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Abstract

The k-set agreement problem is a generalization of the consensus problem. Namely, assuming

that each process proposes a value, every non-faulty process must decide one of the proposed values,

under the constraint that at most k different values are decided. This is a hard problem in the sense

that it cannot be solved in a pure read/write asynchronous system, in which k or more processes may

crash. One way to sidestep this impossibility result consists in weakening the termination property,

requiring only that a process decides a value if it executes alone during a long enough period of time.

This is the well-known obstruction-freedom progress condition.

Consider a system of n anonymous asynchronous processes that communicate only through

atomic read/write registers, and such that any number of them may crash. This paper addresses and

solves the challenging open problem of designing an obstruction-free k-set agreement algorithm

with only (n− k + 1) atomic registers. From a shared memory cost point of view, our algorithm is

the best algorithm known to date, thereby establishing a new upper bound on the number of registers

needed to solve this problem. For the consensus case (k = 1), the proposed algorithm is up to an

additive factor of 1 close to the best known lower bound. The paper extends then this algorithm to

obtain an x-obstruction-free solution to the k-set agreement problem that employs (n−k+x) atomic

registers (with 1 ≤ x ≤ k < n), as well as a space-optimal solution for the repeated version of k-set

agreement. Using this last extension, we prove that n registers are enough for every colorless task

that is obstruction-free solvable with identifiers and any number of registers.

Keywords Anonymous processes, Asynchronous system, Atomic read/write register, Bounded num-

ber of registers, Consensus, Distributed algorithm, Distributed computability, Fault-tolerance, k-Set

agreement, Obstruction-freedom, Process crash, Repeated k-set agreement, Upper bound, Colorless

task.

1 Introduction

Two challenging adversaries: process crashes and anonymity Due to failures, concurrent processes

have to deal not only with finite asynchrony (i.e., finite but arbitrary process speed), but also with infinite

asynchrony (i.e., process crashes). In this context, mutex-based synchronization becomes inoperative,

and pioneering works in fault-tolerant distributed computing, e.g., [27, 31], have instead promoted the

design of “concurrent reading while writing” algorithms [25, 32, 37].

∗A preliminary version of parts of this article appeared in [9].
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This new approach to synchronizing concurrent accesses has given rise to novel progress condi-

tions, namely wait-freedom, non-blocking, and obstruction-freedom. Given a concurrent object O, wait-

freedom means that any operation on O must terminate if the invoking process does not crash [22].

“Non-blocking”, also named lock-freedom, states that at least one process that does not crash return

from all its operations on O [26]. Obstruction-freedom means that a process returns from its operation

on O if it executes solo during a long enough period of time [23].

On the other hand, anonymous systems are characterized by the fact that processes have no identity,

execute the exact same code and the same initialization of their local variables. Hence, they are – in a

strong sense – identical [3, 39], and may only differ from their local input values.

Considering the previous adversaries that are process crashes and anonymity, a fundamental ques-

tion is the following: “Given a concurrent object, is it possible to implement this object despite the

failures of processes and their anonymity?” If the answer is “yes”, we are interested in doing it with

a small number of multi-writer/multi-reader (MWMR) read/write register.1This fundamental question

is addressed in this paper, where the concurrent object is k-set agreement, and the progress condition

under consideration is obstruction-freedom.

Consensus and k-Set agreement k-Set agreement, introduced in [12], is a generalization of consensus,

which corresponds to the case where k = 1. In the following, we use the notation (n, k)-set agreement

to make explicit the fact that we consider a system of n processes. Every participating process proposes

a value, and must decide a value if it does not crash (termination). On the safety side, a decided value

must be a value that was proposed by some process (validity), and at most k different values can be

decided (agreement).

Impossibility results and the case of obstruction-freedom Designing a deterministic consensus al-

gorithm in a non-anonymous asynchronous system prone to even a single process crash is not possible,

be the communication medium a message-passing system [17], or read/write registers [29]. More gen-

erally, if k or more processes may crash, there is no deterministic read/write algorithm able to solve

(n, k)-set agreement [7, 24, 35]. These impossibility results remain true in anonymous systems.

As we are interested in the computing power of pure read/write asynchronous crash-prone anony-

mous systems, we neither want to enrich the underlying system with additional power (e.g., synchrony

assumptions, random numbers, or failure detectors [6]), nor impose constraints on the input vector col-

lectively proposed by the processes [19]. This is the reason why, to sidestep the above impossibility

results, instead of wait-freedom or non-blocking, we consider the obstruction-freedom progress condi-

tion [23]. For (n, k)-set agreement, this property states that a process decides a value only if it exe-

cutes solo during a “long enough” period of time without interruption. The notion of x-obstruction-

freedom [38] generalizes this idea to any group of at most x processes. The practical interest of

obstruction-freedom is discussed in [16]. An in-depth study of complexity issues of obstruction-free

algorithms is presented in [4].

Contributions of the paper: historical perspective This paper presents an obstruction-free algorithm

solving the (n, k)-set agreement problem in an asynchronous anonymous read/write system where any

number of processes may crash. Our algorithm makes use of (n − k + 1) MWMR atomic registers,

i.e., exactly n registers for consensus. For (n, k)-set agreement, the best lower bound known so far [15]

is Ω(
√

n
k
− 2). The anonymous obstruction-free (n, k)-set agreement algorithms presented in [13, 15]

requires 2(n− k) + 1 MWMR registers. Hence our algorithm provides a gain of (n− k) registers.

As far as consensus is concerned, an algorithm is sketched in [41], which (as ours) required n
MWMR atomic registers. Always in the case of consensus, Gelashvili [20] proved that n/20 registers

are necessary, and Zhu proved a lower bound of n − 1 registers for non-anonymous consensus [42].

1Let us observe that single-writer/multi-reader registers are meaningless in anonymous systems. This is due to the fact that,

as processes have no identity, it is not possible to link each of them to some specific registers (for which the process would be

the only writer).
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Hence, the anonymous consensus algorithm we present in this paper is up to an additive factor of 1 close

to the best known lower bound for non-anonymous consensus.

In the repeated version of the (n, k)-set agreement problem, processes participate in a sequence of

(n, k)-set agreement instances. We show that a simple modification of our base construction solves

this problem without additional atomic registers. The authors of [15] prove that (n − k + 1) atomic

registers are necessary to solve the repeated (n, k)-set agreement problem in an anonymous system. As

a consequence, our solution is space optimal.

Contributions of the paper: technical perspective The proposed algorithms are round-based, fol-

lowing the pattern “snapshot; local computation; write”, where the snapshot and write operations occur

on (n− k + 1) MWMR registers. This pattern is reminiscent of the one named “look; compute; move”

found in robot algorithms [18, 36]. Interestingly, in our base solution and in the x-obstruction-free vari-

ation, processes do not maintain any local information between successive rounds. In this sense, these

two algorithms are locally memoryless.

In our base algorithm, each register contains a quadruplet consisting of a round number, two control

bits, and a proposed value. Our algorithm exploits a partial order over the quadruplets. The way a

process computes a new quadruplet is the key of this algorithm. The variation for the repeated (n, k)-set

agreement problem requires each register to store two additional fields, one of them being the sequence

number of the corresponding instance, the other one containing the values decided in the previous (n, k)-
set agreement instances. In the x-obstruction-free algorithm, the last field of a quadruplet is a set of

values, allowing up to x processes to concurrently progress.

All the algorithms we present hereafter employ a locally memoryless variation of the following pat-

tern: A processes executes a sequence of asynchronous rounds, until it sees two “identical” consecutive

rounds. When this occurs, the process can decide a value, and no other process will be able to decide a

different value in the next rounds. Multiple wait-free consensus algorithm were proposed in the past that

apply this pattern (see e.g., [5, 14, 32, 33, 34]). These algorithms cover anonymous and non-anonymous

systems, binary and multivalued consensus. Some use an eventual leader failure detector Ω [11], while

others rely on randomization.

Contributions of the paper: universality perspective In addition to the anonymous algorithms for

consensus and k-set agreement, this paper also presents a universal construction [22], suited to the

obstruction-freedom progress condition, for concurrent objects which can be implemented in an anony-

mous system with any number of MWMR atomic registers. This universal construction, which is based

on the previous repeated consensus algorithm requires only n MWMR registers.

Hence, it follows from this universal construction that, for the obstruction-freedom progress con-

dition, distributed objects implementable anonymously with any number of MWMR atomic registers

require in fact n registers only.

Furthermore, in regard to colorless tasks [8] (i.e., distributed problems that do not require some

form of symmetry breaking), we show that identifiers do not bring more computational power. A similar

result (for colorless tasks) has been recently presented in [40]. While our approach is constructive, the

one described in [40] is based on topology.

Roadmap Section 2 presents the computing model and definitions used in this paper. Section 3 depicts

a base anonymous obstruction-free algorithm solving consensus. This algorithm captures the essence of

our solution. Its correctness is proved in Section 4. Section 5 extends it to solve (n, k)-set agreement.

The case where (n, k)-set agreement is used repeatedly is addressed in Section 6. Section 7 considers

the x-obstruction-freedom progress condition, and presents a solution using (n− k + x) registers. The

reduction results on the power of repeated anonymous consensus (universal construction) are presented

in Section 8. Finally, Section 9 closes the paper.
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2 Computing Model and Problem Definition

2.1 Computing Model

Process model The distributed system is composed of n asynchronous processes {p1, . . . , pn}. When

considering a process pi, the integer i is called its index. Indexes are used to ease the exposition from an

external observer point of view. Processes do not have identities and execute the very same code. It is

assumed they know the value n.

Let T denote the increasing sequence of time instants (observable only from an external point of

view). At each instant, a unique process is activated to execute a step. A step consists in a read or a write

to a register (access to the shared memory) possibly followed by a finite number of internal operations

(on local variables).

Up to (n−1) processes may crash. Before crashing a process executes correctly its algorithm. After

it crashed (if it ever does), a process executes no more step. From a terminology point of view, and

given an execution, a faulty process is a process that crashes, and a correct process is a process that does

not crash. No process knows if it is correct or faulty (this is because, before crashing, a faulty process

behaves as a correct one).

