

Fuzzy species limits in Mediterranean gorgonians (Cnidaria, Octocorallia): inferences on speciation processes

D. Aurelle, Isabelle D. Pivotto, Marine Malfant, Nur E. Topcu, Mauatassem B. Masmoudi, Lamya Chaoui, Hichem M. Kara, Marcio A. G. Coelho, Rita Castilho, Anne Haguenauer

To cite this version:

D. Aurelle, Isabelle D. Pivotto, Marine Malfant, Nur E. Topcu, Mauatassem B. Masmoudi, et al.. Fuzzy species limits in Mediterranean gorgonians (Cnidaria, Octocorallia): inferences on speciation processes. Zoologica Scripta, 2017, 46 (6), pp.767-778. $10.1111/zsc.12245$. hal-01681582

HAL Id: hal-01681582 <https://hal.science/hal-01681582v1>

Submitted on 25 Apr 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Fuzzy species limits in Mediterranean gorgonians (Cnidaria, Octocorallia) : inferences on speciation processes 1 2

- 3
- DIDIER AURELLE^{1*}, ISABELLE D. PIVOTTO¹, MARINE MALFANT^{1,2}, NUR E. 4
- TOPÇU³, MAUATASSEM B. MASMOUDI^{1,4}, LAMYA CHAOUI⁴, MOHAMED H. 5
- KARA 4 , MARCIO COELHO $^{1,5,6},$ RITA CASTILHO 5, ANNE HAGUENAUER 1 6
- 1. Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Marseille, France 8
- 2. Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7144, Lab. « Adaptation 9
- et Diversité en Milieu Marin », Team Div&Co, Station Biologique de Roscoff, 29682, 10
- Roscoff, France 11
- 3. Istanbul University Fisheries Faculty Ordu Cad No 200, 34130 Laleli Istanbul / 12
- Turkey 13
- 4. Laboratoire Bioressources Marines. Université d'Annaba Badji Mokhtar, BP 230, 14
- Oued Kouba, Annaba 23008, Algeria. 15
- 5. Centre for Marine Sciences, CCMAR-CIMAR Laboratório Associado, Universidade 16
- do Algarve, Campus do Gambelas, 8005-139, Faro, Portugal 17
- 6. Graduate Program in Evolution, Ecology and Behavior, University at Buffalo, 18
- Buffalo, New York 14260, USA 19
- 20
- *** Corresponding author:** Didier AURELLE, Station Marine d'Endoume, Chemin de la 21
- Batterie des Lions, 13007 Marseille, France. 22
- Phone: +33 4 91 04 16 18; Fax: +33 4 91 04 16 35; mail: didier.aurelle@univ-amu.fr 23
- 24
- **Running title:** Species limits in Mediterranean octocorals 25
- Aurelle *et al.* 26
- 27
- **Abstract** 28
- The study of the interplay between speciation and hybridization is of primary 29
- importance in evolutionary biology. Octocorals are ecologically important species 30
- whose shallow phylogenetic relationships often remain to be studied. In the 31
- Mediterranean Sea, three congeneric octocorals can be observed in sympatry: *Eunicella* 32

speciation or do they highlight genetic incompatibilities that accumulated in allopatry (Bierne *et al* 2013)? 64 65

The problem of species delimitation in light of ecological differentiation is particularly important in corals (i.e. hexa- and octocorals). Phenotypic plasticity and cryptic species are frequent in corals, and genetic markers are often helpful to study species limits (Marti-Puig *et al* 2014; McFadden *et al* 2010; Sanchez *et al* 2007). As corals are deeply impacted by climate change (Garrabou *et al* 2009; Hoegh-Guldberg 2014), accurate species delimitation is also important to study the response of coral communities to climate change. Morphologically similar coral species can correspond to distinct genetic entities with potentially different responses to climate change (Boulay *et al* 2014). For example, the adaptation to different depths in the octocoral *Eunicea flexuosa* has been linked to the existence of two distinct genetic lineages (Prada & Hellberg 2013), and distinct lineages of the endosymbiont dinoflagellate (*Symbiodinium*) are tightly linked with the different *Eunicea* lineages (Prada *et al* 2014). Conversely, hybridization can be a source of evolutionary novelty and new adaptation (Rieseberg *et al* 2003; Thomas *et al* 2014). Several cases of hybridization have been demonstrated in hexacorals (Thomas *et al* 2014; Vollmer & Palumbi 2004) and in octocorals (McFadden & Hutchinson 2004). Additionally, the analysis of genetic connectivity, an important driver of evolution, must be based on sound delimitation of species (Pante *et al* 2015b). Mediterranean octocorals of the genus *Eunicella* provide an interesting case study of speciation processes. Six *Eunicella* species are found in the Mediterranean Sea, but only three are abundant: *E. verrucosa* (Pallas, 1766), *E. cavolini* (Koch, 1887), *E. singularis* (Esper, 1791) (Carpine & Grasshoff 1975). *E. cavolini* and *E. singularis* are endemic to the Mediterranean Sea whereas *E. verrucosa* is also found in the Atlantic Ocean, as far north as southwestern England, where it is more abundant. In some parts of the North Mediterranean, these three species are observed in sympatry. They can be distinguished on the basis of colony architecture and calcareous sclerites (Carpine & Grasshoff 1975). Nevertheless these morphological characters may be plastic, and can vary along a depth gradient in *E. singularis* (Gori *et al* 2012). From an ecological point of view, *E. singularis* is generally observed at shallower sites than the two other species. *Eunicella singularis* is the only Mediterranean octocoral harbouring the photosynthetic 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

