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Abstract 19 
 20 

Of the many techniques tested to date to rehabilitate degraded ecosystems, topsoil transfer 21 
appears to offer the best results. However, this method is recent, and results achieved in 22 

the short term (months to years) may not provide a sound indication of long-term 23 
vegetation reestablishment. In the plain of La Crau in southeastern France, many dry 24 
alluvial quarries were exploited in the 1970s -1980s and are nearly all now abandoned. 25 

Various topsoil transfers were performed when operations ceased, for various 26 

rehabilitation purposes (aesthetic, security, agricultural, etc.) and now provide the 27 

opportunity to test their efficacy in the 30-year long-term. We used an ecological analysis 28 
of plant communities and soil carried out in 2015 to compare the reference ecosystem 29 

(the steppe of La Crau, positive control) with un-rehabilitated quarry pits (negative 30 
control) and with four different rehabilitation treatments: (1) soil transfer (40 cm) with no 31 
contact with the water table; (2) soil transfer (40 cm) in contact with the water table; (3) 32 
more than 40 cm of soil transfer and (4) anthropogenic material deposits (spoils) unrelated 33 

to the characteristics of the reference soil. Our results show that the treatment most 34 
favorable to restoration of the species richness, diversity and composition of the steppe 35 
vegetation is transferring soil with fine particles (clay, silt) (treatment 1), at least 40 cm 36 
thick and without contact with groundwater. However, even after thirty years, and the re-37 
establishment of traditional sheep grazing, full restoration of the reference steppe is far 38 

from being achieved. The other treatments lead to the emergence of hybrid or novel 39 

ecosystems, such as temporary ponds, riparian woodlands or matorrals with new variables 40 

and common variables to the historical ecosystem. Additional techniques to enhance the 41 

effectiveness of topsoil transfer are discussed. 42 

 43 
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1. Introduction 46 
The constant acceleration of urbanization and industrialization worldwide, with 47 

the ensuing demand for mineral resources, means that newly-created quarries have largely 48 
destroyed many natural ecosystems (Wang et al., 2011). Quarrying results in significant 49 
visual and ecological impacts (Simón-Torres et al., 2014), not all of which have been 50 
identified yet (El-Taher et al., 2016). Quarrying causes drastic alterations. It destroys flora 51 

and fauna, thereby reducing biodiversity and disrupting fundamental ecological 52 
relationships. Moreover, it extensively damages soil by modifying the original site 53 
topography and depleting and altering soil microbial communities (Corbett et al., 1996; 54 
Pinto et al., 2001; Milgrom, 2008; Mouflis et al., 2008; Simón-Torres et al., 2014). Other 55 
impacts identified at regional level include nuisance to local residents, with dust, noise 56 

pollution and ground vibrations when topsoil is dug up with heavy machinery (Mohamed 57 
and Mohamed, 2013; Dontala et al., 2015). Quarrying can also cause chemical 58 

contamination of groundwater by increasingly hazardous materials (Misra, 2013; Dontala 59 

et al., 2015). 60 
 61 

Today, many countries have legislation requiring mining and quarrying 62 
companies to implement ecological restoration after closure (DITR, 2005; UNEP et al., 63 

2005; European Parliament, 2014). Ecological restoration sensu lato is the process of 64 
assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed 65 

(SER, Society for Ecological Restoration International, Science & Policy Working 66 
Group, 2004). The goals of restoration sensu stricto include the re-establishment of the 67 
pre-existing biotic integrity in terms of species composition and community structure. 68 

Many quarries thus implement rehabilitation or reclamation actions of benefit to 69 
biodiversity (Damigos and Kaliampakos, 2003; Carrick and Krüger, 2007). Rehabilitation 70 

seeks to repair one or more ecosystem attributes, processes, or services. Reclamation, on 71 
the other hand, includes land stabilization, public safety guarantees, aesthetic 72 

improvement and usually a return of the ecosystem considered useful in the regional 73 
context (Society for Ecological Restoration International, Science & Policy Working 74 
Group, 2004).  75 

 76 

Numerous experiments conducted worldwide testify to the many quarry 77 
rehabilitation techniques in use, in particular for vegetation. For example, shrub species 78 
were planted in dolomite rock quarries in China (Wang et al., 2011) or in limestone 79 
quarries in Portugal (Oliveira et al., 2011) to rehabilitate areas formerly degraded by an 80 
increased bare ground soil surface sensitive to water or wind erosion. This involved 81 

adding an improved marl substrate layer on top of the bare rock (Oliveira et al., 2011). 82 
Other techniques using substitute substrates with fertilizers, water-holding polymers, geo-83 
textiles and mycorrhizal inoculations were used to enhance vegetation growth after 84 

marble mining in Spain. However, long-term monitoring is rarely implemented, and those 85 
results available are not encouraging (Oliveira et al., 2011). Yet this rather limited effect 86 
of rehabilitation contrasts with the sometimes high diversity found in some abandoned 87 
quarries (Remacle, 2009; Chapel, 2011; Prach et al., 2013; Pitz et al., 2014). This paradox 88 

suggests a need to determine the most beneficial measures for the rehabilitation of 89 
singular flora and vegetation in disturbed areas, and for research specifically aimed at 90 
those inhabiting quarry habitats (Oliveira et al., 2011; Ballesteros et al., 2014). 91 
 92 



