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Abstract. This paper studies the problem of providing predictions with
a K-nn approach when data have partial features given in the form of
intervals. To do so, we adopt an optimistic approach to replace the ill-
known values, that requires to compute sets of possible and necessary
neighbours of an instance. We provide an easy way to compute such
sets, as well as the decision rule that follows from them. Our approach
is then compared to a simple imputation method in different scenarios,
in order to identify those ones where it is advantageous.
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1 Introduction

The K-nearest neighbor method (K-nn) is a simple but efficient classification
method [1, 6, 16]. In classical K-nn, each label is assigned a predicted score and
the one with the highest score will be considered as the optimal label of the
target instance [1, 6, 16]. Such procedures usually assume that all training data
are precisely specified.

In this paper, we are interested in the case where the features of some train-
ing data are imprecisely known, that is are known to lie in an interval. In this
case, the notion of nearest neighbour is no longer well-defined, and the learn-
ing process has to be modified accordingly. Learning from interval-valued or
partial data is not new, but has regained some interest in the last few years
[14, 15, 2, 13]. In practice, such interval-valued data can come from imprecise
measurement devices, imperfect knowledge of an expert, or can also be the result
of the summary of a huge data set.

In this paper, we intend to apply some generic learning procedures fitted to
partial data [9, 8] to the specific case of interval-valued K-nn methods. It should
be noted that while the problem of modelling the uncertainty or the imprecision
of the decision within a K-nn procedure applied to precise data has been well-
treated in the literature (see e.g [10], [3] and[7]), few works deal with the problem
of applying a K-nn method to interval-valued data [2]. Imputation methods [4]
offer a way to solve this problem by replacing imprecise data by precise values,
but typically do not aim at improving as much as possible the method accuracy.



Instead, maximax or optimistic approaches [8] do intend to improve as much as
possible the resulting accuracy.

In order to derive our K-nn method, we will adopt an approach similar to
the one we previously successfully implemented for partially specified labels [11].
This approach was based on the use of two sets, the sets of possible and neces-
sary predicted labels. These sets correspond to the sets of labels that would be
predicted for at least one or all replacement(s) of the partial features, respec-
tively. An important step of our approach will be to determine those sets for the
case of interval-valued data from the sets of necessary and possible neighbours
of an instance. We deal with this issue in Section 3, after having introduced our
notations and settings in Section 2.

Our adaptation of the K-nn procedure, following the maximax approach put
forward by Hüllermeier [8] to build predictive models from partial data, will then
be derived in Section 4. We then provide some experimental results on several
data sets in Section 5.

2 Preliminaries

In our setting, we assume that we have an imprecise training set D = {(Xn, yn)|n =
1, . . . , N}, used to make predictions, with the imprecise features Xn ⊂ RP and
the precise label yn ∈ Ω = {λ1, . . . , λM}. We assume that Xp

n contains the pre-
cise value xpn in form of a of closed interval, or in other words, Xp

n =
[
apn, b

p
n

]
.

We are interested into predicting the class of a target instance t, whose features
are precisely known.

Let us first remind that in case of precise data, the Euclidean distance be-
tween a training instance xn and a target instance t is given by

d(xn, t) =

( P∑
p=1

(
xpn − tp

)2)1/2

. (1)

Then for a given target instance t and a number of nearest neighbours K, its
nearest neighbour set in D will be denoted by Nt = {xt

k|k = 1, . . . ,K} where
xt
k is its k-th nearest neighbour. In the unweighted version of K-nn, the optimal

prediction of t is

h(t) = arg max
λ∈Ω

∑
xt
k∈Nt

1λ=yt
k
, (2)

with 1A is the indicator function of A (1A = 1 if A is true and 0 otherwise).
The idea of the above method is to allow each nearest neighbour to give a vote
for its label and the one with the highest number of votes is considered as the
optimal prediction.

