
HAL Id: hal-01681562
https://hal.science/hal-01681562

Submitted on 23 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing inter-sectoral climate change risks: the role of
ISIMIP

Cynthia Rosenzweig, Nigel W. Arnell, Kristie L. Ebi, Hermann
Lotze-Campen, Frank Raes, Chris Rapley, Mark Stafford Smith, Wolfgang

Cramer, Katja Frieler, Christopher P. O. Reyer, et al.

To cite this version:
Cynthia Rosenzweig, Nigel W. Arnell, Kristie L. Ebi, Hermann Lotze-Campen, Frank Raes, et al..
Assessing inter-sectoral climate change risks: the role of ISIMIP. Environmental Research Letters,
2017, 12 (1), pp.010301. �10.1088/1748-9326/12/1/010301�. �hal-01681562�

https://hal.science/hal-01681562
https://hal.archives-ouvertes.fr


Environmental Research Letters

FOREWORD • OPEN ACCESS

Assessing inter-sectoral climate change risks: the
role of ISIMIP
To cite this article: Cynthia Rosenzweig et al 2017 Environ. Res. Lett. 12 010301

 

View the article online for updates and enhancements.

Related content
An AgMIP framework for improved
agricultural representation in integrated
assessment models
Alex C Ruane, Cynthia Rosenzweig,
Senthold Asseng et al.

-

A review of and perspectives on global
change modeling for Northern Eurasia
Erwan Monier, David W Kicklighter, Andrei
P Sokolov et al.

-

Livestock in a changing climate:
production system transitions as an
adaptation strategy for agriculture
Isabelle Weindl, Hermann Lotze-Campen,
Alexander Popp et al.

-

Recent citations
Photosynthetic productivity and its
efficiencies in ISIMIP2a biome models:
benchmarking for impact assessment
studies
Akihiko Ito et al

-

This content was downloaded from IP address 147.94.134.141 on 23/04/2018 at 09:32

https://doi.org/10.1088/1748-9326/12/1/010301
http://iopscience.iop.org/article/10.1088/1748-9326/aa8da6
http://iopscience.iop.org/article/10.1088/1748-9326/aa8da6
http://iopscience.iop.org/article/10.1088/1748-9326/aa8da6
http://iopscience.iop.org/article/10.1088/1748-9326/aa7aae
http://iopscience.iop.org/article/10.1088/1748-9326/aa7aae
http://iopscience.iop.org/article/10.1088/1748-9326/10/9/094021
http://iopscience.iop.org/article/10.1088/1748-9326/10/9/094021
http://iopscience.iop.org/article/10.1088/1748-9326/10/9/094021
http://iopscience.iop.org/1748-9326/12/8/085001
http://iopscience.iop.org/1748-9326/12/8/085001
http://iopscience.iop.org/1748-9326/12/8/085001
http://iopscience.iop.org/1748-9326/12/8/085001


Environ. Res. Lett. 12 (2017) 010301 doi:10.1088/1748-9326/12/1/010301

FOREWORD

Assessing inter-sectoral climate change risks: the role of ISIMIP

Cynthia Rosenzweig1,2, NigelWArnell3, Kristie L Ebi4, HermannLotze-Campen5,6, FrankRaes7,8,
Chris Rapley9,Mark Stafford Smith10,WolfgangCramer11, Katja Frieler5, Christopher POReyer5,
Jacob Schewe5, Detlef vanVuuren12,13 and LilaWarszawski5

1 National Aeronautics and Space AdministrationGoddard Institute for Space Studies, 2880 Broadway, NewYork,NY 10025,USA
2 ColumbiaUniversity Center for Climate SystemsResearch, 2880 Broadway,NewYork, NY 10025,USA
3 Department ofMeteorology andWalker Institute, University of Reading, EarleyGate, Reading, RG6 6AR,UK
4 Department ofGlobalHealth, University ofWashington, 4225RooseveltWay#100 Seattle,WA98105,USA
5 Potsdam Institute for Climate Impact Research, Telegraphenberg A 31,D-14473 Potsdam,Germany
6 Department of Agricultural Economics, Humboldt-Universität zu Berlin, Philippstr. 13, D-10099 Berlin, Germany
7 EuropeanCommission Joint ResearchCentre, Institute for Environment& Sustainability (IES), Via Enrico Fermi, TP 263, I-21020 Ispra,

Italy
8 Department of Policy Analysis &PublicManagement, Università Bocconi, Via Sarfatti, I-25Milano, Italy
9 Department of Earth Sciences, University College London, Gower Street, LondonWC1E 6BT,UK
10 CSIROLand andWater, GPOBox 1700, Canberra, ACT, 2601Australia
11 InstitutMéditerranéen de Biodiversité et d’Ecologiemarine et continentale (IMBE), AixMarseille Université, CNRS, IRD, Avignon

Université, Technopôle Arbois-Méditerranée, Bât. Villemin—BP 80, F-13545Aix-en-Provence cedex 04, France
12 PBLNetherlands Environmental Assessment Agency, Postbus 30314, 2500GHDenHaag, TheNetherlands
13 Utrecht University, Copernicus Institute of SustainableDevelopment, Faculty ofGeosciences, Postbus 80.115, 3508TCUtrecht, The

Netherlands

Abstract
The aims of the Inter-Sectoral ImpactModel Intercomparison Project (ISIMIP) are to provide a
framework for the intercomparison of global and regional-scale riskmodels within and across
multiple sectors and to enable coordinatedmulti-sectoral assessments of different risks and their
aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and
mitigation decisions that require regional or global perspectives within the context of facilitating
transformations to enable sustainable development, despite inevitable climate shifts and disruptions.
ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socio-
economic projections as inputs for projecting future risks and associated uncertainties, within and
across sectors. The results are consistentmulti-model assessments of sectoral risks and opportunities
that enable studies that integrate across sectors, providing support for implementation of the Paris
Agreement under theUnitedNations FrameworkConvention onClimate Change.

Introduction

The Paris Agreement under the United Nations
Framework Convention on Climate Change
(UNFCCC) formulated an ambition, supported by
190 countries worldwide, to hold the increase in the
global average temperature to well below 2 °C above
pre-industrial levels and to pursue efforts to limit the
temperature increase to 1.5 °C. The need and urgency
for this ambition are based on progress in climate
science over the past several decades. Climate change
research and assessment initially focused on whether
there is a discernable change in the climate since the
preindustrial era, whether humans have contributed
to this change, and how to limit it. These key questions
are now answered: climate change is happening and is

being driven primarily by humans (Houghton
et al 1990, Houghton et al 1996, IPCC 2013). There is
also information showing that less thanhalf the proven
economically recoverable oil, gas, and coal reserves
can be emitted up to 2050 to achieve the 2 °C goal
(Meinshausen et al 2009, Clarke et al 2014).

