our LTG approach is similar to the lowest common ancestor devel-

oped by Huson, Mitra, Ruscheweyh, Weber, and Schuster (2011). All

variants/contigs were BLASTed against the Taxassign-DB (BLASTN, E-

value 1e-10, minimum coverage of the query sequence: 90%, subject is

annotated to a family or lower level). The LTG was determined based

on different similarity cut-offs (S) from 100% to 70%. At each S, the

LTG was defined as the lowest taxonomic group that contained at least

90% of the selected hits and contains at least three taxa for S < 97%.

The LTG corresponding to the highest S was selected.

Third, we used the Identification Request of BOLD Systems

Tools (www.boldsystems.org; Ratnasingham & Hebert, 2007) using

the COI “All Barcode Records” database (performed in September

2015). This approach involved all the sequences of the BOLD Sys-

tems, even those not published yet.

Fourth, when a cross-comparison between the assignment analy-

ses revealed inconsistencies or when the taxonomic assignments had

low resolution, we performed complementary phylogenetic analyses

of the variants and contigs. For each of these ambiguous variants/con-

tigs, we selected ten sequences from the Taxassign-DB by retaining: (i)

the best BLAST hits (BLASTN, E-value 1e-10, minimum coverage of the

query sequence: 90%); (ii) a maximum of three sequences per taxon;

and (iii) only sequences annotated to at least the Family level. Neigh-

bor-joining trees were constructed based on K2P distances with 1,000

bootstraps using MEGA 6.06 (Tamura, Stecher, Peterson, Filipski, &

Kumar, 2013). The topology of the phylogenetic trees, especially the

apices of branches, was used to resolve the taxonomy of variants and

contigs. When the tree topologies did not resolve the taxonomic ambi-

guities, biogeographical data were then considered (Tachet, Richoux,

Bournaud, & Usseglio-Polatera, 2010; OPIE-Benthos database: www.

opie-benthos.fr). The combination of the cross-comparison between

SAP, LTG and BOLD assignment analyses and the phylogenetic and

biogeographical approaches led to a final taxonomic assignment (FTA).

To assess the efficiency of the different assignment methods, we

focused on the invertebrates’ variants and contigs identified in Z. asper

faecal samples. An Identification Resolution index (IR; Zarzoso-Lacoste

et al., 2016) was calculated for each Z. asper sample and for each

assignment analysis. A score was attributed to each variant/contig

according to its taxonomic rank assignment, where the maximal value

is given to the species level (i.e., Species = 6, Genus = 5, Family = 4,

Order = 3; Class = 2, Phylum = 1, Kingdom or NA = 0) and the IR

represented the mean score among the variants of a given sample.

Identification Resolution indices of the different assignment methods

were compared by pairwise nonparametric Wilcoxon rank sum, con-

trolled for multiple comparisons with the Benjamini & Hochberg

(1995) procedure.

2.8 | Additional analyses

The variants and contigs validated in the Z. asper and P. microps

samples were used to further evaluate the coverage of MFZR and

ZFZR primer pairs. To standardize this evaluation, a complete-linkage

clustering (Sneath & Sokal, 1973) was used to delineate molecular

operational taxonomic units (MOTUs; Blaxter et al., 2005) among

validated variants and contigs. A maximum of 3% divergence

between variants/contigs was allowed within a MOTU. This maximal

divergence was previously used as a proxy for delineating inverte-

brates’ species (e.g., Clare et al., 2014; Vesterinen et al., 2016). For

taxa that present a higher within-species sequence divergence, how-

ever, this 3% threshold will allow taking into account possible differ-

ential intraspecific coverage.

In diet studies, the quantification of individuals per prey would

add considerable ecological information. However, due to PCR

biases, read counts are generally considered as inappropriate to

assess the relative abundance of prey (Elbrecht & Leese, 2015).