However, in case of imprecise feature data, there may be some uncertainty
about what is the nearest neighbour set Nt of a target instance t. As a con-
sequence, Eq. (2) is no-longer applicable in order to make a decision on t, the
target instance t is ambiguous, and this ambiguity must be resolved in some way



to make a decision. We will first focus on the problem of determining the ambi-
guity when having to decide the class of t. Denote by L the set of all possible
precise replacements of training set D:

L =

{
l = {(xn, yn)|xn ∈ Xn, n = 1, . . . , N}

}
. (3)

To each replacement l ∈ L corresponds a well-defined nearest neighbour set Nl
t ,

on which Eq. (2) can be applied to find the optimal prediction(s) as follows

hl(t) = arg max
λ∈Ω

∑
xt
k∈N

l
t

1λ=yt
k
. (4)

The sets of possible and necessary predicted labels are then defined as the sets
of labels predicted for at least one replacement and for all possible replacements,
respectively. Formally, this gives

PLt =
{
λ ∈ Ω|∃l ∈ L s.t λ ∈ hl(t)

}
(5)

and

NLt =
{
λ ∈ Ω|∀l ∈ L s.t λ ∈ hl(t)

}
. (6)

A target instance t is said to be ambiguous if and only if PLt 6= NLt . As we
will see in the next section, determining such sets in the case of interval-valued
features requires to compute the sets of necessary and possible neighbours. If the
instance t is non-ambiguous, then the predictive value is clear and nothing needs
to be done. If it is ambiguous, then an additional procedure must be performed to
pick a prediction within PLt . In this paper, we will adopt a maximax approach
presented in Section 4.

3 Determining ambiguous instances

This section focus on determining whether a given instance is ambiguous, and
what are the resulting possible and necessary label sets. In order to do so, we
will first have to determine the possible and necessary neighbours.

3.1 Determining interval ranks

Given an imprecise training data set D and a precise instance t, Groenen et
al.[5] provides simple formulae to determine the imprecise distance d(Xn, t) =[
d(Xn, t), d(Xn, t)

]
of Xn ∈ D with respect to t:

d(Xn, t) =

( P∑
p=1

[
|cpn − tp|+ rpn

]2)1/2

, (7)

and

d(Xn, t) =

( P∑
p=1

max
[
0, |cpn − tp| − rpn

]2)1/2

, (8)



where cpn = (bpn+apn)/2 and rpn = (bpn−apn)/2, p = 1, . . . , P . Such interval distance
allow us to define a partial order on the set D of training instance as follows

Xi � Xj if d(Xi, t) ≥ d(Xj , t) (9)

where Xi � Xj means that Xi is farther than Xj from t. As demonstrated by
Patil and Taille [12, Sec. 4.1], this partial order then allows us to derive interval
rank values as we have that

Xi � Xj ⇒ r(Xi) ≥ r(Xj),

where r(Xi) is the rank that can be assigned to Xi. Once the relation � is
determined, D is a poset (partially ordered set) and the corresponding relation
matrix, denoted by ζ, is a N ×N matrix defined as

ζi,j =

{
1 if Xi � Xj

0 otherwise.
(10)

The results given by Theorems 1 and 2 in [12, Sec. 4.1] imply that each instance
Xn can be associated to an imprecise rank which measures how close it is to the
target instance t i.e rn = [rn, rn] where

rn =

N∑
j=1

ζn,j and rn = N + 1−
N∑
j=1

ζj,n. (11)

Example 1. Let us consider an example where |D| = 5 and target instance t
as illustrated in Figure 1. Using the relation (9), the corresponding ζ matrix is
given in Table 1.

