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. When the almost complex structure is integrable it coincides with extremal Kähler metric in the sense of Calabi [8]. We observe that the existence of an extremal toric almost Kähler structure of involutive type implies uniform K-stability and we point out the existence of a formal solution of the Abreu equation for any angle along the invariant divisor. Applying the recent result of Chen-Cheng [10] and He[27], we conclude that the existence of a compatible extremal toric almost Kähler structure of involutive type on a compact symplectic toric manifold is equivalent to its relative uniform K-stability (in a toric sense). As an application, using [5], we get the existence of an extremal toric Kähler metric in each Kähler class of P(O ⊕ O(k 1 ) ⊕ O(k 2 )).

Introduction

The objects and problems of toric Kähler geometry have been fruitfully translated in terms of convex affine geometry in the works of Abreu [START_REF] Legendre | Abreu Kähler geometry of toric varieties and extremal metrics[END_REF], Guillemin [START_REF] Guillemin | Kähler structures on toric varieties[END_REF], Donaldson [START_REF] Donaldson | Constant scalar curvature metrics on toric surfaces[END_REF], Apostolov and al. [START_REF] Apostolov | Tønnesen-Friedman Hamiltonian 2-forms in Kähler geometry. II. Global classification[END_REF] with important applications in the very hard and central problem of Calabi extremal Kähler metrics [START_REF] Calabi | Extremal Kähler metrics. II., Differential geometry and complex analysis[END_REF]. In particular, Donaldson used this theory to prove the celebrated Yau-Tian-Donaldson conjecture, [START_REF] Yau | Open problems in Differential Geometry[END_REF][START_REF] Tian | Kähler-Einstein metrics with positive scalar curvature[END_REF][START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF], for toric surfaces with vanishing Futaki invariant in [START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF][START_REF]Donaldson Interior estimates for solutions of Abreu's equation[END_REF][START_REF] Donaldson | Extremal metrics on toric surfaces: a continuity method[END_REF][START_REF] Donaldson | Constant scalar curvature metrics on toric surfaces[END_REF]. There is a relative version of this conjecture due to Székelyhidi [START_REF]Székelyhidi Extremal metrics and K-stability Bull[END_REF] which is more relevant in the presence of symmetries and for general extremal (non constant scalar curvature) Kähler metrics. This conjecture predicts that given a complex compact manifold (M 2n , J) with a Kähler class Ω and a maximal compact torus T ⊂ Aut(M, J), the existence of an invariant extremal Kähler metrics in Ω is equivalent to the "relative K-stability" of (M 2n , J, Ω) in a sense to be determined precisely but which would be related to an algebro-geometric notion of stability.

We recall briefly the toric counterpart of this theory, with more details in Section 2, as it was developped by Donaldson [START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF]. In the toric setting, (M 2n , J, Ω) is invariant by a compact torus T = T n and caracterized completely by a convex polytope P , open and relatively compact in t * , the dual of the Lie algebra t of T , together with an affine measure σ ∈ M(P ) on the boundary of P . The K-stability (relative to T ) is related to the positivity of a certain functional

L (P,σ) (f ) = ∂P f σ - 1 2 P f A σ dx
on a set C of convex functions f on P , see Definition 3.1. In this definition, dx = dx 1 ∧ • • • ∧ dx n is a Lebesgue measure on t * ≃ R n and A σ ∈ Aff(t * ) is the extremal affine function, see §2. [START_REF] Apostolov | Tønnesen-Friedman Hamiltonian 2-forms in Kaehler geometry III: Extremal metrics and stability[END_REF]. Following [START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF][START_REF] Székelyhidi | Extremal metrics and K-stability[END_REF], if there exists λ > 0 such that

L (P,σ) (f ) ≥ λ ∂P f σ
for any "normalized" f in C then (P, σ) is uniformly K-stable and K-stable if λ = 0 is the only possible choice , see Definition 3.1.

The K-stability or uniform K-stability only depends on P and σ and we define uKs(P ) = {σ ∈ M(∂P ) | (P, σ) is uniformly K-stable},

Ks(P ) = {σ ∈ M(∂P ) | (P, σ) is K-stable}. (1) 
Of course we have uKs(P ) ⊂ Ks(P ).