Additional science is needed, however, to inform
further international agreements on mitigation and
adaptation and their implementation. Impacts14 of
recent climate change observed on all continents and
across the oceans have been systematically attributed
to climate change (Cramer et al 2014) and to its
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anthropogenic sources (Rosenzweig and Neofo-
tis 2013, Hansen et al 2016), pointing towards major
alterations and associated risks in the near future
(Oppenheimer et al 2014), even if warming is limited
to 2 °C.

The Inter-Sectoral Impact Model Inter-
comparison Project (ISIMIP) aims to contribute to
understanding of the magnitude and pattern of risks
and opportunities across regions and multiple sectors
in a changing climate, thereby providing policy-
makers with foundational knowledge for science-
based decisions. The project is designed to character-
ize risks that are likely to arise within a sector or region
or at the global scale at different degrees of warming,
and to determine how risks could aggregate and inter-
act across sectors, thus informing adaptation andmiti-
gation decisions at global and regional scales.

The project addresses such questions as:

• To what degree can impacts be ameliorated or
avoided by certain adaptation measures and what
are the associated economic and social costs and
risks acrossmultiple sectors and regions?

• Where and how do certain adaptation and mitiga-
tion options interact with other societal develop-
ments such as population growth, making societies
more or less resilient? Are there opportunities for
co-benefits, such as improved air quality, better
health, and economic growth?

• When and where could the cumulative risks of
extreme events such as flooding, droughts, tropical
and extratropical storms, and heat waves exceed
national coping capacities?

• What are the consequences of different levels of
warming, e.g., between a 1.5 °C and a 2 °Cworld, or
between a 2.5 °C, 3.0 °C, and 4.0 °C world? What
adaptation pathways are needed to avoid the
associated risks?

Answers to these questions will inform decisions on
adaptation and mitigation, enhance approaches to
facilitate resilience to the risks that cannot be
avoided, and help identify opportunities for trans-
formations to enable sustainable development
despite inevitable climate shifts and disruptions.
ISIMIP has a specific role to play in responding to
such challenges as that posed by the Paris Agreement
to differentiate risks and mitigation approaches
between 2.0 °C and 1.5 °C temperature rise above
pre-industrial levels.

The purpose of this paper is to review the status of
multi-model and multi-sectoral risk modeling, intro-
duce the goals and modus operandi of ISIMIP, and
share major findings, lessons learned, limitations, and
benefits of its approach.

Climate riskmodeling and sectoral
initiatives

Climate impact models are a key research tool to
explore the possible magnitude, timing, and spatial
distribution of future risks, taking into consideration
the interactions of climate and development pathways.
The scientists involved in risk modeling are from the
physical, biophysical, and socioeconomic disciplines.
They work on different scales from global (e.g., global
vegetation models) to regional (e.g., hydrological
models operating at river-basin scale) or very high-
resolution local (e.g., energy models at the building
scale).

Risk modeling suggests that the coming century is
likely to be characterized by challenges to food and
water security, along with growing risks to coastal
zones, infrastructure, and health (Jiménez Cisneros
et al 2014, Porter et al 2014, Wong et al 2014, Revi
et al 2014, Smith et al 2014). Climate change acts as a
threat multiplier, exacerbating current problems of,
for example, mass migration and maintenance of reli-
able supply chains (US Dept. of Defense 2014). Grow-
ing understanding of interacting impacts means that
in addition to deepening understanding within sec-
tors, there is a need to understand the implications at
national, regional, and global scales of the aggregation
and interactions of risks across them (Oppenheimer
et al 2014,Harrison et al 2016).

Sectoral initiatives
Climate riskmodeling typically focuses on natural and
managed resources or systems (e.g., water resources,
coastal systems, and food systems) and economic
sectors (e.g., energy, water, transportation, recreation
and tourism, insurance, and financial services). Sector
model intercomparisons include those for water (e.g.,
Goderniaux et al 2011), terrestrial ecosystems (e.g.,
Melillo et al 1995, Cramer et al 2001), agriculture (e.g.,
Rosenzweig et al 2013), coastal zones (e.g., Tebaldi
et al 2012, Nicholls et al 2014), energy (e.g., Mansur
et al 2008, Isaac and Van Vuuren 2009), and health
(e.g., Caminade et al 2014) (box 1).

Model intercomparison is emerging in other sec-
tors: for example, both ISIMIP and the Strategic Initia-
tive on Climate Change Effects on Marine Ecosystems
(S-CCME) are developing initiatives in fisheries
(Payne et al 2016). S-CCME has identified eighteen
regions as having sufficient data tomodel the effects of
climate change on fish and fisheries (Hollowed
et al 2016).

One use ofmulti-model sectoral intercomparisons
is the development of statistical emulators that repre-
sent the results. Such emulators provide simple tools
to project climate change risks for use in a wide range
of scenario and policy studies, reducing the amount of
computing time for extended analyses. They can also

2

Environ. Res. Lett. 12 (2017) 010301 CRosenzweig et al



provide improved damage estimates for use in
integrated assessment models (IAMs). Statistical
models have been developed that emulate maize yield
responses to changes in temperature and precipitation
simulated by AgMIP global gridded crop models
(Blanc and Sultan 2015) and for maize and wheat
yields simulated by AgMIP-Maize (Bassu et al 2014)
and AgMIP-Wheat (Asseng et al 2013) inter-
comparisons (Makowski et al 2015).

See the individual papers in this Special Issue for
detailed multi-model studies across a broad range of
sectors, including forests, global biomes, regional and
global hydrology, fisheries, and agriculture, as well as
papers considering cross-sectoral effects.

Box 1. Examples of sectoralmodel
intercomparisons

Terrestrial ecosystems
The health and stability of ecosystems across the globe
are threatened by changes in climate, with biomes
dependent on the existing climatic system to be
productive. Model comparisons for terrestrial ecosys-
tems have typically focused on carbon andwater fluxes
as well as vegetation distribution and structure (e.g.,
Kittel et al 1995, Melillo et al 1995, Cramer
et al 1999, 2001, Huntzinger et al 2013, Friend
et al 2014). Several global vegetation models simulta-
neously describe risks of climate change on natural
vegetation, hydrology, and crop yields (e.g., Krinner
et al 2005, Bondeau et al 2007, Lindeskog et al 2013).
Terrestrial models differ widely in complexity and
purpose including satellite-based models that use data
as inputs, models that simulate carbon fluxes using
prescribed vegetation structure, and models that
simulate both vegetation structure and carbon fluxes
(Cramer et al 1999). Whether and how models
incorporate land-use and land-cover change and other
disturbances (e.g., fire) can have significant impact on
a model’s prediction of land-atmosphere carbon
exchange (Huntzinger et al 2013).

