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Estimation with Low-Rank Time-Frequency
Synthesis Models

Cédric Févotte, Senior Member, IEEE, and Matthieu Kowalski

Abstract—Many state-of-the art signal decomposition tech-
niques rely on a low-rank factorization of a time-frequency
(t-f) transform. In particular, nonnegative matrix factorization
(NMF) of the spectrogram has been considered in many audio
applications. This is an analysis approach in the sense that
the factorization is applied to the squared magnitude of the
analysis coefficients returned by the t-f transform. In this paper
we instead propose a synthesis approach, where low-rankness is
imposed to the synthesis coefficients of the data signal over a
given t-f dictionary (such as a Gabor frame). As such we offer
a novel modeling paradigm that bridges t-f synthesis modeling
and traditional analysis-based NMF approaches. The proposed
generative model allows in turn to design more sophisticated
multi-layer representations that can efficiently capture diverse
forms of structure. Additionally, the generative modeling allows
to exploit t-f low-rankness for compressive sensing. We present
efficient iterative shrinkage algorithms to perform estimation in
the proposed models and illustrate the capabilities of the new
modeling paradigm over audio signal processing examples.

I. INTRODUCTION

MATRIX factorization methods currently enjoy a large
popularity in machine learning and signal processing.

In signal processing, the input data is usually a time-frequency
(t-f) transform of some original time series x(t). For example,
in the audio setting, nonnegative matrix factorization (NMF)
is commonly used to decompose magnitude or power spectro-
grams into elementary components [1]; the spectrogram P is
approximately factorized into WH, where W is the dictionary
matrix collecting spectral patterns in its columns and H is the
activation matrix. The approximate WH is generally of lower
rank than P, unless additional constraints are imposed on the
factors. NMF is at the core of many state-of-the-art source
separation systems, such as [2], [3].

The spectrogram P is usually obtained from the short-
time Fourier transform Y. The coefficients yfn of Y are
the inner products of x(t) with t-f atoms φfn(t), where f
and n index frequencies and time frames, respectively, and a
common choice is P = |Y|2. The STFT coefficients are so-
called analysis coefficients and as such spectral decomposition
by NMF can be viewed as a low-rank time-frequency analysis
procedure. Leveraging on the potential of synthesis models as
opposed to analytical ones (see, e.g., [4]–[7]), we propose to
explore a dual view of the usual NMF approach and present a
new paradigm that we name low-rank time-frequency synthesis
(LRTFS). In this new paradigm, the signal is decomposed as

x(t) =
∑
fn

αfnφfn(t) + e(t) (1)
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where the synthesis coefficients {αfn} are given a low-
rank structure such that |αfn|2 ≈ [WH]fn. Formulation (1)
provides a generative representation of the raw data x(t) and
extends the modeling capacities of standard NMF-based sig-
nal decomposition towards more advanced multilayer hybrid
decompositions. Having a generative model of the raw data
(instead of its transform) is also useful for some inverse
problems such as compressive sampling, an application that
will be considered in the paper.

The low-rankness of the synthesis coefficients {αfn} is
induced through a probabilistic model named Gaussian Com-
posite Model (GCM) [8]. The GCM underlies Itakura-Saito
NMF, a baseline method that will be recalled in Section II.
Section III-A presents our new paradigm LRTFS in the general
case of complex-valued signals. It also describes a alternate
minimization algorithm for maximum joint likelihood estima-
tion of the parameters. Section III-B shows how the methodol-
ogy for complex signals can be adapted to real-valued signals.
Section III describes how LRTFS can accommodate more
advanced multilayer decompositions in which every layer can
have its own t-f resolution or structure (e.g., a sparse instead of
low-rank time-frequency structure). Section V describes a new
approach to compressive sampling, that exploits latent low-
rank time-frequency structure instead of sparsity, with superior
results for the considered type of data. The article is illustrated
throughout with experiments on audio signals (the presented
methodology is however not limited to audio signals).

This article unifies and continues our work presented in
the conference papers [9], [10]. In particular, it provides
more detailed experiments and contributes the following novel
methodological additions: the case of real-valued signals
(which require to properly handle the Hermitian symmetry
of their synthesis coefficients) is now rigorously treated in
Section III-B, algorithm accelerations are presented in Sec-
tions III-A2, and the concept of compressive LRTFS presented
in Section V is entirely novel.

II. A BASELINE: ITAKURA-SAITO NMF AND THE
GAUSSIAN COMPOSITE MODEL (GCM)

NMF was originally designed in a deterministic setting [11]:
a measure of fit between P and WH is minimized with respect
to (w.r.t) W and H. Choosing the “right” measure for a spe-
cific type of data and task is not straightforward. Furthermore,
NMF-based spectral decompositions often arbitrarily discard
phase information: only the magnitude of the complex-valued
short-time Fourier transform (STFT) is considered. To remedy
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these limitations, a generative probabilistic latent factor model
of the STFT, the GCM, was proposed in [8]. It is defined by

yfn ∼ Nc(0, [WH]fn), (2)

where Nc refers to the circular complex-valued normal dis-
tribution.1 As shown by Eq. (2), in the GCM the STFT is
assumed centered and its variance has a low-rank structure.
Many temporal waveforms (such as audio signals) can be
assumed zero-mean and this remains true for they Fourier
coefficients by linearity, hence the zero-mean assumption of
the GCM. The low-rank variance structure on the other hand
underlies a composite signal structure that makes the model
relevant for decomposition task. Indeed, introducing the latent
complex-valued components ykfn, Eq. (2) is equivalent to

yfn =
∑
k

ykfn, (3)

ykfn ∼ Nc(0, wfkhkn). (4)

The latent component Yk with coefficients {ykfn}fn reflects
the contribution of the spectral pattern wk, the kth column of
W, amplitude-modulated in time by the activation coefficients
of the kth row of H.