endosymbiont *Symbiodinium*, although asymbiotic individuals have been observed in deep water (Gori *et al* 2012). *Eunicella* species have been affected by mass mortality events linked with positive thermal anomalies (Garrabou *et al* 2009). Different responses to thermal stress have been observed between *E. singularis* and *E. cavolini* which raises the question of the evolution of thermotolerance along with speciation (Ferrier-Pagès *et al* 2009; Pey *et al* 2013; Pivotto *et al* 2015). From a genetic point of view, the phylogeny and delimitation of *Eunicella* species remain poorly studied, partially because of the lack of suitable markers. As observed in other octocorals, mitochondrial DNA has a very slow evolution rate (Shearer *et al* 2002). As a consequence, no difference has been observed for the mitochondrial genes COI and mtMutS between these three *Eunicella* species (Calderón *et al* 2006; Gori *et al* 2012). Similarly, ITS 1 and 2 did not allow species delimitation, potentially because of incomplete concerted evolution (Calderón *et al* 2006; Costantini *et al* 2016). Single copy nuclear markers are then required for an accurate analysis of species limits in octocorals (e.g. Concepcion *et al* 2008; Wirshing & Baker 2015). The comparison of sympatric and allopatric *Eunicella* samples would allow testing if the lack of divergence is the consequence of recent divergence, slow molecular evolution or hybridization. In order to investigate these questions, we used one mitochondrial marker, the COI – igr1 (intergenic region; McFadden *et al* 2011) and two nuclear Exon Priming Intron Crossing (EPIC) markers. COI – igr1 might be more variable and efficient for species delimitation than COI alone or mtMutS. The objectives of this study were to analyse the phylogenetic relationships and divergence levels between *Eunicella* species, and to test the possibility of gene flow between them. In addition, we tested if geographical or ecological isolation could correspond to distinct, cryptic, genetic lineages in *E. cavolini*, by analysing samples from distant areas in the Mediterranean Sea, and from different depths at the same site. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

- **Materials and methods** 122
- 123
- *Sampling* 124
- Samples of *Eunicella* spp. were collected by scuba diving in the Mediterranean Sea and 125

Atlantic Ocean (Figure 1; Table S1) with a particular focus on the area of Marseille, 126

- where our three focal species can be found in sympatry. Here, *E.cavolini* and *E.* 127
- *singularis* were sampled together at three sites (Maïre, Sormiou, Méjean) . *E. verrucosa* 128
- was sampled along with *E. cavolini* at one site (Somlit) located near Maïre. In three 129
- locations in Marseille, we also sampled *E. cavolini* at two depths (20 and 40 m) in order 130
- to test for species homogeneity along depths which correspond to different 131
- thermotolerance levels (Pivotto *et al* 2015). Colonies with morphologies intermediate 132
- between *E. cavolini* and *E. singularis* were also sampled at two sites in Marseille: 133
- Sormiou and Maïre (Figure S1). At the sampling depths of *E. singularis,* the *aphyta* 134
- morphotype (without *Symbiodinium*) is very rare, so all colonies were considered as 135
- symbiotic (Gori *et al* 2012). 136
- 137

Molecular analyses 138

- Total genomic DNA was extracted with the Qiagen DNeasy kit according to the manufacturer's instructions or with Macherey-Nagel's NucleoSpin kit on an epMotion 5075 VAC automated pipetting system (Eppendorf). We amplified the mitochondrial marker COI-igr1 with primers defined in McFadden *et al* (2011) on a subset of 37 individuals (Table S2). Two nuclear loci were amplified for all individuals. These markers were developed from transcriptome sequences obtained from *Paramuricea clavata* (Mokthar-Jamaï *et al* unpublished). The putative function of two genes was identified through a search in the Uniprot database: Ferritin (hereafter FER) and Apoptosis Induction Factor (hereafter AIF). Degenerate primers were defined by aligning these sequences with Metazoan sequences obtained from a Blast search in Genbank. We could then amplify specifically these genes in *Eunicella* spp. and we retained primer pairs allowing the amplification of introns (i.e. EPIC PCR). The PCR conditions for a 25 µL final volume and for all markers were: Promega PCR buffer 1X, MgCl2 2.5 mM, 0.25 mM of each dNTP, 0.5 µM of each primer, Flexigotaq polymerase (Promega) 0.625 U, and 2.5 µL of DNA. The PCR program was 5 min at 94°C, 30 cycles of [1 min at 94°C, 1 min at annealing temperature, 1 min at 72°C], and a final extension step of 10 min at 72°C. The primer sequences and annealing 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
- temperature for each marker and species are indicated in Table S3. For COI-igr1, PCR 156

products were directly sequenced. For EPIC markers the PCR products of four *E.* 157

- *cavolini* individuals were cloned with the pGEM®-T Easy Vector (Promega) according 158
- to the manufacturer's instructions, and ten clones were sequenced for each individual to 159
- check for the potential presence of paralogous loci. As there was no evidence of 160
- paralogous genes, two clones per individual and per population were sequenced as 161
- references. All other PCR products were directly sequenced. Sequencing was performed 162
- by Eurofins (Hamburg, Germany) and by Genoscope under the framework of the 163
- "Bibliothèque du Vivant" project. The sequences are available in Genbank under the 164
- following accession numbers: COI-igr1: KP190916 KP190919; AIF: KP190656 165
- KP190915; FER: KP190338 KP190655. 166
- 167

Sequence analyses 168

- The sequences were aligned in BioEdit (Hall 1999) with ClustalW (Thompson *et al* 169
- 1994). After direct sequencing the double sequences induced by indels at heterozygous 170
- state were discarded. Singleton mutations were discarded from the dataset as they may 171
- correspond to PCR or cloning errors (Faure *et al* 2007). For sequences heterozygous for 172
- more than one SNP, SeqPHASE and then Phase 2.1 were used to infer the 173
- corresponding haplotypes (Flot 2010; Stephens & Donnelly 2003; Stephens *et al* 2001). 174
- The final alignment was comprised of two sequences per individual for each marker. 175
- The alignments have been deposited in Dryad (doi:10.5061/dryad.495hk). 176
- 177
- DNAsp 5.10 (Librado & Rozas 2009) was used to compute the statistics describing the 178
- molecular polymorphism: nucleotide diversity (π) , haplotype diversity (Hd), number of 179
- segregating sites (S) and haplotype number (h). The average number of nucleotide 180
- substitutions per site between species Dxy (Nei 1987) was computed with DNAsp. 181
- 182

Genetic differentiation 183

- The pairwise genetic differentiation between species and between all samples was tested 184
- with permutation tests (n = 1000) on F_{ST} and Φ_{ST} (proportion of differences) with 185
- Arlequin 3.5 (Excoffier & Lischer 2010). An Analysis of Molecular Variance (AMOVA) 186
	- 6 6

was performed for each locus with Arlequin 3.5 using both F_{ST} and Φ_{ST} . The samples were grouped per species in order to study the genetic differentiation between and within species. 187 188 189