Communication model In addition to processes, the computing model includes a communication

medium made up of m multi-writer/multi-reader (MWMR) atomic registers (let us notice that anonymity

prevents processes from using single-writer/multi-reader registers). Registers are encapsulated in an

array denoted REG [1..m]. The registers are atomic. This means that read and write operations appear

as if they have been executed sequentially, and this sequence (a) respects the real-time order of non-

concurrent operations, and (b) is such that each read returns the value written by the closest preceding

write operation (or the initial value of the register if there is no preceding write operation) [28]. When

considering the set of concurrent objects defined from a sequential specification, atomicity is named

linearizability [26], and the sequence of operations is called a linearization. Moreover, the time instant

at which an operation appears as being executed is called its linearization point.

From atomic registers to a snapshot object At the upper layer (where consensus and (n, k)-set

agreement are solved), we use the array REG [1..m] to construct a snapshot object [1]. This object,

denoted REG hereafter, provides processes with the operations write() and snapshot(). When a process

invokes REG .write(x, v), it deposits the value v in REG [x]. When it invokes REG .snapshot() it

obtains the content of the whole array. The snapshot object is linearizable, i.e., every invocation of

REG .snapshot() appears as instantaneous. For the REG object, a linearization is a sequence of write

and snapshot operations.

An anonymous non-blocking (hence obstruction-free) implementation of a snapshot object is de-

scribed in [21]. This implementation does not require additional atomic registers. In the following, we

consider that the snapshot object REG is implemented using this algorithm.

2.2 Obstruction-free consensus and obstruction-free (n, k)-set agreement

Obstruction-free consensus A consensus object is a one-shot object that provides each process with

a single operation denoted propose(). “One-shot” means that a process invokes propose() at most once.

When a process invokes propose(v), we say that it “proposes v”. When the invocation of propose()
returns value v′, we say that the invoking process “decides v′”.

A process executes “solo” when it keeps on executing while the other processes have stopped their

execution (at any point of their algorithm). In the context of the obstruction-free progress condition

(see below the OF-termination property), the consensus problem (consequently called obstruction-free

consensus) is defined by the following properties (that is, to be correct, any obstruction-free algorithm
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must satisfy such properties).

• Validity. If a process decides a value, this value was proposed by a process.

• Agreement. No two processes decide different values.

• OF-termination. If there is a time after which a correct process executes solo, it decides a value.

• SV-termination. If a single value is proposed, all correct processes decide.

Validity relates outputs to inputs. Agreement relates the outputs. Termination states the conditions under

which a correct process must decide. There are two cases. The first is related to obstruction-freedom.

The second one is independent of the concurrency and failure pattern; it is related to the input value

pattern 2.

Obstruction-free (n, k)-set agreement An obstruction-free (n, k)-set agreement object is a one-shot

object which has the same validity, OF-termination, and SV-termination properties as consensus, and for

which we replace the agreement property with:

• Agreement. At most k different values are decided.

Section 3, which follows, describes a basic algorithm that solves the obstruction-free anonymous

consensus problem. This algorithm will be extended in Section 5 to solve (n, k)-set agreement, and in

Section 7 to address the x-obstruction-freedom progress condition (instead of obstruction-freedom).

3 Obstruction-free Anonymous Consensus Algorithm

The obstruction-free anonymous consensus algorithm is presented in Figure 2. As indicated in the

Introduction, from a data structure point of view, its essence is captured by quadruplets written in the

MWMR atomic registers.

Shared memory The shared memory is made up of a snapshot object REG , composed of n MWMR

atomic registers. Each of them contains a quadruplet initialized to 〈0, down, false,⊥〉. The meaning of

these fields is the following.

• The first field, denoted rd, is a round number.

• The second field, denoted ℓvℓ (level), has a value in {up, down}, where up > down.

• The third field, denoted cf ℓ (conflict), is a Boolean (initially equals to false). We assume true >
false.

• The last field, denoted vaℓ is initialized to ⊥ (default value that cannot be proposed). It then

always contains a proposed value. It is assumed that the set of proposed values is totally ordered,

and that ⊥ is smaller than any proposed value.

When considering lexicographical ordering, it is easy to see that the set of all the possible quadruplets

〈rd, ℓvℓ, cf ℓ, vaℓ〉 is totally ordered. This total order, and its reflexive closure, are denoted "<” and

“≤”, respectively.

Notion of conflict and the function sup() The function sup(), defined in Figure 1, plays a central role

in the algorithm. It takes a non-empty set of quadruplets T as input parameter, and returns a quadruplet,

which is the supremum of T , defined as follows.

Let 〈r, ℓeveℓ, conf ℓict , v〉 be the maximal element of T according to the lexicographical ordering

(line S1), and tuples(T ) be the set of tuples of T associated with the maximal round number r (line S2).

The set T is conflicting if either conf ℓict is true or the set tuples(T ) contains more than one element

(line S3).

2In an anonymous system, the input values are the only way to distinguish the processes that have different inputs. It

follows that the case where all the processes propose the same value is similar to the case where a single process executes.
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function sup(T ) is % T is a set of quadruplets %

(S1) let 〈r, ℓeveℓ, conf ℓict , v〉 be max(T ); % lexicographical order %

(S2) let tuples(T ) be {X |X ∈ T ∧ X.rnd = r};
(S3) let conf ℓict(T ) be conf ℓict ∨ |tuples(T )| > 1;

(S4) return
(

〈r, ℓeveℓ, conf ℓict(T ), v〉
)

.

Figure 1: The function sup()

Function sup(T ) first checks whether T is conflicting (lines S2-S3). Then, it returns at line S4 the

quadruplet 〈r, ℓeveℓ, conf ℓict(T ), v〉, where conf ℓict(T ) indicates if the input set T is conflicting. Let

us notice that, since true > false, the quadruplet returned by sup(T ) is always greater than, or equal

to, the greatest element in T , i.e., sup(T ) ≥ max(T ).

operation propose(vi) is

(01) repeat forever

(02) view ← REG.snapshot();
(03) case (∃r > 0, vaℓ : ∀z : view[z] = 〈r, up, false, vaℓ〉) then

return(vaℓ);
(04) (∃r > 0, vaℓ : ∀z : view[z] = 〈r, down, false, vaℓ〉) then

REG.write(1, 〈r + 1, up, false, vaℓ〉);
(05) (∃r > 0, vaℓ, ℓeveℓ : ∀z : view[z] = 〈r, ℓeveℓ, true, vaℓ〉) then

REG.write(1, 〈r + 1, down, false, vaℓ〉);
(06) otherwise let 〈r, ℓeveℓ, cf ℓ, vaℓ〉

← sup(view[1], · · · , view[n], 〈1, down, false, vi〉);
(07) z ← smallest index y such that view[y] 6= 〈r, ℓeveℓ, cf ℓ, vaℓ〉;
(08) REG.write(z, 〈r, ℓeveℓ, cf ℓ, vaℓ〉);
(09) end case

(10) end repeat.

Figure 2: Anonymous obstruction-free consensus

The algorithm The base construction is pretty simple, and consists in an appropriate management of

the snapshot object REG , so that the n quadruplets it contains (a) never allow validity or agreement to be

violated, and (b) eventually allow termination under good circumstances (which occur when obstruction-

freedom is satisfied or when a single value is proposed).

In Figure 2, when a process pi invokes proposes(vi), it enters a loop that it will exit at line 03

(provided it terminates) with the statement return(vaℓ), where vaℓ is the decided value. After entering

the loop, a process issues a snapshot and assigns the returned array to its local variable view[1..n]
(line 02). Then, there are two main cases according to the value stored in view.

• Case 1 (lines 03-05). All entries of viewi contain the same quadruplet 〈r, ℓeveℓ, conf ℓict , vaℓ〉,
and r > 0. Then, there are three sub-cases to consider.

– Case 1.1. If the level is up and the conflict is false, the invoking process decides the value

vaℓ (line 03).
– Case 1.2. If the level is down and the conflict field is false, process pi enters the next round

by writing 〈r + 1, up, false, val〉 in the first entry of REG (line 04).

– Case 1.3. If there is a conflict, pi enters the next round by writing 〈r+ 1, down, false, val〉
in the first entry of REG (line 05).

• Case 2 (lines 06-08). Not all the entries of viewi are equal, or one of them contains the quadru-

plet 〈0,−,−,−〉. In such a case, pi first calls sup(view[1], · · · , view[n], 〈1, down, false, vi〉)
(line 06), which returns a quadruplet X greater than all the input quadruplets, or equal to the
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greatest of them. As we have seen previously, this quadruplet X may inherit or discover a con-

flict. Moreover, as 〈1, down, false, vi〉 is an input parameter of sup(), X.vaℓ cannot equal ⊥. As

none of the predicates at lines 03-05 is satisfied, at least one entry of view[1..n] is different than

X . Then process pi writes X into REG [z], where, from its point of view, z is the first entry of

REG whose content differs from X (lines 07-08).

The underlying operational intuition As indicated in the Introduction, the intuition that underlies this

algorithm is similar to the one used in some non-anonymous consensus algorithms (e.g., [5, 32, 34]),

namely, if a process executes two consecutive rounds (scans) returning the same values, it can safely

decide. To understand it, let us first consider the very simple case where a single process pi executes

the algorithm. From its first invocation of REG .snapshot() (line 02), it obtains a view view in which

all the elements are equal to 〈0, down, false,⊥〉. Hence, pi executes line 06, where the invocation of

sup() returns the quadruplet 〈1, down, false, vi〉, that is written into REG [1] at line 08. Then, during the

second round, pi computes with the help of function sup() again the quadruplet 〈1, down, false, vi〉, and

writes it into REG [2]; etc., until pi writes 〈1, down, false, vi〉 in all the atomic registers of REG [1..n].
When this occurs, pi obtains at line 02 a view where all the elements equal 〈1, down, false, vi〉. It

consequently executes line 04 and writes 〈2, up, false, vi〉 in REG [1]. Then, during the following

rounds, process pi writes 〈2, up, false, vi〉 in the other registers of REG (line 08). When this is done,

pi obtains a snapshot containing solely 〈2, up, false, vi〉, and when this occurs, pi executes line 03

where it decides the value vi.
Let us now consider the case where, while pi is executing, another process pj invokes propose(vj)

with vj = vi. It is easy to see that, in such a case, pi and pj collaborate to fill in REG with the same

quadruplet 〈2, up, false, vi〉. If vj 6= vi, depending on the concurrency pattern, a conflict may occur.

