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Abstract: Despite recent achievements in handwritten text recognition due to major advances in deep neural networks,
historical handwritten documents analysis is still a challenging problem because of the requirement of large
annotated training database. In this context, knowledge transfer of neural networks pre-trained on already
available labeled data could allow us to process new collections of documents. In this study, we focus on
localization of structures at the word-level, distinguishing words from numbers, in unlabeled handwritten doc-
uments. We based our approach on a transductive transfer learning paradigm using a deep convolutional neural
network pre-trained on artificial labeled images randomly generated with strokes, word and number patches.
We designed our model to predict a mask of the structures positions at the pixel-level, directly from the pixel
values. The model has been trained using 100,000 generated images. The classification performances of our
model were assessed by using randomly generated images coming from a different set of images of words and
digits. At the pixel level, the averaged accuracy of the proposed structures detection system reach 96.1%. We
evaluated the transfer capability of our model on two datasets of real handwritten documents unseen during
the training. Results show that our model is able to distinguish most ”digits” structures from ”word” struc-
tures while avoiding other various structures present in the documents, showing the good transferability of the
system to real documents.

1 INTRODUCTION

This work takes part of the CIRESFI project 1. The
CIRESFI project aims to improve our knowledge
about the Italian theater during the 18th century in
France. The researchers in human and social sci-
ences intend to reveal the cultural adaptation for the
Italian actors in France. Whereas the political situ-
ation was against them, they succeeded in establish-
ing themselves as an official and reputed institution.
So, this projects aims at providing efficient tools to
access to different kinds of information which are in-
cluded in a set of financial records of the Italian com-
edy dating from the XVIII century with more 28 000
pages (Luca, 2011)(Cethefi, 2016). Information re-
trieval within a large collection of handwritten his-
torical documents is a very complicated task, specif-
ically when no ground truth training dataset is avail-
able. As a first functionality, we focus on the detec-

1Project ANR-14-CE31-0017 ”Contrainte et Intégration
: pour une Réévaluation des Spectacles Forains et italiens
sous l’Ancien Régime”

tion of the structure of these financial documents. In
this paper, we are concentrating on localization of all
the number areas, distinguished from word or strokes
structures, which are one the main constituents of
these financial records of the Italian Comedy (Cethefi,
2016). Later works could extract meaningful area and
columns based on these typed localizations.

Neural network-based deep learning have recently
achieved great advances in the pattern recognition
area including classification, regression and cluster-
ing (LeCun et al., 2015)(Schmidhuber, 2015). In text
recognition, recent works have shown that deep neu-
ral network (DNN) models can tackle the automatic
detection of specific objects in handwritten docu-
ments (Moysset et al., 2016)(Butt et al., 2016). How-
ever, since DNN models based their learning on the
data, most of the applications need large amount of
labeled data to train the models. In text recognition of
handwritten document, training data and test data are
generally taken from the same corpus of documents,
respecting the same text arrangement, same handwrit-
ing style and/or similar paper type. Unfortunately,



ground-truth in handwritten documents are rarely la-
beled and manual annotations are very time expen-
sive. When the labels of the target data are not avail-
able, a transductive transfer learning strategy (Pan
and Yang, 2010) can be considered to learn the de-
tection task by training a model with annotated data
from another database. Of course, the training dataset
should present enough structural variability and repre-
sentativeness with respect to the target dataset to both
learn the detection task and ensure its transferability.
Thus, the challenge here is to learn a generic detection
task without learning the specific characteristics and
patterns present in the training dataset. Once trained
on this train dataset, the system should be able to re-
trieve in the target dataset the same kind of patterns.

In this paper, we propose to bridge the gap be-
tween a non-labeled dataset and a labeled dataset
by generating randomly artificial images containing
known patterns in known locations but with variable
layouts and backgrounds. The strategy is based on
a random placement of labeled patches of word and
number structures on a background image from the
target database. Clearly, the main advantage of such
strategy is that it allows to generate as many im-
ages as necessary, can be adjusted to the target task,
and ensure structural variability(Delalandre et al.,
2010). Note that this generation strategy is quite close
to (Kieu et al., 2013) where authors create full pages
of realistic documents. Furthermore, we show that a
fully convolutional network can be trained to solve a
digit/word detection task.