190

Phylogenetic trees and networks reconstructions and tests of evolutionary scenarios For phylogenetic and network reconstructions, indels were recoded with SeqState (Müller 2005) following the Simple Indel Coding method (Simmons & Ochoterena 2000). The relationships between sequences (after indel coding) were reconstructed with the split decomposition network approach implemented in SplitsTree 4 and the robustness of the groups was tested with 1000 bootstraps (Huson & Bryant 2006). As a complementary approach, phylogenies of FER and AIF were constructed separately with a maximum likelihood (ML) approach using PhyML 3.1 (Guindon *et al* 2010) and a Bayesian inference (BI) with MrBayes 3.2 (Ronquist & Huelsenbeck 2003). The evolution model used in PhyML was determined with JModelTest 2.1.4 (Darriba, *et al* 2012) according to the Akaike information criterion (AIC) and the evolution model used in MrBayes was determined by MrModelTest 2.3 (Nylander 2008) according to the AIC. For FER, the GTR+I+G model was chosen for both approaches, and for AIF, GTR+I was retained for Mr Bayes, whereas HKY+I+G was retained for PhyML. The robustness of the trees obtained with PhyML was tested with 500 bootstraps. For MrBayes, different run lengths were chosen for each marker to reach an average standard deviation below 0.01 and a stabilization of log likelihood as recommended in the MrBayes Manual. For FER the total run length was comprised of $20x10^6$ generations with a burn-in of $5x10^6$, and for AIF $5x10^6$ generations and a burn-in of $1.5x10⁶$. In both cases sampling was performed every 1000 generations. Trees were visualised and edited with FigTree v1.4.2 [\(http://tree.bio.ed.ac.uk/software/figtree/\)](http://tree.bio.ed.ac.uk/software/figtree/). For AIF two sequences of an heterozygous *E. gazella* individual from the Atlantic (Arrábida, Portugal) were used as an outgroup to root the tree. Because we did not succeed in obtaining FER sequences for *E. gazella*, the tree was rooted at the midpoint. 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

In order to study the evolutionary histories that might have produced the observed 217

relationships between species, we used an ABC approach (see Csilléry *et al* 2012 for an introduction to ABC). Based on the phylogenetic trees and the obtained levels of differentiation, we considered *E. singularis* and *E. cavolini* as sister species, and *E. verrucosa* as sister to these two species for all the evolutionary scenarios tested. Four scenarios were considered (Fig. S2): 1) divergence without gene flow (Strict Isolation: SI); 2) divergence with gene flow (or Isolation / Migration: IM); 3) ancestral gene flow followed by isolation (or Ancestral Migration: AM); and 4) divergence and isolation followed by Secondary Contact (SC). The simulations ($n = 100000$ per scenario) and computations of summary statistics were performed with ABCsampler in ABCtoolbox (Wegmann *et al* 2010). The prior distributions of the parameters and the observed summary statistics are detailed in Tables S4 and S5. We used the R package abc (Csilléry *et al* 2012) to estimate which scenario best fitted to the observed summary statistics. First, a cross-validation procedure was performed to test if the simulations and statistics could indeed distinguish the different scenarios. Then the posterior probabilities of each model and their ratios (the Bayes factors) were computed. Crossvalidation and posterior probabilities were computed with a multinomial logistic regression method. A goodness of fit procedure was used to test the fit of the models to the observed data. Finally, parameters were inferred with the neural network procedure implemented in the R package abc. 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

237

Results 238

239

Genetic polymorphism 240

We obtained mitochondrial COI-igr1 sequences for 37 individuals: 19 *E. cavolini*, 14 *E.* 241

singularis, 4 *E. verrucosa* (Table S2) with a 820 bp alignment. No polymorphism or 242

difference between species was observed. Hence no further analysis was pursued with 243

this marker. 244

The final alignment for the nuclear markers FER and AIF were 638 bp and 720 bp long 245

respectively. The statistics describing the levels of polymorphism for each marker and at 246

the population and species levels are presented in Table S1. The sample sizes varied 247

because of different frequencies of overlapping sequences obtained after direct 248

- sequencing for each marker and population. With FER we obtained 9 haplotypes for *E.* 249
- *singularis* and *E. verrucosa*, and (64 haplotypes for *E. cavolini* . With AIF we obtained 250
- 6 haplotypes for *.E. singularis*, 19 haplotypes for *E. verrucosa*, and 43 haplotypes for *E.* 251
- *cavolini*. Inside species, the FER haplotype diversity ranged between 0.4 and 1 for *E.* 252
- *cavolini*, between 0.39 and 0.89 for *E. singularis* and between 0 and 0.96 for *E.* 253
- *verrucosa*. With AIF the ranges of diversity were: 0,5-1 for *E. cavolini*, 0.36-0.68 for *E.* 254
- *singularis*, and 0-0.9 for *E. verrucosa*. 255
- 256

Relationships between species 257

The network reconstructed with AIF sequences (Fig. 2A) separated sequences of *E.* 258

- *verrucosa* and *E. gazella* on one side, and *E. cavolini* and *E. singularis* on the other. 259
- Reticulation was observed for internal relationships among *E. verrucosa* and *E. gazella* 260
- sequences. The sequences of *E. cavolini* and *E. singularis* were intermixed, and did not 261
- form two separate groups. The intermixing of sequences from these two species was 262
- supported by high bootstrap values. The network reconstructed with FER sequences 263
- (Fig. 2B) also did not separate *E. cavolini* and *E. singularis* in different groups, with 264
- some *E. verrucosa* sequences from Marseille and the Atlantic mixing with sequences 265
- from these two species. An internal reticulation suggested different relationships 266
- between the main groups but none supported a separation between the three species. 267
- The Bayesian and ML approaches confirmed the polyphyletic relationships between *E.* 268
- *singularis* and *E. cavolini* (Fig. S3). *Eunicella verrucosa* appeared paraphyletic with 269
- AIF and polyphyletic with FER. The internal relationships were well supported which 270
- contrasted with the reticulation observed in the network. 271
- 272

Differentiation between species 273

- The Φ_{ST} between species varied between 0.41 and 0.80 for AIF and between 0.22 and 274
- 0.80 for FER (Table 1a,b). All F_{ST} and Φ_{ST} between species were significantly different 275
- from zero. The genetic differentiation was lower between *E. cavolini* and *E. singularis* 276
- than with *E. verrucosa*. Nevertheless the F_{ST} computed with AIF indicated a closer 277
- relationship between *E. singularis* and *E. verrucosa* than with *E. cavolini*. For sites 278
- where two species were sampled, most comparisons between species were also 279

