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In this paper we propose a pose regression method employing a convolutional neural network (CNN) fed with single 2D images to estimate the 3D orientation of a specific industrial part. The network training dataset is generated by rendering pose-views from a textured CAD model to compensate for the lack of real images and their associated position label. Using several lighting conditions and material reflectances increases the robustness of the prediction and allows to anticipate challenging industrial situations. We show that using a geodesic loss function, the network is able to estimate a rendered view pose with a 5 • accuracy while inferring from real images gives visually convincing results suitable for any pose refinement processes.

INTRODUCTION

Pose estimation of objects has recently gained lots of interest in the literature for its wide application possibilities such as robotic grasping for bin picking. Nevertheless, this task remains challenging in the case of industrial parts, usually texture-less and not appropriate for key-points and local descriptors. Moreover, in a non-controlled and unfriendly industrial environment many issues have to be tackled akin to low luminosity or cluttered scenes. To be embedded in a bin picking process, any pose estimation module requires high precision recognition while offering acceptable execution speed not to penalize the following industrial treatments. It is even more arduous when the part needs to be precisely placed on an assembly module afterwards. Estimating the position of any 3D objects in a scene has gained interest in the past years thanks to neural networks and their abilities to extract relevant features for a given task. However, this task remains challenging when handling industrial parts because of their often black and glossy plastic material: in hostile plant conditions this material is known to constrain the prediction capabilities of image-based algorithms. Many works have been conducted with a depth information allowing algorithms to learn spatial features to recognize [START_REF] Bo | Unsupervised feature learning for rgb-d based object recognition[END_REF] or estimate the positions of objects within an image [START_REF] Hodan | Detection and fine 3d pose estimation of texture-less objects in rgb-d images[END_REF] (Shot-ton et al., 2013). In this paper we show that a simple 2D information is enough to predict the rotations of a part given a certain confidence score using a CNN and quaternions. However, the training dataset creation based on real images appears to be a painful process. Thereby, we also propose a dataset generation framework using rendered views from a CAD (Computer-Aided Design) model as a way to offset the lack of real images labeled with the accurate object position [START_REF] Su | Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views[END_REF]. Using an alpha channel (transparency) offers the possibility to add backgrounds and rotations without any image cropping. Scene parameters (lightening, scale, reflectance...) must be decisive for a relevant feature learning to infer from real images thus we choose them according to the part appearances in real views [START_REF] Mitash | A selfsupervised learning system for object detection using physics simulation and multi-view pose estimation[END_REF]. When directly regressing the pose of an object, the Euclidean distance is often employed as a loss function to approximate the distance between quaternions [START_REF] Melekhov | Relative camera pose estimation using convolutional neural networks[END_REF] [START_REF] Kendall | Posenet: A convolutional network for real-time 6-dof camera relocalization[END_REF]) [START_REF] Doumanoglou | Siamese regression networks with ef-ficient mid-level feature extraction for 3d object pose estimation[END_REF]. In this paper we propose a geodesic distance-based loss function using the quaternion properties. Operations of the quaternion algebra are a combination of simple derivable operators which can be used in a gradient-based backpropagation. We achieve to get a network which offers a great pose estimation with a low uncertainty over the data. With a wide variety of scene parameters, the network is able to estimate the pose of the object in a real image with a sufficient accuracy to be fed into a pose refinement process.

RELATED WORK

Local Features Matching

Local features extraction has been widely studied in the literature as it easily gives matching pair opportunities between two views. These features were first constructed from parametric shapes isolated within the image contours [START_REF] Honda | A handling system for randomly placed casting parts using plane fitting technique[END_REF]. The industrial parts need to have specific shape singularities to be properly localized, though. More recently, the well known SIFT local descriptor was employed to get a pose description of an object [START_REF] Lowe | Distinctive image features from scaleinvariant keypoints[END_REF]. In [START_REF] Gordon | What and where: 3d object recognition with accurate pose[END_REF] a matching between the extracted SIFT with the pose description of the object is performed to get a camera pose estimation. Because of the high dimension of the features vector, the SIFT severely impacts the algorithm computation time. Later, the SURF local descriptors, faster to extract, were introduced. However, they appear to be less robust to rotation and image distorsion than SIFT [START_REF] Bay | Surf : Speeded up robust features[END_REF]. To be computed, the local descriptors often rely on the object texture, one element absent from industrial parts. Moreover, they suffer from high luminosity and contrast variations which make them improper to be used in a challenging plant environment. Using the depth channel of RGB-D images, [START_REF] Lee | Adaptive bayesian recognition and pose estimation of 3d industrial objects with optimal feature selection[END_REF] proposes an ICP algorithm fed with 3D SURF features and Closed Loop Boundaries (CLB) to estimate the pose of industrial objects. However, the system can not deal with occlusions likely to happen inside a bin.