Alternatively, we used a variant-centred approach: we assumed that

the number of distinct variants/contigs represented the Minimal

Number of Individuals (MNI; White, 1953) ingested by the predator,

providing a semiquantitative estimation of the diet composition. The

MNI was used to summarize the proportion of prey items or MOTUs

in each faecal sample as well as at the population level. Furthermore,

to assess the relation between sample size and MOTU diversity, we

constructed two sample-based rarefaction curves (for invertebrates

and for all prey) using the observed-richness function implemented

in EstimateS v9.1.0 (http://viceroy.eeb.uconn.edu/estimates/).

http://www.boldsystems.org
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Two categories of prey were taken into consideration during our

analysis: invertebrates (excluding Rotifera) and microorganisms (in-

cluding diatoms, red and green algae, and Rotifera). In this work, we

focused on invertebrates as we collected faeces from invertebrate-

eating species. In contrast, microorganisms are less relevant since

some uncertainty remains about their ingestion (secondary predation

and/or nontargeted ingestion when predating invertebrates).

3 | RESULTS

3.1 | HTS data filtering

High-throughput sequencing of the six amplicon libraries (288 PCR

products: 40 faecal samples, 2 Tpos, 2 Text, 2 Tpai, 1 TPCR, 1 Ttag; 2

primer pairs; 3 replicates/sample/primer pair) generated a total of

about 8.6 million (M) paired-end reads (per base read quality plots

available in Fig. S2). The number of reads, variants, replicates and

samples that were validated by each filtering step is reported in

Table 1, for the whole data set and for Tpos1 only (as a sample exam-

ple). After the initial quality filtering and assignment steps (steps 1

and 2), the number of reads per replicate varied between 137 and

64,718 (median: 26,943) for faecal samples, 21,613 and 32,490 (me-

dian: 26,943) for positive controls, and 16 and 230 (median: 38) for

negative controls in the MFZR data set. For ZFZR, read counts per

replicate varied between 83 and 76,279 (median: 26,603) for faecal

samples, 19,144 and 42,281 (median: 36,645) for positive controls,

and 15 and 167 (median: 48) for negative controls. The total number

of variants excluding singletons was 27,921 and 23,619 for MFZR

and ZFZR, respectively (Table 1). During the filtering stage, the three

LFN filters drastically reduced the number of variants: 99.2% and

99.5% of the variants were discarded. Nevertheless, the remaining

variants still represented 75% (MFZR) and 78% (ZFZR) of the reads

present before the LFN filtering (Step 4). All negative control repli-

cates for both markers were eliminated at this step. Additionally,

three P. microps samples (P1, P2 and P4) were retained for MFZR

data set only. After eliminating the variants present in only one repli-

cate per sample (Step 5), one sample for MFZR (14Ben09) and two

samples for ZFZR (14Ben09, 14Deo04) were discarded. The Obiclean

step (Step 6) reduced further the number of variants (by 32% for

MFZR and 35% for ZFZR). When applying the Renkonen filter (Step

7) and eliminating variants that occur in only one replicate per sam-

ple (Step 8), one MFZR sample (14Ben05) and two ZFZR samples

(14Ben02, 14Ben05) were further discarded. UCHIME2 detected four

MFZR and 17 ZFZR variants as chimeras (Step 10) and four MFZR

and two ZFZR variants were potential pseudogenes (Step 11). The

final 81 MFZR and 61 ZFZR variants represented <0.3% of the num-

ber of variants validated at Step 2, but they corresponded to over

70% of the reads initially assigned to samples.

After the contigation of the MFZR and ZFZR variants, 38 dis-

tinct contigs and 66 distinct variants (43 amplified by MFZR only

and 23 amplified by ZFZR only) were retained. A total of 93 vari-

ants and contigs were found in the Z. asper faecal samples and six

in the P. microps samples. The DNA of Z. asper was neither

detected in the mock samples nor in the faecal samples. At the end

of the HTS filtering process, all negative controls were eliminated,

and 38 of the 40 initial faecal samples were represented by at least

one variant or contig (samples 14Ben05 and 14Ben09 were not

validated). Seven variants/contigs were identified in the mock sam-

ples (Tpos1 and Tpos2): six that correspond to the six organisms used

for the preparation of the mock samples (Figure 4a, Table S3), and

one unexpected variant (MFZR_082136) assigned to an undeter-

mined Eukaryota (Fig. S4). This variant is present in both mock

community samples but absent from all other samples. Therefore, it

is likely that it comes from an organism ingested by or attached to

one of the prey individuals used for the construction of the mock

sample.

When using the pipeline based on UNOISE2 and UNCROSS for

filtering our data set, a total of 18 variants were retained for each

mock community sample (17 present in both). While this pipeline

allowed the validation of the six variants expected in the mock sam-

ples, it retained 12 additional and unexpected variants (including

MFZR_082136).