- significant, but small sample sizes could explain non-significant tests (Table S6 and 280
- S7). The results of the AMOVA confirmed the differentiation between species with 281
- significant values of Φ_{CT} (0.69 for AIF and 0.55 for FER; Table S8). The Nei's genetic 282
- distance Dxy was much lower between *E. cavolini* and *E. singularis* than between *E.* 283
- *verrucosa* and the two other species (Table 2c). 284
- Three and four haplotypes were shared between *E. cavolini* and *E. singularis* with AIF 285
- and FER respectively (Table S9). For AIF, the shared haplotypes were observed at 286
- frequencies varying from 0.21 to 0.47 in *E. singularis* and at frequencies around 0.01 in 287
- *E. cavolini*. In *E. cavolini*, the shared haplotypes were observed only in the area of 288
- Marseille. For AIF, one individual identified as *E. cavolini* from Marseille was 289
- heterozygous for two haplotypes otherwise observed in *E. singularis*. This was not 290
- observed for FER, where the haplotypes of this individual were characteristic of *E.* 291
- *cavolini* haplotypes. This individual displayed a rarely observed pink color (Fig. S1). 292
- Two individuals identified as *E. cavolini* were heterozygous for one *E. cavolini* and one 293
- *E. singularis* AIF haplotypes (according to the respective frequencies of these 294
- haplotypes). Their morphology did not appear different from other *E. cavolini* 295
- individuals. We did not obtain any FER sequence for these individuals. 296
- For FER the shared haplotypes were observed at frequencies varying from 0.02 to 0.63 297
- in *E. singularis* and from 0.004 to 0.44 in *E. cavolini* (Table S9). In *E. cavolini* the 298
- shared haplotypes were observed in the area of Marseille, three in Corsica, one in 299
- Turkey, and one in Algeria. Three individuals from Marseille identified as potential *E.* 300
- *singularis* were heterozygous for one *E. cavolini* haplotype and one *E. singularis* 301
- haplotype (according to the respective frequencies of these haplotypes). They were all 302
- observed at the Sormiou Figuier site (Marseille) and had a faint yellow color found in 303
- *E. cavolini*. We did not get any AIF sequence for these individuals. 304
- 305
- Before choosing a model with ABC we first tested, with the cross-validation, if we were able to discriminate the models: the majority of simulations led to the choice of the right 306 307
- model but with a better distinction of SI and IM than for SC and AM (Table 2a). The 308
- test of goodness of fit indicated for the four models that the simulations agreed with the 309
- observed statistics (data not shown). The highest posterior probability was obtained for 310
	- 10 10

the SC model (table 2b). The Bayes factors for the comparison of this model with the 311

three other ones were all greater than five, indicating a strong support for secondary 312

contact (Tables 2c). We estimated the parameters corresponding to the SC scenario: 313

- effective sizes, divergence times, migration and mutation rates. The tests of cross 314
- validation (data not shown) and the flat posterior histograms indicated a lack of 315
- information for a precise estimate of the parameters (Table S10 and Fig. S4). 316
- Nevertheless, one can note that the posterior distribution of the time of secondary 317
- contact (t1) appeared skewed towards the lower bound of the prior, suggesting recent 318
- gene flow. The migration rates seemed lower between *E. verrucosa* and the two other 319
- species (parameters m13 and m23) than between *E. cavolini* and *E. singularis* 320
- (parameter m12) but the distribution remained wide (Fig. S4). 321
- 322
- *Genetic differentiation in* E. cavolini 323
- For AIF and FER, the pairwise F_{ST} and Φ_{ST} between samples of *E. cavolini* indicated 324
- that the highest differentiation was observed between samples from the Marmara Sea 325
- and all other samples (Tables S6 and S7). At a local scale, near Marseille, a significant 326
- differentiation was observed between individuals sampled at 20 m and 40 m depths with 327
- F_{ST} for FER (pairwise F_{ST} varying from 0.07 to 0.20), but not AIF (pairwise F_{ST} varying 328
- from -0.03 to 0.07), for the three site where we tested it (Veyron, Riou and Méjean). 329
- There was no clear separation of sequences according to geography or depth in the 330
- networks nor in the trees. For example sequences from Eastern (Turkey) and Western 331
- (Marseille, Corsica) Mediterranean were mixed together and usually displayed few 332
- differences. 333
- 334

Discussion 335

- 336
- *Species relationships and history* 337
- Mitochondrial data did not indicate any difference between the three *Eunicella* species, 338
- with three markers: mtMutS, COI and COI-igr1 (Calderón *et al* 2006; Gori *et al* 2012; 339
- our results). The lack of polymorphism of mitochondrial DNA is well known in 340
- octocorals (Calderón *et al* 2006; Shearer *et al* 2002). The proposed extended barcoding 341
	- 11 11

(combination of COI-igr1 and mtMutS; McFadden *et al* 2011) did not distinguish *Eunicella* species. Nuclear markers can be more efficient in resolving octocoral phylogeny or delimiting species than mitochondrial ones (Concepcion *et al* 2008; Pante *et al* 2015a; Pratlong *et al* 2016). Here nuclear markers indicated a significant differentiation with incomplete phylogenetic separation of the three *Eunicella* species, as observed with ITS1 and 2 as well (Calderón *et al* 2006; Costantini *et al* 2016). However only a few haplotypes were shared between species, and only between *E. cavolini* and *E. singularis*: this resulted in a significant AMOVA outcome which indicated higher differentiation between species than within species. Inside species neither long distance isolation nor depth differences corresponded to deep genetic lineages. Different scenarios can be considered to explain the lack of monophyly despite a significant differentiation, such as a recent divergence with incomplete lineage sorting, or current or past interspecific gene flow following allopatric isolation. The high levels of diversity observed with EPICs suggests that homoplasy could blur the phylogenetic signal as well. Nevertheless several well supported internal nodes suggested the non monophyly of the three species. Concerning ITS one can note that non monophyly can also be the consequence of a lack of concerted evolution or of hybridization (Calderón *et al* 2006; Vollmer & Palumbi 2004). 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

