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A METHOD WITH PENALIZED RIGHT HAND SIDE FOR THE

NUMERICAL RESOLUTION OF THE CURL CURL EQUATION

M. DARBAS, J. HELEINE, AND S. LOHRENGEL

Abstract. A new method is proposed to solve numerically the curl curl equation by means
of edge finite elements. In a first step, a compatible right hand side that belongs exactly to
the range of the singular curl curl matrix is computed by penalization. In a second step, a
Conjugate Gradient solver computes a discretely gauged solution of the curl curl equation.
Convergence results are proven both in terms of the penalization parameter and the mesh
size. Numerical simulations in two dimensions corroborate the theoretical results.

1. Introduction

This paper deals with the numerical resolution of the curl curl equation in a bounded
domain Ω ⊂ R3 with a perfectly conducting boundary condition on Γ := ∂Ω. We assume that
Ω is a simply connected Lipschitz domain with connected boundary. For a given field f , we
consider the following problem: find u such that

curl curlu = f in Ω,(1a)

u× n = 0 on Γ,(1b)

where n is the outward unit normal to Γ and f is assumed to be divergence free.
When solving the curl curl problem, one is confronted to two main difficulties. The first

one is that the vector solution is not unique but defined up to the gradient of a scalar
function and thus a gauge condition has to be added. The second difficulty is to ensure the
compatibility of the right hand side (r.h.s.) of the curl curl equation. This implies that the
source term has to be divergence free. From a discrete point of view, this means that the
r.h.s. of the linear system (corresponding to the discretization of (1)) belongs to the range
of the curl curl matrix. A solution proposed in [3, 9] is to express the field f by the curl of
a source field Ψ and to project this source field onto the space of the curl of first order edge
elements. Here, we adopt an approach without computing the vector potential Ψ explicitly.
The novelty in the present paper is to combine the resolution of the curl curl problem with a
penalization method which computes the gauged component of the source term f according
to the Helmholtz-decomposition of the latter. The penalized r.h.s. can be shown to satisfy
the compatibility condition and belongs to the (larger) space of first order edge elements.
The computation of the divergence free component of a vector field via penalization has been
addressed in [1] for fields with vanishing normal trace. Here, we focus on perfect conducting
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2 A METHOD WITH PENALIZED RIGHT HAND SIDE FOR THE CURL CURL EQUATION

boundary conditions. We give a full mathematical and numerical description of the method
that includes convergence proofs with respect to the penalty parameter as well as to the mesh
parameter. To the best of our knowledge, this point has not been dealt with in the existing
literature.

2. Setting of the problem and presentation of the method

On Ω, we introduce the vector space related to the curl-operator with perfect conduct-
ing boundary condition, H0(curl; Ω) =

{
f ∈ L2(Ω)

∣∣ curl f ∈ L2(Ω), f × n = 0 on Γ
}

. Here,

and below, bold-faced symbols refer to spaces of vector fields, e.g. L2(Ω)
def
=

(
L2(Ω)

)3
.

We further introduce the sub-space of H0(curl; Ω) of divergence-free vector fields, X0 =
{u ∈ H0(curl; Ω) | divu = 0 in Ω}. On X0, the variational formulation of problem (1) reads

(P(curl))

{
Find u ∈ X0 such that
(curlu, curlw) = (f ,w) ∀w ∈ X0.

We can state the following properties for the space X0 (see e.g. [4]):

Proposition 1. Let Ω be a Lipschitz domain. Then, the imbedding of X0 into L2(Ω) is
compact and the following Poincaré-like inequality holds true:

(2) ∃CP > 0 : ∀v ∈ X0, ‖v‖0,Ω ≤ CP (‖ curlv‖0,Ω) .

It follows from inequality (2) that (P(curl)) has a unique solution in X0 for any f ∈ L2(Ω)
that is divergence free. However, the discretization of problem (P(curl)) by finite elements
is challenging since no conforming elements are available for the space X0. We therefore
consider edge elements which are conforming in H(curl; Ω). To this end, let Th be a mesh of
Ω and denote by Vh ⊂ H(curl; Ω) the discretization space built of finite edge elements of the
first order (see [8]). Let Xh = Vh ∩H0(curl; Ω) be the space of discrete fields that satisfy the
boundary condition vh × n = 0 on Γ. Assume that the source field f is approximated by a
field fh which could be, for example, the interpolate of f . Then, the discrete problem reads

(Ph(curl))

{
Find uh ∈ Xh such that
(curluh, curlwh) = (fh,wh) ∀wh ∈ Xh.