Compatible Kähler structures are essentially parametrized by a set of convex functions S(P, σ) ⊂ C ∞ (P ), called symplectic potentials and satisfying some boundary condition, recalled in §2.2, depending on σ. Given u ∈ S(P, σ), the associated Kähler structure (g u , J u ) is extremal in the sense of Calabi if it satisfies the following so-called Abreu equation

(2) S(H u ) = - n i,j=1 ∂ 2 u ij ∂x i ∂x j ∈ Aff(t * )
where

H u = (u ij ) = ∂ 2 u ∂xi∂xj -1
is the inverse Hessian of u for a flat connection on t * ≃ R n .

The relative version of the Yau-Tian-Donaldson conjecture for toric manifold is generalized following [START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF] by the prediction that, given a simple relatively compact polytope P ⊂ R n , one should have [START_REF] Apostolov | Tønnesen-Friedman Hamiltonian 2-forms in Kähler geometry. II. Global classification[END_REF] {σ ∈ M(∂P ) | ∃u ∈ S(P, σ) such that S(H u ) ∈ Aff(t * )} = Ks(P ).

Some experts think that the stability condition must be strenghtened and one of the suggestion, see [START_REF] Székelyhidi | Extremal metrics and K-stability[END_REF][START_REF] Chen | Sheng Uniform K-stability for extremal metrics on toric varieties[END_REF], is to conjecture that (4) {σ ∈ M(∂P ) | ∃u ∈ S(P, σ) such that S(H u ) ∈ Aff(t * )} = uKs(P ).

As we argue in §3.2, by combining Chen-Li-Sheng work [START_REF] Chen | Sheng Uniform K-stability for extremal metrics on toric varieties[END_REF] and the recent progress of Chen-Cheng [START_REF] Chen | On the constant scalar curvature Kähler metrics (III), General automorphism group[END_REF] and He [START_REF] He | On Calabi's extremal metric and properness[END_REF], with Donaldson [START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF] and Zhou-Zhu [START_REF] Zhou | K-stability on toric manifolds[END_REF] results this conjecture is indeed true.

Theorem 1.1. Given any compact convex labelled simple polytope (P, σ), [START_REF] Apostolov | Tønnesen-Friedman Extremal Kaehler metrics on projective bundles over a curve[END_REF] ∃u ∈ S(P, σ) such that S(H u ) ∈ Aff(t * ) if and only if (P, σ) is uniformly K-stable (i.e σ ∈ uKs(P )).

In the constant scalar curvature case, that is when A (P,σ) is a constant, this last statement is Theorem 1.8 of Chen-Cheng in [START_REF] Chen | On the constant scalar curvature Kähler metrics (III), General automorphism group[END_REF] given that Donaldson showed in [14, Proposition 5.2.2] that uniform K-stability of (P, σ) is equivalent to the L 1stability of Chen and Cheng. Theorem 1.1 above is an application of He's recent important result [START_REF] He | On Calabi's extremal metric and properness[END_REF].

Remark 1.2. To pass from Theorem 1.1 to a positive resolution of the relative version of the Yau-Tian-Donaldson conjecture one would need to show that the uniform stability of a labelled polytope is equivalent to the stability with respect to toric degenerations, see Remark 3.2.

Observe that (2) is a non-linear 4-th order PDE problem on φ but only a linear second order PDE problem on H φ . Denote AK(P, σ) the set of matrix-valued function H : P → Gl(R n ) symmetric, positive definite and satisfying some boundary condition depending on σ detailled in §2.3. Then one can define a smooth toric almost Kähler structure (g H , J H ) on (M, ω) as explained in [START_REF] Apostolov | Tønnesen-Friedman Hamiltonian 2-forms in Kähler geometry. II. Global classification[END_REF][START_REF]Lejmi Extremal almost-Kahler metrics[END_REF] and recalled in §2.3. Such an almost Kähler structure (g H , J H ) is extremal in the sense of Lejmi if it satisfies the Abreu equation [START_REF] Apostolov | Gauduchon Ambitoric geometry I: Einstein metrics and extremal ambikaehler structures[END_REF], that is ( 6)

S(H) = - n i,j=1 ∂ 2 H ij ∂x i ∂x j ∈ Aff(t * ).
Lejmi studied the notion of extremal toric almost Kähler metrics in [START_REF]Lejmi Extremal almost-Kahler metrics[END_REF] and showed that a large and interesting part of them (the involutive type ones) is in one-to-one correspondence with AK(P, σ).

