Surfactant- and Binder-Free Hierarchical Platinum Nanoarrays Directly Grown onto a Carbon Felt Electrode for Efficient Electrocatalysis - Archive ouverte HAL
Article Dans Une Revue ACS Applied Materials & Interfaces Année : 2017

Surfactant- and Binder-Free Hierarchical Platinum Nanoarrays Directly Grown onto a Carbon Felt Electrode for Efficient Electrocatalysis

Résumé

The future of fuel cells that convert the chemical energy to electricity relies mostly on the efficiency of oxygen reduction reaction (ORR) due to its sluggish kinetics. By 2effectively bypassing the use of organic surfactants, post-synthesis steps for the immobilization onto electrodes, the catalytic inks preparation using binders, and the common problem ofnanoparticles detachment from supports involved in traditional methodologies, we demonstrate a versatile electrodeposition method for growing anisotropic microstructures directly onto a threedimensional (3D) carbon felt electrode, using platinum nanoparticles as elementary building blocks. The as-synthesized materials were extensively characterized by integrating methods of physical (TGA, XRD, SEM, ICP, XPS) and electroanalytical (voltammetry, EIS) chemistry to examine the intricate relationship of material-to-performance and select the best-performing electrocatalyst to be applied in the model reaction of ORR for its practical integration into a microbial fuel cell (MFC). A tightly optimized procedure enables decorating an electrochemically activated carbon felt electrode by 40-60 nm ultrathin 3D-interconnected platinum nanoarrays leading to a hierarchical framework of ca. 500 nm. Half-cell reactions reveal that the highly rough metallic surface exhibits improved activity and stability towards ORR (Eonset ~1.1 V vs. RHE, p(HO2‒) < 0.1%) and hydrogen evolution reaction (HER, -10 mA cm−2 for only 75 mV overpotential). Owing to its unique features, the developed material showed distinguished performance as an air-breathing cathode in a garden compost MCF exhibiting better current and faster power generation than its equivalent classical double chamber. The enhanced performance of the material obtained herein is explained by the absence of any organic surfactant on the surface of the nanoarrays, the good metal-support interaction, the particular morphology of the nanoarrays, and the reduced aggregation/detachment of particles. It promises a radical improvement in current surface reactions and paves a new way towards electrodes with regulated surface roughness allowing for their successful application in heterogeneous catalysis

Domaines

Chimie
Fichier principal
Vignette du fichier
ACS Applied Materials & Interfaces, 2017, 9, 22476–22489.pdf (1.38 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01680945 , version 1 (09-06-2021)

Identifiants

Citer

Widya Ernayati Kosimaningrum, Thi Xuan Huong Le, Yaovi Holade, Mikhael Bechelany, Sophie Tingry, et al.. Surfactant- and Binder-Free Hierarchical Platinum Nanoarrays Directly Grown onto a Carbon Felt Electrode for Efficient Electrocatalysis. ACS Applied Materials & Interfaces, 2017, 9 (27), pp.22476 - 22489. ⟨10.1021/acsami.7b04651⟩. ⟨hal-01680945⟩
113 Consultations
149 Téléchargements

Altmetric

Partager

More