Agriculture
AgMIP coordinates multi-model agricultural simula-
tions, including global gridded crop model intercom-
parison (Rosenzweig et al 2014, Elliott et al 2015) and
global economic model intercomparison (Nelson
et al 2014, von Lampe et al 2014), and participates in
ISIMIP. AgMIP, founded in 2010 (Rosenzweig
et al 2013), is a major international effort linking the
climate, crop, livestock, grassland, and agro-economic
modeling communities with information technology
to produce improved crop and economic models and
the next generation of climate risk projections for the
agricultural sector. AgMIP conducts transdisciplinary
analyses of the agricultural risks of climate variability
and change that link state-of-the-art climate scenarios
to biophysical and economic models. Crop and

livestock model outputs are aggregated as inputs to
regional and global economic models to determine
regional and global vulnerabilities, changes in com-
parative advantage, price effects, and potential adapta-
tion strategies in the agricultural sector.

A critical area for improving crop and livestock
models involves the simulation of pests and diseases
under changing climate conditions. The improvement
and application of pest and disease models (PDMs) for
predicting yield losses due to climate change is still a
challenge. Reference datasets for the development of
empirical models are no longer viable since the cli-
matic patterns to which the models are calibrated are
changing. Simulation models based on quantitatively
known processes represent an important method for
estimating the important effects of pests and diseases
on agricultural production, and groups of experts
within AgMIP are tackling these challenges for a range
of pests (van Bruggen et al 2015,Donatelli et al 2016).

Health
Malaria—a significant source of morbidity and mor-
tality with its geographic range, intensity of transmis-
sion, and seasonal length sensitive to weather and
climate—is one of the few health outcomes modeled
by multiple research groups and was the focus of the
first health model intercomparison (Caminade
et al 2014). The results indicate an overall net increase
in climate suitability for stable malaria transmission
and in the size of the population at risk, with larger
increases with increasing global mean surface temper-
ature. Piontek et al (2014) found that malaria pre-
valence is expected to increase in higher latitudes,
higher altitudes, and in regions on the fringes of
current malaria regions because of warmer and wetter
climatic conditions. However, when conditions
become drier, prevalence can also decrease. The
Ethiopian Highlands is one region wheremost models
agree on projected increases in prevalence.

Human health will also be affected by climate
change effects on future levels of surface ozone (O3)
(Doherty et al 2013). Ozone is a strong oxidant that has
adverse risks for health, including exacerbation of
chronic respiratory diseases, such as asthma.

Approaches and terminology for
understanding risks across sectors

Natural systems—such as water bodies, forests, and
icecaps—are all impacted by climate change. These
systems are coupled, e.g., destruction of forests can
have a strong effect on river discharge through changes
in the processes of runoff and evapotranspiration.
Such interactions are embedded in Earth System
Models (Hill et al 2004, Collins et al 2005, Dunlap et al
2008) and need, in principle, to be considered before
moving to the risks for economic sectors, which are
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coupled to the natural systems and are themselves
interactive inmultiple ways.

Assessments of future risks have mainly been sec-
toral (e.g., Huber et al 2014), although most human
and natural systems will experience the integrated
effect of risks across multiple sectors (see figure 1).
Examples of cross-sectoral interactions include shifts
in food consumption patterns, such as reduced meat
consumption and increasing production of plant-
based food, that would reduce both water and energy
usage for food production (Zimmerman et al 2016).
Food production requires equipment, which in turn
relies on the energy sector for fuel to run as well as
manufacture it.

Water is a critical resource not only for growing
crops but also for food processing. However, these
relationships vary by crop. For example, during the
California drought, farmers of high-value almonds
have opted to pay higher prices for pumped ground-
water, while rice farmers have opted to reduce the
acreage planted (US Department of Agriculture, Eco-
nomic Research Service (ERS) 2015).

Warren (2011) has explored interactions in 2 °C
and 4 °C worlds, finding that in a 4 °C world, major
shifts in agricultural land use and increased drought
cause human population, agriculture, and remaining
biodiversity to concentrate in areas remaining wet
enough for economic prosperity. Ecosystem services
would decline with carbon cycle feedbacks and fire
causing forest losses.

Harrison et al (2016) found that food production
and water use are highly influenced by other sectors
through changes in demand, land suitability, and

competition for land. The agricultural area needed for
food production is affected by widespread changes in
urbanization and changes in the frequency of flooding,
which alter land suitability for different farming activ-
ities. Changes in irrigation water availability influence
the selection of irrigated and non-irrigated crops
grown in an area, which in turn affects agricultural
profitability and food production. Water use has sig-
nificant influences from changes in irrigation and
competing demands for water from domestic and
other sectors, reflected by changing population pat-
terns in urban areas. Agricultural and forestry changes
can affect habitats for particular species and thus
biodiversity.

Better understanding of these integrated risks at
local to national to international scales is critical for
effective and efficient adaptation policies (Harrison
et al 2016, Ruane et al 2016).

There are different approaches to characterizing
risks that emerge across sectors. Some IAMs (e.g.,
Edmonds et al 2012) are structured to provide insights
into key linkages at broad regional scales. Other mod-
eling approaches may describe interactions by embed-
ding more simplified risk functions into the overall
system (e.g., Nordhaus and Boyer 2000, Nord-
haus 2008, Hope 2006, 2008, Waldhoff et al 2014). In
each case, it is important to ensure that linkages are
addressed explicitly to avoid the ‘black box’ syndrome,
whereby reasons for modeling results may be difficult
to trace and understand.

Another approach is to use sector models that
typically include more sectoral detail and rely on loose
coupling to address the linkages across sectors. The

Figure 1.Climate-risk cascades across sectors (Huber et al 2014).
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ISIMIP approach is to address the full complexity by
including both natural system models, such as hydro-
logical and ecosystem models, and socio-economic
sector models such as agricultural trade models. This
suite of loosely integrated models allows for explicit
analysis of the coupled processes.