In the present study the best scenario, according to ABC, was secondary contact. The models with gene flow (apart from the IM model) were all better supported than strict isolation: this indicates that incomplete lineage sorting alone could not explain our results. The cross validation analysis, based on simulated data, indicates that with two loci we can separate the main scenarios but the distinction was less clear between SC and AM and the possibility of current gene flow would require additional studies. Recent transcriptome analyses on *E. cavolini* and *E. verrucosa* support current 360 361 362 363 364 365 366

367

introgression at least between these two species (Roux *et al* 2016). Using two markers

can also be misleading as the inter-specific migration rate can be very different between 368

loci (Roux *et al* 2016), which can not be studied here. Gene flow following secondary 369

contact has been demonstrated even between well differentiated species (Roux *et al* 370

2013, 2016; Tine *et al* 2014). Other more specific scenarios, including partial (i.e. only 371

between two species) or asymmetric gene flow, could be tested, but this would require 372

- more markers to get enough information. Finally the reduced number of markers is 373
- probably a factor preventing precise estimate of the parameters with ABC. 374
- Both the F_{ST} 's and networks indicated a closer relationship between the two 375
- Mediterranean species (*E. cavolini* and *E. singularis*) than with the Atlantic-376
- Mediterranean one (*E. verrucosa*). *Eunicella verrucosa* does not show a deep Atlantic 377
- Mediterranean genetic break with the markers used here and with microsatellites 378
- (Holland 2013). This could indicate a relatively recent colonization of the 379
- Mediterranean by *E. verrucosa*, which might explain its more distant relationships with 380
- *E. singularis* and *E. cavolini*. Concerning *E. singularis* and *E. cavolini*, their initial 381
- divergence could have been linked to different Quaternary glacial refugia whose 382
- locations remain to be studied. Estimating the parameters of this evolutionary history is also interesting. Nevertheless, the flat posterior distributions were not helpful and only 383 384
- suggested a recent occurrence of gene flow for our markers. 385
- 386

Potential factors of isolation 387

For most colonies, the morphological characteristics, such as colony shape, color and sclerites made it possible to separate these species (Carpine & Grasshoff 1975; Gori *et al* 2012). For marine species with larval dispersal, efficient isolation mechanisms are required to maintain the integrity of the different genomes (Bierne *et al* 2002). Here, the persistence of differentiated phenotypes in sympatry suggests that reproductive barriers, either genetic or ecological, are efficient at preventing genetic homogenization despite the possibility of past or current sporadic gene flow. *Eunicella singularis* is found on rocky substrata ranging less than 10 m to more than 60 m, where it can be observed without photosynthetic *Symbiodinium* (Gori *et al* 2011, 2012). The depth range of *E. cavolini* is wider, from less than 10 m to over 220 m (Sini *et al* 2015). Therefore, although different responses to thermal stress have been demonstrated between *E. singularis* and *E. cavolini* (Pivotto *et al* 2015), ecological differences alone do not seem sufficient here to explain the limits to gene flow. Genetic isolation could be the main factor at stake here, and it would be interesting to test the possibility of current hybridization. A few individuals analysed in this study could be hybrids between *E. cavolini* and *E. singularis,* but data from two loci are not sufficient to draw conclusions. 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

Experimental crossing would be a complementary and direct test of hybridization (e.g. Isomura *et al* 2013). 404 405

Of particular interest is the potential link between speciation and symbiosis with *Symbiodinium*. We demonstrated here the close proximity between symbiotic (shallow *E. singularis*) and non symbiotic (*E. cavolini* and *E. verrucosa*) octocoral species with the possibility of gene flow between them. This demonstrates the possibility of changes in symbiotic interactions on short evolutionary timescales. The diversity of metazoans interacting with *Symbiodinium,* as well as the possibility of shift in *Symbiodinium* types observed in corals, illustrate the evolutionary flexibility of such associations (Baker 2003; Venn *et al* 2008). Conversely, the symbiotic state could contribute to reproductive isolation, and symbiosis has been proposed as a speciation factor in other contexts (Brucker & Bordenstein 2012). Here the genetic interactions with *Symbiodinium* and the associated physiological constraint can be the basis of an important constraint to introgression. 406 407 408 409 410 411 412 413 414 415 416 417

418

Geographical or ecological isolation in E. cavolini? 419

The second goal of our study was to test if geographical or ecological isolation could correspond to cryptic lineages in *E. cavolini*. We observed a significant differentiation between distant samples, but this did not correspond to deep phylogeographic break. In line with the incomplete lineage sorting among taxa, haplotypes from distant locations in *E. cavolini* were mixed together on the networks. This lack of deep phylogeographic differentiation has also been observed in the Mediterranean red coral (Aurelle *et al* 2011) despite a clear regional structure (Ledoux *et al* 2010). Such pattern could be explained by sporadic gene flow between long-distance locations which would maintain the evolutionary cohesion of these species. A recent isolation along with low genetic drift could slow down the evolution of well separated lineages (Knowles & Carstens 2007). At a local scale in *E. cavolini*, we did not observe any differentiation along 420 421 422 423 424 425 426 427 428 429 430

439

431

Conclusion 440

Our results revealed complex phylogenetic relationships among the three *Eunicella* species, which was not visible with mitochondrial markers. Accordingly these species are in the grey zone of speciation and correspond to semi-isolated genetic backgrounds (Roux et al., 2016). We did not identify a clear link between genetic differentiation and ecological differences. Even if this last point would require more dedicated studies, the observation of mixed populations of these species in the same sites stresses the role of endogenous (i.e. genetic) barriers to gene flow. It will be interesting to study more locations in order to infer the evolutionary history of the genus and potentially to identify different glacial refugia which may help understanding a potential allopatric speciation scenario. The development of population genomic approaches will then be necessary for i) studying the patterns of genomic differentiation and introgression, ii) testing the link between symbiosis and speciation, iii) testing for the presence of genetic x environment associations linked to thermal regime. This last point is important to 441 442 443 444 445 446 447 448 449 450 451 452 453

- better understand how these species can live in very different thermal conditions. Apart
- from its fundamental interest this last question would be useful to study the potential
- response of these ecologically important species to climate change.

