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Skull Conductivity Estimation for

EEG Source Localization
Facundo Costa, Hadj Batatia, Thomas Oberlin, and Jean-Yves Tourneret

Abstract—A reliable leadfield matrix is needed to solve the mag-
netoencephalography/electroencephalography (M/EEG) source
localization problem. The computation of this matrix requires sev-
eral physical parameters, including the conductivity of the tissues
that compose the subject’s head. Since it is not precisely known,
we modify a recent Bayesian algorithm to estimate the skull con-
ductivity jointly with the brain activity directly from the M/EEG
measurements. Synthetic and real data are used to compare our
technique with two optimization algorithms, showing that the pro-
posed method is able to provide results of similar or better quality
with the advantage of being applicable in a more general case.

Index Terms—Bayes methods, M/EEG measurements, source
localization, sparsity.

I. INTRODUCTION

M
AGNETOENCEPHALOGRAPHY/electroence-
phalography (M/EEG) source localization has been re-

ceiving an increasing amount of interest in the signal processing
literature in the last decade. One of the most common models
used to solve the associated ill-posed problem is the distributed
source model [1], [2], which expresses the relationship between
the brain activity and the M/EEG measurements by the leadfield
matrix.

The leadfield matrix depends on the geometry and composi-
tion of the subject’s head, most noticeably on the conductivities
of the different tissues. Most of the tissue conductivities have
values that are well accepted in the literature [3]. However,
there has been some controversy regarding the conductivity of
the human skull [2] with authors reporting values that differ
in almost an order of magnitude [4], [5]. Most of the source
localization techniques use a default value for this parameter.
However, this value can affect the reconstruction considerably
[3], [6]–[8] and has been shown to vary significantly across
different subjects [2], [9]. To increase the reconstruction quality
without measuring the skull conductivity directly, several
methods try to estimate it jointly with the brain activity directly
from the M/EEG measurements [10]–[17]. However, most of
them require very restrictive conditions to yield good results.
Assumptions required by the existing methods to estimate the
skull conductivity include a very good a priori knowledge
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about the active dipole positions [10], [11], the presence of only
one active dipole [12], or the existence of few possible discrete
values for the skull conductivity [13], [14].

In previous works [18], [19], we introduced a hierarchical
Bayesian model to promote structured sparsity for recovering
point-like brain activity. In the present letter (and the associ-
ated technical report [20]), we generalize this model to estimate
the skull conductivity jointly with the brain activity in a com-
pletely unsupervised framework. A Markov chain Monte Carlo
(MCMC) technique is investigated to generate samples asymp-
totically distributed according to the posterior distribution of this
model. These samples are then used to build estimators of the
model parameters including the skull conductivity of the brain.

This letter is organized as follows. The proposed inverse prob-
lem for EEG source localization and its associated Bayesian
model are introduced in Section II. Section III presents the
MCMC method (more precisely, a partially collapsed Gibbs
sampler) used to sample the posterior distribution of this model.
Section IV contains the main contribution of this letter, namely
the introduction of a parametric model relating the leadfield
matrix to the skull conductivity. Experiments conducted on syn-
thetic and real data are presented in Section V. Conclusions are
finally reported in Section VI.

II. PROPOSED HIERARCHICAL BAYESIAN MODEL

The M/EEG inverse problem can be formulated as

Y = H(ρ)X + E (1)

where the amplitudes of the N dipoles in the T time sam-
ples are concatenated in the matrix X = [x1 , ...,xT ] ∈ R

N ×T ,
H(ρ) ∈ R

M ×N is the lead field operator that depends on the
skull conductivity ρ (with its columns normalized to compen-
sate the depth biasing effect [1]), Y = [y1 , ...,yT ] ∈ R

M ×T

contains the measurements of the M electrodes, and E =
[e1 , ...,eT ] ∈ R

M ×T is the measurement noise matrix. The
problem addressed in this work is the joint estimation of X and
ρ from the measurements Y and the function H(ρ).