Fig. 1. Example with |D| = 5

X 2

X 1

t
(X1, a)

(X2, b)

(X3, c)

(X4, b)

(X5, a) t = (1, 1)
[d(X1, t), d(X1, t)] = [3, 5]
[d(X2, t), d(X2, t)] = [1, 1.4]
[d(X3, t), d(X3, t)] = [2.8, 4.4]
[d(X4, t), d(X4, t)] = [3, 3.2]
[d(X5, t), d(X5, t)] = [5.6, 7]



Table 1. The corresponding ζ matrix for example in Figure 1

X1 X2 X3 X4 X5

∑
r

X1 1 1 0 0 0 2
X2 0 1 0 0 0 1
X3 0 1 1 0 0 2
X4 0 1 0 1 0 2
X5 1 1 1 1 1 5∑

c 2 5 2 2 1

By applying (11), we can easily compute the imprecise ranks of the training
instances.

([r1, r1], [r2, r2], [r3, r3], [r4, r4], [r5, r5]) = ([2, 4], [1, 1], [2, 4], [2, 4], [5, 5]). (12)

3.2 Determining the possible label set

Let us now focus on the problem of determining whether a given label λ is a
possible prediction for t. Denoting by Rt = {rn = [rn, rn]|n = 1, . . . , N} the
imprecise ranks of the instances in D, we can easily determine the sets of possible
and necessary neighbours as

PNt = {Xn|rn ≤ K} (13)

and

NNt = {Xn|rn ≤ K}. (14)

We have that Xn ∈ NNt if it is in the set of neighbours Xn ∈ Nl
t for any

replacement l, while Xn ∈ PNt if Xn ∈ Nl
t only for some replacement l ∈ L.

For each label λ ∈ Ω, we can then compute its minimum number of votes

ssmallt (λ) =
∣∣{Xn|Xn ∈ NNt , yn = λ

}∣∣, (15)

given by its necessary neighbours. From ssmall can then be deduced the maximal
and minimal number of votes it can receive from K neighbours, according to the
following formulae

smaxt (λ) = min

[
K −

∑
λ′ 6=λ

ssmallt (λ
′
),
∣∣{Xn|Xn ∈ PNt , yn = λ

}∣∣], (16)

and

smint (λ) = max

[
ssmallt (λ),K −

∑
λ′ 6=λ

smaxt (λ
′
)

]
. (17)

These scores are simply derived from the fact that, among the K neighbours, at
least ssmall(λ) among them must give their votes to label λ. This is proved in the
next Lemma, where it is shown that smint (λ) and smaxt (λ) are the minimum and
maximum number of votes that can be given to λ over all replacements l ∈ L.



Lemma 1. Given number of nearest neighbours K, a target instance t, the cor-
responding maximum and minimum score vectors

(
smint (λ1), . . . , smint (λM )

)
and(

smaxt (λ1), . . . , smaxt (λM )
)
, then for any λ ∈ Ω, we have that

smint (λ) = min
l∈L

slt(λ) and smaxt (λ) = max
l∈L

slt(λ) (18)

and consequently, we have that, for ∀l ∈ L,

smaxt (λ) ≥ slt(λ) ≥ smint (λ),∀λ ∈ Ω. (19)

Proof. The relation that smaxt (λ) = maxl∈L s
l
t(λ) can be simply proved by ob-

serving that K−
∑
λ′ 6=λ s

small
t (λ

′
) bounds the number of instance that could be

in the set of nearest neighbours and have λ for label, while the value |{Xn|Xn ∈
PNt , yn = λ}| simply gives the maximal number of such elements that are
available within the set of possible neighbours, and that may be chosen freely
to be/not be in the neighbour set, as long as they remain lower than the bound
K −

∑
λ′ 6=λ s

small
t (λ

′
). So, maximising this number of elements simply provides

smaxt (λ).
Let us now prove that smint (λ) = minl∈L s

l
t(λ), recalling that we just proved

that smaxt (λ) is reachable for some replacement. We are going to focus on two
cases:

1. ssmallt (λ) ≥ K −
∑
λ′ 6=λ s

max
t (λ

′
), meaning that smint (λ) = ssmallt (λ), hence

for every replacement there is at least ssmallt (λ) nearest neighbors of label λ.
Furthermore, ssmallt (λ) ≥ K−