Types of explicit linkages include multi-sectoral,
cross-sectoral, and integrated studies (box 2).

Box 2. Terminology and approaches

Multi-sectoral overlays
These occur where the spatial patterns of impacts in
different sectors are overlaid to highlight ‘hot-spot’
regions likely to experience multiple risks, but where
the analysis does not consider interactions among
sectors except in terms of the cumulative risk. An
example is the basic aggregation of potential direct
damages, mortalities, or displaced people induced by
different kinds of extreme events within a given region
and time span. It can be used to identify regions subject
to changing frequencies of multiple hazards from
extreme events, such as heavy precipitation events and
heat waves. This can be determined by overlaying
independent sectoral analyses as long as these are
carried out against consistent future scenarios and
compatible regionalizations. The ISIMIP Fast-Track
focused on this type of ‘hotspot’ analysis (Piontek
et al 2014).

Cross-sectoral analyses
These are cases where two or more sectors interact
directly through their supply or value chains or
competition for resources; examples include the
dependence of urban water supplies on energy net-
works, but also competition for water between, say,
agriculture, mining, and the environment in one
region, or for land between bioenergy and food. These
studies require explicit consideration of the coupling
between sectors, potentially leading to simplified
‘nexus’-style analyses that integrate more detailed
sectoral simulations; the sectoral analyses need a
consistent basis, but additional analyses of interactions
are also required.

Integrative studies
This is the term we use for emergent interactions that
play out due to processes that cross scales and often
depend on other subsystems. These include net effects
on GDP and national tax receipts that are a result of
influences from multiple sectors flowing through the
economy. An increased coincidence of sub-national
disasters (e.g., in space or time, within one budget
cycle) can reduce tax receipts through industry disrup-
tion as well as potentially overwhelming recovery
budgets and insurance. Such adaptation responses can
result in competition for capital among sectors. Some
extant economic models can already address these

issues, but mostly these are poor at handling discon-
tinuous change. This requires a consistent sectoral
basis, but also new non-equilibrium analyses to
informnational and international decision-making.

Specification of scenarios

At the heart of any integration of climate change risks
across sectors (even on the purely biophysical level) are
sectoral projections of impacts forced by the same
climate inputs (van Vuuren et al 2011). Without this
basis, even the simplest aggregations of e.g., people
affected, potential deaths, and economic damages, are
not possible, let alone an assessment of the potential
interactions of these effects.

Consistency of socio-economic inputs, such as
population and GDP growth rates, is equally impor-
tant for the aggregation and analysis of cross-sectoral
risks (Wilbanks and Kristie 2014). The Shared Socio-
economic Pathways (SSPs) are now available and are
being combined with the Representative Concentra-
tion Pathways (RCPs) to create scenarios that contain
qualitative and quantitative elements (van Vuuren
et al 2014). The narratives include qualitative informa-
tion on factors such as governance that are known to
be critical for determining the magnitude and pattern
of future risks (Wilbanks andKristie 2014, vanVuuren
et al 2014, O’Neill et al 2014, 2015).

In some cases, these issues have been avoided by
conducting the socio-economic evaluation in a post-
processingmode, i.e., biophysical projections are done
without including much information about human
influences and then additional calculations are made
to estimate human risks. For example, hydrological
simulations are used to estimate inundation areas, and
then are combined with geospatial population data to
estimate the associated number of affected people.

Adaptationmeasures have been represented in this
type of analysis as well. For example, adaptation mea-
sures may be estimated based on the original simula-
tions by only considering flood events above a certain
protection level. Then the number of affected people
can be estimated again but only accounting for flood
events above the specified level. Examples include the
calculation of affected people based on projected floo-
ded areas (Hirabayashi et al 2013) and people under
risk of water scarcity (Schewe et al 2014). Agricultural
economic models focus primarily on economically-
efficient adaptation, with analyses of both costs and
benefits of specific strategies (e.g., land-use conver-
sion, intensification, and trade) (Nelson et al 2014).

Inclusion of socio-economic information in post-
processing can allow development pathways to be con-
sidered efficiently, because no new biophysical projec-
tions from computationally-intensive impact models
are required. However, there are some cases where the
socio-economic information is needed by the models,
such as when projecting the distribution of vector-
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borne diseases, which depends on population densities
and socio-economicdevelopment (Jones et al2008).

The scenario framework consisting of RCPs and
SSPs (vanVuuren et al 2014) provides the consistent set-
ting that enablesmulti-sectoral, cross-sectoral, and inte-
grative research questions to be addressed across a wide
range of sectors. The magnitude and pattern of future
risks will depend on climate and socio-economic input
variables, as well as on assumptions regarding different
management options (e.g., fertilizer input, fishing quo-
tas, regulation of water levels) or adaptation measures
(e.g., installation of irrigation, dams and dikes providing
protection againstflooding events, availability of shelters
offering protection against storms or wildfires, land-use
changes affecting the distribution of wildfire occur-
rence) (Valdivia et al 2015). Thus, to make projections
truly consistent, a common modeling protocol is nee-
ded covering harmonized climate and socio-economic
inputs as well as story lines that include, for example,
concrete descriptions of adaptation strategies.

Integrating riskswithin and across sectors

Most climate risk literature consists of single-sector
studies utilizing single models. While often providing
useful and useable insights at local scales, these are
hard to aggregate within or across sectors in assess-
ments such as the IPCC due to lack of consistency in
climate inputs and scenarios across studies (see, for
example, the aggregation of climate change risks on
crop production in the IPCC ARSWG2 Food Systems
chapter (Porter et al 2014).

Examples ofmulti-sector studies are emerging dri-
ven by common climate input data; see, e.g., Piontek
et al (2014) for a study that analyzes climate change
effects on crop yields, water resources, natural vegeta-
tion, and malaria; Arnell et al (2013, 2016) for studies
of energy demand and supply, river and coastal flood-
ing, changes in productivity of cropland and terrestrial
ecosystems, and heating and cooling energy require-
ments; and vanVuuren et al (2011) for a study describ-
ing analysis of risks on human health, agricultural
yields, potential water availability, and heating and
cooling demand. This multi-sector work based on
consistent assumptions, treatment of risk, and adapta-
tion strategies is a step forward.

In addition, there is an urgent need for the integra-
tion of other risks such as the intersections of water,
agriculture, energy, and health in dryland areas, and
incorporation of new sectors such as health risks
(besidesmalaria),fisheries, and tourism.