One of the most frequently used techniques is to cover the post-quarrying exposed 93 

geological substrate, either with a layer of topsoil removed pre-quarrying and conserved 94 
in stockpiles during quarrying (topsoil transfer) (Simón-Torres et al., 2014), or with an 95 
artificially created soil (artificial soils) (Frouz et al., 2008; Weber et al., 2015). Topsoil 96 
transfer consists in removing the uppermost centimeters of topsoil from a donor site of 97 
ecological interest. This topsoil can be the pre-existing soil from the site itself, or can 98 

come from another site already programmed for destruction (Bulot et al., 2016). The soil 99 
is then re-spread on the sites to be restored (Ghose, 2001; Sheoran et al., 2010). It can 100 
consist in a direct topsoil transfer from another site that begins to be exploited. In such 101 
case, there is no storage of topsoil and therefore a better chance of rehabilitation 102 
successful (Rivera et al., 2014). In other cases, topsoil is stored for the duration of mining 103 

exploitation, the quality of soil and seed bank are then altered and this reduces the chances 104 
of rehabilitation success (Ghose, 2001; Strohmayer, 1999). Topsoil transfer can be used 105 

to save ecological features and their associated ecosystem services from donor sites (Box, 106 

2003). It has been evaluated as the best rehabilitation method to compensate for the many 107 
projects necessarily involving destruction to make way for consented or permitted 108 
development (Box, 2014). However, success monitoring rarely exceeds the first few years 109 
(Koch, 2007; Oliveira et al., 2011; Muller et al., 2013; Bulot et al., 2014; Jaunatre et al., 110 

2014a; Bulot et al., 2016). Most restoration involving soil transfer has been recent and/or 111 
has not been examined scientifically (Fowler et al., 2015). The long-term effects (over 112 

several decades) of topsoil transfer on target species survival are therefore not known. 113 
Moreover, results obtained in the first months or years after implementation do not 114 
necessarily provide a good indication of longer-term responses (Cooke and Johnson, 115 

2002; D’Antonio and Meyerson, 2002; Herrick et al., 2006; Oliveira et al., 2011; 116 
Gaucherand et al., in press). Studies assessing medium- and long-term results are, 117 

therefore, essential for a fuller evaluation of these techniques.  118 

In the plain of La Crau in southeastern France, many dry alluvial quarries were 119 
exploited in the 1970s for the creation of the Fos-sur-Mer port zone. These activities 120 

resulted in the destruction of nearly 300 hectares of the unique La Crau steppe ecosystem 121 
(Buisson and Dutoit, 2006). When quarrying ceased fifteen years later, the companies 122 
were not required by law to rehabilitate the environment after mining. Various 123 
rehabilitation trials, mainly using different soil transfer techniques, were thus 124 

implemented, mainly with aesthetic aims (i.e. creating a flat area like the steppe 125 

landscape) or security objectives (i.e. to avoid potholes).  126 

Monitoring the soil and vegetation of these quarry pits today therefore provides 127 

the opportunity for 30-year long-term feedback on these techniques (i.e. involving 128 
different soil sources, composition, thickness and with or without contact with the 129 

groundwater table). Plant communities and soil physico-chemical parameters in 130 
rehabilitated pits were compared to a positive control, the steppe, generally considered as 131 
the reference ecosystem (Dutoit et al., 2013; Hobbs et al., 2013) and to a negative control 132 
without any soil transfer treatment. The soil of this surrounding steppe was the one that 133 
existed before it was destroyed by quarrying. To evaluate the biological importance of 134 

the newly created habitats, we worked at different spatial scales. We took into account 135 
both local (alpha) and regional biodiversity (gamma diversity), as well as the originality 136 

of the plant communities in relation to a landscape repository.  137 

 138 



2. Materials and methods 139 
2.1. Study site 140 

Our study was carried out in the plain of La Crau, located in southeastern 141 
Mediterranean France (Bouches-du-Rhône) (Fig. 1A). Characterized by a unique natural 142 
habitat, the plain was classified in 1990 as a Special Protection Area under Natura 2000, 143 
called Steppe of La Crau, the last remaining French Mediterranean steppe (Buisson and 144 

Dutoit, 2006). Its Mediterranean substeppic grassland plant community features the 145 
phytosociological association Asphodeletum fistulosii (Molinier and Tallon, 1950) 146 
dominated by species such as Brachypodium retusum (Pers.) P. Beauv, Thymus vulgaris 147 
L. and Asphodelus ayardii Jahand and Marie. This plant community is unique in terms of 148 
species richness, composition and diversity (Cherel, 1988; Badan et al., 1995; Henry, 149 

2009). There are on average 30 to 40 plant species per square meter, 50% of which are 150 
annuals (Römermann et al., 2005). This plant community may result from a regressive or 151 

allogenic plant succession of thousands of years under the combined effects of i) the dry 152 

and windy Mediterranean climate, ii) specific soil conditions: the 40 cm deep soil is 153 
composed of 50% siliceous stones and lies on a calcareous conglomerate which cannot 154 
be penetrated by plant roots (Molliex et al., 2013) and iii) a recurring disturbance regime 155 
constituted by itinerant sheep grazing since the end of the Neolithic period (Badan et al., 156 

1995; Lebaudy, 2004; Henry et al., 2010; Tatin et al., 2013). 157 
 158 

Our study site was located in the south of the plain of La Crau (43°31’36.77’’N, 159 
4°53’04.50’’E). Present on the site are 296 ha of open quarries once exploited for road 160 
ballast or materials for the construction of docks in the Fos-sur-Mer port zone (Fig. 1). 161 

All these quarries were abandoned in the 1980s, as seen from old aerial photographs (1938 162 
- 2015) (Fig. 2). A shallow Haplic Cambisol soil WRB (IUSS Working Group WRB, 163 