Under these assumptions, the negative log-likelihood
− log p(Y|W,H) is equal, up to a constant, to the Itakura-
Saito (IS) divergence DIS(P|WH) between the power spec-
trogram P = |Y|2 and WH, where

DIS(A|B) =
∑
ij

aij
bij
− log

aij
bij
− 1 (5)

for nonnegative matrices A and B [8].
The GCM is a step forward from traditional NMF ap-

proaches that fail to provide a valid generative model of the
STFT itself – other approaches have only considered proba-
bilistic models of the magnitude spectrogram under Poisson or
multinomial assumptions, see [1] for a review. Still, the GCM
is not yet a generative model of the raw signal x(t) itself, but
of its STFT. LRTFS fills in this ultimate gap.

III. LOW-RANK TIME-FREQUENCY SYNTHESIS (LRTFS)

In this section we first present LRTFS for complex-valued
signals, closely following [9]. Then we rigorously address the
case of real-valued signals represented as a complex-valued
linear combination of complex-valued t-f atoms (such as Gabor
atoms) with Hermitian symmetry. Finally, we discuss relevant
connections with the state-of-the-art and illustrate the potential
of LRTFS on an audio example.

A. Complex-valued signals

1) Model: Let x(t) denote a complex-valued signal of
length T and {φfn(t)}f=1..F,n=1..N denote a dictionary of

1A random variable x has distribution Nc(x|µ, λ) = (πλ)−1 exp−(|x−
µ|2/λ) if and only if its real and imaginary parts are independent and with
distribution N(<[µ], λ/2) and N(=[µ], λ/2), respectively.

complex-valued t-f atoms of length T . LRTFS is defined as
follows. For t = 1, . . . , T , f = 1, . . . , F , n = 1, . . . , N :

x(t) =
∑
fn

αfnφfn(t) + e(t), (6)

αfn ∼ Nc(0, [WH]fn), (7)
e(t) ∼ Nc(0, λ), (8)

where {αfn} are the complex-valued synthesis coefficients,
W and H are nonnegative matrices of sizes F×K and K×N ,
respectively, and e(t) is an additive complex-valued residual
term with Gaussian distribution Nc(0, λ). The synthesis co-
efficients {αfn} are furthermore assumed independent given
W and H. The synthesis coefficients are dual of the analysis
coefficients, defined by yfn =

∑
t x(t)φ

H
fn(t), where ·H de-

notes conjugate transpose. IS-NMF assumes that the analysis
coefficients follow a GCM, see Eq. (2). In contrast, LRTFS
assumes that the synthesis coefficients follow a GCM, as given
by Eq. (7). As announced, LRTFS provides a generative model
of the raw data x(t), where IS-NMF only provided a generative
model of the transformed data Y.

Let us denote by x and e the column vectors of size
T with coefficients x(t) and e(t), respectively. Given an
arbitrary mapping from (f, n) ∈ {1, . . . , F} × {1, . . . , N} to
m ∈ {1, . . . ,M}, where M = FN , we denote by α the
column vector of dimension M with coefficients {αfn}fn.
Similarly, we denote by Φ the matrix of size T × M with
columns {φfn}fn, where φfn is the column vector of size T
with coefficients φfn(t). Finally, let us denote by v the column
vector of dimension M with coefficients vfn = [WH]fn. In
the following we will sometimes abuse notations by indexing
the coefficients of α or v by either m or (f, n). It should be
understood that m and (f, n) are in one-to-one correspondence
and the notation should be clear from the context. In particular
we will write v = vect[WH]. Equipped with these notations,
we may write Eq. (6) and (7) as

x = Φα+ e, (9)
α ∼ Nc(0, diag(v)), (10)
e ∼ Nc(0, λ IT ). (11)

Ignoring the low-rank structure of v, Eqs. (9)-(11) resemble
sparse Bayesian learning (SBL), as introduced in [12], [13],
where it is shown that marginal likelihood estimation of the
variance induces sparse solutions of v (and as a consequence,
of α). The essential difference between our model and SBL
is that the coefficients are no longer unstructured in LRTFS.
Indeed, in SBL, each coefficient αm has a free variance param-
eter vm. This property is fundamental to the sparsity-inducing
effect of SBL [12]. In contrast, in LRTFS, the variances are
now tied together and such that vm = vfn = [WH]fn .

2) Maximum joint likelihood estimation : We now address
the estimation of W, H and α and possibly λ in LRTFS. We
consider maximum joint likelihood estimation (MJLE), also
referred to as type-I maximum likelihood estimation in [13].
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MJLE relies on the minimization of the following objective
function:

CJL(α,W,H, λ)
def
= − log p(x,α|W,H, λ) (12)

= − log p(x|α, λ)− log p(α|W,H) (13)

=
1

λ
‖x−Φα‖22 +

∑
fn

[
|αfn|2

[WH]fn
+ log [WH]fn

]
+ cst

(14)

=
1

λ
‖x−Φα‖22 +DIS(|α|2|v) + log(|α|2) + cst (15)

where cst =M log π and we recall that v = vect[WH]. The
first term in Eq. (15) measures the discrepancy between the
raw signal and its approximation. The second term ensures
that the synthesis coefficients are approximately low-rank.