The paper is structured as follows: Section 2 in-
troduces the notations, definitions and objectives of
this work; Section 3 presents the images databases
used for the generation of artificial documents and
the real handwritten documents for which we want
to detect number/word structures; Section 4 presents
the architecture of the neural network trained for our
pixel-wise digit spotting problem; Section 5 presents
how we evaluated the classification performance of
our model; Section 6 presents the results obtained
with our model classification considering the artificial
generated images and a qualitative evaluation on real
handwritten mails and historical documents that were
not used for training.

2 NOTATIONS, DEFINITIONS
AND OBJECTIVES

In this section we introduce some notations and
definitions used in this paper.

Let X = {x1,x2, ...,xN} with xi ∈ R, be the im-
age of N pixels of a given handwritten document.

S = {s1,s2, ...,sN}, with si = (s0
i s1

i s2
i )

T, sk
i ∈ {0,1}

corresponds to the pixel-wise classification map of
one-hot vectors indicating in which class belongs
each pixel of X . In our context, k = 0 corresponds
to the class ”background”, k = 1 is the class ”num-
ber” and k = 2 is the class ”word”. The goal of our
model is to build the map Y = {y1,y2, ...,yN}, with
yi = (y0

i y1
i y2

i )
T, yk

i ∈ [0,1] as the closest estimation
of S, from the image X .

Using a set of M images X = {X1,X2, ...,XM}, the
corresponding set of structures maps S and a neural
network model with the parameters Θ, we aim to learn
a transformation function T (X ,Θ) =Y by finding the
parameters Θ? that minimize the cost function C,

Θ
? = argmin

Θ

C(T (X ,Θ),S). (1)

As the targeted Y = T (X ,Θ) should be the closest
estimation of S, we define the cost function C as the
weighted cross entropy between Y and S:

C(Y,S) =−
N

∑
i

2

∑
k=0

1
pk

i
(sk

i .log(yk
i )), (2)

where the weighting coefficient pk
i is the probability

of the pixel xi to belong to the class k. This is expected
to readjust the weight of error depending on the pro-
portion of each class within each image X . Given an
image X , we computed pk

i as the proportion of the
pixels belonging to the class k within the image X .

Considering a set of unlabeled image X u, the set
of maps of one-hot vectors S u is not available to learn
the transformation T u(Xu,Θ) = Y u. The objective
of transfer learning is thus to learn a transformation
T l(X l ,Θ) = Y l using a set of labeled images X l that
is similar enough to X u to ensure that T l(Xu,Θ) ≈
Y u.

3 DATABASES

3.1 Real images

Three databases were considered in this study: the
IReste Online Offline database (IROnOff) (Viard-
Gaudin et al., 1999), the handwritten mail of
the RIMES database (Augustin et al., 2006) and
the unlabeled registers accounts of Italian Comedy
(RECITAL) (Cethefi, 2016). RECITAL images were
scanned by the BNF (National French Library)2 at
400dpi.

2As an example, the register numbered 41 is avail-
able here: http://catalogue.bnf.fr/ark:/12148/
cb42447323f



We used the IROnOff database to construct X l and
S l to learn the transformation T l . The RECITAL
database corresponds to the set of images X u for
which we want to process automatic structures-
spotting.

The IROnOff database contains a total of 61,291
images (300dpi) of isolated handwritten characters,
digits, words, with their corresponding transcriptions.
We randomly separated the IROnOff database in two
groups; the training set Dtrain corresponding to 67%
of the total dataset (40,861 images) and the test set
Dtest corresponding to 33% of the dataset (20,432 im-
ages). To evaluate the model during the learning, we
picked 20% of Dtrain as the validation set Dvalid (8,172
images).

Besides, we used the set of patches from the
RIMES database to quantitatively evaluate the re-
trieval capability of our classifier. The RIMES
database is a set of 1,500 images of labeled para-
graphs from handwritten mails (Grosicki and El-
Abed, 2011) with a total of 66,979 patches of words
and numbers present in the documents. In RIMES,
patches with numbers correspond to isolated num-
bers and identification strings using digits (as license
plates). A total of 918 patches contains digits.

3.2 Random image generation

We used images of Dtrain, Dvalid and Dtest as patches
to generate 1536x1536 images and created the set of
artificial images X l

train, X l
valid and X l

test with their as-
sociated pixel-wise one-hot vector maps S l

train, S l
valid

and S l
test .

In order to generate images that are comparable
with historical documents, we selected a total of 97
images from the RECITAL dataset without any hand-
writing, and used them as background. We also man-
ually segmented 50 handwritten strokes (accolades,
separators, . . . ) from the RECITAL dataset for adding
various structures, distinct from the word/number
patches.