2006) 40 cm deep lying above the geological conglomerate (composed of quartz pebbles 164 
in a calcium carbonate matrix forming a limestone 1 to 5 m thick), hereafter named 165 

topsoil, was removed from these quarries and exported, sold or stored. This made way for 166 
quarrying the underlying geological substrate (a 10 to 50 m thick mixture of Quaternary 167 
pebbles and sands deposited in a former large alluvial fan during the Riss-Wurm glacial 168 

period,(Molliex et al., 2013)) below the conglomerate.  169 

 170 
In most quarry pits (44% of the study site area), no material was replaced after 171 

quarrying, leaving exposed the un-disturbed geological material, or the surface of the 172 
water table when quarrying went more than nine meters deep (average water table height). 173 
We therefore considered this situation a negative control with no attempt at rehabilitating 174 

the soil or the vegetation for ecological or other reasons (Table 1). However, in some 175 
cases, quarry pits were partly filled with anthropogenic spoil materials combining various 176 
proportions of gravels, clays and sands, conglomerate or concrete blocks, etc. (11% of 177 

the study site area). This situation was considered as a rehabilitation treatment, since these 178 
new artificial soils provided conditions favorable to new primary plant successions, even 179 
though nothing was done to drive these successions towards the plant composition and 180 
dynamics of the reference steppe plant community. Contrastingly, at the initiative of 181 

certain quarry operators, other quarry pits had stored topsoil re-spread on top of the spoil 182 
materials (45 % of the study site area) to various depths, including a depth similar to the 183 
reference steppe (40 cm) and a greater depth (more than 40 cm of topsoil added).  184 

 185 



Differing quarry operating conditions, followed by differing rehabilitation 186 

treatments in the eighties, provided us with a great diversity of artificial 187 
geomorphological and pedological situations whose impacts on the present vegetation 188 
could be compared. We compared this vegetation both to the steppe vegetation (positive 189 
control) generally considered as the reference ecosystem in the previous restoration 190 
projects realized in this area (Dutoit et al., 2013), and to quarry pits with no rehabilitation 191 

treatments (negative control) (Table 1). In total, four situations were identified along a 192 
rehabilitation gradient: (1) soil transfer (40 cm) with no contact with the water table, (2) 193 
soil transfer (40 cm) in contact with the water table, (3) more than 40 cm of soil transfer 194 
and (4) anthropogenic deposits (spoils) (Table 1). These four situations were identified 195 
by the use of ancient aerial photographs (Fig. 2), soil profiles and interviews of quarry 196 

operators. 197 
 198 
 199 

 200 

 201 
Fig. 1. Location of study site and experimental design. (A) Location of the plain of La Crau area in France 202 
and location of the remnant patches of steppe (striped grey) and quarries (black); (B) experimental design 203 
of the different rehabilitation treatments realized on the abandoned quarries in the 1980s: 40 cm soil transfer 204 
(dark grey); > 40 cm soil transfer (black); anthropogenic deposits (white) and no rehabilitation (light grey). 205 
 206 



 207 
Fig. 2. Quarry expansion in the seventies and eighties visible from old aerial photographs (1968 – 1974 – 208 
1984 – 2011 -IGN). The extension of intensive orchard areas since 1984 can also be observed between the 209 
quarries. 210 
 211 
  212 



Table 1. Various rehabilitation treatments and controls used in this study and analyses performed on each 213 
treatment 214 

 Treatments 

Sample number  

for soil 

analyses 

Transect number 

for vegetation 

sampling 

Positive control Reference Steppe 5 6 

Topsoil  

transfer 

40 cm soil transfer with no contact with the water 

table 
4 4 

40 cm soil transfer in contact with the water table 5 3 

> 40 cm soil transfer  5 3 

Anthropogenic  

soil 
Anthropogenic deposits (spoils) 5 5 

Negative control 
No rehabilitation: absence of deposits or soil 

spreading in the quarried geological substratum 
5 4 

 215 
 216 
2.2. Vegetation analyses 217 

Vegetation sampling using 4 m² quadrats was carried out in May 2015. For each 218 

of the six treatments, depending on available area, 3 to 6 100-meter transects were 219 
replicated, each composed of five pseudo-replicated quadrats (Fig. 1; Table 1). Quadrats 220 
were pseudo-replicated on the same site along each transect, so as to reveal any 221 

heterogeneity in the spatial distribution of plant communities for the same treatment. The 222 
number of replicated transects differed according to type of treatment in the quarries 223 

sampled. On each transect, quadrats were spaced more than 10 m apart, to prevent spatial 224 
autocorrelation between quadrats (Buisson et al., 2006). The abundance of each plant 225 

species was visually estimated, in percent cover (Gillet, 2000). 226 
 227 
2.3.  Soil analyses 228 

Soil analyses were carried out on twenty-nine 200g soil samples taken from 229 

abandoned quarries in 2015 (Table 1). Samples were extracted from the first ten 230 
centimeters of the upper soil/material layer in February 2015. Each sample was dried and 231 
sieved with a 2 mm mesh sieve. Chemical content (organic C (Allison, 1965), total N 232 

(Bremner, 1996), C:N, CEC Metson (Metson, 1956; Ciesielski et al., 1997), K, P2O5 233 
(Olsen, 1954), CaCO3, pH (Sparks et al., 1996; Thomas, 1996)) and fine particle sizes 234 
(<2 mm) (percentages of clay: <0.002 mm; fine silt: 0.002–0.02 mm; coarse silt: 0.2–2 235 
mm; fine sand: 0.05–0.2 mm; and coarse sand: 0.2–2 mm) (Gee and Bauder, 1986) were 236 
measured without decarbonization by the soil analysis laboratory at INRA (Institut 237 

National de la Recherche Agronomique) in Arras. 238 



 239 

2.4.  Data analysis 240 
To test the effects of treatments on physico-chemical parameters, soil 241 

characteristics were ordinated using principal component analysis (PCA) (6 treatments × 242 
29 soil samples), a method appropriate for continuous variables (Borcard et al., 2011). 243 