∑
λ′ 6=λ s

max
t (λ

′
) implies that

∑
λ′ 6=λ s

max
t (λ

′
)+

ssmallt (λ) ≥ K, meaning that we can choose the remaining K − ssmallt (λ)
neighbours so that they vote for other labels. In other words, we can find a
replacement l where ssmallt (λ) = slt(λ), proving that smint (λ) = minl∈L s

l
t(λ)

in the first case.
2. ssmallt (λ) < K−

∑
λ′ 6=λ s

max
t (λ

′
), meaning that smint (λ) = K−

∑
λ′ 6=λ s

max
t (λ

′
).

First note that for any replacement we cannot have slt(λ) < K−
∑
λ′ 6=λ s

max
t (λ

′
),

otherwise the set of nearest neighbour would be necessarily lower than K.
smint (λ) then reaches this lower bound by simply taking the replacement sl

for which we have slt(λ
′
) = smaxt (λ

′
), proving that smint (λ) = minl∈L s

l
t(λ)

in the second case.

�

For a label λm ∈ Ω, the relations among scores (19) and the definition of the
possible label set (5) imply that λm is a possible label (λm ∈ PLt) if and only if
there is a replacement l ∈ L with a score vector

(
slt(λ1), . . . , slt(λM )

)
such that

M∑
i=1

slt(λi) = K, (20)

and

min
(
slt(λm), smaxt (λi)

)
≥ slt(λi) ≥ smint (λi), i = 1, . . . ,M. (21)



The condition
∑M
i=1 s

l
t(λi) = K simply ensures that l is a legal replacement.

The constraint (21) then ensures that all other labels have a score lower than
slt(λm) for the replacement l (note that min(slt(λm), smaxt (λm)) = slt(λm)), and
that their scores are bounded by Eq. (19).

The question is now to know whether we can instantiate such a vector
making a winner of λm. To achieve this task, we will first maximise its score,
such that slt(λm) = smaxt (λm). The scores of all other labels λi is also lower-
bounded by smint (λi), meaning that among the K neighbours we choose in l,

only K − smaxt (λm)−
∑M
i=1,i6=m s

min
t (λi) remain to be fixed in order to specify

the score vector. Then we can focus on the relative difference between smint (λi)
and the additional number of chosen neighbours voting for λi. Solving the
problem defined by Eqs. (20), (21) is equivalent to determine a score vector
(w(λ1), . . . , w(λm−1), w(λm+1), . . . , w(λM )) whith w(λi) = slt(λi) − smint (λi),
∀λi 6= λm, s.t.

M∑
i=1,i6=m

w(λi) = K−smaxt (λm)−
M∑

i=1,i6=m

smint (λi), (22)

min
(
smaxt (λm), smaxt (λi)

)
− smint (λi) ≥ w(λi) ≥ 0,∀λi 6= λm. (23)

Eq. (22) again ensures that the replacement is a legal one (the number of neigh-
bours sums up to K), and Eq. (23) ensures that λm is a winning label. Also note
that if ∃λi ∈ Ω \ {λm} s.t smaxt (λm) < smint (λi), then there no chance for λm to
be a possible label.

We will now give a proposition allowing to determine in an easy way if a
label belongs to the set of possible labels.

Proposition 1. Given the number of nearest neighbours K, a target instance t,
its corresponding maximum and minimum score vectors

(
smint (λ1), . . . , smint (λM )

)
and

(
smaxt (λ1), . . . , smaxt (λM )

)
. Assuming that smaxt (λm) ≥ smint (λi), for ∀λi ∈

Ω \ {λm}, then λm is a possible label if and only if

K ≤ smaxt (λm) +

M∑
i=1,i6=m

min
(
smaxt (λm), smaxt (λi)

)
(24)

Proof. (⇒) Let us prove that λm being a possible label implies (24). First, if
λm ∈ PLt and l is a legitimate replacement, we have that

w(λi) ≤ min
(
smaxt (λm), smaxt (λi)

)
− smint (λi), ∀i 6= m (25)

otherwise λm would not be a winner, or we would give a higher score to λi than
it actually can get (we would have sl(λi) > smaxt (λi)). Since for any replacement
we have that Eq. (22) must be satisfied, we have necessarily

K − smaxt (λm)−
M∑

i=1,i6=m

smint (λi) =

M∑
i=1,i6=m

w(λi).



