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Abstract

We describe a formulation of the group action principle, for linear Nambu flows, that explicitly

takes into account all the defining properties of Nambu mechanics and illustrate its relevance by

showing how it can be used to describe the off–shell states and superpositions thereof that define

the transition amplitudes for the quantization of Larmor precession of a magnetic moment. It

highlights the relation between the fluctuations of the longitudinal and transverse components of

the magnetization. This formulation has been shown to be consistent with the approach that has

been developed in the framework of the non commutative geometry of the 3–torus. In this way the

latter can be used as a consistent discretization of the former.

PACS numbers: 03.65.Fd, 75.10.Jm, 11.25.-w
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I. INTRODUCTION

Nambu mechanics is the generalization of Hamiltonian mechanics to phase spaces of

arbitrary dimension1. The reason it is useful to consider such spaces at all is to describe

the dynamics of extended objects2 (which was Nambu’s original motivation3). It represents,

in fact, the generalization of the area preserving diffeomorphisms of Hamiltonian mechanics

to the corresponding group(s) of transformations that preserve the volume in spaces of odd

dimension, too4. In this regard it appears much less “exotic” and, indeed, has found many

applications in classical fluid mechanics, where the study of incompressible flows is the

natural context5,6.

While it became the subject of interest in the effort to understand the dynamics of

multiple M2–branes7, it was quickly realized that there were conceptual issues that remain

to be clarified for the description of their quantum effects. A workaround that used only

generalized Poisson brackets, i.e. a purely Hamiltonian formulation in a non-flat metric, was

found to be sufficient for many cases of practical interest8; however a deeper understanding

of the properties of the models proposed for M2–branes must solve the problem of the

consistent definition of the quantization of the Nambu bracket9–11, which is a generalization

of the Poisson bracket with more than 2 elements. To this end it is useful to understand

the properties of simpler quantum systems, that can be described with the framework of

Nambu mechanics. Such examples are provided by magnetic systems12, where the three

components of the magnetization, are, naturally, identified with the canonical variables of

Nambu mechanics.

In this contribution we shall show that a recently proposed quantization scheme13 can be

applied to describe the quantum dynamics of Larmor precession of a magnetic moment in

an external field and can describe the off–shell states in a way that provides insights that

are much harder to grasp using the traditional Hamiltonian formalism.

What has been lacking, indeed, is a consistent group action principle, that leads to the

definition of consistent unitary, linear, evolution operators that, acting on the space of

states, describe consistent superpositions of states and their transition probabilities. While

the proposal was set forth in ref.13, it does require fleshing out for concrete applications,

such as the one discussed here.

Therefore, in the following section, we shall review the salient properties of classical linear
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Nambu flows in the continuum, focusing on the volume preserving diffeomorphisms; we

shall, then, show how the consistent quantization of these can be understood in terms of the

properties of the non–commutative 3–torus. We shall then construct the unitary evolution

operators on it, implementing a regularization in terms of finite dimensional matrices and

show that the size of the matrices has a physical basis. We conclude with a discussion of

further avenues of inquiry, in particular, regarding consistent coupling to baths.

II. LINEAR NAMBU FLOWS FOR CLASSICAL AND QUANTUM MAGNETS

In 3-dimensional Nambu mechanics, linear Nambu flows are defined by the time evolution

equations for each component of the vector of dynamical variables

dxI

dt
=
{
xI , H1, H2

}
= MIJxJ(t), (1)

with M a constant antisymmetric matrix and the Nambu 3-bracket is defined as

{f, g, h} = εIJK∂If∂Jg∂Kh, (2)

with f , g, h are any given functions of x, ∂I ≡ ∂/∂xI and εIJK is the fully anti-symmetric

Levi-Civita pseudo-tensor of rank 3.

The solution of eq. (1) can be written as

x(t) = eMtx(0) ≡ A(t)x(0) (3)

Since M is traceless, A(t) ≡ eMt, the classical, one–step evolution operator, can be shown to

be an element of the group SL(3,R).

Linear systems can be defined by two conserved quantities, H1 = a ·x with a a constant

vector and H2 = (1/2)xTBx, with B a constant symmetrical matrix. In the framework of

Nambu mechanics, these systems define the simplest systems to consider13 and are formal

analogues of the harmonic oscillator from Hamiltonian mechanics.