To test the effects of the different treatments on species richness, plant community 244 

composition and structure, these variables were compared between treatments. 245 
Community structure was measured using different indices (alpha diversity, gamma 246 
diversity, CSIInorm and HAI index). Alpha diversity, which is the number of species 247 
present in a plant community, was calculated for each 4 m² quadrat. Gamma diversity, 248 
which is the total number of species in a landscape, was calculated as the cumulated 249 

species-richness of the five quadrats for each transect in the different quarries and the 250 
reference steppe. As the number of transects used in the quarries (N =19) is higher than 251 

in the steppe (N = 6), six quarry transects were randomly selected and their cumulated 252 

species-richness was calculated. This operation was repeated 100 times. Mean cumulated 253 
species richness determined quarry gamma diversity. Two indices were used to assess the 254 
success of plant community rehabilitation by topsoil transfer: the CSIInorm index 255 
(normalized Community Structure Integrity Index) measuring the proportion of the 256 

abundance of the species of the reference community represented in the community of 257 
the restored community, and the HAI index (Higher Abundance Index) measuring the 258 

proportion of the abundance of species in the restored community which is higher than in 259 
the reference community (Jaunatre et al., 2013). When parametric conditions were met, 260 
we used ANOVA tests followed by post-hoc Tukey HSD tests if a significant difference 261 

was detected. When parametric conditions were not met, we used non-parametric 262 
Kruskal-Wallis tests followed by pairwise Wilcoxon comparisons with a p-value 263 

adjustment according to Bonferroni if a significant difference was detected (Bonferroni, 264 
1936). 265 

Vegetation composition and abundance were ordinated using non-metric 266 
multidimensional scaling (NMDS) (6 treatments × 125 quadrats × 241 plant species) 267 
based on Bray-Curtis dissimilarity (Borcard et al., 2011). We were thus able to visualize 268 

the vegetation structure of each treatment and to compare them. 269 

All the analyses were conducted using R 2.13.0 (R Development Core Team, 270 
2011), multivariate analyses with the “ade4” (Chessel et al., 2004; Dray and Dufour, 271 
2007; Dray et al., 2007) and “vegan” (Oksanen et al., 2015) packages. 272 

 273 
 274 

3. Results 275 
3.1.  Effect of topsoil transfer on soil physico-chemical parameters  276 

The different rehabilitation treatments showed significant differences in soil 277 

physico-chemical properties (Table 2, Fig. 3). The PCA ordination based on soil 278 
properties significantly discriminated the different treatments. Axis 1 (45.3% of inertia) 279 
separated topsoil (steppe and soil) transfer from the negative control with no spoil 280 
deposits or soil spreading. This separation is explained partly by the quantities of clay, 281 

which were significantly higher in the steppe and soil transfers. Conversely, in the 282 
absence of deposits or soil spreading, the substrate was characterized by significantly 283 
higher amounts of coarse sand, higher C:N ratios and higher pH. 284 

Axis 2 (25.8% of inertia) clearly separated the soils of the reference steppe and of 285 
the soil transfer treatments from those of the negative control and spoil deposits. The soils 286 



of topsoil transfer treatments tended to be closer to that of the reference steppe, especially 287 

those which were not in contact with the water table.  288 
 289 
Table 2 290 
Soil analyses for each rehabilitation treatment realized in May 2015. The given values are means ± standard 291 
errors. The F value and p value are from ANOVA and the X² value is from Kruskal-Wallis tests on the 292 
effects of treatments on each variable. Two values in the same row with a different letter are significantly 293 
different according to Tukey post-hoc tests or Mann–Whitney–Wilcoxon tests (Bonferroni, 1936). 294 

 Statistic 

parameter 
p-value 

Reference 

steppe 

Topsoil 

transfer (40 

cm) with no 

contact with 

the water 

table 

Topsoil 

transfer (40 

cm) in contact 

with the water 

table 

Topsoil 

transfer 

(More than 

40 cm) 

Anthropogenic 

material 

deposits 

No rehabilitation 

Absence of soil 

spreading/material 

deposits 

(Positive 

control) 
(Negative control) 

Clay (g kg−1) 

X2=19.38, 

Df=6 0.004** 231.2±6.6 b 199.5±33.9 b 223.4±4 b 204±17.5 b 109.8±28.1 a  98.8±8.9 a  

Fine silt (g kg−1) F6,27= 1.7 0.16 210.8±5.5  173.5±15.3  177.4±2.7  176.8±6.5  150.8±46.3  131.6±13  

Coarse silt (g 
kg−1) F6,27= 0.56 0.76 143.0±3.7  116.5±11.6  128.4±2.6  123.6±5.9  123.8±66.1  81.2±6.9  

Fine sand (g 

kg−1) F6,27= 0.5 0.801 202.8±5.1  239.5±34.9  218.0±6.2  205.8±5.3  224.0±47.1  234.6±16.1  

Coarse sand (g 

kg−1) F6,27= 2.91 0.026* 212.2±13.6 a  271.0±26.9 ab 252.8±3.4 ab 289.8±29.1 ab 391.6±118.7 ab 453.8±35.5 b 

Total carbon (g 
kg−1) F6,27= 1.1 0.385 17.4±1.4  12.4±2.1  15.4±1.9  15.9±1.6  31.7±15.6  11.4±3.2  

Total nitrogen 
(g kg−1)  F6,27= 0.72 0.637 1.6±0.1  1.1±0.2  1.4±0.1  1.5±0.2  2.2±1.3  0.8±0.3  