If we replace w(λi) by its upper bound (25), we get the following inequality

K − smaxt (λm)−
M∑

i=1,i6=m

smint (λi) ≤
M∑

i=1,i6=m

min
(
smaxt (λm)), smaxt (λi)

)
−

M∑
i=1,i6=m

smint (λi),

that is equivalent to the relation

K ≤ smaxt (λm) +

M∑
i=1,i6=m

min
(
smaxt (λm), smaxt (λi)

)
.

(⇐) Let us now show that if the conditions given by Eqs. (22)-(23) are
satisfied, then λm ∈ PLt . First remark that, once we have assigned the maximal
score to λm and the minimal ones to the other labels, there remain

K − smaxt (λm)−
M∑

i=1,i6=m

smint (λi)

neighbours to choose from. We also know from (23) that at most

M∑
i=1,i6=m

[
min

(
smaxt (λm), smaxt (λi)

)
− smint (λi)

]
neighbours can still be affected to other labels than λm without making it a
loser. Clearly, if

K − smaxt (λm)−
M∑

i=1,i6=m

smint (λi) ≤
M∑

i=1,i6=m

[
min

(
smaxt (λm), smaxt (λi)

)
− smint (λi)

]
,

we can reach the number ofK neighbours without making λm a loser, or inversely
letting λm be a winner for the chosen replacement, meaning that λm ∈ PLt . �

Example 2. Let us continue with the data set in Example 1 with value K = 3.
From Table 1 and the interval ranks (12), we can see that

PNt = {(X1, a), (X2, b), (X3, c), (X4, b)},NNt = {(X2, b)}.

Then the maximum and minimum scores for all the labels are

(smint (a), smint (b), smint (c)) = (0, 1, 0)

(smaxt (a), smaxt (b), smaxt (c)) = (1, 2, 1).

We will now determine whether a given label in Ω = {a, b, c} is a possible label.
For label a, we have that

smaxt (a) + min
(
smaxt (a), smaxt (b)

)
+ min

(
smaxt (a), smaxt (c)

)
= 1 + 1 + 1 = 3 ≥ K,

hence a ∈ PLt . The same procedure applied to b and c gives the result PLt =
{a, b, c}.



3.3 Determining necessary label set

Let us now focus on characterizing the set NLt . The following propositions gives
a very easy way to determine it, by simply comparing the minimum score of a
given label λ to the maximal scores of the others.

Proposition 2. Given the maximum and minimum scores
(
smint (λ1), . . . , smint (λM )

)
and

(
smaxt (λ1), . . . , smaxt (λM )

)
, then a given label λ is a necessary label if and

only if

smint (λ) ≥ smaxt (λ
′
),∀λ

′
6= λ. (26)

Proof. (⇒) We proceed by contradiction. Assuming that ∃ λ ∈ NLt and ∃ λ′ ∈
Ω where smint (λ) < smaxt (λ

′
), we show that we can always find a replacement

l ∈ L s.t slt(λ) < slt(λ
′
), or in other words, ∃ l ∈ L s.t λ 6∈ hl(t), and therefore

λ is not necessary. Let us consider the two cases

1. K −
∑
λ′′ 6=λ s

max
t (λ

′′
) ≥ ssmallt (λ), then for ∀λ′′ 6= λ, we give its the max-

imum score s.t slt(λ
′′
) = smaxt (λ

′′
) and give λ the score slt(λ) = K −∑

λ′′ 6=λ s
max
t (λ

′′
). Then it is clear that

slt(λ) = K −
∑
λ′′ 6=λ

smaxt (λ
′′
) = smint (λ) < smaxt (λ

′
) = slt(λ

′
).