Without multi-sectorally consistent impact studies,
it becomes difficult to develop methods for the analysis
of cross-sectoral interactions and to aggregate risks
meaningfully while accounting for potential interac-
tions. For example, the questionof the potential increase
in crop production due to additional irrigation can only
be addressed using water resources and crop model

simulations forced by the same weather patterns. The
first consistent multi-water model and multi-crop
model analyses addressing this issue were recently pub-
lished (Elliott et al 2014, Frieler et al 2015). Other critical
interactions include:

• Competition for land from biofuels, afforestation,
and agriculture;

• Multiple demands for water from agriculture,
human needs, ecosystems, energy production,
industry, and recreation;

• Connections between hydropower production and
changing river flow, sediment transport, irrigation
water withdrawal, and energy demand;

• Fertilizer inputs for enhanced crop productivity and
the ensuing risks towater quality andfisheries.

The emerging generation of more comprehensive and
integrative assessments of climate change considers the
interaction of sectoral risks and their feedbacks through
local, national, and global economies. This requires
modeling frameworks that account for the interplay of
social, economic, and biophysical as well as spatial
dynamics. Examples of integrative approaches building
on spatially explicit risk projections forced by consistent
climate inputs are contained in the PESETA study
(Ciscar et al 2012) and Climate Change Integrated
assessment Methodology for cross-Sectoral Adaptation
and Vulnerability in Europe (CLIMSAVE) (Harrison
et al 2015, 2016). CLIMSAVE is a web-based interactive
simulation and display environment that provides a
holistic (cross-sectoral, climatic, and socio-economic
change)modeling framework. The platform guides the
user through simulation of potential risks under climate
and socio-economic scenarios, identification of sectoral
and multi-sectoral vulnerability hotspots, adaptation
potential, and cost-effectiveness of adaptationmeasures.

Challenges of integratedmodeling

While integrated sectoral modeling is useful in under-
standing the complex risks of climate change, its
methods do contain weaknesses. For example, in
regard to choices of development pathways, emissions
scenarios, and climatemodels, and the assessment and
communication of uncertainty, there may be complex
relationships among the interests of scientists, policy-
makers, and members of society (Hulme and Des-
sai 2008). Even the visualization of results may be
affected by such complex choices.

The use of multiple impact models also engenders
uncertainties. Drawing on lessons from the use of
multiple climate model ensembles, difficulties in the
multi-model approach may involve the use of only a
small number of models, lack of transparency in
regard to the distribution of the models across a given
parameter space, and often-poorly simulated extreme
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behavior (Knutti et al 2010). Impact model compar-
ison has generally not resulted in designation of ‘good’
and ‘bad’models (potentially hampering evaluation of
results), and there is concern that the same datasets are
used inmodel development leading to lack of certainty
in the independence of the individual components of
themodel ensembles (Knutti et al 2010).

Important questions pertain to the use of model
ensembles to characterize uncertainty. The results
produced by modeling comparison exercises are not
truly independent, since frequent interactions among
researchers tend to increase the consistency of the
underlying model parameterizations and the results.
This has the unintended consequence of reducing the
range of possible outcomes. Mean reversion, herd or
swarmbehavior, and peer pressuremay bias results.

It is also important to note that model-based out-
comes of risks do not encompass the full range of pos-
sible futures due to feedbacks in the climate system
that are not captured in current GCMs (Tebaldi and
Knutti 2007). Lempert et al (2006) and Dessai and
Hulme (2007) discuss strategies for robust adaptation
decision-making given these underlying uncertainties.

While there is a perception that large modeling
comparison exercises absorb a great deal of resources
from independent research at the frontier, it is often
the case that participation in such exercises is volun-
tary and they generally take minimal budgetary
resources. Funding is needed, however, for science
integration to ensure that projects have a clear focus,
engender interdisciplinary insights, and are properly
managed. A balance does need to be struck if such
exercises become the cornerstone of integrated assess-
ment research in regard to both time and funding, so
that they do not limit innovation.

An inter-sectoral risksmodeling
framework: ISIMIP

An inter-sectoral modeling framework allows for a
systematic assessment of the potential for cascading
effects such as energy system blackouts, transportation
and food system disruptions, communications break-
downs, and water supply cut-offs, as a result of direct
impacts and their interactions.

ISIMIP is working to address the challenges of
providing more relevant information for decision-
makers by facilitatingmulti-sector as well as cross-sec-
tor studies (Huber et al 2014, Warszawski et al 2014).
Its goal is to establish a repository of consistent climate
change risk projections, thus allowing for multi-
model assessments of sectoral impacts and opportu-
nities and supporting further analyses of multi- and
cross-sectoral risks and fully integrative studies
(figure 2). This is achieved by reaching consensus on a
number of marker climate scenarios, socio-economic
projections, and management strategies, such as the
RCPs and SSPs, to be used as harmonized input for
risk models from as many sectors as possible to enable
cross-sectoral studies, and from which more inte-
grated studies can be developed that embed the inter-
actions among sectors explicitly.

ISIMIP has created a partnership among the
impacts simulation communities to facilitate agree-
ment on core sets of climate and socio-economic
projections leading to cross-sectorally consistent
modeling protocols. ISIMIP is establishing a con-
tinuous process similar to, for instance, coordination
activities for GCMs such as the Coupled Model Inter-
comparison Project (CMIP, now in its sixth iteration;
e.g., Meehl et al 2005, 2014) and for IAMs such as the

Figure 2. ISIMIP scenarios provide a consistent simulation framework across sectors based on the level of climate change (as captured
by the RCPs) and socio-economic change (as described by the SSPs). The colored points in each plane represent the coverage of future
climate change and socio-economic scenarios in each sector. The ISIMIP framework ensures that a subset of these points coincide in
the ‘sector’ domain, facilitating analyses of intersecting risks.
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Energy Modelling Forum (EMF; e.g., Weyant and
Kriegler 2014). The activities of ISIMIP proceed in
phases, each addressing specific policy-relevant
research questions that determine the selection of the
climate and socio-economic scenarios.

How ISIMIPworks

The foundation of the ISIMIP framework is a set of
simulation protocols consistent across sectors, cover-
ing a number of scenarios that can then be subsumed
into and complement the protocols of sector-specific
initiatives. ISIMIP is also a partnership and ‘commu-
nity of practice’ of sectoral modeling groups who have
come together to provide inputs for decision-makers
on the nature and timing of inter-sectoral risks.