Such systems are not only toy models, but can be considered as prototypes for modeling

dynamics of magnets, dominated by the exchange interaction. For instance, if an anti-

ferromagnetic material is defined by a magnetic crystalline cell that can be mapped on two

sublattices with spins s1 and s2, then for each spin in its first neighbor cell, without any
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further interaction, we have the following equations of motion :

dsI1
dt

= εIJKJ12s
J
2s

K
1 (4a)

dsI2
dt

= εIJKJ12s
J
1s

K
2 (4b)

The average ferromagnetic magnetization vector M ≡ 1
2

(s1 + s2) and the anti-ferromagnetic

Néel vector m ≡ 1
2

(s1 − s2) can be defined, and for these vectors we immediately have

dM I

dt
= 0 (5a)

dmI

dt
= 2J12ε

IJKMJmK (5b)

Because M is then a constant of motion, eq.(5b) describes a linear Nambu flow for the

antiferromagnetic vector m, associated with a traceless matrix M introduced in eq.(1).

As in Hamiltonian mechanics, this flow is on the phase space of the system and describes,

through Liouville’s theorem, a flow for the probability density ρ(x, t) therein:

∂ρ(x, t)

∂t
= {ρ(x, t), H1, H2} (6)

Of particular interest are the moments of this probability density and their evolution in

time, since they can be related to observable quantities.

For linear Nambu flows this equation takes the form

∂ρ(x, t)

∂t
= εIJKωJBKL∂Iρ(x, t)xL = det (∇ρ(x, t),ω,∇H2) (7)

and describes, also, the classical dynamics in phase space, i.e. the properties of the solutions

of the classical equations of motion.

The problem here is that, in Hamiltonian mechanics, it is known that Poisson brackets are

the classical limits of commutators14. In Nambu mechanics what is the quantum structure

that preserves all its properties, whose classical limit would be the Nambu bracket, is not

known11.

In ref.13 the off–shell states and consistent evolution operators for classical and quantum,

linear Nambu flows were constructed.

Let us review the idea of the construction. It is based on introducing an infrared cutoff,

by compactifying the phase space on a 3–torus, T3; and on introducing a short–distance
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(“ultraviolet”) cutoff, by considering only points with rational coordinates and common

denominator, N .

In this way the differential equations become linear recurrences on the finite field, ZN

xn+1 = Axn modN (8)

which can display quite complex, indeed, deterministic chaotic, behavior as N varies. Al-

ready, at the classical level, this means that the system possesses a finite number of states

and how these are visited during the evolution is of interest. If there is periodic behavior,

the period, T (N), satisfies AT (N) ≡ I modN ; and the quantum counterpart, U(A) shares

this property, by construction, since U(AT (N)) = [U(A)]T (N). What happens as N →∞ is a

quite delicate issue, that has been investigated in the context of quantum chaos15, but there

is, still, much to be clarified.

The integer N controls in this way the fluctuations at both ends, infrared and ultra-

violet and 2π/N plays, indeed, the role of Planck’s constant for describing the quantum

fluctuations13.

The construction of the quantum evolution operator, U(A), on the 3–torus proceeds, in

fact, in complete analogy to the Hamiltonian quantization of toroidal phase spaces. The idea

will be to construct a unitary operator, U(A), that realizes a consistent quantization, of the

classical evolution operator, A ∈ SL(3,R), in the sense that it satisfies the correspondence

principle–which means that it realizes the metaplectic representation –and provides a faithful

representation, in the sense that, for any classical evolution operators, A and B, we have the

composition rule that

U(A ◦ B) = U(A) ◦ U(B) (9)

This property is necessary to ensure that time evolution is well–defined, that it depends only

on the endpoints in phase space and not on the parametrization of the path(s).

For a finite-dimensional representation N of the operator A, as sketched in ref.13, the

construction of an N × N matrix U(A) with these properties is realized by showing that

it can be mapped exactly to the construction of the corresponding unitary operator of a

Hamiltonian system.

This proceeds as follows: first, the linear Nambu flow has the property that ω is an

eigenvector of the one–step evolution operator, A, with eigenvalue 1:

Aω = ω ⇔ ωT = ωTA (10)
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The convention of multiplication from the right was used (i.e for the dual vectors) in ref.13;

in the present contribution we use the, perhaps, more familiar convention of multiplication

from the left. Because one deals with finite dimensional ordinary and possibly complex

valued vectors, it does not really matter, up to transposition and conjugate. The property

(10) is also true for the any collinear vector λω that form an infinite collection of fixed vector

with 1 as eigenvalue.

The property that the vector of the linear Hamiltonian is left invariant by the flow implies,

in turn, for eq. (8), that

[x× ω]n+1 = A[x× ω]n (11)

for any time step n.