3.2 | Taxonomic identification and resolution

The 99 variants and contigs identified for Z. asper and P. microps

faecal samples were analysed using the SAP, BOLD, LTG and FTA

analyses (see Table S3). Regarding the variants and contigs assigned

to invertebrates in Z. asper samples (n = 42), the taxonomic resolu-

tion of each analysis was quantified using the IR index (Figure 2a).

The IR of FTA (IRFTA = 5.8 � 0.3) was significantly higher than

those calculated for SAP (IRSAP = 4.1 � 1.1), BOLD

(IRBOLD = 5.2 � 1.2) and LTG (IRLTG = 5.7 � 0.3). The FTA

approach resulted in the assignment of most variants and contigs

to the species level (Figure 2b). It should be noted that a very close

performance (although significantly lower) was obtained by the fully

automatic LTG approach.

During the cross-validation step, the taxonomic assignments of

SAP, LTG and BOLD were compared: (i) in 6% of the cases, all

three analyses suggested the same taxon; (ii) in 87% of cases, the

analyses were consistent but assigned the variants/contigs to differ-

ent taxonomic levels and the lowest taxonomic level was retained;

(iii) in 7% of cases, the three approaches produced conflicting

assignments. Variants or contigs with unsatisfactorily taxonomic

levels or conflicting assignments were subjected to a phylogenetic

analysis. All variants and contigs assigned to Simulium sp. were also

included in the phylogenetic analyses, since at least one of them

showed a conflicting assignment. Phylogenetic analyses were con-

ducted for a total of 33 variants and contigs (sequence alignment

deposited in Dryad; https://doi.org/10.5061/dryad.f40v5), which

resulted in (i) the resolution of the assignment of nine variants and

(ii) the refinement of the identification of a further 14 variants (Figs

S3 and S4). In one case, biogeographical data were also considered

for the FTA decision (Table S3; contig_0260 identified as Antocha

vitripennis since it is recorded in sampling area, whereas Aus-

trophorocera Janzen04 sequences originate from Costa-Rica).

CORSE ET AL.
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3.3 | Taxonomic coverage of the minibarcode
primer set

In vitro tests showed that 87% and 85% of the taxa were amplified

by ZFZR and MFZR, respectively. The combination of both primer

pairs leads to a mean amplification success of 94% (Table 2): 100%

for Arthropoda, 80% for Mollusca, 90% for Annelida and 65% for

Teleostei. The PCR success was generally similar among samples of

the same species, with a few exceptions (Table S1).

In silico tests showed that the taxonomic coverage at the spe-

cies level for Arthropoda was 63% and 66% for MFZR and ZFZR,

respectively (Table S4). When combining the coverage of the two

primer pairs, the taxonomic coverage increased to 77% for Arthro-

poda, varying from 62% (Hymenoptera) to 100% (Lepidoptera).

The discriminating power of the minibarcoding amplicons was also

estimated in silico: 79%–100% of the analysed species could be

differentiated by at least one mutation for the analysed taxa

(Table S4).

SAP BOLD LTG FTA
5

4
3

2
1

0
6

Assignment analysis

elpmas yb RI naeM

***

***

***
**

*

Species
Genus
Family

(a) (b)

n.s.

76%

12%

12%
F IGURE 2 Taxonomic assignment
analysis. (a) The distribution of index
resolution (IR; using invertebrates only)
among Zingel asper samples was
represented by box plots for each
taxonomic assignment procedure.
Significant differences between taxonomic
analyses were indicated at the top; n.s.,
nonsignificant; *p < .05; **p < .005;
***p < .0005). (b) The taxonomic levels of
the Z. asper invertebrate prey identified
using the FTA procedure

TABLE 2 Taxonomic coverage of the metabarcoding primers (in vitro tests)

Taxa
Number
of taxa

Number
of samples

ZFZR MFZR Combined success rate

Species
rate (%)

Sample
rate (%)

Species
rate (%)

Sample
rate (%) by species (%) by sample (%)