Another possible estimation procedure for LRTFS is max-
imum marginal likelihood estimation (MMLE), also referred
to as type-II maximum likelihood estimation in [13]. It relies
on the minimization of − log p(x|W,H, λ), i.e., involves the
marginalization of α from the joint likelihood, following
the principle of SBL. We considered MMLE for LRTFS
in [9] and presented a valid EM algorithm. However our
implementation does not scale with the dimensions involved
in signal processing, as it requires solving linear systems of
size min{T,M}, with T large and smaller than M in typical
signal processing settings. Large-scale algorithms for MMLE
are left as future work.

3) Alternate minimization algorithm for MJLE : We now
describe an alternate minimization algorithm that returns sta-
tionary points of CJL(θ), where θ = {α,W,H, λ}. The
optimization of α given the other parameters reduces to

min
α

1

λ
‖x−Φα‖22 +

∑
fn

|αfn|2

[WH]fn
(16)

which defines a convex ridge regression problem. The problem
has the closed-form solution

α̂ =
[
ΦHΦ + λdiag(v)−1

]−1
ΦHx (17)

which involves the inversion of a M × M matrix. The
inversion can be reduced to dimension T thanks to the
Woodbury identity, but this is still large in signal processing
applications. As such, a numeral optimization procedure is
to be preferred and several options are available, such as
conjugate gradient descent, expectation-minimization (EM),
forward-backward optimization or majorization-minimization.
The latter three are closely related and lead in the present
case to an iterative shrinkage algorithm (ISA) [14], [15]. We
used in our implementation a complex-valued version of ISA,
similar to the complex-valued cases treated in [16], [17],
and using the acceleration described in [18]. This leads to
a simple and parameter-free implementation with satisfactory
speed of convergence. This in particular results in a faster
algorithm than the original EM algorithm presented in our
initial contribution [9]. The resulting updates are given in
Algorithm 1. The value of the inverse step-size L should be
set to the maximum eigenvalue of ΦHΦ, i.e., the squared
spectral norm of Φ. If this value is not available in closed

form or difficult to compute, a larger value L ≥ ‖Φ‖22
is also permissible but will result in smaller step sizes. In
Algorithm 1, the operations A ◦B, A◦p and A

B denote entry-
wise multiplication, exponentiation and division, respectively.

The optimization of W and H given α reduces to

min
W,H≥0

∑
fn

DIS(|αfn|2|[WH]fn) (18)

which defines a IS-NMF problem with input matrix S =
[|αfn|2]fn. This a non-convex problem that is generally
approached with alternating updates of W and H and
majorization-minimization (MM) [19]. This results in the
multiplicative updates given in Algorithm 1.

Finally, the optimization of λ given α is trivially given by
λ̂ = ‖x−Φα‖/T . However, the MJLE setting is known to be
inefficient for the estimation of both the variance parameters of
α and of e, with either Φα̂ or ê capturing most of the signal
variance. As such, though the estimation of λ is possible in
principle, we will consider λ to be a fixed hyper-parameter in
the following.

The objective function CJL being non-convex and because
we are using an alternate minimization algorithm, the output
of Algorithm 1 depends on the initialization. In all simulations
we initialized the synthesis coefficients α with the synthesis
coefficients ΦHx. The matrices W and H are initialized using
the absolute values of the complex SVD of the synthesis
coefficients [20]. Finally, a tempering strategy with warm
restart is used to speed up convergence for small target values
of λ. The hyper-parameter λ is set to an arbitrarily large value
in the first iterations and is then gradually decreased to its
target value, as proposed in [21].

4) Reconstruction of the latent components: LRTFS as-
sumes the synthesis coefficients αfn follow a GCM, see
Eq. (7). As such, αfn may be written as a sum of Gaus-
sian latent components, such that αfn =

∑
k αkfn, with

αkfn ∼ Nc(0, wfkhkn). Denoting by αk the column vector
of dimension M with coefficients {αkfn}fn, Eq. (9) may be
written as

x =
∑
k

Φαk + e =
∑
k

ck + e , (19)

where ck = Φαk. The component ck is the “temporal
expression” of spectral pattern wk, the kth column of W.
Given estimates of α, W and H, the components may be
reconstructed in various way. A natural choice is ĉMMSE

k =
Φα̂MMSE

k with

α̂MMSE
k

def
= E[αk|x, θ̂] = E[αk|α̂,Ŵ, Ĥ] (20)

and whose coefficients are given by

α̂MMSE
kfn =

ŵfkĥkn

[ŴĤ]fn
α̂fn. (21)

Using this estimate, the latent components are reconstructed
by applying a t-f dependent “Wiener mask” to the synthesis
coefficients. This procedure and the expression of α̂MMSE

fkn is
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Algorithm 1: Alternate minimization for LRTFS
Set L = ‖Φ‖22 (or a larger value)
Compute the synthesis coefficients y = ΦHx (with
matrix form Y)
Set α(0) = y
Initialize W(0) and H(0) with the absolute values of the
complex SVD of Y
Set i = 0
repeat

%% Update W and H with MM
Compute spectrogram S(i) =

[
|α(i)
fn|2

]
fn

Initialize inner loop: W = W(i), H = H(i)

repeat
W←W ◦ [S(i)◦(WH)◦−2]HT

[(WH)◦−1]HT

H← H ◦ WT [S(i)◦(WH)◦−2]
WT [(WH)◦−1]

until convergence;
Leave inner loop: W(i+1) = W, H(i+1) = H
Set v(i+1) = vect[W(i+1)H(i+1)]