Template Matching

To tackle the issue of texture-less objects, template matching methods are employed to assign more complex feature pairs from two different points of view. Prime works built an object descriptor composed of different templates hierarchically extracted from an object point of view and later compared with an input image through a distance transform [START_REF] Gavrila | Multi-feature hierarchical template matching using distance transforms[END_REF].

To handle more degrees of freedom in the camera pose estimation, the recent machine learning techniques are used to learn the object templates and the associated camera pose to infer the position and then refine it using the distance transform. However, the algorithms still need a contour extraction process which is not suitable for low contrasted, noisy or blurred images. In [START_REF] Hinterstoisser | Dominant orientation templates for real-time detection of texture-less objects[END_REF] the discretized gradient directions are used to build templates compared with an object model through an energy function robust to small distorsion and rotation. This method called LINE is yet not suitable for cluttered background as it severely impacts the computed gradient. A similar technique is proposed in [START_REF] Muja | Rein-a fast, robust, scalable recognition infrastructure[END_REF]. The arrival of low-cost RGB-D cameras led the templates to become multimodal. LINEMOD presented in [START_REF] Hinterstoisser | Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes[END_REF] uses a depth canal in the object template among the gradient from LINE to easily remove background side effects. The method is later integrated into Hough forests to improve the occlusion robustness [START_REF] Tejani | Latent-class hough forests for 3d object detection and pose estimation[END_REF]. To deal with more objects inside the database, [START_REF] Hodan | Detection and fine 3d pose estimation of texture-less objects in rgb-d images[END_REF] proposes a sliding window algorithm extracting relevant image areas to build candidate templates. These templates are verified to get a rough 3D pose estimation later refined with a stochastic optimization procedure. The camera pose estimation problem can be solved with template matching but remains constrained to RGB-D information to achieve acceptable results. In this paper we propose to use 2D images without depth information therefore not suitable for this type of matching.

Features Matching from Neural Networks

Neural networks offer the ability to automatically extract relevant features to perform a given task. In a pose estimation problem they use convolutional neural networks to compute object descriptors as a database prior to a kNN algorithm to find the closest camera pose in the set [START_REF] Wohlhart | Learning descriptors for object recognition and 3d pose estimation[END_REF]. The loss function is fed with a triplet formed with one sample from the training dataset and two others respectively close and far from the considered camera position. Forcing the similarity between features and estimated poses for two close points of view is also employed in [START_REF] Doumanoglou | Siamese regression networks with ef-ficient mid-level feature extraction for 3d object pose estimation[END_REF] with a Siamese neural network doing a real pose regression. Although these methods are quite appealing, they still take advantage of RGB-D modalities. In [START_REF] Kendall | Posenet: A convolutional network for real-time 6-dof camera relocalization[END_REF] a deep CNN known as PoseNet based on the GoogLeNet network is built to regress a 6D camera pose from a 2D image. Whereas slightly different from our work for dealing with urban scenes, the work shows the continuous 3D space regression capability of a CNN in an end-to-end manner. Other works are using pre-trained CNN for object classification to estimate a view pose through SVMs. The depth channel of the RGB-D image is converted into an RGB image to be fed into a CNN with relevant 3D features [START_REF] Schwarz | Rgb-d object recognition and pose estimation based on pretrained convolutional neural network features[END_REF].

POSE REGRESSION

In this section we first define and transform the pose regression problem as a camera pose estimation problem using a bounding sphere and quaternions. To generate the pose views later fed into the CNN, a 3D pipeline rendering a CAD model seen under several scene atmosphere conditions is presented. Finally, the convolutional neural network which regresses the pose of the object is described from its architecture to its loss function based on the geodesic distance in the quaternions space.

Problem Definition

An object O is placed in a world scene with its frame position

P O = (x O , y O , z O ) and orientation expressed as the Euler triplet R O = (φ O , θ O , ψ O ).
The objective is to retrieve the object orientation from a point of view given by a fixed top camera. A trivial problem shift is to consider a fixed object with a mobile camera encompassing the scene localized with

R C = (φ C , θ C , ψ C
) lying on a bounding r-radius sphere centered on the object's centroid (Figure 1). Using the convention Z -Y -Z for the Euler triplet allows us to easily map the camera position according to the sphere azimuth and elevation. The third angle ψ C is then the camera plane rotation angle (Figure 2). 
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The camera is placed according to the