C:N F6,27= 2.72 0.034* 10.7±0.3 a  11.8±1.8 ab 10.7±0.5 ab 10.9±0.6 ab 22.1±6.2 b 15.1±0.9 ab 

pH F6,27= 4.31 0.004** 7.6±0.3 a  8.2±0.2 ab 8.3±0.1 ab 8.2±0.1 ab 8.7±0.2 b 8.6±0.1 b 

CaCO3 (g kg−1)  

X2= 19.38, Df= 

6 0.004*** 5.8±4.8 a 70.8±62.3 a 20.8±5.7 a 58±46.1 a 216.6±20.4 b 223.4±19.1 b 

P2O5 (g kg−1)  

X2= 10.59, Df= 

6 0.102 0.184±0.173  0.009±0.001  0.014±0.003  0.030±0.0162  0.016±0.010  0.026±0.008 

CEC Metson 
(cmol + kg−1) F6,27= 1.37 0.261 9.1±0.4  7.1±1.3  8.4±0.2  7.8±0.4  8.7±4  3.4±0.6  

Ca (g kg−1) F6,27= 2.89 0.026* 2.8±1 a  4.1±1.1 ab 4.9±0.6 ab 4.3±1 ab 6.7±0.4 b 6.4±0.1 b 

K (g kg−1) F6,27= 1.32 0.282 0.1±0  0.1±0  0.2±0  0.1±0  0.1±0.1  0.1±0  

 295 
 296 

 297 



 298 
 299 
Fig. 3. PCA ordination based on 29 soil sample analyses. Samples from each rehabilitation treatment and 300 
control are identified by dashed lines: (1) soil transfer (40 cm) with no contact with the water table in white 301 
(2) soil transfer (40 cm) in contact with the water table in light grey (3) more than 40 cm of soil transfer in 302 
medium grey and (4) anthropogenic material deposits in dark grey. Both samples from controls are 303 
identified by solid lines: Steppe in white, No rehabilitation in grey. Arrows represent soil variables 304 
(chemical content (organic C, total N, C:N, CEC Metson, K, P2O5, CaCO3, pH) and fine particle sizes (<2 305 
mm) (percentages of clay (<0.002 mm), fine silt (0.002–0.02 mm), coarse silt (0.2–2 mm), fine sand (0.05–306 
0.2 mm) and coarse sand (0.2–2 mm)) 307 
 308 
3.2. Effect of topsoil transfer on plant communities 309 

3.2.1. Alpha and gamma diversity 310 
Vegetation inventories allowed us to identify 21 plant taxa of conservation interest 311 

out of the 241 species recorded in total (nearly 10%): 5 with high conservation priority 312 
and 16 with moderate conservation priority on the red list of the Provence-Alpes-Côte-313 
d’Azur region (Table 3). 224 species were inventoried in the quarries, including 20 314 

regional red list species and 131 in the reference steppe, including 11 regional red list 315 

species (Table 3). Only one plant species of conservation interest was identified in the 316 

steppe: Phlomis lychnitis L., against 11 in quarries. Four species were recorded in 317 
anthropogenic material deposits alone (Bupleurum semicompositum L., Limonium 318 

cuspidatum (Delort) Erben, Limonium echioides (L.) Mill., Velezia rigida L.) and one in 319 
the negative control (Lythrum hyssopifolia L.) (Table 3). All plant species of conservation 320 
interest identified in the topsoil transfer areas were also identified in the reference steppe 321 

vegetation, except for Campanula erinus L. and Paronychia capitata (L.) Lam. (Table 322 
3).  323 
 324 
  325 



Table 3 326 
Species of conservation interest identified for each treatment in May 2015. The species’ regional 327 
conservation status was determined from the regional red list of the Provence-Alpes-Côte-d’Azur region 328 
(Noble et al., 2015) 329 

Species 

Regional 

conservation 

status 

Reference 

steppe 

(Positive 

control) 

Topsoil 

transfer 

(40 cm)  

with no 

contact 

with the 

water 

table  

Topsoil 

transfer 

(40 cm)  

in contact 

with the 

water 

table 

Topsoil 

transfer 

(More 

than  

40 cm) 

Anthropogenic  

material  

deposits 

No 

rehabilitation 

Absence of  

soil spreading 

/material 

deposits  

(Negative 

control) 

Bupleurum semicompositum L. Moderate     x  

Campanula erinus L. Moderate  x x  x x 

Centaurea melitensis L. Moderate x  x  x  

Gastridium ventricosum (Gouan) Schinz & Thell. Moderate x  x x   

Limonium cuspidatum (Delort) Erben Strong     x  

Limonium echioides (L.) Mill. Moderate     x  

Linaria arvensis (L.) Desf. Moderate x x x  x  

Lythrum hyssopifolia L. Moderate      x 

Melilotus indicus (L.) All. Moderate     x  

Parapholis incurva (L.) C.E.Hubb. Moderate x  x x x x 

Paronychia capitata (L.) Lam. Moderate  x   x  

Phlomis lychnitis L. Moderate x      

Polygala monspeliaca L. Moderate x   x  x 

Polypogon maritimus Willd. Moderate     x x 

Psilurus incurvus (Gouan) Schinz & Thell. Moderate x x x x x x 

Ruta Montana (L.) L. Moderate x x     

Taeniatherum caput-medusae (L.) Nevski Strong x x x x x x 

Trifolium glomeratum L. Strong x x x  x  

Trifolium subterraneum L. Moderate x   x   

Valerianella microcarpa Loisel. Strong    x x  

Velezia rigida L. Strong         x   

 330 
At the regional scale (gamma diversity), the mean species richness of the plant 331 

communities of the different rehabilitation treatments (156.78±0.77) was higher than the 332 

mean species richness of the reference steppe vegetation (130±0) (F1, 198 = 1219, p 333 
<0.001). However at the scale of the plant community, the species richness (alpha 334 

diversity) of the different topsoil transfer treatments (contact with water table (47.6 ± 335 
2.02) ; no contact with water table (36 ± 1.20); more than 40 cm soil transfer (35.55 ± 336 
1.46)) showed no significant difference from the vegetation of the reference steppe (42.2 337 