%% Update α with accelerated ISA
Initialize inner loop: a(0) = z(0) = α(i)

Set j = 0
repeat

% Descend
z(j+1/2) = a(j) + 1

LΦH(x−Φa(j))
% Shrink
z(j+1) = v(i+1)

v(i+1)+λ/L
◦ z(j+1/2)

% Accelerate
a(j+1) = z(j+1) + j+1

j+5 (z
(j+1) − z(j))

j ← j + 1
until convergence;
Leave inner loop: α(i+1) = z(j+1)

until convergence;

analog to the standard Wiener estimate of the latent compo-
nents in IS-NMF applied to |Y|2 [8], given by

ŷMMSE
kfn =

ŵfkĥkn

[ŴĤ]fn
yfn. (22)

The estimate α̂ is used as an intermediate variable in the
expression of α̂MMSE

kfn given by Eq. (21). Another possible
estimate, which marginalizes α, is

α̂k = E[αk|x,Ŵ, Ĥ, λ̂] (23)

= diag(vk)ΦH [Φdiag(v)ΦH + λIT ]
−1x, (24)

where vk is the vector of dimension M with coefficients
{wfkhkn}fn. The input of the estimator is now the raw data x
which may be more sensible. It however requires the resolution
of a large-scale linear system of dimension min{T,M}, which
again is hardly feasible in usual signal processing scenarios.

B. Real-valued signals

1) Model: In many signal processing settings the data is
a real-valued signal x(t) expressed as a linear combination
of complex-valued t-f atoms with Hermitian symmetry. More

specifically, the dictionary and synthesis coefficients are such
that φfn = φ∗(F−f)n and αfn = α∗(F−f)n for f = 1, . . . , F/2
(assuming F to be even-valued for simplicity), where ·∗
denotes conjugation. Under this particular structure, we have

F∑
f=1

N∑
n=1

αfnφfn(t) =

F/2∑
f=1

N∑
n=1

2<[αfnφfn(t)] (25)

and we define real-valued LRTFS (rLFTS) as follows. For
t = 1, . . . , T , f = 1, . . . , F/2, n = 1, . . . , N :

x(t) =

F/2∑
f=1

N∑
n=1

2<[αfnφfn(t)] + e(t), (26)

αfn ∼ Nc(0, [WH]fn), (27)
e(t) ∼ N(0, λ). (28)

Note how F now runs from 1 to F/2 instead of 1 to F .
The synthesis coefficients αfn remain complex-valued and the
residual e(t) becomes real-valued. W and H are nonnegative
matrices of sizes F/2×K and K ×N , respectively.

Let us now denote by α and v the vectors of dimension
M/2 with coefficients αfn and vfn = [WH]fn, respectively,
and by Φ the matrix of dimension T×M/2 with columns φfn,
for f = 1, . . . , F/2 and n = 1, . . . , N . With these notations
we have α = [αT ,αH ]T , Φ = [Φ,Φ∗] and Φα = 2<[Φα].
Consequently, we may write Eq. (26)-(28) as

x = 2<[Φα] + e, (29)
α ∼ Nc(0, diag(v)), (30)
e ∼ N(0, λ IT ). (31)

2) Estimation: The MJLE objective function for rLRTFS
writes

C<JL(α,W,H, λ)
def
= − log p(x,α|W,H, λ) (32)

=
1

2λ
‖x− 2<[Φα]‖22 (33)

+

F/2∑
f=1

N∑
n=1

[
|αfn|2

[WH]fn
+ log [WH]fn

]
+ cst (34)

=
1

2λ
‖x− 2<[Φα]‖22 +DIS(|α|2|v) + log(|α|2) + cst

(35)

where cst = M
2 log 2πλ. Using an alternate minimization

setting like in Section III-A3, the updates of W and H are
virtually unchanged. They amount to IS-NMF of the matrix
form of the synthesis spectrogram |α|2 (of size F/2 × N ).
The update of λ is easily given by λ̂ = ‖x − 2<[Φα]‖22/T ,
but here again we prefer to treat λ as an hyper-parameter. The
update of α involves the following minimization problem:

min
α∈CF/2

F (α)
def
=

1

2λ
‖x−<[Φα]‖22 +

F/2∑
f=1

N∑
n=1

|αfn|2

[WH]fn
.

(36)

The problem defined by Eq. (36) has a closed-form solution,
with a however less simpler expression than Eq. (17). The
solution is still computationally demanding and the following
numerical procedure is preferable.
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Theorem 1 (Iterative shrinking algorithm for rLRTFS). Let
L = ‖Φ‖22 (with Φ = [Φ,Φ∗]) and α(0) be an initial estimate.
The following sequence of updates converge to the global
solution of problem (36):

α(j+1/2) = α(j) +
1

L
ΦH(x− 2<[Φα(j)]), (37)

α(j) =
v

v + λ/L
◦α(j+1/2). (38)

Proof. The proof consists in reformulating Eq. (36) as a
quadratic optimization problem over the real and imaginary
parts of α and applying ISA. Let A = 2[<[Φ],−=[Φ]],
b = [<[α]T=[α]T ]T and c = 1

2 [v
TvT ]T . Then we may write

F (α) = F (b) =
1

2λ
‖x−Ab‖22 +

1

2

M∑
m=1

b2m
cm

(39)