2. K −
∑
λ′′ 6=λ s

max
t (λ

′′
) < ssmallt (λ), then we give λ a score slt(λ) = ssmallt (λ)

and give λ
′

a score slt(λ
′
) = ssmaxt (λ

′
). As we have

K <
∑

λ′′ 6={λ,λ′}

smaxt (λ
′′
) + ssmallt (λ) + smaxt (λ

′
)

by assumption, we can choose K − ssmallt (λ)− ssmaxt (λ
′
) nearest neighbours

from at most
∑
λ′′ 6={λ,λ′} s

max
t (λ

′′
) possible nearest neigbours whose labels

are not λ or λ
′
. In such a replacement we have slt(λ) < slt(λ

′
).

(⇐) We are going to prove that (26) implies that the label λ ∈ NLt is necessary.
Let us first note that

min
l∈L

slt(λ) = smint (λ) and max
l∈L

slt(λ
′
) = smaxt (λ

′
),∀λ

′
6= λ,

then (26) ensures that, for any replacement l ∈ L,

slt(λ) ≥ min
l∈L

(slt(λ)) ≥ max
l∈L

(slt(λ
′
)) ≥ slt(λ

′
),∀λ′ 6= λ,

which is sufficient to get the proof. �

Example 3. Consider the data set given in Example 2 with the maximum and
minimum scores of the labels are

(smint (a), smint (b), smint (c)) = (0, 1, 0)

(smaxt (a), smaxt (b), smaxt (c)) = (1, 2, 1).

Then (26) implies that the necessary label set NLt = {b}.



4 Learning from interval-valued feature data

We are now going to present a maximax approach that can be used to make
decision on interval-valued feature data. Let us first note that whenever the
data is imprecise, the decision rule (2) is no longer well-defined. In case of set-
valued labels, such a decision rule can be generalized as a maximax rule [9] where
the optimal prediction of t is

h(t) = arg max
λ∈Ω

∑
xt
k∈Nt

1λ∈yt
k
. (27)

The idea of the above method is to assign for each label the highest number of
votes that it could get. Let call such number of votes by optimal score, then the
label with the highest optimal score will be considered as the optimal decision
of t. Note that in case of interval-valued feature data, as point out in Lemma
1, the score smax(λ) defined in (16) is nothing else but the optimal score of λ.
Then the maximax approach can be then generalized for interval-valued feature
data as follows

h(t) = arg max
λ∈Ω

smaxt (λ) (28)

= arg max
λ∈Ω

(
min

[
K −

∑
λ′ 6=λ

ssmallt (λ
′
),

∣∣∣∣{Xn|Xn ∈ PNt , yn = λ
}∣∣∣∣]).

The procedure to make predictions is summarized in Algorithm 1. It is then
clear that if λ ∈ h(t), then λ is the winner in at least one replacement l ∈ L.
Of course, unless we have |PLt | = |NLt | = 1, we cannot be sure that λ is
the prediction that fully precise data would have given us. It merely says that
it is the most promising one, in the sense that it is the one with the highest
potential score. We may suspect that the higher is |PLt |, the more likely we
are to commit mistakes, as the ambiguity increases. It would then be interesting
to wonder if we could reduce |PLt | by querying the data and making some of
their feature precise, using techniques similar to active learning. Yet, we leave
the investigation of such an approach to future research.

It may also happen that Equation (28) returns multiple instances that have
the highest number of votes. We can then follow a different strategy, where we
consider the result of the K-nn procedure for a peculiar replacement. Since every
label receives its maximal number of votes by considering the lower distance
d(Xn, t), a quite simple idea is to consider the result obtained by Eq. (27) when
we consider the replacement l giving d(Xn, t) = d(Xn, t) for every Xn.