± 1.51) (Fig. 4). In contrast, the average species-richness on anthropogenic material 338 
deposits (29.88 ± 2.66 species) and on the negative control (23.25 ± 1.64) was 339 

significantly lower than in the steppe (F5, 119 = 18.98, p <0.001) (Fig. 4). 340 
 341 

http://www.tela-botanica.org/page:eflore_bdtfx?referentiel=bdtfx&niveau=2&module=fiche&action=fiche&num_nom=29408&type_nom=nom_scientifique&nom=gastridium%20ventricosum
http://www.tela-botanica.org/page:eflore_bdtfx?referentiel=bdtfx&niveau=2&module=fiche&action=fiche&num_nom=39189&type_nom=nom_scientifique&nom=linaria%20arvensis


 342 
Fig. 4. Means and standard errors of species richness (4m²) for each treatment and the two controls: steppe 343 
(white), topsoil transfer (light grey), anthropogenic material deposits and absence of soil spreading (dark 344 
grey). Within a treatment, bars sharing common letters are not significantly different according to Tukey 345 
post-hoc test. 346 
 347 
 348 
3.2.2. Effects of topsoil transfer on plant community composition 349 

The NMDS ordination showed a gradient in plant community composition, from the 350 
steppe (positive control) to the no-rehabilitation negative control, and clearly 351 

discriminated plant communities (NMDS-Stress= 0.20) (Fig. 5).  352 
In the NMDS axis1-axis2 plane, the reference steppe was characterized by its most 353 

representative species, such as perennial species (Eryngium campestre L., Stipa capillata 354 

L., Phlomis lychnitis L., etc.), especially Brachypodium retusum (Pers.) P. Beauv.,usually 355 
dominant in the steppe plant community. It was also characterized by annual species such 356 
as Aegilops ovata L., Clypeola jonthlaspi L., Cynosurus echinatus L., Hedypnois cretica 357 

Willd., Reseda phyteuma L., Stipa capillata L., Trifolium arvense L., which were 358 

recorded only in the steppe. 359 
The reference steppe community was close to the two topsoil transfer treatments with 360 

no contact with the water table ("> 40 cm topsoil transfer" and "40 cm topsoil transfer 361 

with no contact with the water table") (Fig. 5). These two plant communities overlapped 362 
and were characterized mainly by grasses and thistles, such as Avena barbata Brot., and 363 

Galactites tomentosus Moench., as well as Euphorbia cyparissias L., Marrubium vulgare 364 
L., Medicago truncatula Gaertn., etc.. This was confirmed by the CSIInorm, which showed 365 
that only 18 to 22% of species identified in topsoil transfer plant communities were also 366 



present in the steppe community with the same composition, abundance and richness (Fig. 367 

6A) even thirty years after these rehabilitation treatments were applied. 368 
The topsoil transfer in contact with the water table showed a different plant 369 

community composition from that of the reference steppe. It contained Anagallis arvensis 370 
L., Catapodium rigidum (L.) C.E.Hubbs. , Hypericum perforatum L., Stellaria media (L.) 371 
Vill., Veronica arvensis L., etc. (Fig. 5), pioneer species common to anthropogenic and 372 

wetland margin environments. 373 
In the NMDS axis1-axis2 plane, the rehabilitated areas (the topsoil transfer and the 374 

anthropogenic material deposits treatments) and the reference steppe were also clearly 375 
separated from the no-rehabilitation ("negative control") treatment in terms of plant 376 
community composition (Fig. 5). The no-rehabilitation control was characterized by 377 

pioneer annual target species also occurring in the reference steppe, such as Centranthus 378 
calcitrapae (L.) Dufr., Valerianella locusta (L.) Laterr., Velezia rigida L., and other non-379 

target species such as Artemisia annua L., Pyracantha coccinea M. Roem. (Fig. 5). These 380 

last two species can be considered potential invasive species. Due to the presence of the 381 
water table, this area contained temporary wetland species such as Lythrum hyssopifolia 382 
L., a species of conservation interest.  383 

 384 

The plant communities identified in quarries were far from similar to those of the 385 
reference steppe (F5; 119 = 227.20, p <0.001) (Fig. 6A) in terms of composition, richness 386 

and diversity. Not only did they not include all reference steppe species, but they included 387 
other species not present in the steppe community (Anagallis foemina Mill., Anagallis 388 
arvensis L., Cynodon dactylon (L.) Pers., Dittrichia viscosa (L.) Greuter, Medicago 389 

orbicularis (L.) Bartal., Rumex pulcher L., etc.). The CSIInorm index showed a significant 390 
difference between treatments (Fig. 6A). The anthropogenic material deposits treatment 391 

and the no-rehabilitation treatment showed a significantly lower CSIInorm index than the 392 
reference steppe (Fig. 6A). The HAI index was relatively high both in the different 393 

rehabilitated areas and in the no-rehabilitation treatment, and significantly different from 394 
that of the reference steppe (F5, 119 = 88.66, p <0.001) (Fig. 6B). 395 

  396 



 397 

 398 

 399 
Fig. 5. NMDS ordination based on 125 vegetation samples (4m²) and 175 species present in at least 3 400 
samples. For clarity, only the 63 most correlated species are shown. Samples from each rehabilitation 401 
treatment are identified: (1) soil transfer (40 cm) with no contact with the water table in light green (2) soil 402 
transfer (40 cm) in contact with the water table in blue (3) more than 40 cm of soil transfer in dark green 403 
and (4) anthropogenic material deposits in red. Both samples from control are identified: steppe in yellow, 404 
absence of material or soil spreading in grey. 405 
 406 