Denoting LA = ‖A‖22, the ISA update for problem (39) writes
[14], [15]

b(j+1/2) = b(j) +
1

LA
AT (x−Ab(j)), (40)

b(j) =
c

c + λ/LA
◦ b(j+1/2). (41)

Using the identities Ab = 2<[Φα] and

ATe = 2

[
<[ΦHe]

=[ΦHe]

]
, (42)

Eqs. (40)-(41) can be rearranged in complex form as

α(j+1/2) = α(j) +
2

LA
ΦH(x− 2<[Φα(j)]) (43)

α(j) =
v

v + 2λ/LA
◦α(j+1/2). (44)

To complete the proof we only need to show that L = 2LA.
Let α = [αT1 ,α

T
2 ]
T be an eigenvector of ΦHΦ with maxi-

mum eigenvalue L = ‖Φ‖22. By definition we have[
ΦHΦ ΦHΦ∗

ΦTΦ ΦTΦ∗

] [
α1

α1

]
= L

[
α1

α1

]
. (45)

By taking the conjugate of Eq. (45), we easily show that
[αH2 ,α

H
1 ]T is also an eigenvector with eigenvalue L. It follows

that [α1 + αH2 ,α2 + αH1 ]T is also an eigenvector, which
happens to have a Hermitian structure. We may thus impose
α2 = α∗1 and as such α = [αT ,αH ]T . Then we have the
following series of equivalences:

ΦHΦα = Lα ⇐⇒ ΦHΦα+ ΦHΦ∗α∗ = Lα (46)

⇐⇒ 2ΦH<[Φα] = Lα (47)

⇐⇒ 1

2
ATAb = Lb. (48)

As such, the spectra of ΦHΦ and ATA coincide up to a factor
2 and we have L = 2LA, which concludes the proof.

Algorithm 2: Alternate minimization for rLRTFS
Set L = ‖Φ‖22 (or a larger value)
Compute the synthesis coefficients y = ΦHx (with
matrix form Y)
Set α(0) = y
Initialize W(0) and H(0) with the absolute values of the
complex SVD of Y
Set i = 0
repeat

%% Update W and H with MM
Compute spectrogram
S(i) =

[
|α(i)
fn|2

]
f=1,...,F/2,n=1,...,N

Initialize inner loop: W = W(i), H = H(i)

repeat
W←W ◦ [S(i)◦(WH)◦−2]HT

[(WH)◦−1]HT

H← H ◦ WT [S(i)◦(WH)◦−2]
WT [(WH)◦−1]

until convergence;
Leave inner loop: W(i+1) = W, H(i+1) = H
Set v(i+1) = vect[W(i+1)H(i+1)]

%% Update α with accelerated ISA
Initialize inner loop: a(0) = z(0) = α(i)

Set j = 0
repeat

% Descend
z(j+1/2) = a(j) + 1

LΦH(x− 2<[Φa(j)])
% Shrink
z(j+1) = v(i+1)

v(i+1)+λ/L
◦ z(j+1/2)

% Accelerate
a(j+1) = z(j+1) + j+1

j+5 (z
(j+1) − z(j))

j ← j + 1
until convergence;
Leave inner loop: α(i+1) = z(j+1)

until convergence;

3) Comments about implementation: Eq. (37) and (38) can
be accelerated like before and this results in the general
procedure summarized in Algorithm 2. As compared to Al-
gorithm 1, α is essentially replaced by α, of size half, and
the expression of z(i+1) is changed with Eq. (37). Although
the same notations are used for convenience, Y, S(i) and W
become matrices with F/2 rows.

Eq. (37) can be read as follows. The operation 2<[Φα]
consists of reconstructing an approximation x̂ of x based on
the current synthesis coefficients α. The operation ΦHe then
consists in computing the analysis coefficients (restricted to
“positive” frequencies, i.e., f = 1, . . . , F/2) of the current
residual e = x − x̂. When Φ is a tight Gabor frame,
these operations can be efficiently performed with dedicated
time-frequency libraries. For example, these operations can
efficiently be performed in Matlab using The Large Time-
Frequency Analysis Toolbox (LTFAT) [22].2 When the Gabor

2The specific commands being of the like α = dgtreal(x, ‘parameters’)
and x = idgtreal(α, ‘parameters’), where dgt stands for discrete Gabor
transform.
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frame is tight, i.e., ΦΦHx = x, Φ has a unit spectral norm and
we may set L = 1. A Matlab implementation of Algorithm 2
is available online.3

Finally, given estimates of α, W and H, latent component
coefficients α̂k may be reconstructed like in Eq. (21), and then
ĉk = 2<[Φα̂k].

C. Related work

The closest to our work are probably the recent papers by
Kameoka [23], [24] which addresses temporal models of the
form x =

∑
k ck, like Eq. (19), where the spectrograms of

the latent components are approximately rank-one. In essence
(and slightly simplifying) these papers address optimization
problems of the form

min
ck,W,H

∑
fkn

D([|ΦHck|2]fn|wfkhkn) s.t. x =
∑
k

ck (49)

where |ΦHck|2 stands as the spectrogram of ck, abusively
indexed by f and n for clarity, and D(·|·) is a divergence be-
tween nonnegative matrices (either the generalized Kullback-
Leibler divergence or the quadratic cost in [23], [24]). Though
very elegant in our opinion, the approaches of [23], [24] are
still analysis-based and do not yet provide a fully generative
synthesis-based model like LRTFS.

