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ABSTRACT 

Ecological theory is essential to predict the effects of global changes such as habitat loss and fragmentation on 

biodiversity. The species-area relationship (SAR), metapopulation models (MEP) and species distribution 

models (SDM) are commonly used tools incorporating different ecological processes to explain biodiversity 

distribution and dynamics. Yet few studies have compared the outcomes of these disparate models and 

investigated their complementarity. Here we show that the processes underlying SAR (patch area), MEP 

(patch isolation) and SDM (environmental conditions) models can be compared with a common statistical 

framework. Our approach allows for species and community-level predictions under current and future 

landscape scenarios, facilitates multi-model comparison and provides the machinery for integrating multiple 

mechanisms into one model. We apply this framework to the distribution of eight focal vertebrate species in 

current and future projected landscapes where 10% of the landscape is lost to land-use change in 

southwestern, Quebec, Canada. Based on a model selection approach, we found that a model including patch 

area was the top ranked model for four of our focal species and models including patch isolation and 

environmental conditions were the top ranked models for two focal species each. Community-level 

predictions of models based on patch area, patch isolation and environmental conditions for both current and 

future landscapes showed high spatial overlap, however, patch area models always predicted a reduction of 

species richness per patch whereas both the patch isolation and environmental conditions models predicted an 

increase or decrease in species richness per patch following habitat loss and fragmentation. Our comparative 

tool will allow ecologists and conservation practitioners to relate structural uncertainty to key mechanisms 

underlying each model. Ultimately, this approach is one step in the direction of deriving robust predictions for 

the change and loss of biodiversity under global change, which is key for informing conservation plans.  

Key words: Conservation, Generalized Linear Models, Global Change, Metapopulation model, Prediction, 

Species-Area Relationship, Species Distribution Model 
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INTRODUCTION 

Tools for predicting biodiversity change are essential for biodiversity conservation in the face of the global 

changes (Cardinale et al. 2012, Vellend et al. 2013, Dornelas et al. 2014, Ewers et al. This issue). Ecologists 

have derived from theory (Thuiller et al. 2013) a suite of models to predict the distribution, abundance, and 

diversity of species based on environmental conditions and ecological processes (hereafter biodiversity 

models). Some biodiversity models are commonly used for biodiversity conservation and land-use planning 

(e.g. species distribution models; Leroux et al. 2007) while others have seen limited applications (e.g. neutral 

theory). In most case studies, however, a single biodiversity model is applied to address a particular 

conservation problem (but see e.g. Moilanen and Hanski 1998, Keith et al. 2008, Dullinger et al. 2011, 

Fordham et al. 2013), therefore, we lack a good understanding of how the predictions from various models 

may differ, and the potential for multiple models to provide complementary insights on a given problem 

(Krosby et al. 2015, Brudvig et al. This issue).  

It is not surprising that researchers and conservation practitioners usually apply a single biodiversity 

model to address a particular conservation problem. The study area, biodiversity element of interest, 

conservation goals and data availability may dictate the choice of model. For example, a species with very 

strict habitat requirements, such as the Glanville fritillary butterfly (Melitaea cinxia) in Finland occupies a 

landscape of habitat patches surrounded by inhospitable matrix and may be most amenable to metapopulation 

models (e.g. Moilanen and Hanski 1998). Given that the majority of respondents to a recent survey on 

quantitative training among early career ecologists were not comfortable with their understanding of 

mathematical models within their field (Barraquand et al. 2014), we surmise that researcher and practitioner 

experience with quantitative techniques may also explain the paucity of case studies applying multiple 

biodiversity models. But perhaps the most important reason for the lack of multi-model comparisons is that 

we do not have a framework for comparing models that are based on different assumptions (e.g. 

environmental filtering, species-area relationships), parameterized with different types of data (e.g. 

abundance, presence/absence, co-occurrence), and which provide disparate predictions (e.g. species-level, 

community-level).  

Biodiversity models have a key role to play in exploring the causes and consequences of biodiversity 

change (Pereira et al. 2010, Thuiller et al. 2013). The primary driver of species extinctions and turnover is 
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habitat loss and fragmentation (Newbold et al. 2015). Habitat loss and fragmentation results in the direct 

removal of species and their habitat but also the indirect loss of species by providing the pathways for 

resource extraction (e.g. fishing, forestry) and the arrival of non-native organisms. For example, Kaufman et 

al. (2009) report higher exploitation rates of native lake trout (Salvelinus namaycush) and higher prevalence 

of non-native smallmouth bass (Micropterus dolomieu) in lakes with good road access than lakes with poor 

road access in northeastern Ontario, Canada. Many biodiversity models have been used to predict the effects 

of habitat loss and fragmentation on biodiversity. For example, Cord and Rödder (2011) incorporate remotely 

sensed enhanced vegetation index data to improve predictions of anuran species distribution in fragmented 

habitats in Mexico. Developing a framework for comparing different biodiversity models will allow us to 

explore and potentially reduce structural uncertainty arising from model specific assumptions and to better 

manage model complexity. 