(φ C , θ C , ψ C ) Euler's triplet using the Z -Y -Z convention.
Any composition of rotations can be written as an axis-angle rotation according to the Euler's rotation theorem. Following this equivalence, to avoid any gimbal locks and improve computation performances, the triplet R C is written as the quaternion q C = (w C , v C ) according to the chosen Euler convention, representing an axis-angle rotation with a vector expressed as an hypercomplex number. Any camera orientation is now independent from the Euler's convention used. Using a telecentric lens on the camera would allow us to estimate the position P O and orientation R O of a part without any perspective effect: two objects similarly orientated but widely separated in the world scene would take the same shape in the top-view camera plane. The side effect is that different Z altitudes would give identical zooms (subject to magnifying errors) thus misleading the frame position estimation (Figure 3). It means that the system still needs to use an entocentric lens to predict the r sphere radius. Knowing the object centroid in the image plan plus the estimated r sphere radius is enough to obtain each object frame position P O among R C from our neural network prediction. The position estimation P O remains out of this paper scope yet so we suppose the radius r is known and we only use entocentric rendering for the orientation estimation R C .

Pose Generation

The industrial parts inside a bin have many possible poses as they can lie on each other. Thereby, creating a training dataset of real images covering all possibilities is tedious and complex. Moreover, every point of view will rely on a specific lightening condition not necessarily consistent with different bin-picking module placements in a factory. In this work a CAD model of the object is available so that a dataset can be generated during a rendering process. Using a virtual dataset has several advantages including the anticipation of different atmosphere conditions, backgrounds, scene cluttering and occlusions happening in a nonfavorable plant environment.

Camera Placement

A CAD model is placed on the center of a 3D scene according to its frame then textured to reproduce the glossy black plastic material of the real part. The camera positions are evenly picked on an r radius sphere surface with a specified number of poses using a golden spiral algorithm [START_REF] Boucher | Points on a sphere[END_REF]. The camera frame is computed so that the Z axis is pointing toward the scene center and the X axis remains horizontal (meaning ψ C = 0). This results in two angles φ C and θ C positioning and a camera plane rotation ψ C . Notice that this third angle can be generated by rotating the result image which can be done on the fly during the training phase thus reducing the dataset size on the hard drive.

Scene Parameters

For each point of view, the lighting conditions as well as the material reflectance are modified. This emphasizes different areas of the part so that the neural network can learn different features from the training dataset (Figure 4). A relevant scene parameter range comes from the study of real images taken under several conditions as shown in Figure 5. However, this might not always look realistic since the real material has no constant reflectance on its surface and it may contains blur or timestamp prints as seen in the topleft image in Figure 5. Finally, to avoid any pixelation the software antialiasing is applied and the image is generated with a size of 64 × 64 pixels. This image resolution is approximately the object bounding box size inside a bin rendered with an initial camera resolution of 1600 × 1200 pixels (which is an industrial standard) at a working distance of 2 meters. The scene background is set as an alpha channel (full transparency) to apply different backgrounds on the fly during the future training phase (Figure 8). The background can be defined as a color or a texture picked within high resolution samples showing material such as wood, plastic or metal as we don't know the nature of the bin in advance. The RGB image with the alpha channel leads to a 4-channels image later flattened to grayscale during the training process.

Network Architecture

Architecture

To estimate the pose of a single part from an RGB image we use a CNN architecture composed of convolutional and fully connected layers. Our network can only deal with a specified object but seen in different lighting conditions and with several backgrounds. In this case, using 2 convolutional layers is enough to extract shape and reflection features. On the other hand, relations between the extracted features and the quaternion are quite complex which basically leads to use at least one massive fully connected (FC) layer. Inspired by the recent work of [START_REF] Wohlhart | Learning descriptors for object recognition and 3d pose estimation[END_REF], an efficient way to bypass such computation time and memory consumption is presented in [START_REF] Doumanoglou | Siamese regression networks with ef-ficient mid-level feature extraction for 3d object pose estimation[END_REF]) using a Siamese architecture forcing via the loss function a similarity between features and pose estimations for similar samples. From these works, we also use a last FC layer described as the descriptor layer but we propose a network which has an increasing number of filters per layer as we handle only one object and thus do not need a sparse description of the part. In the following description, CONV (a, b) stands for a convolution layer with b filters of size a×a, POOL(a) for a max pooling layer of size a × a and FC(a) for a fully connected layer of a hidden neurons. This CNN is built as follows: CONV (11, 96) -POOL(2) -CONV (5, 384) -POOL(2) -FC(512) -FC(64) -FC(4). The network is fed with a 64 × 64 grayscale image. All layers are using a ReLU activation function while the output layer uses a tanh function as the prediction domain is [-1, 1] which is suitable for the quaternion space. The images are normalized prior to the input layer.