Another related trend of work are the approaches of [25]–
[27] which essentially model x(t) as a sum of variance-
structured Gaussian processes. In [25], [26] x(t) is modeled
as a short-time stationary process. Each temporal frame n
of x is assumed to follow a Gaussian process with covari-
ance

∑
k Σkn. Based on the Whittle approximation, Σkn

is assumed diagonal in the Fourier basis and its eigen-
spectrum is approximated by hknwk. Using our notations,
the model in [27] sets N = T and assumes x(t) =∑
f

√
[WH]ft <[sf (t)e−j2πft/F ] where sf (t) is a complex-

valued Gaussian autoregressive sequence. The papers [25]–
[27] describe NMF-related generative probabilistic models of
x(t), like LRTFS. These approaches are rooted in time series
analysis while LRTFS offers a different perspective and model,
rooted in the sparse approximation literature. In particular, it
can be used with any time-frequency dictionary Φ.

D. Example

We illustrate the performance of LRTFS compared to
standard IS-NMF using the piano example used in [8]. The
sequence has a simple structure: four notes are played together
at once in the first measure and are then played by pairs in
all possible combinations in the subsequent measures. The
duration is 15.6 s and the sampling rate 22050 Hz. In noise-
free conditions and with appropriate initialization, standard
IS-NMF is able to recover the four notes, the transient part
produced by the hammer and the sound produced by the
sustain pedal when it is released [8]. We here consider a noisy
example using additive white Gaussian noise with 20 dB input
Signal to Noise Ratio (SNR). A tight Gabor dictionary (with

3https://www.irit.fr/∼Cedric.Fevotte/extras/tsp2018/. Future references to
online material refer to this same url.

(a) Input data

0 2 4 6 8 10 12 14 16
Time (s)

-1

0

1

(b) LRTFS decomposition

(c) IS-NMF decomposition

Fig. 1. Decomposition of a piano sequence consisting of four notes. The
temporal components are displayed by decreasing energy (from left to right
and top to bottom).

Hermitian symmetry) built on a Hann window of 1024 samples
(46 ms) with 50% overlap is used for Φ. IS-NMF is applied
to the analysis spectrogram |Φx|2. The number of latent
components is arbitrarily set to K = 10 for both IS-NMF
and rLTFS and the two methods are run from the same
initialization (based on the SVD of Y, see Alg. 2). Iteration
of the main and inner loops is stopped when the relative error
between two successive parameter iterates falls under 10−5.
rLTFS is run with six different values of λ logarithmically
equally spaced between 10−1 and 10−6. We show results
corresponding to the value of λ that maximizes the output
SNR given by

10 log
‖x̂− x‖22
‖x‖22

. (50)

The results are reported in Fig. 1. LRTFS is able to recover
the four notes in the first four components, while the fifth
component recovers the transient components produced by the
hammer and the sustain pedal. The remaining five components

https://www.irit.fr/~Cedric.Fevotte/extras/tsp2018/
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are inaudible because of the denoising performed by LRTFS.
In this setting, IS-NMF fails to recover this transient part and
splits the first note into two components. The input noise is
spread over the five remaining components as expected. Audio
files are available online.

IV. MULTI-LAYER LRTFS

Besides the advantage of modeling the raw signal itself, and
not its STFT, another major strength of LRTFS is that it offers
the possibility of multi-layer modeling. This means we may
envisage models of the form

x = xa + xb + e = Φaαa + Φbαb + e (51)

where xa = Φaαa and xb = Φbαb are referred to as layers.
This setting covers a variety of situations. Φa and Φb may
be equal with αa and αb having a different structure. For
example, αa may follow a GCM like before and αb may
be given a sparsity-inducing prior. In such a case, multi-
layer LRTFS offers a synthesis perspective to sparse + low-
rank spectrogram decompositions, such as those presented in
[28]–[30] which propose variants of robust principal com-
ponent analysis (RPCA) [31] for spectral unmixing. Even
more interestingly, the time-frequency dictionaries Φa and Φb
may be chosen with different t-f resolutions. This yields so-
called hybrid or morphological decompositions [32], [33], in
which each layer may capture specific resolution-dependent
structures. A typical audio example is transient + tonal de-
composition: transient components are by nature adequately
represented by a t-f dictionary with short time resolution while
tonal components (such as the sustained parts of musical notes)
are better represented by a t-f dictionary with larger time
resolution (and as a consequence, finer frequency resolution).
A variety of priors can be considered for αa and αb, such as
frequency grouping for the transient synthesis coefficients and
temporal grouping for the tonal synthesis coefficients [34].

A. Sparse and low-rank time-frequency synthesis

We consider a special case of multi-layer LRTFS that
illustrates the potential of the synthesis approach. We present
the methodology in the complex case for simplicity, but the
results can readily be adapted to the real case following the
procedure described in Section III.