A. Likelihood

We assume an independent white Gaussian noise with a vari-
ance σ2

n , which leads to the following Gaussian likelihood:

f(Y |X, σ2
n , ρ) =

T∏

t=1

N
(
yt

∣∣∣H(ρ)xt , σ2
nIM

)
(2)

where N is the Gaussian distribution, mj represents the jth
column of M , and IM is the M × M identity matrix. Note that
if the noise is not white, the noise covariance can be estimated
from the measurements and used to whiten the data [21].
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B. Prior Distributions

This section generalizes the hierarchical Bayesian model of
[18] to include the skull conductivity. The priors used for each
of the model parameters and hyperparameters (except for ρ) are
the same as were used in [18] and are summarized in Table I,
where B, G, and U stand for the Bernoulli, gamma, and uniform
distributions, respectively, δ is the Dirac delta function, mi de-
notes the ith row of M , 1R+ (x) = 1 is the indicator function on
R

+ , and α = β = 1. In this table, we can see that each row xi is
either jointly zero or nonzero, which is indicated by the discrete
variable zi . ω is a variable between 0 and 1 that indicates the
probability of having zi = 1, whereas a controls the amplitude
of the nonzero rows of X . Note that τ 2 is a latent variable that is
only introduced to accelerate the convergence of the algorithm.
Finally, the noise variance σ2

n is assigned a Jeffrey’s prior
reflecting the absence of knowledge about this parameter. The
reader is invited to consult [18] for more motivations and details
about the Bayesian model used for EEG source localization.

1) Skull Conductivity: We assign a noninformative uniform
prior for ρ

f(ρ) = U
(
ρ
∣∣∣ρmin , ρmax

)
. (3)

To select the range of this uniform distribution, we consider an
interval containing the conductivities reported in the literature
[4], [5], i.e., ρmin = 3.3mS

m
and ρmax = 33mS

m
. This choice

results in scalp to skull conductivity ratios inside [10, 100].

C. Posterior Distribution

Denoting the unknown parameter vector θ =
{X, σ2

n , ρ,z, τ 2 , ω, a}, the posterior distribution is

f(θ|Y ) ∝ f(Y |X, σ2
n , ρ)f(X|τ 2 ,z, σ2

n )f(z|ω) (4)

f(τ 2 |a)f(σ2
n )f(a)f(ω)f(ρ).

Unfortunately, the posterior (4) is too complex to express the es-
timators of the model parameters and hyperparameters in closed
form. As a consequence, we propose to draw samples from
(4) and use them to build estimators of the brain activity, the
skull conductivity, and the model hyperparameters. The pro-
posed sampler is presented in the next section.

III. PARTIALLY COLLAPSED GIBBS SAMPLER

We investigate a partially collapsed Gibbs sampler (see [19]
for motivations) that generates samples asymptotically dis-
tributed according to (4). Denoting as X−i the matrix X whose
ith row has been replaced by zeros, the proposed sampler gen-
erates samples of the different variables according to their

Algorithm 1: Partially Collapsed Gibbs Sampler.

Initialize all the parameters.
repeat

for i = 1 to Ndo
Sample τ 2

i from f(τ 2
i |xi , σ

2
n , a, zi)

Sample zi from f(zi |Y ,X−i , σ
2
n , τ 2

i , ω, ρ)
Sample xi from f(xi |zi ,Y ,X−i , σ

2
n , τ 2

i , ρ)
end for
Sample a from f(a|τ 2)
Sample σ2

n from f(σ2
n |Y ,X, τ 2 ,z, ρ)

Sample ω from f(ω|z)
Sample ρ from f(ρ|X,Y , σ2

n )
until convergence

conditional distributions, as shown in Algorithm 1. The corre-
sponding conditional distributions can be found in [19], except
for the distribution of ρ that is detailed below.