In matrix form, we get

(3) KU = MF

where the matrix K of the above linear system is related to the bilinear form (curl ·, curl ·),
and the mass matrix M corresponds to the canonical scalar product in L2(Ω). In particular,
K is singular and (3) admits a solution if and only if the r.h.s. MF belongs exactly to the
image of K. This compatibility condition is in general not satisfied even if the source term f
is divergence free. Indeed, fh is obtained by interpolation or numerical integration of f , and
does not necessarily fulfill a discrete gauge condition. We are going to propose a method to
ensure this condition and to solve (1) numerically.

It has been stated in [3, 9] that the r.h.s. of (P(curl)) should be computed numerically
by the identity (f ,w) = (curl Ψ,w) = (Ψ, curlw) where Ψ is the vector potential of the field
f . Discretization by means of edge finite elements leads to a system with a new right hand
side (Ψ, curlwh) that belongs to the image of the matrix K, and the curl curl operator is
implicitly gauged by the CG solver according to the results in [9]. The analytic computation
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of the vector potential Ψ can be achieved for some particular geometries. In general, however,
Ψ has to be computed numerically. In [2], this is for example achieved via the projection of
f onto the space curlXh which is of polynomial order 0. Here, we propose to compute an
appropriate r.h.s. corresponding to an approximation of f in Xh through a penalization
method [1]. Our method consists in two steps:

Step 1: Solve a penalized problem

(4) εMF ε + KF ε = KF
with a penalization parameter ε > 0, using a direct or iterative solver.

Step 2: Solve the linear system

(5) KU ε = MF ε

with the CG solver.

We deduce from (4) that the r.h.s. satisfies the property

MF ε =
1

ε
K(F − F ε) ∈ Im(K),

and thus belongs exactly to the range of K. The vector F ε is associated with a discrete vector
field f εh that converges in H(curl; Ω) to the source field f provided the penalization parameter
ε and the mesh size h are chosen in an appropriate way in the Step 1. Then, the vector U ε

yields an approximation uεh of the solution u of problem (P(curl)). Furthermore, any iterate
of the CG Algorithm satisfies a discrete gauge condition provided this condition is satisfied
by the initial vector and the right hand side [9].

Remark 1. We assume that Ω is filled with a material with constant magnetic permeability
µ = 1. All the following results can be extended to the case of a non-constant permeability.

3. Approximation of the divergence free vector potential

In this section, we are concerned with the approximation of the divergence free component
of f , denoted by fψ. We do not assume that the field f is divergence free since this condition
is in general not exactly fulfilled by the numerical representation of f . Hence, all the following
results hold true whether or not the condition div f = 0 is satisfied. Classical results yield the
Helmholtz-decomposition of f : there is a unique vector field fψ ∈ X0 such that f = fψ + fφ
where fψ = curl Ψ with Ψ ∈ H(curl; Ω) such that div Ψ = 0 in Ω and Ψ · n = 0 on Γ, whereas
fφ = ∇φ with φ ∈ H1

0 (Ω). Obviously, we have curl fψ = curl f , i.e. fψ realizes the projection
of f onto the subspace of divergence free fields. Consider then the penalized problem

(Pε)
{

Find f εψ ∈ X0 such that

ε(f εψ,w) + (curl f εψ, curlw) = (curl f , curlw) ∀w ∈ X0,

where ε > 0 is the penalization parameter. The bilinear form aε(·, ·) = ε(·, ·)+(curl ·, curl ·) is
still coercive on X0 with a coercivity constant independent from ε according to (2) and since
the fields in X0 are divergence free. Hence, (Pε) has a unique solution.

An error estimate for the penalized problem is given in the following theorem. A similar
result for fields in H(curl; Ω) has been stated in [1]. Here, we give in addition the full proof.

Theorem 2. Assume that f ∈ H0(curl; Ω). For ε > 0, denote by f εψ ∈ X0 the solution of

(Pε). There is a constant c independent from ε such that

(6) ‖fψ − f εψ‖0,Ω + ‖ curl(fψ − f εψ)‖0,Ω ≤ cε‖fψ‖0,Ω ∀ε > 0,
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where fψ ∈ X0 is the unique solution of the following variational problem(
P0

) {
Find fψ ∈ X0 such that
(curl fψ, curlw) = (curl f , curlw) ∀w ∈ X0.

Proof. First, taking w = f εψ in (Pε), we get

‖ curl f εψ‖0,Ω ≤ ‖ curl f‖0,Ω
and it follows from inequality (2) that

‖f εψ‖0,Ω ≤ CP ‖ curl f ε‖0,Ω ≤ CP ‖ curl f‖0,Ω.