5 Experiments

We run experiments on a contaminated version of 6 standard benchmark data
sets described in Table 2. By contamination, we mean that we introduce ar-
tificially imprecision in these precise data sets. These data sets have various



Algorithm 1: Maximax approach for interval-valued training data.

Input: D-imprecise training data, T-test set, K-number of nearest neighbours
Output: {p(t)|t ∈ T}-predictions

1 foreach t ∈ T do
2 compute its zeta matrix ζ through (7)-(10);
3 foreach Xn ∈ D do
4 compute imprecise rank [rn, rn] defined in (11);

5 determine the PNt and NNt defined in (13)-(14);
6 foreach λ ∈ Ω do
7 compute smax

t (λ) through (15)-(16);

8 determine h(t) defined in (28);
9 if |h(t)| = 1 then

10 p(t) = h(t);

11 else
12 replace the imprecise distances by dt = {d(Xn, t)|n = 1, . . . , N};
13 determine p(t) by performing classical K-nn on dt;

numbers of classes and features, but have a relatively small number of instances,
for the reason that handling imprecise data is mainly problematic in such sit-
uations: when a lot of data are present, we can expect that enough sufficiently
precise data will exist to reach an accuracy level similar to the one of fully precise
methods.

Table 2. Data sets used in the experiments

Name # instances # features # labels

iris 150 4 3
seeds 210 7 3
glass 214 9 6
ecoli 336 7 8

dermatology 385 34 6
vehicle 846 18 4

Our experimental setting is as follows: given a data set, we randomly chose a
training set D consisting of 10% of instances and the rest (90%) as a test set T, to
limit the number of training samples. For each training instance xi ∈ D and each
feature xji , a biased coin is flipped in order to decide whether or not the feature

xji will be contaminated; the probability of contamination is p and we have tested

different values of it ({0.2, 0.4, 0.6, 0.8}). In case xji is contaminated, its precise

value is transformed into an interval which can be asymmetric with respect to xji .

To do that, a pair of widths {lji , r
j
i } will be generated from two Beta distributions,

Beta(αl, β) and Beta(αr, β). To control the skewness of the generated data, we
introduce a so called unbalance parameter ε and assign {αl, αr} = {β ∗ ε, β/ε}.



Then the generated interval valued data is Xj
i = [xji + lji (D

j −xji ), x
j
i + rji (D

j −
xji )] where Dj = mini(x

j
i ) and D

j
= maxi(x

j
i ). As usual when working with

Euclidean distance based K-nn, data is normalized. Then, the proposed method
is used to make predictions on the test set and its accuracy is compared with
the accuracy of two other cases: classical K-nn when fully precise data is given,
and a basic imputation method consisting in replacing an interval-valued data

Xj
i by its middle value, i.e, xji = (Xj

i +X
j

i )/2. The disambiguated data is used
to make predictions under the classical K-nn procedure.

Because the training set is randomly chosen and contaminated, the results
maybe affected by random components. Then, for each data set, we repeat the
above procedure 100 times and compute the average results. The experimen-
tal results on the data sets described in Table 2 with several combinations of
parameters (K, p, ε, β) are given in the Table 3, with the best results between
imputation and the presented method put in bold (the precise case only serves as
a reference value of the best accuracy achievable). These first results show that
the difference between the two approaches is generally small. Surprisingly, this is
true for all explored settings, even for skewed imprecision and high uncertainty
(ε = 0.25, p = 0.8). However, on the two data sets dermatology and vehicle, our
approach really provides a significant, consistent increase of accuracy, and this
even for low and balanced imprecision (ε = 1, p = 0.2). In the future, we intend
to do more experiments (varying K, increasing the number of data sets) and
also try to understand the origin of the witnessed difference.

6 Conclusion

In this paper, we have proposed a maximax approach to deal with K-nn pre-
dictions when features are imprecisely specified. Our method mainly relies on
identifying possible neighbours in an efficient manner, using the partial orders
induced by distance intervals to do so. First experiments suggest that a sim-
ple imputation method could often work as well as the presented approach, but
for some data sets our approach can bring a real advantage. Compared to im-
putation methods, our approach also provides us with information about how
uncertain our prediction is, by identifying possible and necessary neighbours.