The procedure to generate an image is defined by
Algorithm 1. The first part of the procedure randomly
create a grid G in a 1536x1536 area using a randomly
selected background image. Secondly, for each cell
of the created grid, a type of patch is selected among
{empty,word,number}. If the type is not empty, a
patch of the corresponding type is then selected, ran-
domly scaled, and placed in the current cell. Note that
the random scaling is constrained to keep the patch
in the size of the cell. The corresponding ground-
truth map S is built at this stage using the type of cell
and its position and size. Then, a random number of
strokes are placed on the created document, after ran-

dom scale and rotation. Finally, a Gaussian noise with
a random signal-to-ratio (from 10 to 100) is added to
the artificial document.

Algorithm 1 artificial document generation algorithm

1: procedure ARTIDOC
2: #Inputs
3: D: dataset of word/number patches
4: B: dataset of background images
5: S: dataset of strokes patches
6: MinH: minimum height of patches
7: MinW : minimum width of patches
8: (SizeH,SizeW ): size of generated image
9:

10: #Random statement
11: b← random image in B
12: A← random area (SizeH,SizeW ) in b
13: W ←U(1,SizeW/minW )
14: H←U(1,SizeH/minH)
15: C← grid (W ×H) of A
16:
17: #Random patches placement
18: for each cell c ∈C do
19: t ← random type of patch
∈ { /0,word,number}

20: d← random patch ∈ D of type t
21: d′← random scaling d (keeping it in c)
22: A(c)← random placement of d′ in c
23:
24: #Random strokes placement
25: nStroke←U(0,W ×H)
26: for n← 1,2, ...,nStroke do
27: s← random stroke ∈ S
28: s← random scaling and rotation of s
29: A← random placement of s
30:
31: #Add noise
32: SNR←U(10,100)
33: σ2

noise← σ2
signal .10−

SNR
10

34: Artidoc←N (0,σ2
noise)

35:
36: #Output
37: return Artidoc
Note:
U(α,β): Discrete Uniform Distribution (from α to β)
N (µ,σ2): Normal Distribution with mean µ and vari-
ance σ2

Note that the number of generated cells c in the
grid is chosen to generate sizes of numbers/words
in the same range than in the RECITAL images
(this is an approximation as numbers and words of
different sizes are presents in each original page).



Fig. 1 shows three examples of artificially gener-
ated documents. Source code for the artificial doc-
ument generator is available at https://github.
com/GeoTrouvetout/CIRESFI.

A total of 100,000 images were generated on-the-
fly for X l

train to train our model, 100,000 images for
X l

valid to validate the model during training and 10,000
images for X l

test to test the model. It means that each
artificial image is used only once.

4 NEURAL NETWORK
MODELING AND TRAINING

The model is based on a fully-convolutional neu-
ral network (FCNN) that produces a pixel-wise clas-
sification of every pixels of the input image in three
classes; background, number and word. A graphi-
cal representation of the architecture of the trained
FCNN if presented on Fig. 2 and detailed in TA-
BLE 1. Since it is fully convolutional, this model
is adaptable to all input image sizes so that it can
be applied on the mails from the RIMES database
and on the unlabeled documents from the RECITAL
database X u. A 5-level pyramid representation of the
input image was used as input to enlarge the recep-
tion field of each feature maps and ensure that the
network can handle recognition of various sizes of
structures. Roughly, the network is composed of two
parts: Features extraction and Structures map con-
struction. The features extraction part composed of
5 layers of convolution (kernel size of 5x5 with zero-
padding) linked with 2x2 max-pooling leading to a
middle layer shape of 48x48x256. The digit mask
construction part is composed of 6 layers of trans-
posed convolution (Dumoulin and Visin, 2016) (ker-
nel size of 5x5 and padding with half of the filter size
on both sides) and two 2x2 upscale layers (upscal-
ing by repetition) reconstructing a 384x384x3 tensor
finally upscaled to 1536x1536x3. The rectify linear
unit (ReLU) function was chosen as the output nonlin-
earity of each layer, with the exception of the output
layer with a softmax function. Originally proposed by
Nair and Hinton in (Nair and Hinton, 2010), ReLU
function is define as ReLU(x) = max(0,x). Besides it
does not require input normalization, the ReLU func-
tion has been shown to help the training speed of
FCNN models (Nair and Hinton, 2010)(Krizhevsky
et al., 2012). The softmax function performed a ex-
ponential normalization of each one-hot vector of the
produced map, thus ∀i,y0

i + y1
i + y2

i = 1, defined by

Softmax(x) j =
ex

j

∑k ex
k

with k = 0,1,2.