For instance, it occurs if REG contains both 〈1, down, false, vi〉 and 〈1, down, false, vj〉. If a conflict

appears, it will be propagated from round to round, until a process executes alone a higher round.

Remark 1 Let us first notice that no process needs to memorize in its local memory the values that it

will use during the next rounds. Not only processes are anonymous, but their code is also memoryless

(no persistent variables). The snapshot object REG constitutes the whole memory of the system. Hence,

as defined in the Introduction, the algorithm is locally memoryless. In this sense, and from a locality

point of view, it has a “functional” flavor.

Remark 2 Let us consider the n-bounded concurrency model [2, 30]. This model is made up of an

arbitrary number of processes, but, at any time, there are at most n processes executing steps. This

allows processes to leave the system and other processes to join it as long as the concurrency degree

does not exceed n.

The previous algorithm works without modification in such a model. A proposed value is now a

value proposed by any of the N processes that participate in the algorithm. Hence, if N > n, the number

of proposed values can be greater than the upper bound n on the concurrency degree. This versatility

dimension of the algorithm is a direct consequence of the previous locally memoryless property.

4 Proof of the Algorithm

This section presents a correctness proof of the previous obstruction-free anonymous consensus algo-

rithm. After a few definitions provided in Section 4.1, Section 4.2 shows that a relation “⊒” defined over

the quadruplets is a partial order. This relation is central to prove the key properties of the algorithm.

Such properties are established in Sections 4.3 and 4.4. Then, based on these properties, Section 4.5

shows that the algorithm is correct.
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4.1 Definitions and notations

Let E be a set of quadruplets that can be written in REG . Given X ∈ E , its four fields are denoted

X.rd,X.ℓvℓ,X.cf ℓ and X.vaℓ, respectively. Relations > and ≥ refer to the lexicographical ordering

over E . Moreover, where appropriate, we consider the array view[1..n] as the set {view[1], · · · , view[n]}.

Definition 1. Let X,Y ∈ E .

X ⊐ Y
def
= (X > Y ) ∧ [(X.rd > Y.rd) ∨ (X.cf ℓ)].

X ⊐ Y (X “dominates” Y ) if (a) X is lexicographically greater than Y and (b) the round of X is

greater than the round of Y or X indicates a conflict (in this case, as X > Y , we have X.rd = Y.rd).

At the operational level the algorithm ensures that the quadruplets it generates are totally ordered by

the relation >. Differently, the relation ⊐ (which is a partial order on these quadruplets, see Section 4.2)

captures the relevant part of this total order, and is consequently the key cornerstone on which the proof

of the algorithm relies.

When X ⊐ Y holds, we say “X strictly dominates Y ”. Similarly, “X dominates Y ”, denoted X ⊒ Y ,

means that (X ⊐ Y ) or (X = Y ) holds. Relations ⊏ and ⊑ are defined in the natural way.

Definition 2. Given a set of quadruplets T , T is homogeneous if it contains a single element, say X .

We then write it “T is H(X)”.

Notation 1. The value of the local variable view of a process pi at time τ , is denoted viewτ
i . Similarly

the value of an atomic register REG [x] at time τ is denoted REGτ [x], and the value of REG at time τ
is denoted REGτ .

Notation 2. W(x,X) denotes the writing of a quadruplet X in the register REG [x].

Definition 3. We say “a process pj covers REG [x] at time τ” when its next non-local step after time

τ is W(x,X), where X is the quadruplet which is written. In this case we also say “W(x,X) covers

REG [x] at time τ” or “REG [x] is covered by W(x,X) at time τ”.

Let us notice that if pj covers REG [x] at time τ , then τ necessarily lies between the last snapshot issued

by pj at line 02 and its planned write W(x,X) that will occur at line 04, 05, or 08.

4.2 The relation ⊒ is a partial order

Lemma 1. ⊒ is a partial order.

Proof The antisymmetry property of ⊒ follows from the eponymous property of >. To prove the

transitivity property, let us assume that X ⊒ Y and Y ⊒ Z. We have to show that X ⊒ Z. If X = Y or

Y = Z, the claim follows trivially. Hence, assume that X ⊐ Y and Y ⊐ Z and let us prove that X ⊐ Z.

Observe that, due to the definition of ⊐, we have
(

(X ⊐ Y ) ∧ (Y ⊐ Z)
)

⇒
(

(X > Y ) ∧ (Y > Z)
)

.

As (X > Y ) ∧ (Y > Z), it follows by transitivity of > that X > Z. To prove X ⊐ Z, it thus remains

to show that
(

(X.rd > Z.rd) ∨ (X.cf ℓ)
)

.

Let us observe that, due to the definition of ⊐, we have (X ⊐ Y ) ⇒
(

(X.rd > Y.rd)∨ (X.cf ℓ)
)

.

If (X.cf ℓ) then the claim follows trivially. So assume in following that (X.cf ℓ = false). Therefore,

(X.rd > Y.rd). But as (Y > Z), we have (Y.rd ≥ Z.rd). By transitivity this yields (X.rd > Z.rd).
This, combined with the fact that X > Z showed above, implies that X ⊐ Z. ✷Lemma 1
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4.3 Extracting the relations ⊐ and ⊒ from the algorithm

The definition of the function sup(), which takes a non-empty set of quadruplets as input parameter was

given in Figure 1. The next lemma shows that the quadruplet returned by sup(T ), dominates all the

elements of T .

Lemma 2. Let T be a non-empty set of quadruplets. ∀ X ∈ T : sup(T ) ⊒ X .

Proof Let X ∈ T and S = sup(T ). We have to prove that S ⊒ X . Let us first observe that, as

S = sup(T ) ≥ max(T ) ≥ X , we have S ≥ X . If S = X then the lemma follows immediately. So let us

assume in the following that S > X . To prove S ⊐ X , we need to show that
(

(S.cf ℓ)∨(S.rd > X.rd)
)

.

Assume that (S.cf ℓ = false) and let us prove that (S.rd > X.rd).
As (sup(T ).cf ℓ = false), it follows from the code in Figure 1 that conf ℓict(T ) = false and

sup(T ) = max(T ). Therefore, sup(T ) is the unique quadruplet of T associated with the round number

sup(T ).rd. All other elements of T if any have a strictly smaller round number. Therefore, S.rd >
X.rd. This establishes the claim. ✷Lemma 2

Lemma 3. If pi executes W(−, Y ) at time τ , then for every X ∈ viewτ
i : Y ⊒ X .

Proof We consider two cases according to the line at which the write occurs.

• Y is written at line 04 or 05. It follows that Y.rd = (max(viewτ
i ).rd) + 1. Therefore, for every

X ∈ viewτ
i : Y.rd > X.rd. Hence Y ⊐ X .

• Y is written at line 08. In this case, due to the call to function sup() at line 06, the value Y written

by pi is equal to sup(T ) where T = {viewτ
i [1], · · · , view

τ
i [n], 〈1, down, false, vi〉}. According

to Lemma 2, it follows that for every X ∈ viewτ
i we have Y = sup(T ) ⊒ X .

✷Lemma 3

Lemma 4. Let us assume that no process is covering REG [x] at time τ . For every write W(−, X) that

(a) occurs after τ and (b) was not covering a register of REG at time τ , we have X ⊒ REGτ [x].

Proof The proof is by contradiction. Let pi be the first process that executes a write W(−, X) con-

tradicting the lemma. This means that W(−, X) is not covering a register of REG at time τ and

X 6⊒ REGτ [x]. Let this write occur at time τ2 > τ . Thus, all writes that take place between τ and τ2
comply with the lemma. We derive a contradiction by showing that X ⊒ REGτ [x].

Let τ1 < τ2 be the linearization time of the last snapshot taken by pi (line 02) before executing

W(−, X). Since W(−, X) was not covering a register of REG at time τ , the snapshot preceding this

write was necessarily taken after τ . That is, τ1 > τ , and we have τ2 > τ1 > τ .

According to Lemma 3, X ⊒ viewτ2
i [x]. But since the snapshot returning viewτ2

i is linearized at τ1,

it follows that viewτ2
i = REGτ1 . Therefore, we have X ⊒ REGτ1 [x] (let us call this assertion R).

In the following we show that REGτ1 [x] ⊒ REGτ [x]. If REG [x] was not updated between τ and τ1,

then REGτ1 [x] = REGτ [x] and the claim follows. Otherwise, if REG [x] was updated between τ and

τ1, the content of REGτ1 [x], let it be Y , is the result of a write W(x, Y ) that occurred between τ and τ1
and that was not covering a register of REG at time τ (let us remember that no write is covering REG [x]
at time τ , which is crucial in the proof). We assumed above that τ2 is the first time at which the lemma

is contradicted. Hence the write W(x, Y ), which occurs before τ2, complies with the requirements of

the lemma. It follows that Y ⊒ REGτ [x], and we consequently have REGτ1 [x] ⊒ REGτ [x].
But it was shown above (see assertion R) that X ⊒ REGτ1 [x]. Hence, due to the transitivity of the

relation ⊒ (Lemma 1), we obtain X ⊒ REGτ [x], a contradiction that concludes the proof of the lemma.

✷Lemma 4
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Lemma 5. Let τ and τ ′ ≥ τ be two time instants. If REGτ ′ is H(Y ), then there exists X ∈ REGτ

such that Y ⊒ X .

Proof If REGτ ′ = REGτ , the lemma holds trivially. So let us assume in the following that REGτ ′ 6=
REGτ which means that a write happens between τ and τ ′. If 〈0, down, false,⊥〉 ∈ REGτ , as

every quadruplet Y written in REG is such that Y.rd ≥ 1 (line 04, 05, or lines 06-08), we have Y ⊐

〈0, down, false,⊥〉.
So, let us assume that 〈0, down, false,⊥〉 6∈ REGτ and consider the last write in REG before τ .