This expression can now be shown to be equivalent to

[x× ω]n+1 =

 Ã 0

ω̃ 0

 [x× ω]n (12)

which provides a definition of the 2×2 evolution operator Ã. It has been shown in ref.16 that

one can construct a basis using the initial magnetization state x(0), the precession vector

ω and their vector product x(0)× ω, and it is possible to decompose the time evolution of

the solution on this basis as

x(t) = A(t)x(0) +B(t)
ω

‖ω‖
+ C(t)x(0)× ω

‖ω‖
(13)

As long as the precession vector ω is constant, one can always choose a reference frame such

that said vector is aligned with the z-axis. If we now consider the time evolution of x(t)×ω

one can see that this vector remains in the (x,y) plane. As such the last component remains

null over time. Hence one can restrain eq. (11) to eq. (12)

This can be shown to be symplectic, therefore the corresponding quantum evolution

operator, U(Ã), can be constructed by known techniques. It is this operator that we shall

define as the unitary evolution operator of the quantum Nambu evolution. In subsequent

sections we shall show that our construction passes a non–trivial test, by checking that it

provides results that are consistent with those obtained by the canonical quantization of the

Larmor precession.

The off–shell states are, therefore, those that are defined by the action of operators

mod N , whereas the on–shell states are those that do not require the mod N operation.
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However, quantum effects are, also, described by superpositions of pure states. We shall

show the relevance of such superpositions in the following section.

III. COMPUTING TRANSITION PROBABILITIES À LA NAMBU

In this section we shall show how to use the unitary evolution operator, U(A) to compute

transition probabilities for Larmor precession, from any initial to any final state of the

magnetic moment.

Our starting point is the identification of the Larmor precession equation as a linear

Nambu flow, following the notation of ref.13

dxI

dt
= εIJKaJBKLx

L ⇔ dsI

dt
= εIJKωJsK ≡ MIKsK (14)

Where H1 ≡ a · x = ω · s and H2 ≡ (1/2)(x,Bx), with B = 1.

For Larmor precession around an external field described by ω we, thus, have

M = ω × . =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (15)

If Larmor precession happens around a fixed vector ω, we can always choose our reference

frame such that only the component along the z-axis is non-zero ω = (0, 0, ω3).

Its exponential, A = exp(M) is the one–step evolution operator. This acts on a finite set

of states, labeled by the integers mod N13, which means that the matrix A ∈ SL(3,ZN),

which, also, has integer entries, mod N , has the form

A =


a b 0

−b a 0

0 0 1

 (16)

where a and b are integers mod N , which satisfy a2 + b2 ≡ 1 modN . We may, hence, work

out the form of the “reduced” evolution operator Ã ∈ SL(2,ZN)

Ã =

 a b

−b a

 (17)
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If the three–component states are labeled by the vector s, then the “reduced” states are

labeled by the vector s̃

s̃ = (ω3s1 − ω1s3, ω3s2 − ω2s3) (18)

Now by choosing the unit of time appropriately, we may set ω3 ≡ 1 modN .

The previous expression thus becomes

s̃ = (s1, s2) modN (19)

This means that all the interesting dynamics happens on a plane, orthogonal to the mag-

netization vector ω and as such, once we choose an initial state with fixed value for s3 we

have to satisfy s21 + s22 = (1− s23) modN .

What is interesting in this expression is that, if 1− s23 is a quadratic residue mod N , this

expression can be reduced to σ2
1 + σ2

2 ≡ 1 modN . If not, we must work in the quadratic

extension of the number field. In this way the transverse fluctuations, described by s1 and

s2 are related to the longitudinal fluctuations, described by s3. We now have a way to count

all the states which are accessible from any one initial state and as such we can label them.

All that remains to be computed, therefore, is the quantum evolution operator U(Ã),

whose classical limit would be Ã.

According to reference13,

[
U(Ã)

]
k,l

=
(2b|N)√

N
Ω
ak2−2kl+dl2

2b
N (20)

where ΩN = e2πi/N is the N−th root of unity, and (2b|N) is the Jacobi symbol, for 2b and

N , equal to 1 if 2b is a quadratic residue mod N , −1 if not and 0 if 2b ≡ 0 modN .

While these expressions were originally derived for N prime, it has been shown that the

matrices factorize over the prime factorization of N17.