Here we seek to fill this gap by showing how a common and simple statistical framework can be 

used for comparing the predictions from different biodiversity models. We begin by reviewing the history, 

formulation, predictions and applications in biodiversity conservation of three simple but widely applied 

biodiversity models; species-area relationships (SAR), metapopulation models (MEP), and species 

distribution models (SDM). Then we map the processes behind these three models to a common statistical 

framework and apply it to a systematic comparison with a case study of land-use planning in a fragmented 

landscape in southwestern Quebec, Canada. We end with perspectives for multi-model comparison and 

integration for real-world biodiversity conservation and land-use planning.  

REVIEW OF THREE SIMPLE BIODIVERSITY MODELS 

We review species-area relationships, metapopulation models, and species distribution models (Table 1) 

because they are widely used in ecology and conservation and they are relatively simple with few parameters 

which makes them easy to parameterize in practice. Classic SAR makes predictions at the community-level 

whereas classic MEP and SDM models make predictions at the species-level. 

Species-area relationships 

SARs are among the best-known and most documented observations in ecology (Rosenzweig 1995). SARs 

describe the dependence of species richness on area at various spatial scales, along environmental gradients 

and across landscape configurations. A power function S=cAz was the first model proposed to predict the 
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change of species richness (S) with area (A) across isolated ecosystems (Arrhenius 1921) where c and z are 

empirical constants. This formulation of SARs receives good support from ecological data and theory 

(Dengler 2009). 

One general pattern revealed by SAR studies is that, all else being equal, larger areas are expected to 

support more species. Many mechanisms have been proposed to explain this observation, including the null 

hypothesis of random placement and passive sampling (Connor and McCoy 1979), the area per se hypothesis, 

i.e. lower extinction probability with larger areas (MacArthur and Wilson 1967), and the habitat diversity 

hypothesis, i.e. larger areas having greater habitat diversity (Rosenzweig 1995).  

Recent models have tried to improve the predictive power of SARs through the integration of 

processes shaping species richness in fragmented landscapes (Whittaker et al. 2005). Specifically, insights 

from metapopulation theory led to the species-fragmented area-relationship model (Hanski et al. 2013), while 

niche theory is at the core of the matrix-calibrated SAR (Koh and Ghazoul 2010, Tanentzap et al. 2012) and 

the countryside SAR (Mendenhall et al. 2014). SARs have been used extensively in ecology and conservation 

biology to predict species richness from sample-area curves (e.g. Tjørve and Turner 2009), optimally design 

nature reserves (e.g. Kukkala and Moilanen 2013), and predict species extinctions based on habitat loss and 

fragmentation (e.g. Brooks et al. 1999). 

Metapopulation models 

Spatially explicit metapopulation models describe the presence and absence of a species across a network of 

habitat fragments (Hanski 1999). The widely used incidence function model (IFM) for metapopulations 

represents the occupancy of each habitat patch as a Markov chain with two states, occupied (species is 

present) and vacant (species is absent) with transition probabilities between the two states determined by local 

extinction and dispersal-mediated colonization from neighboring patches (Hanski 1999). 

 The original IFM assumed extinction rates decreased with patch area, and colonization rates 

increased with the connectivity and area of occupied patches (Hanski 1999). While SAR and MEP models 

both consider the effects of patch area on species, the core of MEP theory is based on dispersal limitations 

and patch connectivity (Levins 1969, Hanski 1999). Connectivity between patches can be estimated with 

simple structural measures, such as straight-line distances between neighboring patches, or more complex 

A
cc

ep
te

d
 A

rt
ic

le



‘This article is protected by copyright. All rights reserved.’ 

functional measures derived from network theory, circuit theory, or individual-based models (Coulon et al. 

2015).  

Both metapopulation (Akçakaya et al. 2006) and habitat connectivity (Crooks and Sanjayan 2006) 

models have become increasingly important in conservation. In future conservation applications, it may be 

important to combine these models because the relationship between habitat connectivity and ecological 

dynamics has been recently shown to depend not only on the spatial configuration of habitat (Holland and 

Hastings 2008, Thompson et al. 2014) but also on demographic parameters of the species (e.g. extinction and 

colonization probabilities; Gilarranz and Bascompte 2012).  

Species distribution models 

Species distribution models (SDM) correlate species distribution data (e.g. occurrence, abundance) 

with environmental or spatial covariates to describe the relationship between occupancy and the environment 

and to predict species distribution within or outside the sampled area (Elith and Leathwick 2009, Araújo and 

Peterson 2012). Generalized linear models, boosted regression trees, random forest, and general additive 

models and the combination of several algorithms (i.e., ensemble forecasting procedure; Araújo and New 

2007) are the most common statistical approaches for SDMs.  

Given most SDMs predict a continuous probability of species occurrence, there are a number of 

methods for converting continuous model predictions to binary range classifications and these methods make 

a number of simplifying assumptions (see review in Liu et al. 2005). 

While the strength of SDMs is the ease with which they can be parameterized for broad sets of 

species over large spatial extents, SDMs have been widely criticized because they do not account for many 

ecological processes underlying the observed species distributions (e.g. dispersal, biotic interactions; Elith and 

Leathwick 2009). A new generation of SDMs that integrate process-based approaches have modified classical 

SDMs in several ways: i) by including physiology (e.g. Kearney & Porter 2009), species interactions (e.g. 