Assume this happens at τ− ≤ τ and let pi be the writing process. Process pi has no write covering a

register of REG at time τ−. Consequently, at most (n−1) processes3 have a write covering a register of

REG at time τ−. Hence, there exists x ∈ {1, . . . , n} such that no write is covering REG [x] at time τ−.

Let X = REGτ− [x] = REGτ [x]. If X = Y then the claim of the lemma follows trivially. So assume

in the following that X 6= Y . Since REGτ− [x] = X , REGτ ′ [x] = Y and Y 6= X , there is necessarily

a write W(x, Y ) that occurred between τ− and τ ′. As this write was not covering a register of REG at

time τ−, it follows (according to Lemma 4) that Y ⊒ X , which proves the lemma. ✷Lemma 5

The two following lemmas are corollaries of Lemma 5.

Lemma 6. If REGτ is H(X), REGτ ′ is H(Y ), and τ ′ ≥ τ , then Y ⊒ X .

Lemma 7. If REGτ is H(X), REGτ ′ is H(Y ), τ ′ ≥ τ , (Y.rd = X.rd) and (¬Y.cf ℓ) then (Y.vaℓ =
X.vaℓ).

Proof According to Lemma 6, Y ⊒ X . If Y = X then the claim follows immediately. So let us assume

Y ⊐ X . As (Y.rd = X.rd) and (¬Y.cf ℓ), the definition of ⊒ implies that Y.vaℓ = X.vaℓ. ✷Lemma 7

4.4 Exploiting homogeneous snapshots

Lemma 8. [(X ∈ REGτ ) ∧ (X.ℓvℓ = up)] ⇒
(

∃ τ ′ < τ : REGτ ′ is H(Z), where Z = 〈X.rd −
1, down, false, X.vaℓ〉

)

.

Proof Let us first show that there is a process that writes the quadruplet X ′ into REG , with X ′ =
〈X.rd,X.ℓvℓ, false, X.vaℓ〉. We have two cases depending on the value of X.cf ℓ.

• If X.cf ℓ = false, then let X ′ = X . Since X.ℓvℓ = X ′.ℓvℓ = up, X was necessarily writ-

ten into REG by some process (let us recall that the initial value of each register of REG is

〈0, down, false,⊥〉).

• If X.cf ℓ = true, let us consider the time τ1 at which X was written for the first time into REG ,

say by pi. Since X.ℓvℓ = up, both τ1 and pi are well defined. This write of X happens necessarily

at line 08 (If it was at line 04 or 05, we would have X.cf ℓ = false).

Therefore, X was computed at line 06 by the function sup(). Namely we have X = sup(T ),
where the set T is equal to {viewτ [1], · · · , viewτ [n], 〈1, down, false, vi〉}. Observe that X 6∈ T ,

otherwise X would not be written for the first time at τ1. Let X ′ = max(T ). Since X 6∈ T , it

follows that X 6= X ′. Due to line S4 of the function sup(), X and X ′ differ only in their conflict

field. Therefore, as X.cf ℓ = true, it follows that X ′.cf ℓ = false. Finally, as X ′.ℓvℓ = up

and all registers of REG are initialized to 〈0, down, false,⊥〉, it follows that X ′ was necessarily

written into REG by some process.

3Let us notice that this is the only place in the proof where the consensus version of the algorithm requires more than

(n− 1) MWMR atomic registers.
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In both cases, there exists a time at which a process writes X ′ = 〈X.rd,X.ℓvℓ, false, X.vaℓ〉
into REG . Let us consider the first process pi that does so. This occurs at some time τ2 < τ . As

X ′.ℓvℓ = up, this write can occur only at line 04 or line 08.

We first show that this write occurs necessarily at line 04. Assume for contradiction that the write of

X ′ into REG happens at line 08. In this case, the quadruplet X ′ was computed at line 06. Therefore,

X ′ = sup(T ) where where the set T is equal to {viewτ2 [1], · · · , viewτ2 [n], 〈1, down, false, vi〉}. Ob-

serve that sup(T ) and max(T ) can differ only in their conflict field. As sup(T ).cf ℓ = X ′.cf ℓ = false,

it follows that X ′ = sup(T ) = max(T ). Consequently, X ′ ∈ viewτ2 . That is, pi is not the first process

that writes X ′ in REG , contradiction. Therefore, the write necessarily happens at line 04.

From the precondition at line 04, viewτ2 is H(〈X ′.rd − 1, down, false, X ′.vaℓ〉), and the lemma

holds. ✷Lemma 8

Lemma 9. [(REGτ is H(X)) ∧ (X.ℓvℓ = up) ∧ (¬X.cf ℓ) ∧ (REGτ ′ is H(Y )) ∧ (Y.rd ≥ X.rd)]⇒
(Y.vaℓ = X.vaℓ).

Proof The proof is by induction on Y.rd. Let us first assume that Y.rd = X.rd, for which we consider

two cases.

• Case 1: τ ≥ τ ′. Since X.cf ℓ = false, it follows according to Lemma 7 that Y.vaℓ = X.vaℓ.

• Case 2: τ ′ > τ . According to Lemma 6, Y ⊒ X . As Y.rd = X.rd, it follows that Y.ℓvℓ ≥
X.ℓvℓ = up, and consequently Y.ℓvℓ = up.

Summarizing we have REGτ ′ is H(Y ), Y.ℓvℓ = up and Y.rd = X.rd. According to Lemma 8,

this implies that there is τ1 < τ and τ ′1 < τ ′ such that REGτ1 is H(〈X.rd−1, down, false, X.vaℓ〉)
and REGτ ′

1 is H(〈Y.rd− 1, down, false, Y.vaℓ〉). According to Lemma 6, we have

– either 〈X.rd− 1, down, false, X.vaℓ〉 ⊒ 〈Y.rd− 1, down, false, Y.vaℓ〉,

– or 〈Y.rd− 1, down, false, Y.vaℓ〉 ⊒ 〈X.rd− 1, down, false, X.vaℓ〉.

Since by assumption X.rd = Y.rd, it follows that X.vaℓ = Y.vaℓ.

For the induction step, let assume that the lemma is true up to Y.rd = ρ ≥ r, and let us prove it

for ρ + 1. To this end, we have to show that Y.vaℓ = X.vaℓ for every Y that is written in REG with

Y.rd = ρ + 1. Let us assume by contradiction that Y.vaℓ 6= X.vaℓ and let pi be the first process that

writes 〈ρ + 1,−,−, Y.vaℓ〉 into REG . This happens at line 04 or 05. In all cases, this implies that, at

this moment, viewj is H(〈ρ,−,−, Y.vaℓ〉). But, according to the induction assumption, this implies

Y.vaℓ = X.vaℓ, a contradiction which completes the proof of the lemma. ✷Lemma 9

4.5 Proof of the algorithm: using the previous lemmas

Lemma 10. No two processes decide different values.

Proof Let r be the smallest round in which a process decides, pi and vaℓ being the deciding process

and the decided value, respectively. There is a time τ at which viewτ
i is H(〈r, up, false, vaℓ〉). Due to

Lemma 9, every homogeneous snapshot starting from round r is necessarily associated with the value

vaℓ. Therefore, only this value can be decided in any round higher than r. Since r was assumed to be

the smallest round in which a decision occurs, the consensus agreement property follows. ✷Lemma 10

Lemma 11. For every quadruplet X that is written in REG , X.vaℓ is a value proposed by some process.

Proof Let us assume by contradiction that X.vaℓ = v was not proposed by a process, and let pi be the

first process that writes X into REG . We consider two cases according to the line at which the write

occurs.
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• v is written into REG at line 04 or line 05. In this case, pi obtained a view of REG in which at

least some register contains the value v. According to the predicate of these two lines, the round

number associated with v is necessarily greater than 0 which implies that v was previously written

into REG and was not there initially. But this means that pi is not the first process which writes v
into REG , a contradiction.

• v is written into REG at line 08. In this case, the quadruplet X , where X.vaℓ = v, was returned

by the call of the function sup(), namely sup(view[1], · · · , view[n], 〈1, down, false, vi〉), from

which it follows that v is either vi (the proposal of pi) or some value that was previously written

by another process. But, by assumption, pi is assumed to be the first process to write v. Hence,

v = vi, which concludes the proof of the lemma.
✷Lemma 11

Lemma 12. A decided value is a proposed value.

Proof If a process decides a value v, it does it at line 03. Hence, according to the predicate of line 03,

the round number associated with this value is greater than 0 which means that v was necessarily written

into REG by some process. It then follows from Lemma 11, that v was proposed by a process, which

establishes the claim. ✷Lemma 12

Lemma 13. Let T be a non-empty set of quadruplets. For every T ′ ⊆ T : sup(T ′∪{sup(T )}) = sup(T ).

Proof Let S = sup(T ). Hence S.rd is the highest round number in T . Moreover, S is greater than, or

equal to, any quadruplet in T . Hence, max(T ′ ∪ {S}) = S. Therefore, combined with the the definition

of sup(), we have: sup(T ′ ∪ {S}) = 〈S.rd, S.ℓvℓ, conf ℓict(T ′ ∪ {S}), S.vaℓ〉. Thus, in order to prove

that sup(T ′ ∪ {S}) = S, we need to show that conf ℓict(T ′ ∪ {S}) = S.cf ℓ.
There are two cases depending on the value of S.cf ℓ.

• S.cf ℓ = true.

As S = max(T ′∪{S}) and due to the definition of conf ℓict() (line S3 in Figure 1), S.cf ℓ = true

implies that conf ℓict(T ′ ∪ {S}) = true.

• S.cf ℓ = false.

Since S = sup(T ), S.cf ℓ = false implies that |tuples(T ) = 1|. Thus, S has a round number

that is strictly greater than any other element of T . As T ′ ⊆ T , it follows that S is the only

quadruplet in T ′∪{S} with a round number equal to S.rd. Hence, |tuples(T ′∪{S}) = 1|. Since

we assumed S.cf ℓ = false and S = max(T ′∪{S}), it follows that conf ℓict(T ′∪{S}) = false.