1) Model: Let Φa and Φb be time-frequency dictionaries
consisting of atoms φa

fn(t) and φb
fn(t) with common dimen-

sion T and t-f pavings of size Fa×Na and Fb×Nb, respectively.
We consider the following model, for t = 1, . . . , T :

x(t) =

Fa∑
f=1

Na∑
n=1

αa
fnφ

a
fn(t) +

Fb∑
f=1

Nb∑
n=1

αb
fnφ

b
fn(t) + e(t)

(52)
αa
fn ∼ Nc(0, [WH]fn), f = 1, . . . , Fa, n = 1, . . . , Na (53)

αb
fn ∼ Nc(0, vb

fn), f = 1, . . . , Fb, n = 1, . . . , Nb (54)

e(t) ∼ Nc(0, λ) (55)

where {αa
fn} and {αb

fn} are the complex-valued synthesis
coefficients, W and H are nonnegative matrices of sizes Fa×

K and K ×Na, respectively, {vb
fn} are nonnegative variance

parameters and e(t) is an additive complex-valued residual
term. Eq. (52) is nothing but the scalar form of Eq. (51).
Eq. (53) defines a GCM, while Eq. (53) defines the sparse-
inducing prior that is used in SBL. Like before, we note by va

and vb the column vectors with coefficients [WH]fn and vb
fn,

respectively. Both va and vb are parameters of a hierarchical
variance model. Notice however how vb is a free parameter,
while va is structured through W and H. Overall, Eq. (52)-
(55), define a multi-layer LRTFS model with latent low-rank
t-f structure for layer xa and latent sparse t-f structure for layer
xb.

B. Estimation

The negative log-likelihood of the data and parameters in
model (52)-(55) is given by

− log p(x,αa,αb|W,H,vb) =
1

λ
‖x−Φaαa −Φbαb‖22

+DIS(|αa|2|va) + log(|αa|2)
+DIS(|αb|2|vb) + log(|αb|2) + cst (56)

where cst = (FaNa + FbNb) log π. Unfortunately, and simi-
larly to the difficulty of estimating λ raised in Section III-A2,
MJLE fails to evenly distribute the signal variance onto the two
layers, and one of the two layers takes it all in practice. Such
a problem can be mitigated using MMLE instead of MJLE,
but again, MMLE is too costly in our setting. To solve this
issue we introduce an extra hyper-parameter µ that balances
the contributions of each layer and propose to optimize the
following objective

CSLR(θ)
def
=

1

λ
‖x−Φaαa −Φbαb‖22 (57)

+ µ
[
DIS(|αa|2|va) + log(|αa|2)

]
+ (1− µ)

[
DIS(|αb|2|vb) + log(|αb|2)

]
+ cst,

(58)

where 0 ≤ µ ≤ 1, θ = {αa,αb,W,H,vb} is the set of
latent variables and parameters and SLR stands for “sparse +
low-rank”.

We may again find a stationary point of CSLR(θ) by alternate
minimization. The update of vb is trivially given by vb =
|αb|2. The update of W and H amounts to finding an IS-NMF
of the synthesis spectrogram |αa

fn|2 like in Algorithm 1. The
synthesis coefficients αa and αb may be updated jointly via
ridge regression over the joint dictionary [Φa,Φb]. This leads
to the following updates

ê(j) = x−Φaα
(j)
a −Φbα

(j)
b (59)

α(j+1/2)
a = α(j)

a +
1

L
ΦH

a ê(j) (60)

α
(j+1/2)
b = α

(j)
b +

1

L
ΦH

b ê(j) (61)

α(j+1)
a =

va

va + λ/L
◦α(j+1/2)

a (62)

α
(j+1)
b =

vb

vb + λ/L
◦α(j+1/2)

b (63)



8

(a) Latent components of the tonal layer xa(t)

(b) Transient layer xb(t)

0 2 4 6 8 10 12 14 16
Time (s)

-0.5

0

0.5

Fig. 2. Two-layer decomposition of the piano sequence displayed in Fig. 1.

where the inverse-step size should satisfy L ≥ ‖[Φa,Φb]‖22. A
convenient choice is L = ‖Φa‖22 + ‖Φb‖22. Eq. (59) computes
the current residual, Eqs. (60) and (61) produce a step in the
descent direction and Eqs. (62) and (63) shrink the resulting
iterates.

C. Example

We use exactly the same data and setting as in Section III-D
but we now add a sparse layer Φbαb to the LRTFS layer. Φb
is set to be a tight Gabor dictionary built on a Hann window
of 128 samples (6 ms) with 50% overlap. Φa is set as in
Section III-D. The parameter µ was experimentally fixed to
µ = 0.05, and λ was again chosen among logarithmically
spaced vales. Fig. 2 displays the 10 latent components charac-
terizing the tonal layer and the transient layer. The components
of the tonal layer are similar to those obtained from the
single-layer LRTFS decomposition of Fig. III-D. The fourth
component captures part of the hammer attacks (especially
from the first, most energetic note) with the shortest resolution
components relegated to the transient layer xb(t) as expected.
Audio files are available online.

V. COMPRESSIVE LRTFS
A striking advantage of LRTFS is that it may be used as

a source model in inverse problems. A popular instance is
compressive sensing (CS) in which a source signal x(t) must
be recovered from S << T random projections. Traditionally,
CS exploits the sparsity of the synthesis coefficients of x(t)
onto a suitable dictionary. In this section we show that sparsity
can efficiently be replaced with low-rankness.

A. Model

Let us denote by x ∈ CT the vector source signal. The
source is assumed to be sensed through the given linear

operator A ∈ CS×T , with S < T , with output b ∈ CS .
We assume the following observation model:

b = Ax + e (64)
= AΦα+ e (65)

where Φ ∈ CT×M is a given dictionary and α are the
synthesis coefficients of x and e is a residual term that
accounts for noise or model errors. Where traditional CS
assumes some form of sparsity for α, we assume the synthesis
coefficients to have the LRTFS low-rank structure described
by Eq. (7). Like in traditional CS settings, we assume A to be
a random matrix. Finally, we assume e to follow a complex
Gaussian distribution like in Eq. (8).