Trainor & Schmitz 2014), population dynamics (e.g. Leroux et al. 2013) and movement (e.g. Vasudev et al. 

2015), ii) by formulating hybrid models that pair correlative models with additional ecological processes (e.g. 

population viability model; Haby et al. 2013), and iii) by using co-occurrence data as a covariate in joint 

SDMs (Pollock et al. 2014).  
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SDMs are commonly used for a variety conservation applications including spatial conservation 

prioritization and land-use management (e.g. protected areas design; Leroux et al. 2007, Meller et al. 2014) 

and restoration planning (Chetkiewicz and Boyce 2009). They are also used to improve the sampling of 

species distributions (Guisan et al. 2006), or to map the potential risk of species invasions (e.g. Gallien et al. 

2012), disease (e.g. Kulkarni et al. 2010), and species responses to climate change (e.g. Kerr et al. 2015).  

A STATISTICAL FRAMEWORK TO MODEL THE CONSEQUENCES OF HABITAT LOSS AND 

FRAGMENTATION ON BIODIVERSITY  

Here we describe a general and common statistical approach to compare predictions from the different 

biodiversity models described above. We aim to emphasize the differences among biodiversity models and 

therefore focus on the key process represented by each of them.  

A general model for species distribution in fragmented landscapes 

Let us consider a general situation of isolated patches of favorable habitat in a matrix of inhospitable areas. It 

is convenient to express the immigration and extinction dynamics at a location at the species level. The time 

dynamics of species i being present at location x, pix, could be described as: 

    

  
    (     )                (1) 

where Iix is the immigration rate of species i from the ‘mainland’ to the location x, and Eix is the extinction 

rate of species i at location x. Thus, both rates are species and location specific. At equilibrium, immigration 

balances extinction, and we get the probability of finding species i in locality x: 

 ̂   
   

       
          (2) 

where  ̂   denotes the equilibrium occurrence probability. We could also express this quantity with a linear 

model, using a logit transformation: 

     ( ̂  )     (
 ̂  

   ̂  
)     (   )     (   )     (3) 

It is straightforward to get back to the community level and derive the expected species richness at location x 

( ̂ ), assuming that species are distributed independently of each other (Gravel et al. 2011) and summing 

species-specific occurrence probabilities: 

 ̂  ∑  ̂  
 
             (4)  
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where V is the total number of species in the regional pool. If species are not distributed independently (e.g. 

predator-prey) then approaches such as joint species distribution models (Pollock et al. 2014) may be used for 

community level predictions. 

 It is not straightforward to measure I and E directly in the field and even less so for measuring 

species and location specific values. It is nonetheless possible to derive likely estimates according to species 

distribution data and some constraints such as patch area, isolation and local environmental conditions. 

The distribution of individual species in a locality is usually modeled statistically as a binomial 

process conditional on local site characteristics: 

     (   )                          (5)   

where νmx is the value of covariate m at location x and βim is the species-specific coefficient for this covariate. 

This, for instance, is a common approach for SDMs (reviewed in Elith and Leathwick 2009). Such a modeling 

framework may include linear and non-linear (e.g. quadratic) terms for covariates, νmx, as well as interactions 

between covariates. It is flexible enough to include a diversity of covariates, such as patch area or isolation, 

allowing the direct comparison of SDM with SAR or MEP theories. To date several studies have incorporated 

patch and landscape characteristics into SDMs. For example, Dullinger et al. (2011), Betts et al. (2014), and 

McCune (2016) combine patch (e.g. area) and landscape (e.g. connectivity) and climate covariates to predict 

the distribution of Alpine plants in the Calcareous Alps of Austria, birds in Oregon, USA, and rare plants in 

southern Ontario, Canada, respectively. Boulangeat et al. (2012) added propagule pressure as a covariate in 

their SDMs of plant species in the French Alps. It is easy to map the above model (Eq. 5) onto Eq. 3 in order 

to interpret the resulting parameters in terms of immigration and extinction dynamics, thus explicitly bridging 

the gap with theory through the set of equations introduced above (Eqs 1-2).   

 Beginning with Eq. 5, we now turn to the interpretation of Iix and Eix from knowledge of patch area, 

patch isolation and environmental conditions, respectively, in order to link a single statistical approach with 

the different processes underlying the original SAR, MEP, and SDM models. 

Patch area: Application to species area relationship models 

It is commonly assumed that species extinction rates should decrease with increasing patch area (Hanski 

1999). The underlying rationale is that larger patches sustain larger populations, thus reducing demographic 
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stochasticity (Lande et al. 2003) and the chance of random extinction despite favorable environmental 

conditions. Here, we assume      
     and Iix is a species-specific constant. According to Eq. 5, we could 

represent patch area dependent occurrence probabilities as:  

     (   )            ( )       (6) 

where     is a species-specific intercept related to the immigration rate. A SAR then can be computed by 

summing across all species, as described in Eq. 4.  