Chen-Li-Sheng proved that existence of a toric Calabi extremal Kähler metrics implies that the toric variety is uniformly K-stable, proving one side of the conjecture for toric manifolds [START_REF] Chen | Sheng Uniform K-stability for extremal metrics on toric varieties[END_REF]. In this note we observe and explain that their proof works equally well for extremal almost Kähler metrics and prove that Proposition 1.3. For any simple relatively compact P ⊂ R n , we have

(7) {σ ∈ M(∂P ) | ∃H ∈ AK(P, σ) such that S(H) ∈ Aff(t * )} ⊂ uKs(P ).
In particular, if (M, J, g, ω) is a compact toric Kähler manifold such that (M, ω) admits a compatible extremal toric almost Kähler metrics of involutive type then (M, J, [ω]) is uniformly K-stable1 with respect to toric degenerations.

As a direct consequence of this last Proposition and Theorem 1.1 above we get Corollary 1.4. The existence of an extremal toric almost Kähler metric of involutive type compatible with ω implies the existence of a compatible extremal toric Kähler metric.

Remark 1.5. It is unlikely that in general, for compact Kähler manifold of non-toric type, the existence of an extremal almost Kähler metric (M, J, ω) implies uniform K-stability of (M, J) or the existence of an extremal Kähler metric compatible with ω. However, as pointed out in [START_REF] Keller | Lejmi On the lower bounds of the L 2 -norm of the Hermitian scalar curvature[END_REF], a certain notion of stability could generalize the conjecture and theory to almost Kähler metrics.

In [START_REF] Apostolov | Tønnesen-Friedman Extremal Kaehler metrics on projective bundles over a curve[END_REF], for any k 2 , k 1 > 0 and any toric symplectic form ω on the total space of the projective bundle The convex affine geometry point of view has been exploited successfully to provide a complete understanding of the situation, confirming the relative version of the Yau-Tian-Donaldson conjecture, when the moment polytope is a convex quadrilateral in [START_REF] Apostolov | Gauduchon Ambitoric geometry I: Einstein metrics and extremal ambikaehler structures[END_REF][START_REF] Apostolov | Gauduchon Ambitoric geometry II: Extremal toric surfaces and Einstein 4-orbifolds[END_REF][START_REF] Legendre | Toric geometry of convex quadrilaterals[END_REF][START_REF] Sektnan | An investigation of stability on certain toric surfaces[END_REF] (in particular for toric compact orbisurfaces with second betti number equal 2) including explicit solution or destabilizing test configuration whenever they exist. A key ingredient of the aforementioned papers is an explicit formal solution H A,B : P → Sym 2 (t * ) depending on 2 polynomials A and B on one variable satisfying the boundary condition depending on σ and satisfying the second order PDE corresponding to the extremal equation of Calabi. One of the main observations of [START_REF] Apostolov | Gauduchon Ambitoric geometry I: Einstein metrics and extremal ambikaehler structures[END_REF][START_REF] Apostolov | Gauduchon Ambitoric geometry II: Extremal toric surfaces and Einstein 4-orbifolds[END_REF][START_REF] Legendre | Toric geometry of convex quadrilaterals[END_REF][START_REF] Sektnan | An investigation of stability on certain toric surfaces[END_REF] is that H A,B is positive definite if and only if the labelled polytope (P, σ) is K-stable and if and only if H A,B is the inverse Hessian of a symplectic potential.

P(O ⊕ O(k 1 ) ⊕ O(k 2 )) → P 1 ,
A complete answer, like the one given for convex quadrilateral is certainly out of reach for convex polytope in general. However, we point out in this note that some parts of the strategy of [START_REF] Apostolov | Gauduchon Ambitoric geometry I: Einstein metrics and extremal ambikaehler structures[END_REF][START_REF] Apostolov | Gauduchon Ambitoric geometry II: Extremal toric surfaces and Einstein 4-orbifolds[END_REF][START_REF] Legendre | Toric geometry of convex quadrilaterals[END_REF][START_REF] Sektnan | An investigation of stability on certain toric surfaces[END_REF] may be extended in general thanks to the following observation.

Proposition 1.7. For any simple labelled polytope (P, σ), there exists an infinite dimensional family of formal extremal solutions H : P → Sym 2 (t * ) of equation [START_REF] Apostolov | Gauduchon Ambitoric geometry I: Einstein metrics and extremal ambikaehler structures[END_REF] satisfying the boundary condition associated to σ. Whenever one of these solutions is positive definite on the interior of P , (P, σ) is uniformly K-stable.