Loss Function

An object orientation R O can be described with an Euler's triplet (φ O , θ O , ψ O ). However when using unitary quaternions for rotations, R O can also be described by two quaternions : q O and -q O . Thus to estimate the discrepancy between two poses, the usual L 2 distance is not suitable since L 2 (q O , -q O ) is not null. Even if in the end of the learning process the prediction q P is getting close to the ground truth q T leading the L 2 distance to be small, the network behaviour in the beginning of the learning process is not clear. Moreover, using the L 2 norm constrains the network to predict the exact same vector regardless of the quaternion geometric possibilities. For the quaternions are lying on a 3-sphere, we build a loss computed with the geodesic distance θ between q T and the normalized predicted quaternion q P to tackle this issue [START_REF] Huynh | Metrics for 3d rotations: comparison and analysis[END_REF]. Using the scalar product . , we have:

q T , q P = cos θ 2 = cos(θ) + 1 2 (1)
With ( 1) we define the geodesic loss for the i th example in the dataset as:

L G i = 1 -q T i , q P i 2 (2)
This loss is suitable for a gradient-based backpropagation for it is made with simple derivable operators. With this objective function, the network is able to predict the truth q T but also -q T . To properly use this loss term, the predicted quaternion is manually normalized thus, the network does not tend naturally to predict unitary quaternion (real rotations) when not fully converged. One simple way to force this is to add a β weighted penalty when the prediction's norm differs from 1.

L N i = β(1 -||q P i ||) 2 (3)
The final loss is built with the geodesic error L G i (2) and normalization error L N i (3) mean over the samples i among a L 2 regularization term weighted by λ to prevent any overfitting:

L = 1 n n ∑ i=1 (L G i + L N i ) + λ||w|| 2 2 (4)

EXPERIMENTS

In our experiments we used an industrial black plastic part generated by its CAD model. We first produce the dataset for the neural network according to a certain number of evenly distributed positions on a sphere under several scene parameters. During the training, we process each image to create different backgrounds and render the third angle.

Protocol

The training dataset is generated with 1000 evenly distributed positions on the sphere, 3 material reflectances and 2 orthographic camera lens scales to avoid overfitting leading to a training dataset of 6000 images. With a number of 1000 positions, the average geodesic distance between two close samples is 6.3 • . The validation and test datasets are made with 1000 random samples extracted from 10000 even positions on the sphere set with random light conditions and reflectances for each one.

The training is performed with minibatches containing 100 samples. For each sample, a process can add the third angle ψ C by rotating the image plane and changing the associated quaternion. The quaternion q C modification is however not straightforward as it needs to first be converted into a rotation matrix Rot C then to the corresponding Euler's triplet using the proper convention. Once the third angle of the triplet is modified, the new quaternion is computed and placed into the minibatch sample (Figure 7). A colored or textured background is then applied to each image sample to remove the alpha channel. The image color channels do not provide relevant information as our parts are made of black plastic. Thereby each image is flattened to obtain a grayscale picture.

q C Rot C (φ C , θ C , 0) +(0, 0, ψ C ) q C '
After the image process, the minibatches are normalized and zero-centered.

In a first experiment, we only generate and estimate the two first angles φ C and θ C . Learning the third angle requires a strong variability in the dataset so that the network needs lots of epochs to converge. The third angle ψ C learning starts with widely separated angles within the [-180 • , 180 • [ angle space (a 90 • step). Through the epochs, the step is reduced to finally reach 10 • (Figure 11). We introduce two metrics suitable for the angle estimation error. First, we retrieve the Euler's triplet from the predicted quaternion using the rotation ma- trix. We define the angle error vector E = (E φ , E θ , E ψ ) as the absolute difference between the angles predicted and the ground truth. However, the error under each Euler's axis does not represent how far the estimated pose if from the truth as they can be cumulated. Yet, we build a second metric G obtained with the geodesic distance between the predicted and the ground truth quaternion coming from (1).

G = |cos -1 (2 q P , q T 2 -1)| (5)
The geodesic distance shows the smallest transformation needed to align the prediction with the truth and can be seen as a cumulative Euler angle error for each sample. Thus it is expected to be higher than any components of E.

For the training phase we use a Nesterov momentum backpropagation with an initial learning rate of 0.001 decreased through the epochs and a 0.9 momentum. The λ regularization weight is set to 0.001 as well as β. The implementation is Python-based with a Theano+Lasagne framework. The training dataset is build with a Blender rendering pipeline and learned on a Nvidia Tesla P100 in roughly 10 hours. The parameters giving the best score for the validation dataset are kept for the test phase.