Insecta

Trichoptera 12 25 100 96 92 84 100 96

Ephemeroptera 27 60 100 90 96 85 100 90

Plecoptera 9 18 100 94 100 78 100 94

Diptera 54 76 98 97 92 87 100 100

Coleoptera 17 23 100 100 76 83 100 100

Odonata 7 12 86 92 86 92 100 100

Hymenoptera 2 2 100 100 100 100 100 100

Hemiptera 4 4 80 80 100 100 100 100

Lepidoptera 3 4 100 100 100 100 100 100

Blattodea 8 10 100 100 100 100 100 100

Arachnida 8 10 100 100 100 100 100 100

Crustacea 9 16 89 75 89 75 100 75

Myriapoda 3 3 100 100 100 100 100 100

Mollusca 15 25 47 52 73 76 80 80

Annelida 10 15 80 67 90 80 90 80

Platyhelminthes 1 1 100 100 100 100 100 100

Teleostei 20 61 35 20 35 34 65 51

Total 209 365 87 78 85 77 94 86



To further evaluate the complementarity of the two primer pairs

(ZFZR and MFZR), we looked at their performance in detecting the

81 MOTUs identified in the Z. asper and P. microps faecal samples

(Table S5): ~30% MOTUs were detected with both primer pairs,

23% were detected with ZFZR only, and 47% were detected with

MFZR only (Figure 3a). When focusing on invertebrates, 53% of

MOTUs were detected with one of the two primer sets only (Fig-

ure 3b). The ZFZR pair was more efficient in detecting Diptera (both

for Chironomidae and Simuliidae), whereas MFZR detected more

Baetidae (Ephemeroptera) and Crustacea.

3.4 | Sample composition

The number of variants and contigs in the Z. asper faecal samples

varied from 1 to 24 (6.6 � 5.5). At least one variant of invertebrates

was present in all Z. asper samples, with a mean value of 3.4 (� 1.7)

(Table S3; Figure 4a). These samples also varied in terms of prey

composition: whereas Baetis was detected in 79% of the samples,

the frequency of other prey varied widely. Ephemeroptera, Diptera

and Trichoptera appeared to be the most abundant prey at the pop-

ulation scale (Figure 4b). Four Ephemeroptera families were identi-

fied with a predominance of Baetidae (five species), which also

displayed the highest MNI (22% of the total MNI in the Z. asper

samples; Figure 4b). The main groups of Diptera that were preyed

upon were Simuliidae and Orthocladiinae (subfamily of

Chironomidae). Noninvertebrate taxa were mainly composed of

metazoan microorganisms: Bacillariophyta, Rotifera, Rhodophyta and

Oomycetes. Furthermore, none of the dietary MOTU accumulation

curves approached an asymptote (Figure 4c).

Regarding the P. microps samples, prey DNA was detected in

samples P3 and P5 only (one and four variants/contigs, respectively),

and the DNA of P. microps was detected in all five faecal samples

(Table S3).

4 | DISCUSSION

4.1 | Producing robust HTS data sets

The choice of the primer sets is crucial in diet metabarcoding as it

may lead to false negatives due to insufficient taxonomic coverage

(Pompanon et al., 2012). In this study, we used two primer sets to

amplify a short but informative COI region (MFZR and ZFZR). In

vitro tests on our lcDNA samples showed that the primer sets were

complementary and enabled coverage of a large taxonomic spec-

trum, especially for invertebrates (100% of items), whereas in silico

tests suggested lower coverage. Our Z. asper faecal samples dis-

played a taxonomic diversity comparable to a previous morphologi-

cal-based diet study (Cavalli, Pech, & Chappaz, 2003; summary in

Fig. S5). Interestingly, the complementarity of primer sets was higher

in the Z. asper faecal samples (53% of invertebrates MOTUs

detected by one of the two primer sets only) compared to in vitro

tests (11%). Increased complementarity in multiplexed samples is

likely to be the result of preferential primer binding (e.g. Thomas,

Deagle, Eveson, Harsch, & Trites, 2015), which justifies the use of

more than one primer pair. In our case, the selection of two primer

pairs led to the detection of all prey in the positive samples and to a

high prey diversity within and among Z. asper samples. Furthermore,

the successful detection of prey in P. microps faecal samples sug-

gested that these primer sets are applicable for species that live in

nonfreshwater environments. However, in vitro tests on lcDNA sam-

ples revealed that the combined use of ZFZR and MFZR displayed

insufficient taxonomic coverage in some groups (e.g. 80% of Mol-

lusca). Nevertheless, our workflow could easily be adapted to other

predators and environments, thanks to the availability of several

“universal” minibarcodes located in the COI region that we have tar-

geted (e.g., Brandon-Mong et al., 2015; Hajibabaei, Shokralla, Zhou,

Singer, & Baird, 2011; Leray et al., 2013; Shokralla et al., 2015).