From the above case analysis, we conclude that conf ℓict(T ′ ∪ {S}) = S.cf ℓ. ✷Lemma 13

Lemma 14. If there is a time after which a process executes solo, it decides a value.

Proof Assume that pi eventually runs solo, we need to show that pi decides. There exists a time τ ,

after which no other process than pi writes into REG . Let τ ′ ≥ τ be the first time at which pi takes a

snapshot after τ . This snapshot is well defined, as pi runs solo after τ and the implementation of atomic

snapshot is obstruction-free. Let S = sup(viewτ ′

i [1], · · · , viewτ ′

i [n], 〈1, down, false, vi〉).
Let us first show that there is a time after τ at which REG is H(S).

• If REGτ ′ is H(S), we are done.

• If REGτ ′ is not H(S), pi executes line 06 and computes S. Then it writes S in an entry of REG

(containing a value different from S), and re-enters the loop. If REG is then H(S), we are done.

Otherwise, pi executes again line 06 and, due to Lemma 13, the quadruplet computed by the

function sup() is equal to S. It follows that after a finite number of iterations of the loop, REG is

H(S).
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When REG is H(S), we have the following.

• If S = 〈−, up, false,−〉, pi decides in line 03.

• If S = 〈r, down, false, vaℓ〉, then pi writes Y = 〈r + 1, up, false, vaℓ〉 in line 04. Using the

same argument as above, there is a time at which REG becomes H(Y ), and the previous case

holds.

• If S = 〈r,−, true, vaℓ〉, then pi writes Y = 〈r + 1, down, false, vaℓ〉 in line 05. Then pi keeps

writing Y in the following iterations until REG becomes H(Y ), and the previous case holds.

Hence, in all cases pi eventually decides. ✷Lemma 14

Lemma 15. If a single value is proposed, all correct processes decide.

Proof Let us assume that all processes propose the same value v. It follows that all the processes keep

writing X = 〈1, down, false, v〉 until REG becomes H(X). Then, once every register of REG has

been updated at least once, the processes start writing Y = 〈2, up, false, v〉 until REG becomes H(Y )
and v. When this occurs, v is decided. ✷Lemma 15

Theorem 1. The algorithm of Figure 2 solves the obstruction-free consensus problem.

Proof The proof follows directly from the Lemma 10 (Agreement), Lemma 12 (Validity), Lemma 14

(OF-Termination), and Lemma 15 (SV-Termination). ✷Theorem 1

5 From Consensus to (n, k)-Set Agreement

The algorithm The previous obstruction-free consensus algorithm of Figure 2 provides us “for free”

with an obstruction-free (n, k)-set agreement algorithm. The only difference lies in the size of the

snapshot object REG , which is now an array of (n−k+1) MWMR atomic registers instead of an array

of n MWMR atomic registers.

Theorem 2. Assuming an underlying snapshot object composed of (n−k+1) MWMR atomic registers,

the algorithm of Figure 2 solves the obstruction-free (n, k)-set agreement problem.

Proof The arguments for the validity and liveness properties are the same as the ones of the consensus

algorithm since they do not depend on the size of REG .

As far as the k-set agreement property is concerned (no more than k different values are decided),

we have to show that (n − k + 1) registers are sufficient. To this end, let us consider the (k − 1) first

decided values, where the notion “first” is defined with respect to the linearization time of the snapshot

invocation (line 02) that immediately precedes the invocation of the corresponding deciding statement

(return() at line 03). Let τ be the time just after the linearization of these (k − 1) “deciding” snapshots.

Starting from τ , at most (n− (k − 1)) = (n− k + 1) processes access the array REG , which is made

up of exactly (n− k+1) registers. It follows that, after time τ , these (n− k+1) processes execute the

algorithm of Figure 2, with the help of a snapshot object of size (n − k + 1). Hence, from τ , these at

most (n−k+1) processes execute actually an anonymous obstruction-free consensus algorithm, during

which they can decide at most one more value. It follows that at most k values are decided by the n
processes. ✷Theorem 2
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6 From One-shot to Repeated (n, k)-Set Agreement

6.1 The repeated (n, k)-set agreement problem

In the repeated (n, k)-set agreement problem, processes execute a sequence of (n, k)-set agreements.

More precisely, a process invokes sequentially the operation propose(1, v), then propose(2, v′), etc.,

where 1, 2, . . . is the sequence number of the (n, k)-set agreement instance, and v, v′, . . . is the value the

process proposes to this instance.

It would be possible to associate a specific instance of the base algorithm described in Figure 2 with

each sequence number, but this would require (n − k + 1) atomic read/write registers per instance.

The next section shows that in fact the repeated problem can be solved with only (n − k + 1) atomic

registers. According to the complexity results of [15], it follows that this algorithm is optimal in regard

to the number of atomic read/write registers it uses. This closes the discussion regarding the space

complexity of the repeated form of the (n, k)-set agreement problem.

6.2 Adapting the algorithm

From quadruplets to sextuplets Instead of a quadruplet, a register now contains a sextuplet X =
〈sn, rd, ℓvℓ, cf ℓ, vaℓ, dcd〉. The four fields X.rd, X.ℓvℓ, X.cf ℓ, and X.vaℓ are the same as before.

The additional field X.sn is a sequence number. The other additional field X.dcd is an initially empty

list. From a rotational point of view, the jth element of this list is written X.dcd[j]; it contains a value

decided at the jth instance of the repeated (n, k)-set agreement problem.

The total order over the sextuplets “>” is as previously lexicographical but now applies to the six

fields. In particular, given two lists dcd and dcd′, the relation dcd > dcd′ holds when there exists j ≥ 1
such that dcd[j] > dcd′[j] and for every 1 ≤ k < j, it is true that dcd[k] ≥ dcd[k′]. Relation “⊐” is

defined as follows:

X ⊐ Y
def
= (X > Y ) ∧ [(X.sn > Y.sn) ∨ (X.rd > Y.rd) ∨ (X.cf ℓ)].

Local variables Each process pi now manages two local variables whose scope is the whole repeated

(n, k)-set agreement problem. (Hence, we do no longer have the locally memoryless property of the

base obstruction-free algorithm presented in Figure 2.)

• The variable sni, initialized to 0, is used by pi to generate its sequence numbers. It is assumed

that pi increments sni before invoking propose(sni, vi).
• The local list dcdi is used by pi to store the value it has decided during the previous instances

of the (n, k)-set agreement. Hence, dcdi[sn] contains the value decided by pi during the snth

instance. These lists are exchanged by the processes, which allows the slower of them to catch up

when they are in late.

The algorithm Figure 3 describes the algorithm executed at some process pi. The new parts, with

respect to the base algorithm in Figure 2, are underlined and in blue. To ease the understanding, both

algorithms use the same line numbering. Figure 3 contains a single new line, marked with “N”. Sup-

pressing all the underlined parts of the new algorithm leads to our base solution. In what follows, we

detail the internals of our solution then establish its correctness.

• Line 03. When all the entries of the view obtained by pi contain only sextuplets whose first five

fields are equal, pi decide the value vaℓ. But before returning vaℓ, pi writes vaℓ in dcdi[sni]. The

idea is that, when pi will execute the next (n, k)-set agreement instance (whose sequence number

will be sni + 1), it will be able to help processes whose current sequence number is smaller than

sni.
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operation propose(sni , vi) is

(01) repeat forever

(02) view ← REG.snapshot();
(03) case (∃r > 0, vaℓ : ∀z : view[z] = 〈sni , r, up, false, vaℓ,−〉) then

dcd i[sni]← vaℓ;

return(vaℓ);
(04) (∃r > 0, vaℓ : ∀z : view[z] = 〈sni , r, down, false, vaℓ,−〉) then

REG.write(1, 〈sni , r + 1, up, false, vaℓ, dcdi〉);
(05) (∃r > 0, vaℓ, ℓeveℓ : ∀z : view[z] = 〈sni , r, ℓeveℓ, true, vaℓ,−〉) then

REG.write(1, 〈sni , r + 1, down, false, vaℓ, dcdi〉);
(06) otherwise let 〈inst, r, ℓeveℓ, conf ℓict , vaℓ, dec〉

← sup(view[1], · · · , view[n], 〈sni , 1, down, false, vi, dcdi〉);
(N) if (inst > sni) then dcdi [sni ]← dec[sni ]; return dcdi [sni ] end if;

(07) z ← smallest index y such that view[y] = min(view[1], · · · , view[n]);
(08) REG.write(z, 〈inst, r, ℓeveℓ, conf ℓict , vaℓ, dec〉);
(09) end case

(10) end repeat.

Figure 3: Repeated anonymous obstruction-free consensus

• Line 04. Process pi obtains a quadruplet of the form 〈sni, r, down, false, vaℓ,−〉. In such a

case, pi writes 〈sni, r, down, false, vaℓ, dcdi〉 to REG [1]. (Let us notice here that the write of

dcdi is to help other processes deciding (n, k)-set agreement instances whose sequence number is

smaller than sni.)

• Line 05. Similar to the previous case, except that a conflict now appears in the view computed by

the process pi.
• Lines 06-10. Process pi computes the supremum of the snapshot view obtained at line 03, as well

as the sextuplet 〈sni, 1, down, false, vaℓ, dcdi〉. There are two cases to consider.

– If the sequence number of the supremum is greater than sni, process pi benefit from the

list of decisions stored in the supremum. More precisely, this help is obtained from the

item dec[sni]. Similarly to line 03, process pi then writes this decision in dcdi[sni] before

returning from its call.

– In the other case, the sequence number of the supremum is equal to sni. Process pi then

executes the same operations as in the basic algorithm (lines 07-08).

6.3 Proof of the algorithm

This section first presents a simple technical lemma, and then shows that the algorithm described in

Figure 3 solves the repeated (n, k)-set agreement problem.

Lemma 16. For any m ≥ 1, if X is written in REG and X.sn = m, then for every 1 ≤ k < m,

X.dcd[k] exists.