Acknowledgments 458

We acknowledge the staff of the diving service of the Pythéas Institute for sampling. We acknowledge M. Libes and C. Yohia from the informatic service of the Pythéas Institute and Katalin Csilléry for her advice with ABC. We thank P. Hammami for the DNA extractions. We especially thank Alvaro Altuna and José Aldrey for the *Eunicella verrucosa* samples from Atlantic. Part of the sequencing was completed thanks to the Bibliothèque du Vivant project [\(http://bdv.ups-tlse.fr/index.php\)](http://bdv.ups-tlse.fr/index.php). We thank Aurélie Blanfuné Thibault for the maps, Frédéric Zuberer for the pictures of *Eunicella* colonies, and Nicolas Bierne and François Bonhomme for stimulating discussions. We thank Abigail E. Cahill for the correction of the manuscript. We acknowledge the technical support of the molecular biology service of the IMBE. M. Malfant was funded by the French National Research Agency (ANR) program Adacni (ANR n° ANR-12-ADAP0016; [http://adacni.imbe.fr\)](http://adacni.imbe.fr/). I.D. Pivotto was funded by a grant from the CNRS. The Algeria – France collaboration was supported by a Hubert Curien "Tassili" program (n° 12MDU853). R.Castilho and M. Coelho were funded by CCMAR Strategic Plan (PEst-C/MAR/LA0015/2011 and UID/Multi/04326/2013) from Fundação para a Ciência e a Tecnologia - FCT (partially FEDER funded). 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

475

476

477

References 478

Aurelle, D., Ledoux, J.-B., Rocher, C., Borsa, P., Chenuil, A. & Féral, J.-P. (2011). Phylogeography of the red coral (*Corallium rubrum*): inferences on the

evolutionary history of a temperate gorgonian. *Genetica*, 139, 855-869. http://doi.org/10.1007/s10709-011-9589-6

- Baker, A. C. (2003). Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of *Symbiodinium*. *Annual Review of Ecology, Evolution, and Systematics*, 34, 661-689.
- Beaumont, M. A. (2010). Approximate Bayesian computation in evolution and ecology. *Annual Review of Ecology, Evolution, and Systematics*, 41, 379-406.
- Bierne, N., David, P., Boudry, P. & Bonhomme, F. (2002). Assortative fertilization and selection at larval stage in the mussels *Mytilus edulis* and *M. galloprovincialis*. *Evolution*, 56(2), 292-298.
- Bierne, N., Gagnaire, P.-A. & David, P. (2013). The geography of introgression in a patchy environment and the thorn in the side of ecological speciation. *Current Zoology*, 59(1), 72-86.
- Boulay, J. N., Hellberg, M. E., Cortés, J. & Baums, I. B. (2014). Unrecognized coral species diversity masks differences in functional ecology. *Proceedings of the Royal Society B: Biological Sciences*, 281(1776), 20131580.
- Brucker, R. M. & Bordenstein, S. R. (2012). Speciation by symbiosis. *Trends in ecology & evolution*, 27(8), 443-451.
- Calderón, I., Garrabou, J. & Aurelle, D. (2006). Evaluation of the utility of COI and ITS markers as tools for population genetic studies of temperate gorgonians. *Journal of Experimental Marine Biology and Ecology*, 336, 184-197.
- Carpine, C. & Grasshoff, M. (1975). *Les gorgonaires de la Méditerranée. Bulletin de l'Institut océanographique* 71(1430), 2-137.
- Concepcion, G. T., Crepeau, M. W., Wagner, D., Kahng, S. E. & Toonen, R. J. (2008). An alternative to ITS, a hypervariable, single-copy nuclear intron in corals, and its use in detecting cryptic species within the octocoral genus Carijoa. *Coral*

Reefs, 27(2), 323-336.

- Costantini, F., Fauvelot, C. & Abbiati, M. (2007). Genetic structuring of the temperate gorgonian coral (*Corallium rubrum*) across the western Mediterranean Sea revealed by microsatellites and nuclear sequences. *Molecular Ecology*, 16*,* 5168-5182.
- Costantini, F., Gori, A., Lopez-González, P., Bramanti, L., Rossi, S., Gili, J.-M. & Abbiati, M. (2016). Limited Genetic Connectivity between Gorgonian Morphotypes along a Depth Gradient. *PLoS ONE*, 11(8), e0160678. http://doi.org/10.1371/journal.pone.0160678
- Csilléry, K., François, O. & Blum, M. G. B. (2012). abc: an R package for approximate Bayesian computation (ABC). *Methods in Ecology and Evolution*, 3(3), 475-479. http://doi.org/10.1111/j.2041-210X.2011.00179.x
- Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. *Nature methods*, 9(8), 772-772.
- Darwin, C. (1859). *On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life*. Murray, London.
- Excoffier, L. & Lischer, H. E. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. *Molecular ecology resources*, 10(3), 564-567.
- Faure, B., Bierne, N., Tanguy, A., Bonhomme, F. & Jollivet, D. (2007). Evidence for a slightly deleterious effect of intron polymorphisms at the EFA gene in the deepsea hydrothermal vent bivalve *Bathymodiolus*. *Gene*, 406(1), 99-107.
- Feder, J. L., Egan, S. P. & Nosil, P. (2012). The genomics of speciation-with-gene-flow. *Trends in Genetics*, *28*(7), 342-350.
- Ferrier-Pagès, C., Tambutté, E., Zamoum, T., Segonds, N., Merle, P.-L., Bensoussan, N., Allemand, D., Garrabou, J. & Tambutté, S. (2009). Physiological response of the

symbiotic gorgonian *Eunicella singularis* to a long-term temperature increase. *Journal of Experimental Biology*, 212(18), 3007-3015. http://doi.org/10.1242/jeb.031823

- Flot, J. (2010). SeqPHASE: a web tool for interconverting PHASE input/output files and FASTA sequence alignments. *Molecular Ecology Resources*, 10(1), 162-166.
- Garrabou, J., Coma, R., Bensoussan, N., Bally, M., Chevaldonné, P., Cigliano, M., Diaz, D., Harmelin, J.G., Gambi, M.C., Kersting, D.K., Ledoux, J.B., Lejeusne, C., Linares, C., Marschal, C., Pérez, T., Ribes, M., Romano, J.-C., Serrano, C. Teixido, N., Torrents, O., Zabala, M., Zuberer, F. & Cerrano, C. (2009). Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. *Global Change Biology*, 15(5), 1090-1103. http://doi.org/10.1111/j.1365-2486.2008.01823.x
- Gori, A., Bramanti, L., López-González, P., Thoma, J. N., Gili, J.-M., Grinyó, J., Uceira, V. & Rossi, S. (2012). Characterization of the zooxanthellate and azooxanthellate morphotypes of the Mediterranean gorgonian *Eunicella singularis*. *Marine biology*, 159(7), 1485-1496.
- Gori, A., Rossi, S., Berganzo, E., Pretus, J. L., Dale, M. R. & Gili, J.-M. (2011). Spatial distribution patterns of the gorgonians Eunicella singularis, Paramuricea clavata, and Leptogorgia sarmentosa (Cape of Creus, Northwestern Mediterranean Sea). *Marine biology*, 158(1), 143-158.
- Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic acids symposium series*, 41, 95-98.
- Hey, J. (2010). Isolation with Migration Models for More Than Two Populations. *Molecular Biology and Evolution*, 27(4), 905-920.