Both the time evolution of the quantum states |s̃〉 and the transition probabilities between

them are given by the evolution operator as

|s̃〉n ≡ U(Ãn)|s̃〉0 (21)

Pn(s̃′, s̃) = |〈s̃′|U(Ãn)|s̃〉|2 (22)

Let us illustrate this abstract framework with a specific example by taking N = 5, ω3 = 1,

and the initial magnetization state to be normal to the external field described by ω (i.e in
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the (x,y) plane, so that s3 ≡ 0). This means all the accessible states are those for which

s21 + s22 ≡ 1 mod 5 (23)

To count and label them we have

|1〉 = (1, 0) |2〉 = (0, 1) |3〉 = (4, 0) |4〉 = (0, 4)

We note that these are, also, “classical” states. Quantum effects are described by their

superpositions, that don’t have a classical analog.

Furthermore, the only three, non–trivial, evolution operators, Ã, satisfying the constraint

a2 + b2 ≡ 1 mod 5 are

Ã1 =

 0 1

4 0

 , Ã2 =

 0 4

1 0

 and Ã3 =

 4 0

0 4

 = (Ã1)
2

These matrices describe rotations by ±90o in phase space–the Fourier transform. This means

that the quantum evolution operator, U(Ã) is, in fact, the Discrete Fourier Transform, over

five states. This, apparently, is one more state than necessary, since Ã4 = 12×2 ⇔ U(Ã)4 =

U(Ã4) = U(12×2) = 15×5. This, of course, means that the states are degenerate–their

degeneracies were studied in detail by Mehta18.

However, any state |s̃〉, can be expanded in the basis of the eigenstates of U(Ã)

|s̃〉 =
N−1∑
k=0

ck|ψk〉 (24)

These states are superpositions of the states of definite magnetization. This, however, means

that there are only N−1 independent, relative phases, since the evolution operator is unitary.

Therefore there are only N−1 = 4, in the case at hand, “non–trivial” states. So, let us label

the additional state as |0〉. To define a more convenient way of dealing with the superposition

of states, we will use the following notation

|α, β, γ, δ, ε〉 ≡ α|0〉+ β|1〉+ γ|2〉+ δ|3〉+ ε|4〉 (25)

To compute transition probabilities depending on time (the integer n playing the role of a

discrete time evolution here, hence a “kicked”-precession), if we start with an initial state

|0, 1, 0, 0, 0〉 ≡ |1〉, in the basis of the position operator, after one time-step, the next state

is given by
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|s̃〉1 = U(Ã)|s̃〉0 (26)

The evolution operator U(Ã1), describing the Discrete Fourier Transform, applied to the

initial state |1〉

U(Ã1)|1〉 =
1√
5

[
−1|0〉+ e

3ıπ
5 |1〉+ e

4ıπ
5 |2〉]− e

1ıπ
5 |3〉 − e

2ıπ
5 |4〉

]
(27)

where we have highlighted the relative phases, of the other pure states wrt the state |0〉.

The time evolution of the transition probability between the same initial and final pure

state, say |1〉, as a function of the discrete time-step n

Pn(|1〉, |1〉) = |〈1|U(Ã1)
n|1〉|2 (28)

computes the Nambu path integral and should display the appropriate periodicity, viz.

U(Ã1)
T (N) = 15×5

Results are displayed in Figure 1.

0 2 4 6 8 10
n (discrete timestep)

0

0.2

0.4

0.6

0.8

1

P n(|1
>,

|1
>)

Figure 1. Transition probability Pn(|1〉, |1〉) = |〈1|U(Ãn1 )|1〉|2 as function of the time-step 0 ≤ n ≤

10 highlighting the periodicity.
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IV. CONCLUSION AND OUTLOOK

In this contribution we have proposed a group action principle for linear Nambu flows,

that is consistent with the properties of classical Nambu mechanics, as well as the corre-

spondence principle of quantum mechanics and can, thus, be considered as a consistent

quantization of linear Nambu flows. Our formalism provides an explicit prescription for

the space of states, both “on–shell” and “off–shell” and linear superpositions, that are the

hallmark of non–classical behavior. Such flows are relevant for describing the Larmor pre-

cession of the magnetization of nanamagnets and, thus, their quantization is relevant for

describing its quantum fluctuations. We have applied our framework to the calculation of

transition probabilities and computing the time evolution of a simple model for quantum

Larmor precession mod 5, that is relevant for a spin 2 nanomagnet.

The semi–classical limit can be obtained, as N , therefore the number of spin states

becomes large, as might be expected and is quite subtle.

When Gilbert damping is taken into account, the equations of motion become non–

linear, but can, still be solved; their solutions can be interpreted as describing instantons.

Interestingly the damped linear Nambu flow admits a continuous evolution solution16 that

it would be of practical interest to set in the presented framework.
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