The model was built and trained using the Python
library Theano (Bergstra et al., 2010) and the deep
learning wrapper Lasagne (Dieleman et al., 2015).

We trained the model by minimizing the objec-
tive function C (equation 2) using the Adam stochastic
gradient-based algorithm described in (Kingma and
Ba, 2014).

Symmetrically to the set of inputs images X l
train,

X l
valid and X l

test , the set of output maps of our net-
work are denoted Y l

train, Y l
valid and Y l

test . Note that
the direct output of the network is Y = {y1,y2, ...,yN}
with yi = (y0

i y1
i y2

i )
T and yk

i ∈ [0,1]. To evaluate the
classification performance of our model with binary
outputs, we computed the resulting classification map
Ŝ = {ŝ1, ŝ2, ..., ŝN} with

ŝi =

ŝ0
i

ŝ1
i

ŝ2
i

 , ŝk
i =

{
1 if max(yi) = yk

i
0 else

.

Table 1: Architecture of our model based on convolutional
neural network

Layer type Filter size Output layer
shape

Activation
function

Input image /// 1536x1536 ///
Py(X) /// 1536x1536x5 ///
Convolution
+ maxPool (2x2) 5x5x32 768x768x32 ReLU

Convolution
+ maxPool (2x2) 5x5x32 384x384x32 ReLU

Convolution
+ maxPool (2x2) 5x5x64 192x192x64 ReLU

Convolution
+ maxPool (2x2) 5x5x128 96x96x128 ReLU

Convolution.
+ maxPool (2x2) 5x5x256 48x48x256 ReLU

Convolution.
+ maxPool (2x2) 5x5x128 96x96x128 ReLU

Trans. Conv.
+ upscale (2x2) 5x5x64 192x192x64 ReLU

Trans. Conv.
+ upscale (2x2) 5x5x32 384x384x32 ReLU

Trans. Conv. 5x5x16 384x384x16 ReLU
Trans. Conv. 5x5x8 384x384x8 ReLU
Conv.
+ upscale (4x4) 5x5x3 1536x1536x3 Softmax

Output map /// 1536x1536x3 ///

Note: ReLU corresponds to the Rectified Linear Unit func-
tion defined by ReLU(x) = max(0,x). Softmax corre-
sponds to the normalized exponential function defined as
So f tmax(x) j =

ex
j

∑k ex
k

with k = 0,1,2. Transposed Convolu-
tion performs the backward pass of a normal convolution as
described in (Dumoulin and Visin, 2016).



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 1: Three examples of generated images with randomly selected background, word and digit patches from the IROnOff
database. (a),(b) and (c) present three examples of 1536x1536 artificial document generated using the Algorithm 1. (d), (e)
and (f) present the target classification map (bounding boxes of the numbers and words) superposed on the corresponding
artificial document. (g), (h) and (i) are the corresponding outputs of the detection system.

5 EVALUATION

We evaluated the performance of the structures-
spotting pixel-wise localization carried out by our
model in three phases: firstly, by considering the
set of artificial generated images X l

test and the cor-
responding set of target classification map S l

test ;
secondly, by evaluating the detection of numbers
among the NR patches of the RIMES database, R =
{R1,R2, ...,RNR}, and their associated states B =

{b1,b2, ...,bNR}, bi ∈ {0,1}, indicating the presence
or not of a number.

Given an output Ŝ map (estimated segmentation)
and a ground-truth structures map S, we computed
the precision, recall and accuracy of the structures
classification at the pixel level. Because the images
contains significantly more background than numbers
or words, we also computed the Matthew Correlation
Coefficient (Matthews, 1975) extended for multiclass
classification by J. Gorodkin in (Gorodkin, 2004),
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Figure 2: Graphical representation of the architecture of the fully-convolutional neural network. Py(X) corresponds to the
pyramid representation of the input image X with 5 levels of resolutions. A filter size of 5x5 were used for both convolution
and transposed convolution layers. Each convolution layer is associated with a max-pooling layer of 2x2. The two first
transposed convolution layers are associated with a nearest-neighbor upscale layer of 2x2.

which have the advantage of taking into account the
balance between the number of pixels belonging to
classes. Note that the Matthew correlation coefficient
is ranging from -1 to +1 with a value of 1 represent-
ing a perfect classification, 0 corresponds to random
classification and −1 indicates total disagreement be-
tween prediction and the ground-truth.