A Strategy Group, with representation from the
leaders of the sector MIPs, a cross-sectoral science
team, and the ISIMIP Scientific Advisory Board, are
tasked with furthering coordination and collaboration
across the sectors, both thosewith organizedMIPs and
those without (figure 3). With the involvement of a
broad group of stakeholders and sector modelers, the
Strategy Group has the opportunity to co-generate the
guiding questions for successive rounds of simula-
tions, experiments, analyses, and assessments. In an
iterative consensus process that builds on input from

the stakeholder and scientific communities, the Strat-
egy Group decides on the guiding questions and the
simulation protocols needed to answer them for each
round (see figure 3 and ISIMIP Mission and Imple-
mentation document, https://isimip.org/about/
#mission).

An economic integration unit has also been estab-
lished within ISIMIP as a forum for mutual exchange
between biophysical and economic modelers, with the
goal of improving explicit linkages among the dis-
ciplinary models. For example, translation of runoff
projections into flood risks, flooded areas, and direct
damages will make them more usable in economic
assessments. The aim is to enable better understanding
of the mutual requirements within the different mod-
eling settings andmore effective data exchange.

Majorfindings and lessons learned

In advance of the IPCC Fifth Assessment (IPCC 2014),
the Potsdam Institute for Climate Impact Research
(PIK) and the International Institute for Applied
Systems Analysis (IIASA), with funding from the
German Federal Ministry of Education and Research
(BMBF), initiated ISIMIP. The first phase of the
project, the ISIMIP Fast Track, was conducted from
2012 to 2014 (figure 4). Thirty-five global risk models

Figure 3. ISIMIP organizational structure enabling development of guiding questions by stakeholders and scientists and consistent
protocols to achieve decision-relevant results.
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from five sectors joined: water, biomes, agriculture,
coastal zones, and health (malaria). The purpose was
to quantitatively assess global change impacts at
different levels of climate change consistently across
sectors, to estimate the uncertainty of projections
across global climate models (GCMs) and global
impact models, and to launch a continuous coordi-
nated risk modeling improvement and intercompar-
ison program (Warszawski et al 2014).

Climate scenario input was developed from five
GCMs from CMIP5 providing climate projections for
the four RCPs. Socio-economic projections of eco-
nomic development and population growth were
based on the SSPs. Modeling groups were asked to
provide future projections of impacts assuming that
their best representation of the year 2000management
conditions were fixed in the simulations over the 21st
century. The associated simulations did not describe a
‘likely’ future, but rather enabled the quantification of
future risks of climate change, thus helping to char-
acterize future adaptation needs.

The ISIMIP Fast Track resulted in an analysis of
the state of climate impacts research within indivi-
dual sectors and across them, and laid the foundation
for multi-sectoral and cross-sectoral climate risk
analyses (figure 5). Examples of cross-sectoral ana-
lyses, where sectoral projections were combined in
post-processing, include Elliott et al (2014) that
addressed the potential increase in crop production
through irrigation, based on available freshwater,
and Frieler et al (2015) that considered competing
pressures on freshwater and land availability from the
perspective of agricultural production and climate
protection. Results of the Fast Track were published
in Special Issues of the Proceedings of the National
Academies of Science (PNAS) (Schellnhuber et al 2014,
Warszawski et al 2014), Earth System Dynamics
(Huber et al 2014), and Agricultural Economics (Nel-
son and Shively 2014).

Major findings from the first round of ISIMIP stu-
dies are that multi-sectoral (water, agriculture, ecosys-
tems, andmalaria) overlap starts to be seen robustly at

Figure 4. ISIMIP activities and timeline (see appendix Afigure A1 for amore detailed timeline and information on citations).

Figure 5.Major findings from ISIMIP Fast Track. (a)Multisectoral hotspots of impacts for two (orange) and three (red) overlapping
sectors (Piontek et al 2014). (b)Potential change in total production ofmaize, soybean, wheat, and rice at end-of-century given
maximal use of available water for increased/decreased irrigation use onwhat are currently rainfed/irrigated areas in total calories
(Elliott et al 2014).
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a mean global warming of 3 °C above the 1980–2010
mean, with 11% of the world population subject to
severe risks in at least two of the four risk sectors at
4 °C (Piontek et al 2014). In a low probability-high risk
worst-case assessment, almost the whole inhabited
world is at risk for multi-sectoral pressures (Piontek
et al 2014). Combining hydrological and agricultural
model ensemble results, Elliott et al found that fresh-
water limitations in some irrigated regions could
necessitate the reversion of 20–60 Mha of cropland
from irrigated to rainfed management by end-of-cen-
turywith associated losses in food production.

Lessons learned from the early ISIMIP work
include that the uncertainty arising from the risk mod-
els is considerable (see box 3) and often larger than that
from the GCMs (Piontek et al 2014, Prudhomme
et al 2014, Rosenzweig et al 2014). In studying inland
flood hazards through hydrology and land surface
models, Dankers et al (2014) found that while large-
scale patterns of change are remarkably consistent
among riskmodels, at local scale and in individual river
basins there can be disagreement even on the sign of
change. This indicates that modeling uncertainty needs
to be taken into account in local water resource adapta-
tion studies. In regard to coastal flooding, a damage and
adaptation costs study found that long-term coastal
adaptation strategies play a central role in projecting
outcomes (Hinkel et al 2014). The ISIMIP results indi-
cate clearly that there is a pressing need for develop-
ment of policymeasures under existing but now better-
characterized uncertainty (Piontek et al 2014, Prud-
homme et al2014, Rosenzweig et al2014).

Box 3. Addressing uncertainty in a global
economicmodel ensemble

A key issue that arises in ISIMIP is the presence of
different types of models within the multi-model
ensembles. For example, ten global economic models
were used to project futures for agricultural markets
and global food security (six were computable general
equilibrium (CGE) models and 4 were partial equili-
brium (PE) models (see appendix B table B1)). The
two model families differ both in their scope—partial
versus economy-wide—and in how they represent
technology and the behavior of supply and demand in
markets (Robinson et al 2014). The CGE models
explicitly solve the maximization problem of

consumers and producers, assuming utilitymaximiza-
tion and profit maximization with production/cost
functions that include all factor inputs. The PEmodels
divide into groups on the supply side: ‘shallow’models
that specify area/yield supply functions with no
explicit maximization behavior, and ‘deep’ models
that vary in their specifications of technology. For a
comparison of scenario results to be meaningful,
careful analyses of the relevant model variables are
essential (von Lampe et al 2014). Once this was done,
the agricultural economic modelers found that the
variability in general trends across models declined,
but remained important. Finally, differences in basic
economicmodel parameters such as income and price
elasticities, sometimes hidden in the way market
behavior ismodeled, result in significant differences.