Such information is instrumental in the next step we envision for this work:
determining which sample feature should be queried first to improve the overall
algorithm accuracy, much like what we did for the case of partial labels [11]. Also,
investigating the decision rules and querying procedure when both training and
test data can be imprecise is another future direction though defining the partial
order (9) is still a challenge.

Acknowledgement

This work was carried out in the framework of Labex MS2T and EVEREST
projects, which were funded by the French National Agency for Research (Ref-
erence ANR-11-IDEX-0004-02, ANR-12-JS02-0005).



Table 3. Experimental Results: Accuracy of classifiers (%)

iris seeds glass ecoli derma. vehicle

p = 0.2,
ε = 0.25

Precise 91.55 84.88 49.70 75.21 82.26 53.55
Imputation 88.93 83.79 47.30 74.40 80.20 49.45
Maximax 89.39 83.80 48.37 74.57 81.19 53.21

p = 0.2,
ε = 0.5

Precise 91.57 85.15 50.46 74.98 81.76 53.65
Imputation 89.07 84.16 47.41 74.23 77.41 50.35
Maximax 89.43 83.92 48.54 74.13 80.55 53.19

p = 0.2,
ε = 1

Precise 91.35 85.39 50.49 75.11 82.13 53.65
Imputation 88.80 84.36 47.48 74.52 75.12 50.76
Maximax 89.08 84.31 48.73 74.35 80.54 53.24

p = 0.4,
ε = 0.25

Precise 91.44 85.31 50.34 75.33 82.26 53.54
Imputation 87.70 83.83 46.70 74.49 75.87 49.88
Maximax 88.59 83.88 48.06 74.02 80.32 52.95

p = 0.4,
ε = 0.5

Precise 91.14 85.26 50.20 75.47 82.04 53.50
Imputation 87.00 83.77 46.31 74.60 75.14 49.70
Maximax 87.42 83.61 47.69 73.87 79.75 52.79

p = 0.4,
ε = 1

Precise 91.11 85.33 50.18 75.36 82.24 53.52
Imputation 86.87 83.80 46.17 74.62 73.10 49.77
Maximax 86.59 83.52 47.58 73.57 79.51 52.70

p = 0.6,
ε = 0.25

Precise 92.53 84.59 50.82 74.54 81.10 53.25
Imputation 80.46 80.88 43.56 72.27 75.38 43.41
Maximax 84.86 80.85 45.90 69.48 77.40 50.87

p = 0.6,
ε = 0.5

Precise 92.00 85.39 50.97 74.86 81.98 53.38
Imputation 80.06 82.51 44.04 73.13 73.28 45.10
Maximax 82.43 82.06 46.08 70.24 77.29 50.75

p = 0.6,
ε = 1

Precise 91.66 85.57 51.01 74.83 81.97 53.46
Imputation 80.22 82.47 44.37 73.45 68.41 46.48
Maximax 80.79 82.16 46.19 70.47 75.84 50.59

p = 0.8,
ε = 0.25

Precise 91.62 85.46 50.74 74.97 81.91 53.40
Imputation 79.13 81.92 44.34 73.27 69.42 44.52
Maximax 81.26 81.86 45.88 70.19 76.04 48.88

p = 0.8,
ε = 0.5

Precise 91.27 85.29 50.85 74.92 82.08 53.44
Imputation 78.53 81.95 44.33 73.34 69.00 44.18
Maximax 80.92 82.00 45.66 70.17 75.71 48.32

p = 0.8,
ε = 1

Precise 91.16 85.35 50.71 75.00 82.18 53.45
Imputation 78.58 82.04 44.25 73.60 66.67 44.71
Maximax 80.38 82.47 45.48 70.46 74.99 47.92

Fixed parameters: K = 3, β = 10
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