Hence, the sequence (f εψ)ε>0 is bounded in X0 and there is a subsequence, still denoted by

(f εψ)ε, and a field f∗ ∈ X0 such that f εψ converges weakly to f∗ in X0. Taking the limit in (Pε)
as ε → 0 yields f∗ = fψ due to the uniqueness of the solution of problem (P0) in X0. We
get the strong convergence of the sequence (f εψ)ε to fψ in L2(Ω) since the embedding of X0 in

L2(Ω) is compact. Next, we see from the definition of problems (P0) and (Pε) that

(curl(fψ − f εψ), curlw) = ε(f εψ,w) ∀w ∈ X0.

Then, taking w = fψ − f εψ in the above equation, we get with the help of (2)

(7) ‖ curl(fψ − f εψ)‖0,Ω ≤ CP ε‖f εψ‖0,Ω.

Since f εψ converges strongly to fψ in L2(Ω), the above inequality implies that curl(fψ − f εψ)

tends to zero in L2(Ω). Hence the sequence (f εψ)ε converges strongly in X0 to fψ and estimate

(6) follows from (7) and inequality (2). �

Consider now the discretization of problem (Pε) by edge elements of order 1. With the
notations in Section 2, the discrete penalized problem is given by

(Pεh)

{
Find f εψ,h ∈ Xh such that

ε(f εψ,h,wh) + (curl f εψ,h, curlwh) = (curl f , curlwh) ∀wh ∈ Xh.

The bilinear form aε(·, ·) is still coercive on Xh and (Pεh) has a unique solution. However,
since Xh is not included in X0, the coercivity constant now depends on ε. More precisely, we
have

aε(wh,wh) ≥ ε‖wh‖2H(curl;Ω) ∀wh ∈ Xh,

which yields the following abstract error estimate using classical arguments of Galerkin theory:

(8) ‖f εψ − f εψ,h‖H(curl;Ω) ≤
1

ε
infwh∈Xh

‖f εψ −wh‖H(curl;Ω).

The next Theorem follows from standard error estimates (see [7]) for the first order edge
elements and estimate (6) for the error between fψ and the solution of the penalized problem
(Pε).

Theorem 3. Assume that the field f belongs to H0(curl; Ω). Let fψ ∈ X0 and f εψ,h ∈ Xh denote

the respective solutions of problems (P0) and (Pεh). Assume that fψ belongs to H1(curl; Ω) ={
f ∈ H1(Ω)

∣∣ curl f ∈ H1(Ω)
}

. Then, the following error estimate holds true:

(9) ‖fψ − f εψ,h‖H(curl;Ω) ≤
(
C1ε+ C2

h

ε

)
‖fψ‖H1(curl;Ω).
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From estimate (9) we see that ε and h should be chosen such that ε = O(
√
h) in order

to get a global convergence rate of h1/2. In view of realistic applications, this prevents from
chosing ε too small in order to avoid heavy computational costs.

4. Back to the curl curl problem and numerical results

Let f be the source field of problem (1) which we assume to belong to X0. Step 2 of our
method is the matrix formulation of the following discrete problem:

(Pεh(curl))

{
Find uεh ∈ Xh such that
(curluεh, curlvh) = (f εψ,h,vh) ∀vh ∈ Xh,

where f εψ,h ∈ Xh is the solution of the discrete penalized problem (Pεh).
Using Theorem 3, we can state the following error estimate: there is h0 > 0, such that for

all 0 < h < h0,

(10) ‖u− uεh‖H(curl;Ω) ≤
(
C1ε+ C2

h

ε

)
‖f‖H1(curl;Ω) + C3h‖u‖H1(curl;Ω).

where the constants C1, C2, C3 > 0 are independent of h, u and uεh. The proof is based on the
ideas of [7] and assumes that uεh is discrete divergence free, i.e. (uεh,∇ξh) = 0 ∀ξh ∈ Sh, where
Sh =

{
ξh ∈ H1

0 (Ω
∣∣ ξh|K ∈ P1(K) ∀K ∈ Th

}
is the discretization space of scalar P1-Lagrange

elements.
We illustrate now the efficiency of the method with penalized r.h.s. for the resolution of

the curl curl equation. We consider a uniform mesh of size h of Ω = [−1, 1]2. Edge elements
of order 1 are used to discretize the problem. We use Simpson’s rule to approximate the
line integrals. We consider the field u(x, y) = (−π cos(πx) sin(πy), π sin(πx) cos(πy))t as
the exact solution of (1). Let f = 2π2u the corresponding source term. We simulate some
numerical perturbations of the vector F of the degrees of freedom of f by adding a small
random term. We compute Fη = F (1 + η) where the coefficients of η are equally distributed
random numbers between −10−2 and 10−2.