Proof Let X be some sextuplet in REG for which X.sn = m holds. Name pi the process that first

writes X . The operation of pi might occur either at line 04, 05 or 08. By definition of the repeated

(n, k)-set agreement, if pi starts instance m of the problem, than it has already returned from the prior

instances. As a consequence, if the write occurs at line 04 or 05, then the invariant holds. Now in the

case where the write takes place at line 08, the definition of function sup() tells us that either some

process wrote a quadruplet Y with Y.sn = m previously, or X = 〈sni, 1, down, false, vi, dcdi〉. In the

former case, we repeat our previous reasoning. In the later, we know that the invariant holds since pi has

already taken a decision in the instances prior to m. ✷Lemma 16
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Theorem 3. The algorithm in Figure 3 solves the obstruction-free repeated (n, k)-set agreement prob-

lem.

Proof Let us consider some execution ρ of the algorithm in Figure 3. Let m be an instance that was

executed in ρ. We name Um the set of decisions taken at instance m in ρ. We also define Vm ⊆ Um the

decisions taken at instance m in ρ before a higher instance begins, that is before some sextuplet X with

X.sn > m is observed by a process in REG .

First of all, let us notice that, if no interleaving takes place between m and a higher instance, the

algorithm of Figure 3 boils down to our base algorithm. As a consequence, decisions in Vm are valid

and |Vm| ≤ k.

Let us now choose some decision u ∈ Um taken by a process pi in ρ. Below, we show that u ∈ Vm

holds.

• If the decision takes place at line 03, then it occurs before an instance higher than m begins. Thus,

by definition u ∈ Vm holds.

• Let us now consider the case where process pi decides at line N with inst > m, choosing dec[m]
as its decision. Lemma 16 tell us that this value is well-defined. In Figure 3, we observe that a

process pj might update dcdj [m] with value u only in the case where it decides u in instance m
at line 03. Thus, u belongs to Vm.

The previous reasoning shows that every instance is safe, in the sense that it satisfies both the validity

and agreement properties of the (n, k)-set agreement problem.

In Figure 3, we observe that either a process decides before a higher instance begins, or it decides

immediately afterward. As a consequence, the properties of OF-termination and SV-termination follow

from the validity property and the fact that our base solution satisfies these two properties. ✷Theorem 16

Theorem 3 implies that solving repeated (n, k)-set agreement in an anonymous system does not

require more atomic read/write registers than the base non-repeated version. The additional cost lies

only in the size of the atomic registers which contain two supplementary unbounded fields. As pointed

out at the beginning of this section, the lower bound established in [15] induces that the algorithm in

Figure 3 is space-optimal.

7 From Obstruction-Freedom to x-Obstruction-Freedom

This section extends the base algorithm described in Figure 2 to obtain a solution to the anonymous

(n, k)-set agreement problem with a stronger progress condition, namely x-obstruction-freedom. It first

defines x-obstruction-freedom, then details the modifications to the base algorithm, and finally proves

its correctness.

7.1 Problem statement

The notion of x-obstruction-freedom [38] guarantees that for every set of processes P , with |P | ≤ x,

every correct process in P returns from its operation invocation if no process outside of P takes a step for

a “long enough” period of time. This progress property naturally generalizes obstruction-freedom, which

corresponds to the case where x = 1. Moreover, x-obstruction-freedom and wait-freedom coincide in

every n-process system where x ≥ n. When x < n, x-obstruction-freedom depends on the concurrency

pattern, while wait-freedom does not.

The variant of the (n, k)-set agreement problem in which we are interested is defined as follows. Its

Validity, Agreement and SV-Termination properties remain the ones we stated in Section 2.2. Differ-

ently, OF-Termination is modified as follows:

• x-OF-termination. If there is a time after which at most x correct processes take steps, each of

these processes eventually decides a value.
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Let observe that every x-obstruction-free solution to (n, k)-set agreement is also a wait-free solution

to (k + 1, k)-set agreement when x > k. It then follows from [7, 24, 35] that there is no x-obstruction-

free algorithm for x > k. As a consequence, the rest of this section assumes x ≤ k.

7.2 Algorithm

The shared memory Under x-obstruction-freedom, up to x processes may concurrently progress

without preventing termination. As a consequence, in comparison to obstruction-freedom, solving k-set

agreement in this setting requires to deal with more contention scenarios. To cope with these additional

interleavings of processes, we increase the number of entries in REG . More precisely, REG now

contains m = (n− k + x) entries.

Ordering the quadruplets In the base algorithm, the four fields of some quadruplet X are the round

number X.rd, the level X.ℓvℓ, the conflict flag X.cfℓ, and the value X.val. Coping with x-concurrency

requires to replace the last field, which was initially a singleton, with a set of values. Hereafter, this new

field is denoted X.valset .
In line with the definitions of Section 4.1, let “>” denote the lexicographical order over the set of

quadruplets, where the relation ⊐ is generalized as follows to take into account the fact that the last field

of a quadruplet is now a non-empty set of values:

X ⊐ Y
def
= (X > Y ) ∧ [(X.rd > Y.rd) ∨ (X.cf ℓ) ∨ (X.valset ⊇ Y.valset)].

In comparison to the definition appearing in Section 4, the sole new case where the ordering X ⊐ Y
holds is (X > Y ) ∧ (X.valset ⊇ Y.valset). This case captures the fact that, as long as at most x input

values are competing at some round, there is no conflict. If such a situation arises, we simply construct

a quadruplet that aggregates the different input values.

function sup(T ) is % T is a set of quadruplets whose last field is now a set of values %

(S1) let 〈r, ℓeveℓ, conf ℓict , valset〉 be max(T ); % lexicographical order %

(S2) let tuples(T ) be {X |X ∈ T ∧ X.rnd = r};
(S3) let values(T ) be {v |X ∈ T ∧ v ∈ X.valset};

(S4) let conf ℓict(T ) be conflict ∨ |tuples(T )| > x ∨ |values(T )| > x;

(S5) let valset be the (at most) x greatest values in values(T );

(S6) return
(

〈r, ℓeveℓ, conf ℓict(T ), valset〉
)

.

Figure 4: Function sup() suited to x-obstruction-freedom

Modifications to the sup() function Figure 4 describes the new definition of function sup(). Compared

with the original algorithm in Figure 1, it introduces a few modifications (underlined and in blue). Those

are detailed below.

• Line S1. As pointed out previously, the last field of a quadruplet is now a set of values. The

lexicographical ordering over such sets is as follows: sets are ordered first according to their size,

and second using some arbitrary order over their elements. By abuse of notation, this order is also

written <. For instance, we have {10, 8, 2} < {10, 4, 3} and {10, 4, 3} < {15, 12}. It is assumed

that for any set of values S, S < ⊥ holds.

• Line S2. This line does not change.

• Lines S3 and S4. This variant extends the definition of a conflict. Namely, it considers as a conflict

the case where more than x distinct tuples are competing at round r, and also the additional case

where more than x distinct values are competing at round r.
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• Lines S5 and S6. Compared with Figure 1, function sup() returns a quadruplet that may contain

additional input values. This comes from the fact that the function aggregates the x greatest values

competing at round r.

operation propose(vi) is

(01) repeat forever

(02) view ← REG.snapshot();
(03) case (∃r > 0, valset : ∀z : view[z] = 〈r, up, false, valset〉) then

let vaℓ be any value in valset ;

return(vaℓ);
(04) (∃r > 0, valset : ∀z : view[z] = 〈r, down, false, valset〉) then

REG.write(1, 〈r + 1, up, false, valset〉);
(05) (∃r > 0, valset , ℓeveℓ : ∀z : view[z] = 〈r, ℓeveℓ, true, valset〉) then

REG.write(1, 〈r + 1, down, false, valset〉);
(06) otherwise let 〈r, ℓeveℓ, cf ℓ, valset〉

← sup(view[1], · · · , view[n], 〈1, down, false, {vi}〉);

(07) z ← smallest index y such that view[y] 6= 〈r, ℓeveℓ, cf ℓ, valset〉;
(08) REG.write(z, 〈r, ℓeveℓ, cf ℓ, valset〉);
(09) end case

(10) end repeat.

Figure 5: Anonymous x-obstruction-free (n, k)-set agreement

Solving (n, k)-set agreement under x-obstruction-freedom Figure 5 presents the modified algorithm

solving the (n, k)-set agreement problem, in which the progress condition is x-obstruction-freedom. Let

us notice that it is also locally memoryless.

In Figure 5, the differences between the two algorithms are underlined and in blue. These differences

come from the fact that, as detailed previously, each quadruplet now contains a set of input values in its

last field. The main difference is at line 03.

• Line 03. When deciding, a process must pick one of the values provided in the snapshot taken

from REG .

7.3 Correctness proof

This section proves that the algorithm described in Figure 5 is a correct solution to the (n, k)-set agree-

ment problem, when considering x-obstruction-freedom as the progress condition. The proof scheme is

similar to the one used in Section 4.

Theorem 4. The algorithm in Figure 5 solves the x-obstruction-free (n, k)-set agreement problem.

Proof Validity and SV-Termination follow from a reasoning identical to the one conducted for the base

algorithm.

As far as the Agreement property is concerned, let us first observe that the relation ⊐ remains a

partial order. Then, considering some non-empty set of quadruplets T and some X ∈ T , the rewriting of

function sup() maintains that sup(T ) ⊒ X . Indeed, we have sup(T ) ≥ max(T ) and either (i) X.rd <
sup(T ).rd, or (ii) there is a conflict leading to sup(T ).cf ℓ = true, or (iii) since |values(T )| ≤ x, we

have X.valset ⊆ sup(T ).valset .
Then, let us consider a run where at most (n− k+x) processes take steps. From what precedes, we

may conclude that (excluding Lemmas 7 and 9) Lemmas 3 to 8 hold for the algorithm in Figure 5. The

reformulations of Lemmas 7 and 9 as well as their respective correctness proofs are stated below.