Patch isolation: Application to metapopulation models 

In the theory of island biogeography, MacArthur and Wilson (1967) hypothesized that Iix scales inversely to 

the distance to the mainland. Later, Hanski (1999) developed spatially explicit metapopulation theory and 

generalized the approach to archipelagoes (or networks of patches), thus predicting that immigration should 

scale with the number of connected patches. More precisely, in a spatially explicit setting, the immigration 

rate could be described as: 

     (∑   (   )       )        (7) 

where f(.) is some link function, Nx denotes the set of neighbor patches of x, and ki(x,y) is a species-specific 

dispersal kernel describing the probability that a species colonizes patch x coming from patch y. Note that the 

summation is taken across all neighboring patches, assuming we know their occupancy    . Unfortunately 

this information is often missing, in which case piy is simply considered as a constant (i.e. all neighboring 

patches have the same average occupancy) and Iix depends simply on a local, species-specific measure of the 

connectivity of patch x:     ∑   (   )
 
   . Here we assume a power function for        

    and Eix is a 

species-specific constant. Using the same logic as Eq. 5, we would therefore model presence-absence from 

the connectivity matrix using the following statistical model: 

     (   )            (   )       (8) 

where     is a species-specific intercept related to the extinction rate. This formulation of the MEP model 

focuses on dispersal limitations, which allows for quantitative comparison of predictions from models of 

patch area (i.e. SAR) and patch isolation (i.e. MEP). 

Environmental conditions: Application to species distribution models 
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Local patch quality can also influence both species establishment success and extinction from a location. 

Establishment of a population is the end result of several processes taking place after first immigrants reach 

the location, from the initial dispersal event up to the development of a sustained population. Local 

environmental conditions could influence the germination success of seeds, the decision of an animal to stay 

at the location, or the growth of a population. Local conditions could also influence population size, and for 

the same argument as area, they could influence extinction rate. It is thus possible to express both immigration 

and the extinction rates as functions of local environmental conditions such that Iix = fi(ν1x, …, νmx) and Eix = 

gi(ν1x, …, νmx). The corresponding statistical model of presence-absence could then be described by Eq. 5. 

Note that in this case, the absence of information about immigration and extinction dynamics prevents 

disentangling differential effects of the environment on each process. Such estimates could be obtained using 

state transition data. 

From theory to practice 

In practice, a species’ occurrence probability does not necessarily follow the log-linear assumption described 

here. We took this approach as it maps naturally to generalized linear models, but emphasize that more 

flexible statistical models could be used. To compare the performance of patch area (SAR), patch isolation 

(MEP), or environmental conditions (SDM)-based models, we could compute model likelihoods and compare 

them by AIC, as long as we know the exact number of parameters. Goodness of fit for each model could be 

evaluated using statistics such as the pseudo   , or model predictive accuracy could be measured with the 

TSS (True Statistic Skill) and AUC (Area Under the receiver operating characteristic Curve, Allouche et al. 

2006). 

Overall, we show how we can build patch area, isolation and environmental conditions as covariates 

in a general statistical framework (Eq. 5) to produce models that map the underlying processes of SAR (Eq. 

6), MEP (Eq. 8) and SDMs (Eq. 5) to a common currency. Although our SAR, MEP, and SDM formulations 

may differ from classic representations, we capture the essence of the classic models by incorporating key 

processes into our formulations.  

COMPARING PREDICTIONS OF BIODIVERSITY MODELS IN THE ST. LAWRENCE 

LOWLANDS SURROUNDING MONTREAL, CANADA 
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We apply our statistical framework for comparing SAR, MEP, SDM models for focal species in a 

conservation case study in the fragmented, peri-urban landscape surrounding Montreal, Canada 

(centered on 45°400N, 73°150W). The landscape covers approximately 27 500 km2, the majority of which 

occurs in the fertile lowlands of the St. Lawrence River valley where small forest fragments are surrounded 

by agriculture and urban areas (Fig. 1, 2). We selected 8 vertebrate focal species: 5 birds and 3 amphibians, to 

represent the forest biodiversity in this region (Supplementary material Appendix 1). The focal species span a 

range of forest habitat preferences (i.e. composition and age ranging from relative generalists across all forest 

types to specialists preferring old, coniferous forest), patch size requirements (i.e. minimum patch area 

ranging from 0.5 to 5 ha) and dispersal abilities (i.e. median dispersal ranging from 16 to 40,889 m; Table 2, 

Supplementary material Appendix 1). 

Following our framework, we fit statistical models of the presence/pseudo-absence of a focal species 

in a patch with a binomial error structure and logit link. We used a 1:1 presence:pseudo-absence sampling 

scheme with 100 different pseudo-absence data sets for each species. We compared the three model classes 

(patch area, patch isolation, environmental conditions) in terms of their ability to characterize present and 

predict future distributions of our 8 focal species. We hypothesized which model class would best fit each 

focal species’ distribution based on dispersal and habitat preference traits. A detailed description of our study 

area, data, methods and hypotheses is provided in Supplementary material Appendix 1. 

We used stepAIC to determine the most parsimonious set of covariates for each 

model class per set of pseudo-absences (n = 100) per species (n = 8). The three model 

classes included different covariates. As outlined in the statistical framework, the 

model with patch area is our representation of a SAR model (Ax in Eq. 6), the model 

with species-specific patch connectivity (kix in Eq. 7) is our representation of a MEP 

model, and the model with environmental conditions of soil drainage, soil deposit, % 

deciduous forest, % coniferous forest and maximum forest stand age is our 

representation of a SDM for all species. The presence of wetlands was included as an 
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additional covariate in the environmental conditions model for anuran species (νmx in 

Eq. 5 Supplementary material Appendix 1).  