First, we compute the discrete solution of the curl curl problem with this perturbed source
term through a standard discretization by edge elements without any special treatment of the
r.h.s.. To this end, we solve the linear system (3) using the CG algorithm with a tolerance of
10−13. The results are summarized in Table 1 where the approximation of u is denoted by
uh. We report the error in L2-norm and H(curl)-seminorm as well as the number of iterations
needed by the CG method to reach a minimal residual. We observe that the errors are about
10−1 independently from the mesh size. Moreover, the CG method stagnated for any tested
mesh size. This agrees with the observations in [9] for a r.h.s. that is not compatible with
the matrix of the linear system.

Table 1. Errors in the approximation of the solution of the curl curl problem
over h (without penalization).

h ‖u− uh‖0 ‖ curl(u− uh)‖0 nb. iter. residual
1/32 2.59e-01 1.16e-01 86 1.37e-02
1/64 2.74e-01 1.00e-01 176 2.00e-02
1/128 2.70e-01 9.35e-02 349 2.83e-02
1/256 2.68e-01 9.15e-02 692 3.99e-02
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Then, we tested the first step of our method with a penalization parameter of ε =
√
h and

observed the predicted convergence rate of 0.5 for the error (cf. Table 2).

Table 2. Errors in the approximation of the divergence free field over h with
ε =
√
h.

h ‖fψ − f εψ,h‖0 ‖ curl(fψ − f εψ,h)‖0 τ0 τcurl

1/32 2.09e-02 9.29e-02 · ·
1/64 1.49e-02 6.62e-02 0.49 0.49
1/128 1.06e-02 4.70e-02 0.49 0.49
1/256 7.49e-03 3.33e-02 0.50 0.50

Finally, we applied the two steps of the method with penalized r.h.s.. We compute the
divergence free component of the perturbed source field by solving the penalized problem
(Pεh) with ε = 10−5 and use the result as r.h.s. of the curl curl problem that is solved by a
CG solver with a tolerance of 10−13 (cf. Table 3). This test shows global numerical rates of
2 (resp. 3/2) in the L2-norm (resp. in the ‖ curl(·)‖0-seminorm). Notice that the CG solver
does not converge with the desired tolerance of η = 10−13, but yields a residual between 10−6

and 10−8 corresponding roughly speaking to the order η/ε.
Notice that the condition number of the penalized matrix εM+K behaves like O(h−2ε−1).

In the present 2D study, this does not prevent the convergence of the CG-algorithm in a rea-
sonable number of iterations. Nevertheless, a possible solution is to use an ILU-preconditioning
in order to speed up the convergence.

5. Concluding remarks

We have presented a method for the numerical resolution of the curl curl equation (1)
in the context of edge element discretization. The approach pays careful attention to the
discretization of the source term. It consists in two steps. First, we solve a penalized problem
which computes a discrete divergence free component of the source term f . This provides
a compatible r.h.s. for the linear system corresponding to the discretization of the curl curl
problem. Then, the associated linear system can be solved by the CG algorithm. We have
proved convergence results for the method with respect to both the penalty parameter and
the mesh size. These results indicate how to choose the parameters of the method.

Two-dimensional numerical results corroborate the theoretical convergence rates and attest
the efficiency of this method with penalized r.h.s.. A more complete numerical study in
complex configurations is the aim of ongoing work.

The particular application that we have in mind is the numerical computation of a boundary
control by the Hilbert Uniqueness Method (H.U.M.) [6] for the exact boundary controllability

Table 3. Errors in the approximation of the solution of the curl curl problem
over h with ε = 10−5.

h ‖u− uh‖0 ‖ curl(u− uh)‖0 nb. iter. residual τ0 τcurl

1/32 1.98e-02 5.61e-02 207 2.84e-08 · ·
1/64 5.29e-03 1.65e-02 393 1.14e-07 1.91 1.76
1/128 1.53e-03 5.86e-03 665 6.08e-07 1.79 1.50
1/256 2.86e-04 2.36e-03 973 3.53e-06 2.42 1.32
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of the second-order Maxwell equations. More precisely, a Bi-Grid preconditioned Conjugate
Gradient is applied in order to inverse the H.U.M. operator where the computation of the
residual at each iteration requires the resolution of a curl curl equation [5]. This application
has motivated our research, but the proposed numerical method could be employed in many
other ones such as magnetic resonance imaging or insulating materials.
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