Lemma 17. If REGτ is H(X), REGτ ′ is H(Y ), τ ′ ≥ τ , (Y.rd = X.rd) and (¬Y.cf ℓ) then (Y.valset ⊇
X.valset).
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Proof According to Lemma 6, we have Y ⊒ X . If Y = X , then the claim follows immediately. On

the other hand, if Y ⊐ X holds, since we know that (Y.rd = X.rd) and (¬Y.cf ℓ), the definition of ⊒
implies that Y.valset ⊇ X.valset . ✷Lemma 17

Lemma 18. [(REGτ is H(X)) ∧ (X.ℓvℓ = up) ∧ (¬X.cf ℓ) ∧ (REGτ ′ is H(Y )) ∧ (Y.rd ≥ X.rd)]
⇒ (Y.valset ⊇ X.valset ∨X.valset ⊇ Y.valset).

Proof The proof is by induction on Y.rd. Let us first assume Y.rd = X.rd. There are two cases.

• (Case τ ≥ τ ′) As X.cf ℓ equals false, Lemma 17 implies that X.valset ⊇ Y.valset .

• (Case τ ′ > τ ). From Lemma 6, we know that Y ⊒ X . As Y.rd = X.rd, it follows that

Y.ℓvℓ ≥ X.ℓvℓ = up. Applying Lemma 8, we obtain the existence of two quadruplets ZX =
〈X.rd−1, down, false, X.valset〉 and ZY = 〈X.rd−1, down, false, Y.valset〉 such that REG

is H(ZX) and H(ZY ) at some points in time. From Lemma 17, we deduce that X.valset ⊇
Y.valset , or the converse, holds.

For the cases where Y.rd > X.rd, let us consider that our induction assumption holds up to some

round r. Then, let pi be the first process that writes at round r+1 some quadruplet 〈r+1,−,−, Y.valset〉
into REG . This happens at either line 04, or line 05 in Figure 5. In both cases, our induction assumption

implies that X.valset ⊇ Y.valset or the converse holds. ✷Lemma 18

Lemma 19. At most x values are decided.

Proof Let V be the set of decided values. Since each decision takes place at line 03, there exists a set

(Xv)v∈V of tuples such that some process observes an homogeneous snapshot H(Xv) with Xv.cf ℓ =
false, Xv.ℓvℓ = up and v ∈ Xv.valset .

For any tuple Xv, since Xv.cf ℓ = false, |Xv.valset | ≤ x holds. From Lemma 18, we deduce that

for any two values v, w ∈ V , either Xv.valset ⊆ Xw.valset , or the converse, holds. The conjunction of

the above two observations implies that |V | ≤ x. ✷Lemma 19

Applying the reasoning of Section 5, Lemma 19 implies that the algorithm described in Figure 5

satisfies the Agreement property of (n, k)-set agreement: n − (n − k + x) processes may decide up to

(k − x) values, and the (n− k + x) remaining processes decide at most x values.

The lemmas that follow establish the x-OF-termination property. To this end, and in line with the

definition of x-OF-termination, we consider some set of processes Px, with |PX | ≤ x, and a run λ of the

algorithm in Figure 5 satisfying λ = λ1λ2, and only the processes of Px take steps during λ2. If x = 1,

then the algorithm in Figure 5 boils down to our base solution. As a consequence, we assume hereafter

x ≥ 2.

Lemma 20. All the correct processes decide in λ, or for every round r, every entry of REG contains

eventually some tuple X with X.rd > r.

Proof We proceed by contradiction. Let P = {p1, . . . , pm} be the largest set of processes that never

decide. Consider a point in time τ0 where only the processes in P take steps. At time τ + 1 > τ0 and

for every process pi ∈ P ,

• if pi modifies viewi, then this corresponds to the value of REGτ (line 02); and

• if pi writes some tuple X in REG , then X ≥ sup(viewτ
i ) (lines 04, 05 and 08).

Let Sτ be the set {sup(viewτ
1), . . . , sup(view

τ
m), sup(REGτ )}, and define mτ the tuple min(Sτ ). The

above observation implies that (mτ )τ≥τ0 is growing.

By assumption, there exists some round r and an entry REG [i] such that REG [i] never contains

a tuple X with X.rd > r. At the light of the code in Figure 5, every entry REG [j] should satisfy
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REG [j].rd ≤ r at all time. From what precedes, the sequence (mτ )τ≥τ0 is upper bounded and con-

verges toward some value m.

Note τ1 the time at which the convergence takes places, that is mτ = m is true for every τ ≥ τ1.

After time τ1, every new write W(−, X) to REG is such that X ≥ m. As a consequence, m can be

written to an entry of REG at most |P | times after time τ1 (see lines 07 and 08 in Figure 5). It follows

that eventually it is true forever that sup(REGτ ) > m holds, or that all the entries of REG contains m.

Both cases leads to a contradiction: The former case is not possible, since m is the limit of (mτ )τ≥τ0 .

In the later, a process eventually observes an homogeneous snapshot for m. Since this process cannot

decide, it executes line 04 or 05, writing some tuple X in REG with X.rd = m.rd+ 1. ✷Lemma 20

Lemma 21. All the processes of Px decides in λ.

Proof Execution λ is such that λ = λ1λ2 and only the processes of Px take steps in λ2. Lemma 20 tells

us that either all the processes in Px decide, or λ2 contains an unbounded amount of rounds, starting

from some round r0. Let us consider the later case, assuming without lack of generality, that none of the

processes in Px decide in λ2.

For some round r, we note Xr the set {X : ∃pi, τ : viewτ
i is H(X) ∧ X.rd = r}. We also define

Vr as min({V : ∃X ∈ Xr ∧ X.valset = V }). In what follows, we state several claims regarding the

sequence (Vr)r>r0 .

• Claim C1. ∀X, r : (∃τ, j : REGτ [j] = X ∧X.rd = r + 1) ⇒ X.valset ≥ Vr.

Proof. The above equation is true initially, as for any i, REG0[i] = 〈0, down, false,⊥〉. Then,

consider that it holds up to time τ , and assume that a process pi writes a tuples X in REG with

X.rd = r + 1 at time τ + 1. If pi executes line 04 or 05, then there exists Y ∈ Xr with

X.valset = Y.valset ≥ Vr. Otherwise pi executes line 08 and in such a case X = sup(viewτ
i ).

Observe that for any Z ∈ viewτ
i satisfying Z.rd = r + 1, line S5 in function sup() implies that

X.valset ≥ Z.valset , and from our induction assumption, Z.valset ≥ Vr. Thus, X.valset ≥ Vr

holds.

• Claim C2. ∀X, r : (∃τ, j : REGτ [j] = X ∧X.rd = r+1∧X.valset = Vr) ⇒ X.cf ℓ = false.

Proof. The above equation is initially true. In what follows, we consider that it holds up to

time τ , and assume that at time τ + 1 a process pi writes some tuple X in REG with X.rd =
r + 1 ∧ X.valset = Vr.

For the sake of contradiction, consider that X.cf ℓ = true. In Figure 5, a write to REG might

occur either at line 04, 05 or 08. Since X.cf ℓ = true holds, pi executes line 08 at time τ +1 with

X = sup(viewτ
i ). Define M = max(T ), with T = {Z ∈ viewτ

i : Z.rd = r+1}. From the code

at lines S5 and S6 in Figure 4, M.rd = X.rd = r + 1 and X.valset ≥ M.valset are both true.

Claim C1 implies that M.valset ≥ Vr. As X.valset ≥ M.valset and X.valset = Vr, necessarily

M.valset = Vr. Then, applying our induction assumption, we deduce that M.cf ℓ = false.

Since X.cf ℓ = true, either |tuple(T )| > x or |values(T )| > x holds. Below, we explore each

of these two cases.

– (|values(T )| > x) For every Z ∈ T , we have |Z.valset | ≤ x. Hence, there exist Y, Z ∈ T
such that Y.valset 6= Z.valset . By C1, both Z.valset ≥ Vr and Y.valset ≥ Vr are true. It

follows, that X.valset ≥ M.valset ≥ max(Y.valset , Z.valset) > Vr. Contradiction.

– (|tuple(T )| > x) Consider some Z ∈ T . If Z.valset = Vr, our induction assumption

implies that Z.cf ℓ = false holds. Thus, there are at most two tuples in T of the form

〈r + 1,−, false, Vr〉. As x ≥ 2, T contains at least three elements. It follow from C1 that

there exists some Z ∈ T with Z.valset > Vr. From which, we deduce that M.valset > Vr.

Contradiction.
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• Claim C3. ∀r > r0 : Vr < Vr+2.

Proof. Claim C1 implies that Vr ≤ Vr+1 ≤ Vr+2. Consider that for some round r, the assertion

Vr = Vr+1 = Vr+2 holds. Choose X and Y respectively in Xr+1 and Xr+2, with X.valset =
Y.valset = Vr. From claim C2, X.cf ℓ = false holds. Applying C1, a short induction tells us

that every tuple Z with (Z.valset = Vr ∧ Z.rd = r + 2) satisfies Z.ℓvℓ = up. This implies that

Y.ℓvℓ = up is true. Since C2 holds also for the tuple Y , Y.cf ℓ = false holds. As a consequence,

some process decides at round r + 2. This contradicts that r + 2 > r0 is true.

If the number of rounds is not bounded, then the claim C3 implies that (Vr)r>r0 diverges. However,

any element in this sequence is a subset of the values proposed at round r0, contradicting such an

assumption. ✷Lemma 21

It follows from Lemmas 19 and 21 that the algorithm presented in Figure 5 solves the x-obstruction

(n, k)-set agreement problem. ✷Theorem 4

8 On The Power of Repeated Anonymous Consensus

8.1 Universality of n MWMR registers

Let us first turn our attention to non-anonymous systems made up of n asynchronous processes commu-

nicating with SWMR read/write registers. Let us first notice that, if an object can be implemented with

an arbitrary number of SWMR atomic read/write registers, it can be implemented with only n SWMR

atomic read/write registers, one per process. This follows from the observation that, for every writer pi,
we can glue together all the SWMR atomic read/write registers that pi accesses into an array stored in

a single register. At the light of this result, we raise the question whether a similar result exists in the

context of anonymous systems. This section answers positively this question, showing that what can be

obstruction-free computed by n anonymous processes with an arbitrary number of MWMR atomic reg-

isters, can also be obstruction-free computed by n anonymous processes with no more than n MWMR

atomic registers.