The conditional distribution of the skull conductivity is

f(ρ|X,Y , σ2
n ) ∝ exp

(
−

||H(ρ)X − Y ||2F
2σ2

n

)
1[ρm in ,ρm a x ](ρ).

(5)
The following section explains how to efficiently model the
operator H(ρ) and how to sample from (5).

IV. LEADFIELD MATRIX MODEL

A. Approximation Using a Polynomial Matrix

The complexity of the operator H(ρ) makes sampling from
f(ρ|X,Y , σ2

n ) difficult for both realistic and spherical head
models. To simplify this dependence, Şengül and Baysal [11]
proposed to use a linear approximation of H(ρk ) around a
local value ρk . Instead, we propose to approximate H(ρ) on
the whole range [ρmin , ρmax ] by using a polynomial matrix of

degree L denoted by ĤL (ρ). Each element of ĤL (ρ) is defined

as ĥi,j (ρ) =
∑L

l=0 ci,j,lρ
l . The values of the coefficients ci,j,l

will be estimated by applying polynomial least-squares fitting

to the exact values of H(ρk ) for ρk = ρmin + k(ρm a x −ρm in )
K − 1

with k = 0, ...,K − 1 and the approximating polynomial matrix

ĤL,K (ρ) (see [20] for more details).

B. Sampling the Skull Conductivity

Approximating the relationship between the operator and the
skull conductivity with a polynomial matrix allows us to have a
simple closed-form expression for f(ρ|X,Y , σ2

n )

f(ρ|X,Y , σ2
n ) ∝ exp [−g(ρ)] 1[ρm in ,ρm a x ](ρ) (6)

where g(ρ) = 1
2σ 2

n
||ĤL,K (ρ)X − Y ||2F is a polynomial of or-

der 2L. To sample from (6), we adopt a Metropolis–Hastings
scheme [22]. More precisely, at each iteration, we propose to
generate a new sample ρprop = ρold + ǫ using a random walk.
This sample is then accepted with the probability

Pa = min
(f(ρprop|X,Y , σ2

n )

f(ρold|X,Y , σ2
n )

, 1
)
. (7)

For the random walk, we propose to use a Gaussian distribu-
tion for ǫ, i.e., f(ǫ) = N (0, σ2

ǫ ), where σ2
ǫ is adjusted by cross

validation in order to obtain an appropriate acceptance rate, as
recommended in [22].



Fig. 1. RMSE of the skull conductivity estimation versus SNR for different
values of L and K . (a) RMSE of ρ versus SNR (K = 100). (b) RMSE of ρ
versus SNR (L = 7).

C. Proposals

As mentioned in [18], the sampler presented above may
get stuck around local maxima of the target distribution.
Multiple-dipole shift (MDS) and interchain (IC) proposals for
the dipoles location were introduced in [18] to solve this is-
sue. The MDS proposal moves random nonzeros to neighbor-
ing positions, whereas the IC proposal allows different MCMC
chains to exchange their dipole positions. These moves are then
accepted or rejected using the classical Metropolis–Hastings
acceptance rate [22]. In order to build more efficient propos-
als, we propose to jointly move the dipole locations and skull
conductivity (see [20] for more details).

V. EXPERIMENTAL RESULTS

A. Synthetic Data

Synthetic data are first considered using a 200-dipole Stok
four-sphere head model [23] with 41 electrodes. The values of
L (degree of the polynomial) and K (number points in the least-
square fitting) need to be adjusted to build an accurate estimator

ĤL,K (ρ). For that purpose, the value ρ̂ that minimizes (6) was
calculated for ten different ground truth values of the skull con-
ductivity ρgt and 200 different values of X for different values
of L and K. The root-mean-square errors (RMSE) between ρgt

and their estimations ρ̂ are displayed in Fig. 1 (Fig. 1(a) corre-
sponds to K = 100 and different values of L, whereas Fig. 1(b)
was obtained with L = 7 and different values of K). Increasing
the values of L and K reduces the estimation RMSEs. However,
this effect is limited by the amount of noise affecting the EEG
measurements. Thus, for common values of signal-to-noise ratio
(SNR), choosing very high values of L and K does not improve
the estimation of ρ. Based on these results, we used L = 4 and
K = 10 in all experiments. The next sections investigate two
different kinds of activations: 1) a single-dipole activation and
2) multiple-dipole activations.