B. Estimation

MJLE amounts to minimizing the following objective func-
tion:

CCS(α,W,H) = − log p(b,α|W,H, λ) (66)

=
1

λ
‖b−AΦα‖22 +DIS(|α|2|WH) + log(|α|2) + cst

where cst = M log π. The problem of optimizing
CCS(α,W,H) is equivalent to the one of optimizing
CJL(α,W,H) given by Eq. (15). In the complex case, the
methodology developed in Section III-A3 can be readily
applied by replacing Φ with M = AΦ. The spectral norm
of M may be difficult to derive or compute and we may set
L = ‖A‖22‖Φ‖22 thanks to the inequality

‖AΦ‖22 ≤ ‖A‖22‖Φ‖22. (67)

In the real case, i.e, when x ∈ RT , the methodology developed
in Section III-B may again be applied by assuming A ∈ RS×T
and replacing Φ with M = AΦ. Posterior to estimation, an
estimate of the original source is given by x̂ = Φα̂.

Note that we have addressed compressive sampling of real
or complex-valued signals by exploiting a latent NMF-type t-
f structure, which is different from compressive sampling of
non-negative signals, a topic addressed for example in [35].

C. Example

We evaluate the recovery accuracy of the piano sequence
used in Sections III-D and IV-C using a number of measure-
ments S varying increasingly from T/100 to T/10. For this
experiment, the length of the sequence remains 15.6 s but
the sampling rate has been fixed at 11025 Hz because of the
memory and computational complexities. The Gabor parame-
ters have been adjusted accordingly with a Hann window of
length 512 samples (46 ms) with 50% overlap.

We compare CS recovery methods based on LRTFS, SBL
and `1 regularization, using a common alternating minimiza-
tion setting (only the shrinkage or thresholding operators are
changed). Note that we here consider type-I SBL (equivalent
to MJLE) and not type-II (which again does not scale with
the dimensions of our problem). The algorithms are initialized
with α = 0M×1. The first IS-NMF step of the LRTFS
estimation was initialized with the absolute value of the



9

1 2 3 4 5 6 7 8 9 10

Number of measurements S (in % of T)

0

2

4

6

8

10

12

14

16

18
o

u
tp

u
t 

S
N

R

LRTFS

SBL

L1

Fig. 3. Recovery of a compressively sensed piano sequence using LRTFS,
SBL and `1 regularization.

complex-SVD as explained in Sec. III-A3.LRTFS was applied
with K = 10 and the hyper-parameter λ was incrementally
decreased from 103 to 10−2.

Estimation accuracy was measured by means of output
SNR. The results are displayed in Fig. 3 and show that LRTFS-
based recovery improves accuracy by several dB as compared
to sparsity-based methods. This means that for such audio
signals, there is a significant gain in exploiting low-rankness
instead of sparsity for CS. Such a recovery approach is made
possible thanks to the generative design of LRTFS. Fig. 4
displays the estimated components ĉk returned by LRFTS. It
is interesting to note that only 4 components are meaningful.
The first two notes are well recovered, like the experiment
of Section III-D, see Fig. 1-(b), while the two other notes
are mixed in the third component. The fourth component still
captures some transient information. We also run experiments
for various values of the rank K in the case S = 0.05 T . The
recovery results appeared very robust to this parameter. For
K ∈ {5, 8, 10, 15, 20, 30} the largest difference in the output
SNRs was less than 0.5 dB.

Finally, we run the same CS experiment using the first 12 s
of the song Mamavatu from Susheela Raman. The excerpt
contains acoustic guitar and drums. Output SNRs are displayed
on Fig. 5. Again, LRTFS recovery outperforms `1 and SBL
by several dB which confirms the potential of the proposed
model for audio inverse problems.

VI. CONCLUSION

We have presented a new modeling paradigm that bridges t-f
synthesis modeling and traditional analysis-based approaches.
The proposed generative model allows in turn to design more
sophisticated multi-layer representations that can efficiently
capture diverse forms of structure. Additionally, the generative
modeling allows to exploit NMF-like structure for compressive
sensing which, to the best of our knowledge, is entirely new.
Maximum joint likelihood estimation in the proposed models
can be efficiently addressed using state-of-the art iterative
shrinkage and NMF algorithms. They can be efficiently imple-
mented thanks to dedicated time-frequency analysis/synthesis
packages. In this paper, we also addressed the modeling and
decomposition of real signals in a rigorous way, which was

Fig. 4. Latent components of the compressively sensed piano sequence
recovered by LRTFS. The temporal components are displayed by decreasing
energy (from left to right and top to bottom).
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Fig. 5. Recovery of the compressively sensed Mamavatu sequence using
LRTFS, SBL and `1 regularization.

missing from our preliminary contributions and appeared more
tricky than initially expected.

The MLJE objective function (15) induced by the proposed
generative modeling suggests more general problems of the
form

C(α,W,H, λ) =
1

λ
‖x−Φα‖22 +D(|α|p|v) (68)

where v = vec[WH], D(·|·) is an arbitrary divergence
between nonnegative numbers and p is an arbitrary exponent.
D = DIS and p = 2 follow naturally from the GCM
assumptions but other choices could be more suitable for other
families of signals or images. Such problems do not seem to
have been addressed yet in the literature and offer stimulating
optimization problems. The exact reconstruction case λ = 0
is also very interesting in itself.

Another challenging line of research is the design of
workable large-scale optimization algorithms for maximum
marginal likelihood estimation. As known from [13], such an
estimator would be robust to the joint estimation of λ and v,
something in which MJLE fails in practice.
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