Results

Looking at the results in Table 1 we are able to estimate both φ C and θ C with an average accuracy of 3 • when only the two first angles are learned with a random background. The last estimated angle ψ C can also be retrieved for an unitary quaternion since it can represent any rotation composition. However we see that the mean ψ C value is high because no variability on it has been seen in the training dataset (Figure 9). As expected, the geodesic error is the highest because it represents an Euler angle cumulative error. When the third angle ψ C is learned, we observe that its distribution gets a larger prediction uncertainty than in the two angles scenario but has a lower mean (Figure 10). With a 6 • resolution for φ C and θ C and 10 • for ψ C , the angle error medians are under 3 • which shows that the network is performing the expected regression task and do not tend to classify to the nearest learned angle (Table 2). It is interesting to note that in a two angles learning scenario, the network converges really fast at 100 epochs under a 5 • error whereas the three angles learning scenario needs more than 1000 epochs (Figure 11). Some samples are shown with the associated geodesic error in the Figure 12. The trained network has two max-pooling layers (Figure 6) which are known to be invariant to small rotations. Despite their abilities to reduce the training time and complexity, they tend to constrain the prediction capacities of the algorithm. When estimating the object pose from real images, the task remains challenging for we do not dispose any telecentric dataset. Only a small number of views with limited perspective effects can be fed into the network. With an only rendered-based training, we are still able to estimate the pose of the object with a visually convincing precision (Figure 13). Even if we do not have any ground truth information, the pose of the object inside the real image can be roughly estimated by the mean of a 3D modeler as in Figure 5. With this information, the average Euler's angles error reaches 22 • .

mean median E φ 4.39 • 2.0 • E θ 1.93 • 1.46 • E ψ 9.24 • 1.52 • G 3.3 • 2.8 •

CONCLUSION

In this paper we proposed a convolutional neural network performing a 3D pose regression of a known obmean median E φ 6.46 • 3.0 ject in a scene. We showed that once the network has learned from rendered data, it can infer from rendered images the three Euler's angles with a 5 • accuracy despite the max-pooling layers dropping the third angle estimation performance. Inside a real industrial bin, the parts can lie on each other so that severe occlusions are likely to happen. However, our network does not learn how to handle these configurations. Some works already tackle this issue with a loss function term handling an occlusion factor [START_REF] Doumanoglou | Siamese regression networks with ef-ficient mid-level feature extraction for 3d object pose estimation[END_REF]. In a future work, occlusions are going to be taken into account among an instance segmentation algorithm also based on a convolutional neural network to get an end-toend learning process. When the network is fed with real image containing small perspective effects, the estimated pose is visually convincing however the accuracy exceeds 22 
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 1 Figure 1: Top: The object O placed in the world scene and its CAD frame ( X O , Y O , Z O ) viewed from a fixed top-view camera. Bottom: Finding the O frame is equivalent to a camera frame ( X C , Y C , Z C ) evaluation problem in the scene when the object is fixed.

Figure 3 :

 3 Figure 3: Same scene rendered with different camera lens. Left: entocentric lens rendering different altitude and perspectives. Right: telecentric lens giving the same aspect for every object including scale.

Figure 4 :

 4 Figure 4: Effects of several lightening conditions in the scene and different object material reflectances on the rendered image.

Figure 5 :Figure 6 :

 56 Figure 5: Relevant scene parameters can render realistic views of the part. Left: the real image pose. Right: the rendered approximated pose.

Figure 7 :

 7 Figure 7: Quaternion modification when adding a third angle ψ C .

Figure 8 :

 8 Figure 8: Image processing during the minibatch creation: the third angle ψ C is generated on the fly before the image is flattened to obtain a gray level matrix.

Figure 10 :

 10 Figure 10: Box-plot of the angle estimation errors with three angles generated (φ C , θ C ,ψ C ).

Figure 11 :

 11 Figure 11: Geodesic error of test batch during the two (red) and three (blue) angles training phase. For the three angles training, the third angle steps are reduced at 200, 400, 700 and 900 epochs.

Table 1 :

 1 Pose estimation angle error with a two angles training.

	E φ					
	E θ					
	E ψ					
	G					
	0	2	4	6	8	10
			Angle error ( • )		
	Figure 9: Box-plot of the angle estimation errors with two
	angles generated (ψ					

C , θ C ).

Table 2 :

 2 Pose estimation angle error with a three angles training.

		•
	2.8 • E ψ 6.56 • E θ G 5.14 •	2.26 • 2.31 • 4.61 •

we aim at learning perspective effects by associating any quaternion estimations to the object (x, y) position in the image plane.