Species-specific patch connectivity was defined as the sum of the dispersal probabilities between 

neighboring patches (see Eq. 7). We modeled dispersal probabilities as a negative exponential dispersal kernel 

with   (   )       
     (   )  ⁄     where dist(x,y) is the Euclidean distance between the edges of patches x 

and y and D50i is the median dispersal distance for species i (see Table 2). The set of neighboring patches in 

Eq. 7 (N) was defined as patches with adjacent polygons in a Voronoi tessellation of the landscape. Habitat 

patches neighboring the more continuous mountain areas were kept as sources, i.e. they were included in the 

habitat networks and the calculation of species-specific patch connectivity, but we did not predict the 

probability of occurrence of each focal species in these patches. To differentiate between the 

patch area and isolation effects processes, we only included isolation effects in our MEP model and patch area 

in our SAR model. For all three model classes, we tested linear and quadratic terms for each covariate but did 

not include covariate interaction terms. 

Spatial predictions of species occurrences under current and future land-use 

scenarios 

We randomly selected a single pseudo-absence iteration per species (results were 

similar when randomly taking another pseudo-absence iteration) to predict the 

probability of occurrence of the focal species across our full landscape based on patch 

area, patch isolation, and environmental condition models. Following our statistical 

framework (Eq. 4), we summed the species-specific probability of occurrences for 

each model to create a predictive “species richness” map and multiplied Eq. 4 by 1000 

(Distler et al. 2015). We only included species for which the best model reached both a 

TSS > 0.3 and AUC > 0.7 for each model class (Thuiller et al. 2014). We calculated the 

spatial coherence of the patch area, patch isolation and environmental condition 

model predictions on species richness at time t with Spearman correlations (ρ) for the 
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entire set of patches. In addition, we calculated Jaccard coefficients of the model 

predictions on species richness at time t for the top 10% richest forest patches by 

area.  

 We used the same set of patch area, patch isolation and environmental condition 

models parameterized under current conditions to predict the probability of 

occurrence of our focal species into the future (see Supplementary material Appendix 

1 for description of future landscape scenario) and used the same metrics as above to 

compare future “species richness” maps.  

All analyses were conducted with the statistical software R 3.0.2 (R Core Team 

2015) and the species distribution modeling library biomod2 (Thuiller et al. 2009). 

RESULTS 

Patch area, patch isolation and environmental condition model selection 

The patch area model was the most frequent top ranking model for four species (P. 

cinereus (97%), R. sylvatica (66%), S. aurocapilla (78%), and S. varia (81%), the patch 

isolation model was the most frequent top ranking model for two species (D. pileatus 

(71%) and S. canadensis (81%)) and the environmental conditions model was the 

most frequent top ranking model for two species (B. americanus (52%) and S. minor 

(55%)). Five of the eight species had high model selection uncertainty with at least 

two model classes ranking as top model in ≥ 20% of pseudo-absence iterations (Table 

3). The top models for all species had a mean predictive accuracy that was good to 

very good (TSS > 0.3 and ROC > 0.7; Thuiller et al. 2014), except for the top models for 

B. americanus and D. pileatus which had a mean predictive accuracy that was poor 

(TSS > 0.2 and ROC > 0.6) (Supplementary material Appendix 2). Given the poor fit of 
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models for B. americanus and D. pileatus, we did not include these two species in our 

calculations of predicted species richness (i.e. Eq. 4). The top-ranked model did not 

consistently match our hypotheses based on species traits (Table 2, Appendix 1). 

Comparisons of spatial predictions for stacked species occurrences in current 

landscape  

All predictions of species richness for the current landscape are positively correlated 

and show high spatial overlap, but there is nonetheless substantial variability in 

patch-specific predictions among models (Fig. 3). The patch area and environmental 

condition model predictions were most similar based on Spearman’s ρ, particularly 

for small patches (ρ = 0.6, Fig 3) whereas the patch isolation and environmental 

condition model predictions were least similar based on Spearman’s ρ (ρ = 0.31, Fig 

3). The spatial overlap in the 10% most species rich patches by area based on the 

Jaccard coefficient show slightly different patterns (Fig. 3). When considering only 

these richest patches, patch area and patch isolation models showed the highest 

spatial overlap (Jaccard coefficient = 0.82) and the patch area and environmental 

condition models showed the lowest spatial overlap (Jaccard coefficient = 0.59).   

Comparisons of spatial predictions for stacked species occurrences under 

future land-use scenario 

Our 2050 landscape was composed of less habitat area (-10% of total area), more 

forest patches (9,585 patches representing a 30 % increase), but patches were smaller 

on average (median=18,900 m2 representing a 55 % decrease; Fig. 2). Similar to the 

current landscape, all model predictions for the future landscape were positively 

correlated (Fig. 3). The patch area and environmental condition model predictions 
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were most similar whereas the patch isolation and environmental condition model 

predictions were least similar based on Spearman’s ρ (ρ = 0.46 and 0.29, respectively, 

Fig 3). When considering only the 10% richest patches by area, patch area and patch 

isolation models showed the highest spatial overlap (Jaccard coefficient = 0.82) and 

both the patch area and environmental condition  models and the patch isolation and 

environmental condition models had lower spatial overlap (both with Jaccard 

coefficient = 0.62).  