Currentwork and future activities

In its second phase, ISIMIP2a is focusing on ‘Consis-
tent evaluation of impact models with respect to the
representation of extreme events across sectors’
(table 1) (www.isimip.org). Extreme events are the
focus of ISIMIP2a because they are a major concern of
stakeholders who must manage risks for individual
sectors and for regions and nations as a whole. The
aggregation of the effects of extreme events is an
important example of critical challenges that can only
be addressed using a consistent cross-sectoral model-
ing framework. Research questions include ‘How well
do the participating models simulate the risks of
extreme events such as heatwaves, droughts, and
floods? What are the sectoral interactions between
extreme event impacts, e.g., droughts causing water
shortages leading to disruptions in food supply?’

Extremes in different sectors will not occur inde-
pendently but will be spatially and temporally corre-
lated. For example, the El Niño Southern Oscillation
(ENSO) influences crop yields (Iizumi et al 2014), flood
events (Ward et al 2014), tropical cyclones (Wang and
Chan 2002, Kossin et al 2010), coral bleaching (Glynn
et al 2001), and fisheries (McPhaden et al 2006), but
these risks are oftenmanifested in divergentways in dif-
ferent countries (Cashin et al 2014).

Simulations conducted in ISIMIP2a (PIK 2015)
are forced by a number of observational climate data
sets to evaluate model performance and analyze inter-
actions between sectoral impacts of historical extreme

Table 1. Simulation tasks in ISIMIP2.

Fast‐trackmodels New sectors/models

ISIMIP2a Historical runs→validation and evaluationwith
focus on variability and extremes

Historical runs→validation and evaluationwith focus on variability
and extremes (thismay, particularly for regionalmodels, include

calibration and validation for average conditions as afirst step)
ISIMIP2b Strengthening cross‐sectoral integration (e.g., by application of land‐use patterns generated by agro‐economicmodels within

thewater and biomes sectors)
Simulations directed at understanding the impacts of 1.5 °Cglobal warming and associated greenhouse gas pathways
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events. More than 90 modeling groups are actively
participating in this phase, with sectoral coverage
extended to include energy, forestry, permafrost, bio-
diversity, and fisheries. The papers in this Special Issue
report on these results.

In addition to global-scale modeling, ISIMIP now
includes multi-model regional projections allowing
for comparisons between global and regional risk pro-
jections forced by the same climate and socio-eco-
nomic inputs. Efforts also include the online
integration of projections of the effects of land-use
changes on carbon stocks andwater resources.

The issue of land-use change will be addressed
explicitly in the next round of modeling (ISIMIP2b).
The effects of different mitigation options on crop
yields and land use will be the focus. Results will con-
tribute to understanding how a low-emission scenario
(RCP2.6) can be achieved while ensuring food supply
for a growing population under changing climate con-
ditions. The associated land-use patterns will then be
used as inputs for the biome and water models to
assess the cross-sectoral risks.

The ISIMIP2b scenarios are designed to elicit the
contribution of climate change to risks arising from
low-emissions climate-change scenarios. Pre-indus-
trial control runs are included to facilitate statistical
comparison with a no-climate-change case. The simu-
lation protocol contains all information necessary to
conduct simulations for ISIMIP2b for models cover-
ing risks to global biomes, regional forests, global and
regional hydrology, agriculture, permafrost, energy
supply and demand, coastal infrastructure, heat-rela-
ted mortality, fisheries and marine ecosystems, and
tropical cyclones.

In the next phase, ISIMIP will focus more on such
cross-sectoral simulations, where results from one
sector are used as inputs for another sector (e.g., effects
of changing runoff and river sediment transport on
marine fisheries). Moreover, the assessment of adapta-
tion strategies will become a focus topic for future
simulations by prescribing protection levels. Con-
sistent cross-sectoral simulations will enable assess-
ment of the associated benefits but also potential
trade-offs of the strategies. For example, increased
water use for irrigation reduces water availability for
energy generation, but to what extent? (Hanjra and
Qureshi 2010). Future phases of ISIMIP will also
address such topics as limits to adaptation by con-
sidering high-end global warming, early-warning by
focusing on short-term future projections, and geoen-
gineering by simulating specific proposed techniques.

ISIMIP stakeholder engagement and
provision of policy-relevant information

Through a stakeholder engagement process, ISIMIP
has the potential to elicit important guiding questions
frompolicy-makers and create the protocols necessary

to generating outputs that address the questions
raised, such as how risks could evolve over time under
different assumptions about the effectiveness of adap-
tation andmitigation options. In recent years there has
been a growing recognition of the benefits of research
processes that incorporate co-design and co-produc-
tion of knowledge in order to improve the degree to
which research is actionable (e.g., Lemos and More-
house 2005, Mauser et al 2013). For ISIMIP, an
iterative stakeholder engagement process with major
public and private sector groups, such as the World
Economic Forum; the Global Environmental Facility;
and the Green Climate Fund of the UNFCCC can help
to establish the guiding questions for the scenario
protocols and to provide feedback through regular
interactions. At country scales, ISIMIP results can
inform National Adaptation Plans and other bench-
marked reports for the UNFCCC Subsidiary Body for
Scientific andTechnological Advice.

However, itmust bemade clear to all stakeholders as
part of the co-generation process that ISIMIPmaintains
its scientific independence and avoids policy prescrip-
tion. The challenges posed by the Paris Agreement goals
of 2.0 °C and 1.5 °C temperature rise are an important
case in point (Rogelj et al 2016). ISIMIP analyses may
generate findings that these goals are very hard to
achieve given current technologies, and thus there may
be potential conflicts between the outcomes of ISIMIP
exercises and the political agendaon climate change.

The key output of ISIMIP is an open-access reposi-
tory of multi-sectorally consistent, multi-model simu-
lations that facilitate self-organizing research and
analysis that in turn provide a scientific basis for the
IPCC and other risk assessment processes, such as the
emerging IIASA The World in 2050 and the US NSF
Innovations at the Nexus of Food, Energy, and Water
Systems projects. This multi-model research also has
great potential to improve the basis for the damage
functions embedded in the IAMs that are used to set the
marker scenarios for the RCP/SSP process and to con-
duct experiments to provide insights on possible risks
under differentmitigation policies (Moss et al 2010, van
Vuuren et al2014,Wilbanks andKristie 2014).