The most commonly used filtering pipelines when dealing with

HTS metabarcoding data, such as mothur (Schloss et al., 2009) and

QIIME (Caporaso et al., 2010), rely on the clustering of reads into

MOTUs. In these clustering-based approaches however, almost each

step and each parameter in the bioinformatics pipeline influence the

outcome, and the number of taxa is often overestimated (e.g. Brown

et al., 2015; Clare et al., 2016; Majaneva, Hyyti€ainen, Varvio, Nagai,

& Blomster, 2015). Therefore, each data set will need a specific anal-

ysis method and parameters should be tailored to the purpose of

the study (Flynn et al., 2015). We therefore favoured and developed

a clustering-free pipeline that relies on a series of stringent filtering

n = 24n = 19 n = 38

ZFZR MFZR
(a)

(b)

n = 16n = 11 n = 7

All MOTUs

Invertebrate MOTUs
ZFZR MFZR

F IGURE 3 Complementarity of minibarcoding primer sets based
on Zingel asper and Pomatoschistus microps samples



steps based on read counts of each variant in each replicate (for a

similar approach, see De Barba et al., 2014). For this purpose, the

thresholds used in our filtering approach were inferred from mock

community samples (Step 4a) and negative controls (Step 4c). It has

to be noted that this conservative approach will discard all variants

for which frequencies are below the LFN thresholds. In the context

of complex community samples, such as samples collected for biodi-

versity assessment and monitoring (e.g., Elbrecht & Leese, 2017;

Lanz�en, Lekang, Jonassen, Thompson, & Troedsson, 2016; Leray &

Knowlton, 2015), some low-abundance taxa may not be validated. In

fact, their read count may fall below one or more LFN thresholds,

making the corresponding variant undistinguishable from noise. In

this case, the analysis of several biological replicates (i.e., distinct

DNA extractions corresponding to different fractions of a given sam-

ple) should help with the detection and the validation of low-abun-

dance taxa (Lanz�en, Lekang, Jonassen, Thompson, & Troedsson,

2017; Zhan et al., 2014). In addition, we recommend that the mock

samples approximate the complexity of the communities sampled, by

approximating their expected taxonomic composition and even the

differential abundance of taxa.

Ignoring the mistagging bias (Schnell et al., 2015) may lead (i) to

overestimate the number of taxa in a sample and (ii) to blur the dif-

ferentiation between samples with respect to their taxonomic com-

position. To assess and overcome mistagging bias, two strategies

were recently suggested: (i) increasing the number of unused tag

combinations using Latin square design (Esling et al., 2015); and (ii)

using fusion primers (Herbold et al., 2015) to avoid the creation of

intersample chimeras when pooling samples during the sequencing

library preparation. In the last case however, PCR efficiency is

reduced substantially (Schnell et al., 2015) and template-specific

amplification bias may be inflated (O’Donnell, Kelly, Lowell, & Port,

2016). Following Esling et al. (2015), we chose a variant frequency-
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dependent approach (LFNtag; Step 4b) to control mistagging. In our

case, the threshold of the LFNtag filter is based on mock community

samples and on the co-analysis of samples from different habitats

(brackish-water and freshwater) in the same HTS run.