²⁰ 20

http://doi.org/10.1093/molbev/msp296

- Hey, J. & Pinho, C. (2012). Population genetics and objectivity in species diagnosis. *Evolution*, 66(5), 1413-1429.
- Hoegh-Guldberg, O. (2014). Coral reef sustainability through adaptation: glimmer of hope or persistent mirage? *Current Opinion in Environmental Sustainability*, 7, 127-133.
- Holland, L. P. (2013). Genetic assessment of connectivity in the temperate octocorals *Eunicella verrucosa* and *Alcyonium digitatum* in the NE Atlantic. Doctoral dissertation, University of Exeter. UK.
- Huson, D. H. & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. *Molecular biology and evolution*, 23(2), 254-267.
- Isomura, N., Iwao, K. & Fukami, H. (2013). Possible natural hybridization of two morphologically distinct species of *Acropora* (Cnidaria, Scleractinia) in the Pacific: fertilization and larval survival rates. *PloS one*, 8(2), e56701.
- Knowles, L. L. & Carstens, B. C. (2007). Delimiting species without monophyletic gene trees. *Systematic biology*, 56(6), 887-895.
- Ledoux, J.-B., Mokhtar-Jamaï, K., Roby, C., Féral, J.-P., Garrabou, J. & Aurelle, D. (2010). Genetic survey of shallow populations of the Mediterranean red coral [*Corallium rubrum* (Linnaeus, 1758)]: new insights into evolutionary processes shaping nuclear diversity and implications for conservation. *Molecular Ecology*, 19(4), 675-690. http://doi.org/10.1111/j.1365-294X.2009.04516.x
- Librado, P. & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics*, 25(11), 1451-1452.
- Marti-Puig, P., Forsman, Z. H., Haverkort-Yeh, R. D., Knapp, I. S., Maragos, J. E. & Toonen, R. J. (2014). Extreme phenotypic polymorphism in the coral genus Pocillopora; micro-morphology corresponds to mitochondrial groups, while

colony morphology does not. *Bulletin of Marine Science*, 90(1), 211-231. http://doi.org/10.5343/bms.2012.1080

- McFadden, C., Benayahu, Y., Pante, E., Thoma, J. N., Nevarez, P. A. & France, S. C. (2011). Limitations of mitochondrial gene barcoding in Octocorallia. *Molecular Ecology Resources*, 11(1), 19-31. http://doi.org/10.1111/j.1755- 0998.2010.02875.x
- Mcfadden, C. S. & Hutchinson, M. B. (2004). Molecular evidence for the hybrid origin of species in the soft coral genus *Alcyonium* (Cnidaria: Anthozoa: Octocorallia). *Molecular Ecology*, 13(6), 1495-1505.
- McFadden, C. S., Sánchez, J. A. & France, S. C. (2010). Molecular Phylogenetic Insights into the Evolution of Octocorallia: A Review. *Integrative and Comparative Biology*, 50(3), 389-410. http://doi.org/10.1093/icb/icq056
- Müller, K. (2005). SeqState. *Applied bioinformatics*, 4(1), 65-69.
- Nei, M. (1987). *Molecular evolutionary genetics*. Columbia university press.
- Nosil, P., Harmon, L. J. & Seehausen, O. (2009). Ecological explanations for (incomplete) speciation. *Trends in Ecology & Evolution*, 24(3), 145-156.
- Nylander, J. (2008). MrModeltest 2.3. Uppsala, Department of Systematic Zoology, Uppsala University.
- Pante, E., Abdelkrim, J., Viricel, A., Gey, D., France, S., Boisselier, M.-C. & Samadi, S. (2015a). Use of RAD sequencing for delimiting species. *Heredity*, 114(5), 450-459.
- Pante, E., Puillandre, N., Viricel, A., Arnaud-Haond, S., Aurelle, D., Castelin, M., Chenuil, A., Destombes, C., Forcioli, D., Valero, M., Viard, F., Samadi, S. (2015b). Species are hypotheses: avoid connectivity assessments based on pillars of sand. *Molecular ecology*, 24(3), 525-544.
- Pey, A., Catanéo, J., Forcioli, D., Merle, P.-L. & Furla, P. (2013). Thermal threshold and

²² 22

sensitivity of the only symbiotic Mediterranean gorgonian *Eunicella singularis* by morphometric and genotypic analyses. *Comptes Rendus Biologies*, 336(7), 331-341. http://doi.org/10.1016/j.crvi.2013.06.008

- Pivotto, I. D., Nerini, D., Masmoudi, M., Kara, H., Chaoui, L. & Aurelle, D. (2015). Highly contrasted responses of Mediterranean octocorals to climate change along a depth gradient. *Royal Society Open Science*, 2(5). http://doi.org/10.1098/rsos.140493
- Prada, C. & Hellberg, M. E. (2013). Long prereproductive selection and divergence by depth in a Caribbean candelabrum coral. *Proceedings of the National Academy of Sciences*, 110(10), 3961-3966.
- Prada, C., McIlroy, S. E., Beltrán, D. M., Valint, D. J., Ford, S. A., Hellberg, M. E. & Coffroth, M. A. (2014). Cryptic diversity hides host and habitat specialization In a gorgonian-algal symbiosis. *Molecular ecology*, 23(13), 3330-3340.
- Pratlong, M., Haguenauer, A., Chabrol, O., Klopp, C., Pontarotti, P. & Aurelle, D. (2015). The red coral (*Corallium rubrum*) transcriptome: a new resource for population genetics and local adaptation studies. *Molecular ecology resources*, 15(5), 1205-1215.
- Pratlong, M., Rancurel, C., Pontarotti, P. & Aurelle, D. (2016, in press). Monophyly of Anthozoa (Cnidaria): why do nuclear and mitochondrial phylogenies disagree? *Zoologica Scripta*.
- Rieseberg, L. H., Raymond, O., Rosenthal, D. M., Lai, Z., Livingstone, K., Nakazato, T., Durphy, J.L., Schwarzbach, A.E., Donovan, L.A. & Lexer, C. (2003). Major ecological transitions in wild sunflowers facilitated by hybridization. *Science*, 301(5637), 1211-1216.
- Ronquist, F. & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics*, 19(12), 1572-1574.