We describe below how we computed these met-
rics of classification performance namely precision
(PRE), recall (REC), accuracy (ACC) and Matthew
correlation coefficient (MCC):

PREk =
Ckk

∑
l

Clk
, RECk =

Ckk

∑
l

Ckl
, ACC =

∑
k

Ckk

∑
k,l

Ckl
,

mPRE =
1
K ∑

k
PREk, mREC =

1
K ∑

k
RECk,

MCC =

∑
k,l,m

Ckk.Clm−CklCmk√
∑
k
(∑

l
Ckl)( ∑

k′,l′
k′ 6=k

Ck′l′).
√

∑
k
(∑

l
Clk)( ∑

k′,l′
k′ 6=k

Cl′k′)
,

(3)

where K = 3, k, l and m ∈ {0,1,2} and C being
the 3x3 multiclass confusion matrix for one image.
Note that mPRE and mREC correspond to averaged
precision and recall computed for each class versus
the others.

To focus the performance measures on handwrit-
ing, and evaluate more precisely the structures re-
trieval, we also computed these measures by weight-
ing each classification with the ink amount of the pix-
els. Considering a pixel xi of an image X , its ink
amount τi is computed as the normalized pixel inten-
sity τi =

xi−min(X)
max(X)−min(X) . With this definition, τ ∈ [0,1],

τ = 0 corresponds to a white pixel, and τ = 1 corre-
sponds to a black pixel.

Besides, we also computed precision, recall and
accuracy to evaluate the digits detection capacity of
our classifier, at a word-level, using the RIMES word

patches R . The presence or not of a digit in a patch
(set B) was stated when the area formed by the pixels
classified in the class ”number” was equal or greater
than 25 pixels.

6 RESULTS

6.1 FCNN training

Fig. 3 shows the evolution of losses C(X l
train,Y

l
train)

and C(X l
valid ,Y

l
valid) during the training of our model.

The concomitant diminution of losses on both Dtrain
and Dvalid shows that the variability of random artifi-
cial document preventing our model from overfitting.
Because of the trending cost reduction, we choose to
keep the last computed weights. Fig. 1(g), Fig. 1(h)
and Fig. 1(i) present three output examples of the re-
sulting system.

Figure 3: Evolution of losses C(Strain,Ytrain) and
C(Svalid ,Yvalid) obtained during the training of the FCNN
model.



6.2 Structure-spotting evaluation on
artificial images

TABLE 2 presents the confusion matrix obtained on
the set of artificial images Ŝtest . Note that the number
of occurrences in each cell of the confusion matrix are
presented in averaged percentage of pixels among im-
ages of Ŝtest . This shows the unbalance between the
number of occurrences for each class. Globally, we
can see that classes 1 (number) and 2 (word) are over
estimated (e.g 2.72% of pixels are classified as num-
bers but only 1.5% of pixels are really numbers). This
effect is due to the balance cost function (eq. 2) which
prevents the background class from over-estimation.
TABLE 3 resumes the averaged classification results
computed on Ŝtest . The averaged recall, precision and
accuracy reach the percentages of 97.4%, 69.9% and
96.6% respectively. The averaged Matthew correla-
tion coefficient was 0.738, showing a robust global
performance of the system. The standard deviations
are computed over the different images from the test
set Y l

test . Considering each class versus the others, we
can observe poor precision despite good recall mea-
sures for word and number structures. This can be
explained by the fact that among pixels correctly de-
tected as word/number structures, numerous neigh-
boring background pixels are included in these classes
as well. The measurements using the signal-weighted
classification allow to increase the precision for the
3 classes. It means that the low precision is mostly
due to white pixels which are detected. This can be
observed in Fig. 1g), Fig. 1(h) and Fig. 1(i).

Table 2: Averaged matrix confusion obtained on artificial
images of the test set. The numbers of occurrence are pre-
sented in averaged percentage of pixels over the images of
Ŝtest .