1) Single-Dipole Activation: The first experiment consid-
ers a single random dipole with a damped sine activation
of 5 Hz sampled at 200 Hz. The operator was calculated
for ρgt = 3.6 mS/m, and white noise was added to obtain
SNR = 10 dB. The proposed method is compared with two
other approaches: 1) our previous model [18] with a default
value ρfix = ρm a x +ρm in

2 = 18.15 mS/m; and 2) the optimization
method studied by Vallaghé et al. [12] that is able to estimate ρ
and the brain activity jointly since there is only one active dipole
for this example.

Fig. 2. Estimated activity for the single-dipole simulation, axial, coronal,
and sagittal views, respectively. (a) Default-ρ model. (b) Proposed method.
(c) Vallaghé’s method.

TABLE II
ERROR METRICS FOR DIFFERENT PARAMETERS IN THE SINGLE-DIPOLE

SYNTHETIC EXPERIMENT

Method
||X̂ −X gt ||

2
F

||X gt ||
2
F

|ρ̂ − ρgt|
||H(ρ gt)−H( ρ̂ ) ||2

F

||H(ρ gt) ||
2
F

Default-ρ 1.36 1.46 × 10−2 7.58 × 10−2

Vallaghé 6.17 × 10−3 2.65 × 10−4 9.23 × 10−5

Proposed Method 2.47 × 10−3 1.03 × 10−5 7.71 × 10−8

The estimated dipole locations are shown in Fig. 2. We can
see that the model of [18] with ρ = ρfix fails to recover the dipole
location and spreads the activity over a significant area of the
brain, illustrating the loss of reconstruction performance when
the wrong value of ρ is used. The optimization method is able
to recover the dipole position correctly and gives an average
estimate (computed using 20 Monte Carlo runs) of the skull
conductivity ρ̂ = 3.85 mS/m. The proposed method provides a
mean value of the estimates equal to 3.49 mS/m with a standard
deviation of 0.12 mS/m. Table II complements these results
by other quantitative results. Note that additional experiments
conducted on synthetic data with deeper dipoles can also be
found in the associated technical report [20].

The price to pay for the good performance of the proposed
method is its computational complexity. Using MATLAB im-
plementations in a modern Xeon CPU E3-1240 processor, each
simulation was processed on average in 96.1 s by the proposed
model, 51.29 s by the default ρ model, and 23.8 s by Vallaghé’s
method.

2) Multiple-Dipole Activations: The second kind of exper-
iments considers a variable amount of active dipoles. In each
experiment, C active dipoles were simulated with damped sinu-
soidal waves with frequencies varying between 5 and 20 Hz sam-
pled at 200 Hz. Twenty different simulations were conducted
for each value of C = 1, ..., 16, each one having a different set
of active dipoles and a different value of ρgt, resulting in a total



Fig. 3. Performance metrics for the multiple-dipole simulations as a function
of C . (a) Recovery rate versus C . (b) RMSE of ρ̂ estimation versus C .

of 320 experiments. Noise was added to the measurements to
obtain SNR = 30 dB.

The proposed method was compared with: 1) the method of
[18] using the correct value ρfix = ρgt; 2) the method of [18]

with ρfix = ρm in +ρm a x

2 = 18.15 mS/m; and 3) the method of
Gutiérrez [10]. Note that the method of [10] requires to know
the locations of the active dipoles in advance.