Theorem 5. Let O be an object that can be obstruction-free implemented by n anonymous processes

and any number of MWMR atomic read/write registers. O can be obstruction-free implemented by n
anonymous processes and n MWMR atomic read/write registers.

Proof The proof consists in building a simple universal construction whose core is the obstruction-free

anonymous repeated consensus algorithm presented in Section 6. Let (a) p1, ..., pn be the application

processes, (b) R1, R2, etc., be the MWMR atomic read/write registers they share (there registers imple-

ment object O), and (c) in1, ..., inn be the individual inputs of the n processes. Let q1, ..., qn be a set of

n anonymous simulators.

Each simulator qi is assigned exactly one process pi. Moreover, the local memory of each simulator

contains a copy of all the registers R1, R2, etc. The memory shared by the simulators contains only the

snapshot object on which is built the obstruction-free anonymous repeated consensus algorithm. Hence,

it is made up of n atomic read/write registers.

Each application process executes a sequence of steps, that is a sequence of read and write operations

on the registers R1, R2, etc.

The simulation is a sequence of repeated consensus, which proceeds as follows.
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• First consensus. Each simulator qi proposes the value propi =“step of process with input ini is:

read register Rx” (or “‘step of process with input ini is: write v in register Ry”), where “read

register Rx” or “ write v in register Ry” is the first step of pi. Let dec be the value decided by this

first consensus instance. There are two cases.

– If dec = propi, qi applies locally the operation “read register Rx” (or “write v in register

Ry”), and prepares (for the next consensus instance) a new proposal propi according to next

step of pi as defined by its code, namely, propi is “step of process with input ini is: ...”.

– If dec 6= propi, qi keeps its proposal propi for the next consensus instance, but modifies its

local copy of Ry if dec is “write v in register Ry”.

• Second consensus. Each simulator qi proposes the value propi it computed after it terminated the

first consensus instance, and proposes it to the second consensus instance.

• And so on.

Let us observe that, as several processes can have the same input and anonymous processes have the

same code, it is possible that several simulators propose the same value prop to a consensus instance,

where prop is “step of process with input ini is read register Rx” (or “step of process with input ini is

write v register Ry”. If such a prop is decided by the corresponding consensus instance, and the decided

value is “write v in register Ry”, only one write is applied to Ry by each simulator. This does not create

a problem, as this write of v in Ry can be seen as a digest of the corresponding number of consecutive

writes of v in Ry, each one overwriting the previous one.

It follows from the sequence of repeated consensus that all simulators see the same sequence of steps

issued by the processes, which is a linearization of the operations issued by the processes. Moreover,

each process pi inherits the progress of its simulator qi. Hence, if a simulator qi executes alone a long

enough period of time to compute an output, so does the corresponding simulated process pi, which

concludes the proof of the theorem. ✷Theorem 5

8.2 Anonymity, tasks, and colorless tasks

The previous theorem showed that, in an anonymous system, n registers are sufficient to obstruction-free

implement any object O implemented with more registers. An interesting follow-up question is to know

which distributed tasks (see below), usually considered in a non-anonymous system, can be solved in an

anonymous setting. As we shall see below, this set contains at least all colorless tasks, i.e., the distributed

tasks that do not involve some kind of symmetry breaking argument.

Distributed tasks A distributed task T is defined by a set I of input n-vectors, a set O of output

n-vectors and a map ∆ from I to 2O. If the input value of a process p in I ∈ I is ⊥, we say that p
does not participate to the input vector I . Similarly if O[p] equals ⊥, process p does not decide in O.

For every distributed task T = (∆, I,O), we require that (i) a process may not decide ((∀p : O′[p] ∈
{O[p],⊥} ∧ (I,O) ∈ ∆) ⇒ (I,O′) ∈ ∆), and that (ii) a process that does not participate, does not

decide ((I[p] = ⊥ ∧ (I,O) ∈ ∆) ⇒ O[p] = ⊥).

The notion of interval linearizability (which generalizes linearizability [26]) was introduced in [10],

where it is shown that tasks and one-shot concurrent objects are in a precise sense equivalent (Theorem

3 in [10]). It follows that the proof of the previous theorem remains correct if we consider a distributed

task instead of an object O. We have consequently the following theorem.

Theorem 6. if a distributed task T can be obstruction-free solved by n anonymous processes and any

number of MWMR atomic read/write registers, T can be obstruction-free solved by n anonymous pro-

cesses with no more than n MWMR atomic read/write registers.

The case of colorless tasks Let us note val(U) the set of non-null values in some vector U . Following

[8], a task T = (∆, I,O) is colorless when in a solution to T , a process is free to adopt the input and
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output value of any other participating process. Formally, ((val(I) ⊆ val(I ′)∧val(O′) ⊆ val(O)∧(∀p :
I ′[p] = ⊥ ⇒ O′[p] = ⊥) ∧ (I,O) ∈ ∆) ⇒ (I ′, O′) ∈ ∆). This class of distributed tasks includes

notably the k-set agreement problem. The next theorem shows that anonymity is enough when a task is

colorless and obstruction-free -solvable.

Theorem 7. Let us consider a colorless task T = (∆, I,O) that is obstruction-free solvable in a non-

anonymous system using any number of SWMR registers. Then, T is also obstruction-free solvable in

an anonymous system with n MWMR atomic registers.

Proof Let us consider an obstruction-free algorithm A, which solves T in a non-anonymous system. As

n registers are sufficient in such a setting, we assume (without lack of generality) that A uses n registers

only. In what follows, we present a construction to simulate a run of A in an anonymous system, and

then proves its correctness.

Construction. First of all, each anonymous process p proposes (0, v) to consensus, where v is

its input value. Upon deciding some tuple (i, w), if w = v, then process p considers that it

holds identifier i; otherwise p computes i′ = i + 1 and proposes (i′, v) to the next consensus

instance. This process repeats until p holds some identifier. Then, process p executes algorithm

A with input v and identifier i. As in the proof of Theorem 5, all the processes holding identifier

i agree on simulating the next step of process i with the help of anonymous consensus. During

this simulation, we note that registers are SWMR and in particular that process i writes only to

register R[i]. Process p decides the value the simulation of process i outputs.

Let us now show that this construction is correct. To this end, consider some input vector I ∈ I and a

run ρ following the above algorithm.

- If no decision occurs in ρ, the output vector O that contains ⊥ everywhere satisfies (I,O) ∈ ∆.

- Assume now that a process p proposes a value u and decides some value v. Before process p
decides, it must have chosen some identifier i. At the light of the above construction, all the

processes that have identifier i propose and decide the same value. Hence, in run ρ, the simulated

process i proposes u and decides v. Generalizing this reasoning, let us note I ′ and O′ respectively,

the simulated input and output n-vectors during the simulation.

Since T is colorless, obstruction-free solvable, and in an asynchronous system we cannot distin-

guish a non-participating process from an initially crash one, vector I ′ belongs to the domain of

∆. Then, we observe that in ρ the identifiers of any two simulated processes are different. This en-

sures that the simulated system is non-anonymous. Consequently, A solves T in ρ and O′ ∈ ∆(I ′)
holds.

Let O be the n-vector output in ρ. By construction, val(O) ⊆ val(O′) holds. As T is colorless,

we deduce that O belongs to ∆(I ′). Then, since val(I ′) ⊆ val(I ′), T is colorless and O ∈ ∆(I ′),
we conclude that O ∈ ∆(I).

To complete the proof, let us observe that all the steps in the above construction are obstruction-free, and

that (as pointed out) the n-vector input in the simulation belongs to the domain of ∆. As a consequence,

if T is obstruction-free solvable in a non-anonymous system, it remains obstruction-free solvable in an

anonymous system. ✷Theorem 7

9 Conclusion

This paper first presented a one-shot obstruction-free (n, k)-set agreement algorithm for a system made

up of n asynchronous anonymous processes that communicate with atomic read/write registers. This

algorithm uses only (n − k + 1) registers. In terms of the number of registers, it is the best algorithm

known so far, and, in the case of consensus, it is up to an additive factor of 1 close to the best known
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lower bound [41]. This algorithm answers the challenge posed in [13], and establishes a novel upper

bound of (n−k+1) on the number of registers to solve one-shot obstruction-free (n, k)-set agreement.

This upper bound improves the ones stated in [15] for anonymous and non-anonymous systems.

Further, the paper introduced a simple extension of the basic algorithm, that solves repeated (n, k)-
set agreement. The lower bound of (n−k+1) atomic registers was established in [15] for this problem.

Hence, the proposed algorithm proves that this bound is tight. A one-shot algorithm solving anonymous

(n, k)-set agreement problem in the context of x-obstruction-freedom has also been described. This

algorithm makes use of (n− k + x) atomic read/write registers.

All these algorithms rely on the same round-based data structure. The basic one-shot algorithm

does not require persistent local variables, and in addition to a proposed value, an atomic register solely

contains two bits and a round number. The algorithm solving repeated (n, k)-set agreement requires that

each atomic register includes two additional fields.

The paper has also presented two reduction results. The first one showed that any distributed task

that is obstruction-free solvable in an anonymous system with an arbitrary number of registers is also

obstruction-free solvable with solely n registers. The second reduction showed that this amount of

registers is also enough for every colorless task which is obstruction-free solvable in a non-anonymous

system.

Let the MWMR-number of a concurrent object O be the minimal number of MWMR atomic reg-

isters needed to implement O in an n-process asynchronous anonymous system in which any number

of processes may crash. Using this terminology, it is shown in [15] that the MWMR-number of the

repeated obstruction-free (n, k)-set agreement object is at least (n − k + 1). Showing that this num-

ber is actually (n − k + 1), this paper closes the corresponding lower bound problem. Furthermore,

Theorem 5 shows that no object (defined by a sequential specification) has an MWMR-number greater

than n. Finally, we conjecture that (n− k + 1) is the MWMR-number of the one-shot obstruction-free

(n, k)-set agreement object, and more generally that (n − k + x) is the MWMR-number of one-shot

x-obstruction-free (n, k)-set agreement objects, when 1 ≤ x ≤ k < n.
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