In our workflow, LFN thresholds appear as the most critical parame-

ters for the filtering and the validation of HTS data: most variants that

are expected to be false positives were discarded at Step 4 (see

Table 1). Nevertheless, subsequent filtering steps (steps 5–11) are also

important for the validation of the data. Expectedly, omitting the filter-

ing steps 5–11 will decrease the robustness of the data and inflate the

taxonomic and/or genetic diversity within samples, biasing biodiversity

estimations. In our case, for example, omitting filtering steps 5–11 is

expected to inflate the MNI estimator (see below). As a matter of fact,

further false positives were controlled, such as variants with PCR/se-

quencing errors (Step 6) and chimeras (Step 10). Moreover, our work-

flow included three PCR replicates for each primer pair to avoid false-

positive detections (see Ficetola, Taberlet, & Coissac, 2016). These PCR

replicates were sequenced separately and used at filtering steps 5, 7

and 8 for validating reproducible variants only. Several authors, how-

ever, used PCR replicates differently in the case of complex community

samples (e.g., Lanz�en et al., 2016; Leray & Knowlton, 2017): PCR repli-

cates were pooled and then sequenced jointly to limit the impact of

random sampling amplification biases and hence minimizing false nega-

tives due to low-abundance taxa. Nevertheless, this approach does not

allow minimizing the false-positive detections. In our case, the size of

faecal samples allowed one single DNA extraction reaction. However,

in the case of larger or more complex samples, several biological repli-

cates (i.e., distinct fractions of the same sample) may be analysed for

controlling false negatives (see Lanz�en et al., 2017; Zhan et al., 2014).

The combined use of biological replicates and of PCR replicates (se-

quenced separately) should ensure both avoiding false-positive detec-

tions and maximizing the coverage of taxa diversity.

Alternatively, for complex community samples, more relaxed fil-

tering thresholds (at steps 4a and 4c) and more relaxed reproducibil-

ity criteria (at steps 5, 7 and 8) might be considered if one wants to

maximize the detection low-abundance taxa. In this case however,

the presence of these taxa in the final data set will remain uncertain

since confounded with the low-frequency noise and the false posi-

tives. These low-frequency taxa will therefore require to be validated

by some complementary field data (for estimating the probability of

false negatives, as suggested by: Leray & Knowlton, 2017) and/or by

the use of site occupancy-detection models (that can account for

the presence of false positives; e.g., Lahoz-Monfort, Guillera-Arroita,

& Tingley, 2016).

Recently, new clustering-based methods have been developed

for denoising HTS reads (e.g., UNOISE2: Edgar, 2016b; Swarm: Mah�e,

Rognes, Quince, De Vargas, & Dunthorn, 2015). These methods

avoid clustering the reads based on fixed similarity level and their

outcome depends on a very few parameters. We therefore used a

modified version of our pipeline, where our denoising steps (LFN

and Obiclean, steps 4 and 6) were replaced by UNOISE2 and

UNCROSS. This filtering approach retained 12 unexpected variants in

the mock community samples, showing that our pipeline is more

accurate for restituting the composition of our mock samples. In fact,

the bioinformatics pipeline we developed retained all the expected

variants and filtered out all but one nonexpected variants in mock

controls (this latter variant was likely introduced during construction

of the mock samples; see “Results”), as well as all variants in negative

controls. The final data set contained only 0.3% of the original vari-

ants, but these variants represented over 70% of the reads, reinforc-

ing that the eliminated variants could be considered to be noise.

4.2 | Towards a quantitative approach: the MNI

Due to PCR biases, the number of reads is a very poor estimator of

abundance in metabarcoding studies (Elbrecht & Leese, 2015), and

only presence/absence of MOTUs can be obtained with clustering-

based approaches, since different alleles coming from the same taxon

are confounded in the same MOTU. Alternatively, several studies

highlighted the pertinence of determining the number of distinct

sequences belonging to the same taxon when assessing genetic diver-

sity (Gonz�alez-Tortuero et al., 2015; Shokralla et al., 2015) or prey

biomass (Jo et al., 2016). In this study, thanks to rigorous filtering pro-

cedures we produced a robust data set of variants and contigs that is

reliable and relatively free from false positives and artefacts. More-

over, the variants corresponding to pseudogenes were filtered out.

Therefore, we are confident that the number of COI variants/contigs

can be used to estimate MNIs. However, in some cases, that are prey

taxa prone to heteroplasmy or that present tissue-specific mitochon-

drial variants, an overestimation bias should be considered when using

MNIs. The MNI statistic may therefore deserve a further evaluation by

using appropriate mock samples as controls.

In the case of Z. asper prey, the biological analyses suggested

that the final variants can be used as a reliable estimation of their

DNA diversity in faeces and therefore that the MNI statistic ade-

quately reflects relative prey abundance. In fact, congruence

between the MNI and previously observed prey diversity based on

morphological gut-content analysis in Durance River (Cavalli et al.,

2003) was observed. More specifically, the family Baetidae exhibited

the highest MNIs in Z. asper faecal samples, which was also the most

abundant prey found in morphological gut-content analysis (Fig. S5).