We define the recovery rate as the proportion of active dipoles
that are recovered by a given method. Fig. 3(a) displays the
average recovery rate for the first three methods as a function of
C (Gutiérrez’s method was not considered here since it knows
the dipole locations in advance). For C ≤ 10, the recovery rate
of the proposed method is very close to the method that knows
the correct value of ρ and performs significantly better than the
method of [18] running with the default value of ρ. Fig. 3(b)
shows the RMSE of the estimator ρ̂ as a function of C for the
two methods allowing this estimation. For C ≤ 10, the RMSE
of the proposed estimator is very close to the one of Gutiérrez’s
method (that knows the active dipole positions in advance). To
summarize, the performance of the proposed method is very
satisfactory for C ≤ 10. For C > 10, this performance drops
significantly.

B. Real Data

1) Auditory Evoked Responses: This section considers the
left-ear auditory pure-tone stimulus data set from the MNE
software [24], [25] to evaluate the proposed method. A real-
istic boundary element method head model with 1844 dipoles
located on the cortex and oriented normally to the brain sur-
face is available with this dataset. The data were sampled with
306 MEG sensors at 600 Hz, low-pass filtered at 40 Hz, and
downsampled to 150 Hz. The measurements corresponding to
200 ms of data preceding each stimulus were considered to es-
timate the noise covariance matrix that was used to whiten the
measurements. Fifty-one epochs were averaged to calculate Y .
The activity of the source dipoles was estimated jointly with
the skull conductivity for the period lasting 500 ms after the
stimulus.

The proposed method was compared with 1) a default-ρ
model that uses ρ = 6 mS/m corresponding to a ratio between
the scalp and skull conductivities equal to 50 (the default value
used by the MNE software), and 2) the ℓ21 mixed-norm regu-
larization introduced in [21] also using ρ = 6 mS/m.

We can see in Fig. 4 that the three models find the brain ac-
tivity focused on the auditory cortices. The main difference is
that our method finds activity more focused in a lower amount
of dipoles. In addition, our method results in ρ̂ = 10.6 mS/m,
corresponding to a ratio between the scalp and skull conductiv-
ities equal to 31. This ratio is considerably lower than the value

Fig. 4. Estimated activity for the auditory evoked responses. (a) Default-ρ
model. (b) ℓ21 mixed norm. (c) Proposed method.

of 80 used in the first studies [4] and closer to the value reported
in more recent studies [5], [26].

VI. CONCLUSION

This letter extended an existing hierarchical Bayesian
model for sparse M/EEG reconstruction to make it capable of
estimating the skull conductivity jointly with the underlying
brain activity. An MCMC method was used to generate
samples asymptotically distributed according to the posterior
distribution of this model. These samples were used to calculate
the estimators of the model parameters and hyperparameters in
a completely unsupervised framework. A polynomial approxi-
mation of the leadfield matrix was used to simplify the sampling
of the skull conductivity. Synthetic data were used to compare
the proposed method with the same model using a default value
of the skull conductivity. The obtained results showed that the
estimation of the skull conductivity improves the estimation of
the underlying brain activity, especially in the case of multiple
active dipoles. In addition, the proposed method was compared
with the optimization techniques introduced by Vallaghé et al.
[12] (that requires having only one dipole active) and Gutiérrez
et al. [10] (that requires knowing the active dipole positions in
advance). The proposed method showed very competitive re-
sults for these examples. Experiments conducted on an auditory
evoked response real dataset showed that estimating the skull
conductivity leads to a more focal result when compared to other
sparse promoting models (such as the ℓ21 mixed-norm regular-
ization). Moreover, the estimated value of the skull conductivity
provided by the proposed method was close to the values
reported by recent studies, which is a very interesting result.
Future work includes the application of the proposed algorithm
to other types of real data, including pure EEG and mixed
M/EEG measurements. Another possibility is trying to replace
the MCMC sampling scheme by an approximate message pass-
ing step, in order to reduce the computational complexity of the
method.
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