We discuss in §3.4 consequences of this last result and open problems in relation with the relative toric version of the Yau-Tian-Donaldson conjecture.

In the next section we gather facts, definition, key results and recall brief explanations on the topic of toric extremal (almost) Kähler metrics. Section 3 contains the proof of Propositions 1.3 and 1.7.

Aknowledgement The fact that the statement of Theorem 1.1 should follow more or less directly by the works of [START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF][START_REF] He | On Calabi's extremal metric and properness[END_REF][START_REF] Zhou | K-stability on toric manifolds[END_REF] has been pointed out to me by Vestislav Apostolov. I also thank Mehdi Lejmi for comments on a previous version and the anonymous referee for careful reading.

2. Labelled polytope and toric (almost) Kähler geometry 2.1. Rational labelled polytopes and toric symplectic orbifolds.

2.1.1. Notations. In the sequel a polytope P refers to an open, convex, polyhedral, simple and relatively compact subset of an affine space t * ≃ R n . Simple means that each vertex is the intersection of exactly n facets (where n is the dimension of t * ). We order and denote the facets F 1 , . . . F d ⊂ P . Choosing a non-zero inward normal vector n s ∈ t to each facet F s , we can write

P = {x ∈ t * | ℓ n,s (x) > 0, s = 1, . . . , d}
where ℓ n,s is the unique affine-linear function on t * such that dℓ n,s = n s and

F s = ℓ -1
n,s (0) ∩ P . Definition 2.1. Let P ⊂ t * be a polytope as above.

(a) A labelling for P is an ordered set of non-zero vectors n = ( n 1 , . . . , n d ) ∈ (t) d each n s being normal to the facet F s and inward to P . A labelled polytope is a pair (P, n). (b) A rational labelled polytope is a triple (P, n, Λ) where (P, n) is a labelled polytope and Λ ⊂ t is a lattice containing the labels n 1 , . . . , n d . (c) A Delzant polytope is a pair (P, Λ) where Λ ⊂ t is a lattice containing a set of labels n = ( n 1 , . . . , n d ) such that for each vertex {p} = ∩ s∈Ip F s the set

{ n s | s ∈ I p } is a Z-basis of Λ.
We denote by N(P ) := { n = ( n 1 , . . . , n d ) ∈ (t) d | (P, n) labelled polytope}. Obviously N(P ) ≃ R d >0 . We will also be working on the dual space M(P ) of mesures σ on ∂P such that there exists a labelling n ∈ N(P ) satisfying ( 8)

n s ∧ σ = -dx on F s where dx = dx 1 ∧ • • • ∧ dx n is a fixed affine invariant volume form on t * . Again M(P ) ≃ R d >0
and σ ∈ M(P ) is determined by its restriction to the facets of P . We write (formally) σ = (σ 1 , . . . , σ d ) where σ s = σ |F s is an affine invariant (n-1)-form on the hyperplane supporting

F s . Remark 2.2. Fixing dx = dx 1 ∧ • • • ∧ dx n once
and for all, we get a bijection N(P ) ≃ M(P ), n → σ n with inverse σ → n σ given by the relation [START_REF] Calabi | Extremal Kähler metrics. II., Differential geometry and complex analysis[END_REF]. In the following we use both notation (P, σ) or (P, n) for the labelled polytope (P, n σ ).

2.1.2. Delzant-Lerman-Tolman correspondence. Delzant showed that compact toric symplectic manifolds are in one to one correspondance with Delzant polytopes via the momentum map [START_REF]Delzant Hamiltoniens périodiques et images convexes de l'application moment[END_REF] and Lerman-Tolman [START_REF] Lerman | Tolman Hamiltonian torus actions on symplectic orbifolds and toric varieties[END_REF] extended the correspondence to orbifolds by introducing rational labelled polytope. They are many ways to construct the corresponding (compact) toric symplectic orbifold (M, ω, T := t/Λ) from the data (P, n, Λ). We recall only the one we will use which, as far as we know, has been developped in [START_REF] Duistermaat | Pelayo Reduced phase space and toric variety coordinatizations of Delzant spaces[END_REF][START_REF]Donaldson Kähler geometry on toric manifolds, and some other manifolds with large symmetry, Handbook of geometric analysis[END_REF][START_REF] Legendre | Toric Kähler-Einstein metrics and convex compact polytopes[END_REF].