 407 
Fig. 6. Means and standard errors of normalized Community Structure Integrity Index (A) and higher 408 
Abundance Index (B) for each treatment: steppe (white), topsoil transfer (light grey), anthropogenic 409 
material deposits and absence of soil spreading (dark grey). Within a treatment, bars sharing common letters 410 
are not significantly different according to Tukey post-hoc test. 411 
 412 



4. Discussion 413 
Topsoil transfer has been recognized as the best method for restoring soil and 414 

vegetation when this resource has been conserved or is available elsewhere (Box 2014, 415 
Bulot et al., 2014, in press). To date, however, the restoration success of this technique 416 
has mainly been assessed over the short term (a few years after treatment). Assessing 417 
restoration over the long term (several decades), our results show that topsoil transfer is 418 

still the best method, especially when initial soil characteristics (thickness, absence of 419 
contact with the water table) are respected. Nevertheless, in our case, soil transfer still 420 
does not compensate for the destruction of the pre-existing ecosystem: the steppe soil and 421 
plant community have not yet fully recovered even thirty years after its application. These 422 
results confirm those of Holl and Cairns, Mulligan et al., Nichols (Holl and Cairns, 1994; 423 

Mulligan et al., 2006; Nichols, 2006), who found that plant community composition was 424 
never completely restored after rehabilitation, in quarries or elsewhere. However, it is 425 

generally acknowledged that natural successions towards steppe occur on quarries after 426 

topsoil applications and re-vegetation is positive, although species composition still 427 
differs from that of the reference steppe (Martínez-Ruiz and Fernández-Santos, 2005). 428 

 429 
The negative control, where there was no rehabilitation, no transfer of materials 430 

or soil, is the worst situation compared to the undisturbed reference steppe in terms of 431 
total number of plant species and total number of plant species of conservation interest. 432 

In 30 years, only a fraction of the steppe vegetation has recovered. This is due to the depth 433 
of quarrying, which involves potential contact with the water table. New primary plant 434 
succession is therefore blocked by irregular changes in ground water table levels, 435 

including by the extreme conditions that develop between dry and flood periods (Prach 436 
et al., 2014; Balázs A. Lukács et al., 2015; Deák et al., 2015; Masson et al., 2015). The 437 

lack of rehabilitation, together with the new abiotic conditions created by quarrying, thus 438 
generated “novel ecosystems” (Hobbs et al., 2009). The long-term dynamics of these new 439 

ecosystems are unknown, since we have no experience of similar habitat conditions, and 440 
because they are also impacted by global change (climate and land-uses) (Doley and 441 
Audet, 2013; Hobbs et al., 2013). However, we do know that these environments will not 442 

spontaneously evolve towards the reference steppe in the long-term, barring any major 443 

ecological change (significant and permanent reduction in the level of the water table). 444 
Usually, for these radically disturbed mining sites, it is not practicable to aim for the 445 
restoration of historical ecosystems. However, hybrid or novel ecosystems, which consist 446 
of new combinations of physical and biological components with new variables and 447 
variables common to historical ecosystems, could provide acceptable levels of stability 448 

and functionality (Doley and Audet, 2013). For example, vegetation may include both 449 
native species and non-native species.  450 

 451 

Deposition of various types of anthropogenic materials after the end of quarrying 452 
created great heterogeneity in terms of physico-chemical soil parameters, but less 453 
diversity and species-richness in terms of vegetation. However, these materials provide 454 
some very specific habitats for certain species of high conservation value, which have 455 

particular ecological requirements linked to their narrow ecological niche. At some places 456 
on our site, depositing sandy salty soils excavated closer to the Mediterranean coast has 457 
provided a habitat for Limonium cuspidatum (Delort) Erben and Limonium echioides (L.) 458 
Mill., two halophytic species of conservation interest at the regional scale. However, 459 
deposition of anthropogenic materials is certainly not the best method to restore plant 460 



communities similar to the reference steppe in the plain of La Crau. A better method 461 

might be steppe geomorphological rehabilitation by filling the bottom of quarry pits, thus 462 
isolating the upper transferred soil layers from the water table (Meredith, 2007; Frouz et 463 
al., 2008; Mchergui et al., 2014). Nevertheless, our results show that spoils must be 464 
covered by at least 40 cm of topsoil from the reference steppe. 465 

 466 

Thus, topsoil transfer appears to be the most favorable treatment for rehabilitation 467 
of the reference sub-steppe plant community, in terms of physico-chemical properties and 468 
plant community composition. Our long-term results on soil transfer restoration confirm 469 
those obtained over the short term by Bulot et al. (2014) and Jaunatre et al. (Jaunatre et 470 
al., 2014a, 2014b) for the same steppe area. Our study shows that these reconstituted soils 471 

present the most favorable abiotic conditions for restoring the reference steppe, 472 
particularly because they entail no significant differences in fine particle size content from 473 

the soil of the reference steppe (Buisson et al., 2006; Bulot et al., 2016; Römermann et 474 

al., 2005). However, the plant communities identified in these treatments cannot yet be 475 
considered similar to those of the reference steppe vegetation, as measured by the various 476 
diversity indices. Soil alone does not account for the diversity of vegetation encountered 477 
here after different types of soil transfer. Other factors are involved, such as the plant 478 

composition of the different surrounding patches, i.e. steppe, abandoned quarries, fallow 479 
land, orchards, etc. (Pärtel et al., 1998; Zobel et al., 1998), the reproduction capacity of 480 

their communities, the presence of dispersal vectors (Bakker et al., 1996; Ozinga et al., 481 
2004) and between-species competition or facilitation (Maestre et al., 2009; Teixeira et 482 
al., 2016). The topsoils transferred most probably had a very poor seed bank, having been 483 

conserved in large piles for several years, and the soil of the reference steppe is known to 484 
have a very poor permanent seed bank (Römermann et al., 2005; Buisson et al., 2006; 485 