 There was considerable spatial variability of change in species richness within 

model class predictions (Supplementary material Appendix 3, Fig. A2). While patch 

area models, because of their definition, always predicted a reduction in species 

richness due to habitat loss, patch isolation and environmental condition models gave 

more contrasted results (Fig. 4). On the one hand, some patches had an apparent 

increase in species richness according to the patch isolation model, which is an 

artifact of an increase in the number of close neighboring patches due to 

fragmentation following habitat loss. On the other hand, the repositioning of patches 

following habitat loss lead to changes in average patch condition and mostly reduced 

species richness predictions according to the environmental condition model (Fig. 4). 

The greatest change in species richness following habitat loss was predicted by the 

patch isolation and patch area models (Fig. 4, Supplementary material Appendix 3, 

Fig. A2). 

PERSPECTIVES ON THE USE AND INTEGRATION OF SIMPLE BIODIVERSITY MODELS IN 

CONSERVATION  

Mathematical models have played a fundamental role in the development of both ecological theory (Caswell 

1988, Codling and Dumbrell 2012) and a toolbox to predict the impacts of human activities on biodiversity 
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(e.g. Pereira et al. 2010). While there is an increasing number of studies incorporating environmental 

conditions and landscape predictors in the same model (e.g. Calabrese et al. 2014, Betts et al. 2014, McCune 

2016), we are aware of only a few studies that compare the predictions of different theoretical models for a 

given landscape (see Moilanen and Hanski 1998, Keith et al. 2008, Dullinger et al. 2011, Fordham et al. 2013, 

Brudvig et al. This issue). Here, we apply a common and flexible statistical framework to compare the 

predictions of simple biodiversity models and apply it to investigate present and future biodiversity in a real, 

fragmented landscape. Our framework enabled us to uncover complementarities among model predictions and 

also limitations of incorporating a single mechanism for predicting the distribution of species richness; patch 

area (SAR), patch isolation (MEP) and environmental conditions (SDM).  

It is common practice in ecology and conservation biology to compare the performance of different 

formulations within a class of biodiversity models. For example, DeCamargo and Currie (2014) compare the 

predictions and fit of three types of SAR models for bird communities in Ontario, Canada; the classic power 

function SAR model, a polynomial SAR model and the endemic-area model. Likewise, Meynard and Quinn 

(2007) compare the performance of four different SDMs on virtual species data; generalized additive models, 

logistic regression, classification trees, and the genetic algorithm for rule-set production (GARP). While 

comparing predictions within a model class is valuable, it is also limited because a particular model class 

assumes specific drivers of biodiversity distribution and inference from within model class comparisons are 

constrained to the adopted model structure. For example, SAR models assume that species richness is related 

to area and therefore residual variation that may be explained by other mechanisms (e.g. patch isolation, 

environmental conditions) will not be uncovered when comparing predictions of different SAR formulations.  

Comparisons among model classes are rare because such comparisons require a flexible framework 

that can be applied to diverse models. We provide one solution to fill this gap with a generalized linear model 

that can be parameterized with presence/pseudo-absence data, which may allow ecologists and conservation 

biologists to evaluate predictions from different biodiversity models in order to improve predictions of the 

effects of global changes on biodiversity. This framework is equivalent to developing an SDM with patch, 

landscape and environmental covariates. However, the above framework allows ecologists to build on 

previous studies that integrate multiple classes of covariates into SDMs in a few ways. First, the approach we 

present here is based on theory and is not purely phenomenological. SAR, MEP and SDM have different 
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histories and different user groups and the framework we outline allows us to relate each theory to a specific 

statistical model. The roadmap we provide is an explicit attempt to show how these different theories can be 

integrated into a common and simple statistical framework. As such, it allows us to test and compare 

hypotheses and reveal structural uncertainty in model selection (i.e. has the modeler selected the right 

model/process?). Second, our approach allows comparison of these three biodiversity models at species (Eq. 

5) and community levels (Eq. 4). This is critical for disentangling how different species respond to different 

drivers and for comparing predictions from different models. Finally, the long-term trajectories of biodiversity 

in fragmented landscapes may differ (e.g. Collins et al. This issue, Ewers et al. This issue) and a process-

based approach at species and community levels may yield more robust predictions for future scenarios and 

long-term land-use planning (Leroux et al. 2013, Thuiller et al. 2013). 

The application of this framework to the case study revealed that patch area is an important driver of 

the distribution of many of the 8 focal vertebrate species, but that connectivity and environmental conditions 

were also important for at least four focal species (Table 3). Clearly, adoption of a single model class for all 

species would have overlooked key correlates of the distribution of some of the focal species. Haddad et al 

(This issue) also find evidence that patch area, isolation and configuration are key determinants of species 

richness in two experimental systems. Taken together, these results provide evidence in contrast to the 

recently proposed Habitat Amount Hypothesis (Fahrig 2013). Determining which model was best for each 

species a priori, based on traits alone, was not reliable (only matched the top ranked model in Table 3 for 50% 

of the species, Appendix 1) which underscores the need to consider multiple models. However, given the 

small number of focal species we consider, the overall low quality of these data (very incomplete set of 

presence/absence data with, on average 3% of the patches as occupied), the poor sampling of smaller patches, 

and the fact that the data come from various sampling protocols, we prefer to consider this as an illustration of 

model comparison and limit our biological interpretation of our results.  