4.3 | Taxonomic assignment of prey

Taxonomic assignment procedures are critical in metabarcoding stud-

ies, and several innovative approaches were recently developed (e.g.,

Porter et al., 2014; Somervuo, Koskela, Pennanen, Henrik Nilsson, &

Ovaskainen, 2016; Somervuo et al., 2017). However, most metabar-

coding studies are based on one single taxonomic assignment

approach, and yet using different procedures as well as different refer-

ence databases should improve the reliability and the accuracy of

MOTU identification. For this study, we combined different assign-

ment procedures to combine their respective advantages. Although

our strategy can be time-consuming—some of the steps cannot be

fully automated—the IR statistic showed that it did significantly

improve the precision of the assignments. This resulted in a very low



proportion of high-level taxonomic assignments (e.g., Eukaryota), and a

high proportion of low-level taxonomic assignments for variants of

invertebrates (species level for most). In contrast, most invertebrates

identified by morphological-based gut-content analysis were identified

at the Family level in Cavalli et al. (2003). Moreover, our detailed

assignment of Z. asper prey supports the use of COI as the favoured

target gene for invertebrates (see also Brandon-Mong et al., 2015).

The COI appears as the one of the most appropriate gene for inverte-

brate metabarcoding because (i) it reveals species-level variation

(Elbrecht et al., 2016), and (ii) a huge amount of annotated sequences

is available in public databases (Deagle et al., 2014).

The taxonomic assignment of invertebrates indicated that the

Baetidae found in Z. asper faeces belonged mostly to the genus Bae-

tis although other genera were also present in the sampling area

(e.g., Alainites, Acentrella, Centroptilum and Procloeon). According to

Tachet et al. (2010), Baetis has a higher affinity towards coarse sub-

strates (e.g., stones, pebbles) with higher water velocity than other

Baetidae, which in turn prefer epiphyte lifestyle on macrophyte or

algae substrate. Additionally, the genera Hydropsyche (Hydropsychi-

idae) and Simulium (Simuliidae), all epibenthic and rheophilic taxa,

occurred at non-negligible frequencies in Z. asper faecal samples.

Consequently, the cumulated frequency based on MNI of Baetis,

Hydropsyche and Simuliidae was ~70% (see Figure 4). This suggests

that Z. asper actively selected rheophilic and epibenthic macroinver-

tebrates, which constitutes accurate information related to habitat

use of this critically endangered species.

5 | CONCLUSION AND PERSPECTIVES

Diet analyses are critical to gain a better understanding of prey/habitat

relationships and feeding habitats (e.g., Corse et al., 2010; Sanchez-

Hernandez, 2014), especially when a fine and accurate taxonomic

identification of prey can be achieved (e.g., Adamczuk & Mieczan,

2015). In this study, stringent wet-laboratory conditions, carefully

selected primer sets, PCR replicates and nonarbitrary filtering thresh-

olds based on control samples led to the validation of a robust data set

dedicated to the study of the diet of a critically endangered fish spe-

cies. The robustness of our data set allowed us to take into account

the prey genetic variability and to obtain a semiquantitative estimate

of diet through the use of MNI. Furthermore, a species-level identifica-

tion for most of the invertebrate prey was obtained through a comple-

mentary taxonomic assignment approach. On the whole, our approach

produced a robust data set for ecological analyses and opens perspec-

tive for more precision on feeding habitats of invertebrate-eaters. This

new information would in turn improve conservation strategies such

as habitat restoration or the selection of optimal re-introduction sites.

Finally, our results reinforced previous findings that suggested diet

metabarcoding can be a powerful tool in trophic ecology as it allows

the determination of large scale and highly resolved networks (Evans,

Kitson, Lunt, Straw, & Pocock, 2016). It may also produce a level of

precision that reveals unexpected food web structures (Roslin & Maja-

neva, 2016). This article proposes a from-benchtop-to-desktop

workflow that provides an efficient tool for the study of invertebrate-

eater diets and will, we hope, stimulate and inspire future trophic

works using metabarcoding approaches.
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