Saatkamp et al., 2009; Rivera et al., 2012; Bordez, 2015). Therefore there would be very 486 
little similarity between the topsoil transferred and the reference steppe seed banks. Soil 487 

transfers in contact with the water table are ruled out as a restoration treatment aiming to 488 
restore the vegetation from the reference steppe (Mediterranean xeric grasslands), since 489 
they favor species adapted to moist soils, such as Scirpus holoschoenus subsp. romanus 490 

(L.) auct., Aster squamatus (Sperng.) Hieron, etc.. The solution would be to reconstitute 491 

the conglomerate bedrock occurring in the reference steppe, or to deposit spoil materials 492 
covered by topsoil as described above, which would prevent plant roots from reaching 493 
the water table.  494 

Compared to techniques that only impact species dispersion, such as hay transfer 495 
(Hölzel and Otte, 2003; Coiffait-Gombault et al., 2011a, 2011b; Török et al., 2012) or 496 

seeding (Oliveira et al., 2014; Gilardelli et al., 2016), topsoil transfer offers the best 497 
results,,both by dispersing target species and by at least partially recreating soil abiotic 498 
conditions (Box, 2003; Jaunatre et al., 2014b). However, real success is only possible if 499 

certain criteria are met. The topsoil’s particle size fraction needs to be adequate and it 500 
should not contain blocks of conglomerate that will raise soil CaCO3 content. This could 501 
negatively impact some slightly acidophilus species which characterize the steppe 502 
vegetation, especially "tonsures" (vegetation patches composed of very small vegetation, 503 

dominated by bryophytes, lichens and vascular plants that are more acidophilus and 504 

xerophilous than other steppe species (Coiffait-Gombault, 2011)). 505 

Confirming findings by Simón-Torrez et al. (Simón-Torres et al., 2014), our study 506 
demonstrates that in the long term, the best way to restore the reference steppe vegetation is 507 
by using the most similar soil, which has conserved its fine particle size fraction, with a thickness 508 



of at least 30 to 40 cm and without contact with the water table (Redente et al., 1997; Holmes, 509 
2001; Bowen et al., 2005). Schladweiler et al. (Schladweiler et al., 2005) found that 30 cm of 510 
topsoil produced the greatest diversity; while they found that more than 50 cm ensured the 511 

greatest biomass, this was not our goal here. Despite topsoil transfer, 30 years was not 512 

sufficient to reach the reference state, even though the traditional sheep-grazing regime 513 
was re-established after quarry abandonment. Other factors may have been involved in 514 
changing the plant succession. At soil level, fine elements such as clays could have been 515 
lost by leaching during soil transport and / or the storage phase (Weng et al., 2004; Zeng 516 
et al., 2011). This would have modified soil physico-chemical properties and 517 

consequently the plant communities that developed there (Citeau, 2008; Amir et al., 518 
2014). On our soil transfer treatments, species richness was similar to the steppe, but the 519 
most dominant species of the steppe was still absent (Brachypodium retusum). 520 
Conversely, species not present in the steppe were able to develop. In all cases, our 521 

monitoring should be pursued on the long-term. There is clearly room for improvement 522 
in the methods used for future restoration of quarries still in operation. Topsoil transfer 523 
in turfs could be one answer (Good et al., 1999; Vécrin and Muller, 2003; Bulot et al., 524 
2014), as this method allows the conservation of the soil structure (Bulot et al., 2014). 525 

The transfer could also be direct, without storage, thereby limiting degradation of the soil 526 
and of the seed bank (Granstrom, 1987; Jones and Esler, 2004; Fenner and Thompson, 527 
2005; Hall et al., 2010; Golos and Dixon, 2014). This would also ensure that plant species 528 

remain established on the turfs, preventing undesired species implantation. Although 529 
direct topsoil transfer is advocated, it is often not feasible because soil in place in the 530 
steppe may not be available when required for transfer (Bulot et al., 2014). When only 531 

ordinary soil transfer is possible, storage time must be as short as possible: numerous 532 
studies have shown the negative impact of soil storage (Strohmayer, 1999; Stahl et al., 533 

2002; Boyer et al., 2011; Park et al., 2011; Golos and Dixon, 2014; Bordez, 2015). 534 

Storage can lead to negative impacts on the soil seed bank. Direct topsoil transfer results 535 

in loss of less than 50% of the soil seed bank, whereas stockpiling causes loss of 80-90% 536 
(Koch et al., 1996). In addition, stored soil piles form a barrier and can trap many non-537 

target anemochorous species (Bordez, 2015). Storage can also cause rotting of organic 538 
matter when piles are too high (Stahl et al., 2002). It is therefore recommended that soil 539 
be stored on low elevation piles (Bordez, 2015). Moreover, while soil transfer may go 540 
some way toward restoring the reference ecosystem, the trajectories of rehabilitated 541 

ecosystems are not those of the reference steppe ecosystem. Additional techniques should 542 
be implemented to enhance restoration, such as seeding target species or removing 543 
undesirable species (Bordez, 2015). For example, native species seeding favors the 544 
development of native species to the detriment of exotic or ruderal species (Norman et 545 
al., 2006). 546 

 547 

In conclusion, topsoil transfer methods can be enhanced by various techniques 548 

offering prospects of improved restoration. This should encourage current quarrying 549 
operations to implement these findings when planning for rehabilitation. 550 

 551 
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