 Habitat loss and fragmentation alter the distribution of patch area, connectedness and environmental 

conditions (Fahrig 2003). Consequently, a model that focuses on a single of these components of land-use 

change may not capture its full effects on biodiversity (Brudvig et al. This issue, Haddad et al. This issue). 

Disentangling the relative impacts of patch area and isolation on biodiversity has been a driver of 

fragmentation research for decades (Haddad et al. 2015). By comparing predictions from multiple models that 
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incorporate the effects of different fragmentation processes we can better understand the relative and 

combined importance of these processes on species distribution and richness under land-use change. In the 

case study, patch area models, by definition, always predicted a patch-level decrease in species richness, 

whereas patch isolation and environmental condition models predicted either an increase or a decrease in 

patch-level species richness following habitat loss and fragmentation (Fig. 4). The predicted magnitude of 

change in any single patch was greatest for patch isolation and patch area models (Fig. 4). Over all patches, 

patch area and environmental condition models predicted an 11% decline and the patch isolation model 

predicted a 7% decline in species richness following habitat loss and fragmentation.  

Application of these simple models to predict change in biodiversity is critical for conservation 

policy and practice (Resasco et al. This issue). For example, the Millennium Ecosystem Assessment (2005) 

applied SARs to predict species extinction rates following projected habitat loss. The choice of this model 

class for such predictions, however, presupposes key drivers of species extinction rates under global change. 

The framework we outline allows us to better capture how structural uncertainty arises from different 

underlying processes, which may help to explain why some model predictions are not consistent with 

empirical observations.  

Some have argued for the need to integrate biodiversity models for better predictions of the effects of 

global change on biodiversity (Moilanen and Hanski 1998, Keith et al. 2008, Dullinger et al. 2011, Fordham 

et al. 2013, Brudvig et al. This issue). For example, Fordham et al. (2013) provide an overview of the key 

insights gained by integrating metapopulation dynamics into SDMs, Koh & Ghazoul (2010) incorporate 

aspects of patch quality in their matrix-calibrated SAR model and Talluto et al. (2016) develop a 

methodological approach to integrate models across spatial scales in order to reduce error propagation arising 

from mechanistic SDMs.  Based on the statistical framework we adopt, an integrated model may take the 

form of Eq. 5 where the species occurrence probability is based on covariates describing local site 

characteristics including patch area, patch isolation and environmental conditions. Such an integration must 

balance the cost of added model complexity with the benefit of improved model fit and predictions (Merow et 

al. 2014).  

CONCLUSION 
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We provide a roadmap based on ecological theory for comparing and potentially integrating different classes 

of biodiversity models. The common and simple statistical framework we apply allows researchers and 

conservation practitioners to understand trade-offs between model complexity and model predictive accuracy 

and therefore make better informed modelling decisions with repercussions on predictions of biodiversity 

responses to global changes. Future development of this framework could involve applications to other 

biodiversity models (e.g. neutral model) and evaluation of integrated models. We hope that this approach 

encourages empiricists to collect and share biodiversity data that would allow more cross-model class 

comparison and integration. These cross-model class comparisons will facilitate feedbacks between theory 

and data which is essential for improving predictions for biodiversity change under global change. 
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TABLE LEGENDS 

Table 1. Summary of the three biodiversity models we considered in this study; SAR, MEP and SDM. The summary includes information on the goals, 

history and recent developments, key assumptions and mechanisms, predictions and software for each model class. 

 

 

Species-area relationships 

(SARs) 

Metapopulation models 

(MEPs) 

Species distribution models 

(SDMs) 

Goal SARs describe the dependence of species 

richness on area at various spatial scales 

MEPs model the presence and absence of 

a species across a network of discrete 

and dissimilar habitat patches 

SDMs describe the relationship between 

species and its environment and predict 

species distribution within or outside the 

sampled area 

History and 

recent 

development 

A power function S=cAz was first proposed to 

model the change of species richness (S) with 

area (A) across isolated ecosystems 

(Arrhenius 1921). Although other forms of 

SARs have been proposed, the power model is 

the most commonly used form. Recent 

developments include the species-fragmented 

area relationship, matrix-calibrated SAR and 

the countryside SAR. 

Spatially implicit MEPs were first 

proposed in 1960s. They were then 

developed to incorporate landscape 

configuration and heterogeneity in 

spatially explicit MEPs (by Hanski and 

colleagues). Recent efforts pair MEPs 

with network models of habitat 

connectivity, to better account for 

indirect dispersal pathways along 

stepping stone patches and least-cost 

links. 

The history of SDMs is firmly rooted in 

ecological studies of biodiversity along 

environmental gradients, the concept of 

ecological niche and in classic studies of 

species’ responses to their environment. 