An important consideration in the design of
simulation tasks within ISIMIP will be the tracking of
a set of multi-dimensional indicators such as ‘num-
ber of people affected by extreme events,’ ‘direct eco-
nomic damages,’ ‘people at risk of hunger,’ and
‘number of people displaced’ over time. This con-
sistent and regularly-updated set of products would
assist in providing knowledge for resilience and
transformative decision-making as the climate sys-
tem evolves.

Another potential use of ISIMIP results is linkage to
the Sustainable Development Goals (SDGs), passed by
the United Nations General Assembly in 2015. ISIMIP
can contribute to the SDG process by providing the sci-
entific basis for characterizing the portending climate
risks under which the SDGs will need to be achieved,
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thus helping to explore linkages among the goals (Griggs
et al 2014). For instance, the integratedmodeling results
in the water and agricultural sectors can help to develop
improved understanding of the expected risks of climate
change on future water and food availability. This can
aid in establishing the context in which nations are
undertaking SDG 2 to end world hunger and SDG 3 to
achieve health andwellbeing.

Conclusions

ISIMIP is contributing to the knowledge needed by
international and national stakeholders responsible
for designing, monitoring, and evaluating adaptation
and mitigation policies and measures. The core task is
to provide a consistent framework for simulations,
based on common climate and socio-economic input
and scenario design, needed to address targeted sets of
cross-sectoral and inter-sectoral questions. Trajec-
tories of risk profiles through the 21st century using
the ISIMIP framework will thus be responsive to the
interests of decision-makers and key constituencies
such as the disaster risk reduction community.

Regular summaries of ISIMIP results could provide
updated risk measures that can be used by decision-
makers through time and that will inform national and

international assessments. These will enable the devel-
opment of an ‘adaptive pathway’ approach for decision-
makers, as irreducible uncertainties become clear.

On the technical side, ISIMIP results from the
individual sectors are enabling the development of
simplified risk-model emulators describing risks in
terms of global mean temperature change with the
goal of providing new, improved damage estimates for
use in IAMs. In addition, incorporation of socio-eco-
nomic development pathways will make them usable
for economic assessments by e.g., translation of runoff
projections into flood risks, flooded areas, and direct
damages.

By conducting multi-, cross-, and integrated
sectoral risk modeling over time, ISIMIP will con-
tribute to robust and flexible decision-making in the
short and longer term. ISIMIP can facilitate the
assessment of the potential for crossing thresholds
within individual sectors, and, importantly, the
risks of inter-sectoral disruptions. The information
that ISIMIP provides is critical for adaptive and
transformational decision-making in the coming
decades.

AppendixA

FigureA1.Detailed ISIMIP timeline. As of 29December 2016, there are nine peer-reviewed articles with ISIMIP in the title (nineteen
when including abstracts) and the lead paper in the ISIMIP PNAS Special Issue (Warszawski et al 2014) has been cited as a reference
168 times, according toGoogle Scholar, www.googlescholar.com.
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Table B1.AgMIP global economicmodel characteristics as presented in von Lampe et al (2014).

Model
(Reference) Institution Type

Economy
coverage

Agric.
sectorsa Regionsb

Base
year Agric. policies Bioenergy

Global
numeraire

Agric.
supply Final demand Trade

AIM (Fujimori
et al 2012)

NIES, Japan CGE Full
economy

8/1 89/17 2005 Implicitly
assumed
unchanged

Endogenous first
and second
generation

USCPI Nested
CES

LES utility Nonspatial;
Armington
gross-trade

ENVISAGE (van
derMens-
brugghe 2013)

FAO/
World Bank

CGE Full
conomye

10/5 11/9c 2007 Pricewedges
(based
onGTAP)

None explicitly
represented

High-inc.
manuf’ed
exports

Nested
CES

LES utility (w/
dynamic
shifters)

Armington spatial
equilibrium

EPPA (Paltsev
et al 2005)

MIT,USA CGE Full
economy

2/0 7/9 2004 Subsidies, taxes,
tariff
equivalents

Endogenous first
and second
generation

USCPI Nested
CES

NestedCES
utility

Armington spatial
equilibrium

FARM (Sands
et al 2013)

USDA,USA CGE Full
economy

12/8 5/8c 2004
(&
2009)

Pricewedges
(based
onGTAP)

Little for elec-
tricity and
heating

European
service
sector

Nested
CES

LES utility Armington spatial
equilibrium

GTEM
(Plant 2007)

ABARES,
Australia

CGE Full
economy

7/7 5/8c 2004 Implicitly
assumed
unchanged

Endogenous first
generation

Capital
goods

Nested
Leontief
andCES

CDEutility Armington spatial
equilibrium

MAGNET
(Woltjer
et al 2011)

LEI-WUR,
TheNether-
lands

CGE Full
economy

10/9 29/16 2001 (&
2004,
2007)

Pricewedges
(adjusted from
GTAP); milk
quotas

Endogenous first
generation
(incl. biofuel
targets)

WorldGDP
deflator

Nested
CES

CDEprivate
demandd and
Cobb-Douglas
utility

Armington spatial
equilibrium

GCAM (Wise
and
Calvin 2011)

PNNL,USA PE Agriculture,
Energy

18/0 7/9c 2005 Implicitly
assumed
unchanged

Endogenous first
and second
generation

n.a. Leontief Iso-elasticd Heckscher-Ohlin
nonspatial, net-
trade

GLOBIOM
(Havlik
et al 2013)

IIASA, Austria PE Agriculture,
forestry,
Bioenergy

31/6 10/20 2000 Implicitly
assumed
unchanged

Exogenous
demand

n.a. Leontief Iso-elasticd Enke-Samuelson-
Takayama-Judge
spatial
equilibrium

IMPACT (Rose-
grant
et al 2012)

IFPRI,USA PE Agriculture 32/14 101/14 2000 Pricewedges
(based on
PSE/CSE)

Exogenous
demand for
feedstock crops

n.a. Iso-elasticd Iso-elasticd Heckscher-Ohlin
nonspatial, net-
trade

MAgPIE (Lotze-
Campen
et al 2008)

PIK,Germany PE Agriculture 21/0 0/10 2005 Implicitly
assumed
unchanged

Exogenous
demand

n.a. Leontief exogenous Based on historical
self-sufficiency
rates

a Figures indicate the number of raw and processed agricultural products represented, respectively.
b Figures indicate the number of individual countries andmulti-country aggregates represented, respectively.
c Regional breakout specific for this application.
d Elasticities adjusted over time.
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