http://doi.org/10.1093/bioinformatics/btg180

- Roux, C., Tsagkogeorga, G., Bierne, N. & Galtier, N. (2013). Crossing the Species Barrier: Genomic Hotspots of Introgression between Two Highly Divergent Ciona intestinalis Species. *Molecular Biology and Evolution*, 30(7), 1574-1587. http://doi.org/10.1093/molbev/mst066
- Roux, C., Fraïsse, C., Romiguier, J., Anciaux, Y., Galtier, N. & Bierne, N. (2016) Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence. *PLOS Biology* ,14(12), e2000234. doi: 10.1371/journal.pbio.2000234
- Roy, L., Bon, M., Cesarini, C., Serin, J. & Bonato, O. (2016). Pinpointing the level of isolation between two cryptic species sharing the same microhabitat: a case study with a scarabaeid species complex. *Zoologica Scripta*, 45, 407-420.
- Sanchez, J., Aguilar, C., Dorado, D. & Manrique, N. (2007). Phenotypic plasticity and morphological integration in a marine modular invertebrate. *BMC Evolutionary Biology*, 7(1), 122.
- Shearer, T. L., van Oppen, M. J., Romano, S. L. & Worheide, G. (2002). Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). *Mol Ecol*, 11(12), 2475-2487.
- Simmons, M. P. & Ochoterena, H. (2000). Gaps as characters in sequence-based phylogenetic analyses. *Systematic biology*, 49(2), 369-381.
- Sini, M., Kipson, S., Linares, C., Koutsoubas, D. & Garrabou, J. (2015). The Yellow Gorgonian Eunicella cavolini: Demography and Disturbance Levels across the Mediterranean Sea. *PLoS ONE*, 10(5), e0126253. http://doi.org/10.1371/journal.pone.0126253
- Stephens, M. & Donnelly, P. (2003). A comparison of bayesian methods for haplotype reconstruction from population genotype data. *The American Journal of Human*

Genetics, 73(5), 1162-1169.

- Stephens, M., Smith, N. J. & Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. *The American Journal of Human Genetics*, 68(4), 978-989.
- Thomas, L., Kendrick, G., Stat, M., Travaille, K., Shedrawi, G. & Kennington, W. (2014). Population genetic structure of the *Pocillopora damicornis* morphospecies along Ningaloo Reef, Western Australia. *Marine Ecology Progress Series*, 513, 111-119.
- Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic acids research*, 22(22), 4673-4680.
- Tine, M., Kuhl, H., Gagnaire, P.-A., Louro, B., Desmarais, E., Martins, R. S., Hecht, J., Knaust, F., Belkhir, K., Klages, S., Dieterich, R., Stueber, K., Piferrer, F., Guinand, B., Bierne, N., Volckaert, F.A.M., Bargelloni, L., Power, D.M., Bonhomme, F., Canario, A.V.M. & Reinhardt, R. (2014). European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. *Nature communications*, 5.
- Venn, A., Loram, J. & Douglas, A. (2008). Photosynthetic symbioses in animals. *Journal of Experimental Botany*, 59(5), 1069-1080.
- Vollmer, S. & Palumbi, S. R. (2004). Testing the utility of internally transcribed spacer sequences in coral phylogenetics. *Molecular Ecology*, 13(9), 2763-2772.
- Wegmann, D., Leuenberger, C., Neuenschwander, S. & Excoffier, L. (2010). ABCtoolbox: a versatile toolkit for approximate Bayesian computations. *BMC bioinformatics*, 11(1), 116.

Wirshing, H. H. & Baker, A. C. (2015). Molecular and Morphological Species

Boundaries in the Gorgonian Octocoral Genus *Pterogorgia* (Octocorallia: Gorgoniidae). *PloS one*, 10(7), e0133517.

Titles and legends to figures:

Figure 1. Map of the sampling sites for the three *Eunicella* species. The symbols indicate the different species sampled for each site. *Eunicella* spp. indicates that two or three species were sampled at the same site (see Table S1 for details).

479

480

Figure 2. Split decomposition networks for the nuclear markers Apoptosis Induction Factor (AIF; A) and Ferritin (FER; B). The percentage of bootstraps support is indicated for values higher than 80% (based on 1000 bootstraps). The colors indicate the corresponding species: blue: *E. cavolini* (EC), red: *E. singularis* (ES), green: *E. verrucosa* (EV)*,* purple *E. gazella* (EG). Numbers in parentheses indicate the number of sequences obtained for each species. See Table S1 for population codes. Red stars indicate shared sequences between *E. cavolini* and *E. singularis*; for FER, four sequence types were shared but their low divergence doesn't allow to clearly separate them on the figure. 481 482 483 484 485 486 487 488 489

- Table 1 : pairwise genetic differentiation between species estimated with Φ_{ST} (below diagonal) and F_{ST} (above diagonal) for AIF (2a) and FER (2b). All values are significant with permutation tests ($n = 1000$). 2c: differentiation estimated with the average number of nucleotide substitutions per site between populations Dxy. Above diagonal: FER, below diagonal AIF. 494 495 496 497 498
- 499
- a) AIF $\frac{15}{500}$

507

Table 2 : results of model choice with ABC. The tested models were Strict Isolation 508

(SI), Isolation Migration (IM), Secondary Contact (SC), Ancestral Migration (AM). See 509

main text and Supplementary Material for descriptions of the models. a) results of the 510

cross validation procedure using 100 samples and tolerance of 0.1. Each line indicates 511

for the corresponding model the mean posterior probability of the four different models. 512

- b) posterior probabilities for each model. c) Bayes factors for the models considered on each line compared to models indicated in column. 513
- 514
- 515 516