Recent efforts aim towards mechanistic 

SDMs, which link SDMs with process-

based approaches, e.g. population 

viability model, physiology, species co-

occurrences. 
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Key 

assumptions or 

mechanisms 

The mechanisms of SARs can be scale 

dependent. At the small extents, they depend 

on species abundance and spatial distribution; 

at intermediate extents, habitat heterogeneity, 

and self-similar species distributions are 

dominant factors; at very large extents, 

evolutionary history is the main driver. 

In a patchy landscape, population 

persistence is governed by the processes 

of local extinctions and re-colonization. 

Local extinction rate is a function of 

patch area and colonization rate is a 

function of the connectivity of a patch, 

which is related to its area and distance 

to other occupied patches.  

i) The current distribution of a species 

depicts its suitable habitat, ii) species 

distribution are determined by the 

explanatory variables included in the 

models iii) species are at pseudo-

equilibrium with environmental 

variables, and iv) the relationship 

between species distribution and 

explanatory variables does not change in 

time. 

Prediction Species richness increases with area, which is 

usually described by: S=cAz. The exponent z 

can be scale dependent; for instance, SARs 

can exhibit tri-stage patterns from local to 

continental or global scales 

Metpopulation persistence deceases with 

local extinction rates, and increases with 

colonization rates and the 

metapopulation capacity, which is 

determined by landscape structure. 

SDMs predict a continuous probability 

of species occurrence. Several methods 

can be used to convert such continuous 

model predictions to binary range. 

Software Any software with a statistical toolbox (e.g. R, 

Matlab, etc.) 

R packages: grainscape, MetaLandSim, 

igraph and stand alone software 

Graphab  

R packages: dismo and biomod2. 
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Table 2. Traits of focal species used in the case study. Traits characterize dispersal ability and habitat 

preference: minimum habitat patch area (MA); median dispersal distance based on natal dispersal (D50); 

preference for deciduous (D), mixed (M) or coniferous (C) forest; preferred forest type (Type); sensitivity to 

soil drainage (SD); and sensitivity to distance to wetlands (DW).  Grey shading indicates a preference or 

sensitivity to feature. 

 

Species 

MA 

(ha) 

D50 (m) 

Preferred habitat 

Forest SD DW 

D M C Type 
  

 Bufo americanus 0.5 2,795    any   

 
Dryocopus pileatus 1 8,187 

   dense  

& old 

  

 Plethodon cinereus 0.27 16    dense   

 Rana sylvatica 0.5 564    dense   

 Scolopax minor 2 34,317 

   low 

height 

  

 
Seiurus aurocapilla 5 1,286 

   dense  

& old 

  

 
Sitta canadensis 3 1,827 

   dense  

& old 

  

 
Strix varia 1 40,889    old   
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Table 3. Summary of patch area, patch isolation and environment condition model class comparison for our 

eight focal species. We report the percentage of iterations for each model class (n = 100 sets of pseudo-

absence) where it was ranked as the top model based on ΔAIC. The best supported model for each species is 

shaded in grey. We report the fit statistics (TSS, AUC) for each model in Supplementary material Appendix 

2, Table A1).  

 

Species Model classes 

Patch area Patch isolation Environmental 

conditions 

Bufo americanus 47 1 52 

Dryocopus pileatus 6 71 23 

Plethodon cinereus 97 0 3 

Rana sylvatica 66 0 34 

Scolopax minor 45 0 55 

Seiurus aurocapilla 78 0 22 

Sitta canadensis 18 81 1 

Strix varia 81 11 8 
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FIGURE LEGENDS 

Figure 1. Location of the study area in and around the St. Lawrence River near Montreal, Quebec, Canada. 

Red lines outline the boundary of the St. Lawrence lowlands ecoregion. Map is presented with North America 

Datum 1983 and Transverse Mercator projection. 
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Figure 2. Forest patch network within the St Lawrence lowlands used in the analysis. Black patches were part 

of the 10% of the landscape that was removed with our “Business As Usual” landscape change scenario for 

2050 (see supplementary material Appendix 1). The landscape change scenario for 2050 created a more 

fragmented landscape with a 30% increase in the number patches, a 55% decrease in the median size of 

patches and patches with more irregular edges (mean perimeter:area ratio: +29%).  
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Figure 3. Pairwise correlations between model predictions for the current (top row) and future (bottom row) 

landscapes. Spearman ρ is reported for all patches and the Jaccard Coefficient for the 10% most species rich 

patches by area as predicted by each model. Black dots are the patches that make up the top 10% area of 

richest patches (along the x-axis). The axes are the predicted species richness (i.e. Eq. 4) multiplied by 1000 

for each model. The two species (B. americanus, D. pileatus) with poor model fit were excluded from the 

species richness calculation. 
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Figure 4. Predictions of current and future species richness (Eq. 4) multiplied by 1000 for the patch area, 

patch isolation, and environmental condition models. The two species (B. americanus, D. pileatus) with poor 

model fit were excluded from the species richness calculation. Each point represents the predictions (current 

and future) for the centroid location of a current patch. Future predictions of species richness = 0 are for 

patches where the centroid location was lost with habitat loss.  
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