Predicted class

0 1 2 Total

Actual
class

0 92.82% 1.2% 1.76% 95.78%
1 0.01% 1.47% 0.02% 1.50%
2 0.04% 0.05% 2.64% 2.73%

Total 92.87% 2.72% 4.42%

6.3 Transfer learning evaluation on real
handwritten documents

6.3.1 Word level evaluation

We measured the number detection performance on
the set of patches of the RIMES database R . With the

Table 3: Averaged classification performances on artificial
images (test set Ŝtest )

Measures pixel
classification

signal-weighted
pixel classification

mREC 0.974 ± 0.034 0.975 ± 0.034
mPRE 0.699 ± 0.055 0.785 ± 0.061
ACC 0.969 ± 0.020 0.969 ± 0.019
MCC 0.738 ± 0.057 0.816 ± 0.058

REC0 0.969 ± 0.021 0.966 ± 0.022
REC1 0.985 ± 0.058 0.981 ± 0.056
REC2 0.969 ± 0.083 0.957 ± 0.082
PRE0 0.999 ± 0.002 0.999 ± 0.002
PRE1 0.518 ± 0.114 0.661 ± 0.127
PRE2 0.579 ± 0.107 0.693 ± 0.103

66,797 patches of R , the Matthew correlation coeffi-
cient was 0.634 and the recall, precision and accuracy
were 80%, 75.6% and 82.5% respectively. It means
that 80% of patches including digits are retrieved but
only 75.6% of detected images really contain digits.
Noting that no pre-processing (binarization, denois-
ing, reshape, etc.) were applied on the patches, these
results show that the system can handle all types of
data and distinguish number structures among hand-
written documents. The Fig. 4 shows some examples
of some well-classified and miss-classified images.

(a) with number (b) with number (c) without num-
ber

(d) with number (e) with number (f) without num-
ber

Figure 4: Examples of word classified images from Rimes.
Images (a), (b) and (c) are well-classified and (d), (e), (f)
are miss-classified. Ground-truth is specified below each
image.

6.3.2 Page level qualitative evaluation

We qualitatively analyze the transferability of our
model by considering RIMES paragraphs and
RECITAL complete pages. Note that none of these
documents were seen during the training.



Fig. 5 shows six examples of structures spotting
on real handwritten documents; three mails of the
RIMES database and three RECITAL documents.

Concerning the RIMES mails, we can observe that
the totality of the word structures were well retrieved.
However, in Fig. 5(b), we can note that some num-
bers structures (especially the ”20 and ”2007” within
the first sentence) were partially missed by the net-
work. This could be due to the cursively-writing style
of these structures, rarely present within the patches
containing number used during training.

The RECITAL documents are more challenging
because of the natural noise included in the back-
ground, the different sizes of characters within the
same page, and mainly the writing style which is com-
pletely different from modern IROnOff dataset. De-
spite that most of the numbers were retrieved, we can
observe that calligraphic letters, present at the top of
the pages, are often detected as digits. This can be
explained by the fact that the IROnOff database does
not contains calligraphic writing. Thus, our model did
not learn to distinguish such large structures from dig-
its. Also, we can observe that, at the pixel level, some
number structures starting with ”10” are missed by
the network and classified as words. We think that the
model cannot differentiate ”10” structures from ”lo”,
”la” and ”le” structures, often present in IROnOff
word patches.

7 CONCLUSION

In this paper, we proposed a method for
word/number structures spotting in handwritten doc-
uments based on a fully-convolutional neural network
trained on artificial documents.

Since the targeted database of documents were
not annotated, we tackled this as a transfer learn-
ing problem. We proposed to train the model on
randomly generated labeled images, built with num-
ber/word patches of the IROnOff database and page
backgrounds from the RECITAL database.

The performance of our model was assessed as
a pixel-wise classification of the structures within a
set of artificial documents. On artificial data, the sys-
tem was able to correctly classify 96.9% of the pixels.
This shows that our model performed robust pixel-
wise classification on artificial data.

We also evaluated the model as a digit detector
by using the word/number patches of the RIMES
database. The model detected 80% of the patches
containing digits. Thus, the learned model is showed
to be transferable to real handwritten documents,
without any preprocessing.

On unlabeled historical RECITAL documents, our
model detected most of the word/number structures.
However, we showed that the model hardly distin-
guish word from number structures in calligraphic
structures. Also, the model seems to miss few num-
ber structures, mainly due to the confusion between
”1” and ”l” structures.

Despite these limitations, considering the high
variability of the RECITAL documents, in terms of
shape, structure and handwriting style, we observed a
good transferability of our model.

To improve the classification performance of our
model on unlabeled data, future work will focus on
adding more variability of handwriting styles and
structures in the generation of artificial documents.
Then, this classification map will be embedded in a
larger document analysis system.

Source codes for the artificial document generator
and for the structure detection system are available at
https://github.com/GeoTrouvetout/CIRESFI.
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