(1) Local toric charts: Each vertex p of P is the intersection of n facets thus corresponds to a subset I p ⊂ {1, . . . , d} of n indices which in turn corresponds to a basis of

t namely { n s | s ∈ I p } that induces a sublattice Λ p = span Z { n i | i ∈ I p } of Λ. Considering the torus T p = t/Λ p we get a (non-compact) toric symplectic manifold (M p := ⊕ s∈Ip C n s ≃ C n , ω std , T p ) by identifying T p ≃ T n = R n Z n via which T p acts on C n . The momentum map x p : M p → t * is given x p (z) = p + 1 2 ∈Ip |z s | 2 α s where {α n,i | i ∈ I p } ⊂ t * is the dual basis of { n i | i ∈ I p }.
(2) Gluing over P × T : Now using the exact sequence

Λ/Λ p ֒→ T p φp ։ T
where T = t/Λ we get a way to glue equivariantly the (uniformizing) chart M p over P × T seen as a toric symplectic manifold with momentum map x being the projection on the first factor, see [START_REF] Legendre | Toric Kähler-Einstein metrics and convex compact polytopes[END_REF] for more details.

In this construction, (M, ω) is obtained as the compactification of (P ×T, dx∧dθ). Here dx ∧ dθ is the canonical symplectic form of P × T coming from the one of the universal cover P × t ⊂ t * × t. In particular, we get directly a set of action angle coordinates (x, θ) on the set where the action is free M = P × T = x -1 (P ). These coordinates are usually constructed with the help of a Kähler metric [START_REF] Calderbank | Gauduchon The Guillemin formula and Kähler metrics on toric symplectic manifolds[END_REF] and one can prove that they are well defined up to an equivariant symplectomorphism.

2.2. Symplectic potentials and toric Kähler metrics. Let (M, ω, T ) be a compact toric symplectic orbifold associated with the rational labelled polytope (P, n, Λ). In particular x : M → P is the momentum map. We fix a set of action angle coordinates (x, θ) on the set M where the torus action is free. The next proposition gathers some now well-known facts establishing a correspondence between toric Kähler structures and symplectic potentials.

Proposition 2.3. [START_REF] Legendre | Abreu Kähler geometry of toric varieties and extremal metrics[END_REF][START_REF] Apostolov | Tønnesen-Friedman Hamiltonian 2-forms in Kähler geometry. II. Global classification[END_REF][START_REF]Donaldson Interior estimates for solutions of Abreu's equation[END_REF][START_REF] Guillemin | Kähler structures on toric varieties[END_REF] For any strictly convex function u ∈ C ∞ (P ),

g u = i,j u ij dx i ⊗ dx j + u ij dθ i ⊗ dθ j , (9) 
with (u ij ) = Hess u and (u ij ) = (u ij ) -1 , is a smooth Kähler structure on P × T compatible with the symplectic form dx ∧ dθ. Conversely, any T -invariant compatible Kähler structure on (P × T, dx ∧ dθ) is of this form.

Moreover, the metric g u is the restriction of a smooth (in the orbifold sense) toric Kähler metric on (M, ω) if and only if

(1) u ∈ C 0 (P ) whose restriction to P or to any face's interior (except vertices), is smooth and strictly convex;

(2) uu n is the restriction of a smooth function defined on an open set containing P where

(10) u n = 1 2 d s=1 ℓ n,s log ℓ n,s
is the so-called Guillemin potential.

The functions u satisfying the conditions of the previous Proposition are called symplectic potentials and we denote the set of such as S(P, n) or S(P, σ n ) . In sum, the set of smooth compatible toric (orbifold) Kähler metrics on (M, ω, T ) is in one-to-one correspondance with the quotient of S(P, n) by Aff(t * , R), acting by addition. The correspondance is explicit and given by (9).

Remark 2.4. The Guillemin potential u n lies in S(P, n) and corresponds to the Guillemin Kähler metric on the toric symplectic orbifold in the rational case.

The boundary conditions (1) and (2) of Proposition 2.3 appear when comparing the metrics g u and g u n on the charts M p as defined in §2.1.2.

Remark 2.5. Passing from symplectic to complex point of views is direct in toric geometry. Given u ∈ S(P, σ) the map (x, θ) → (∇u) x + √ -1θ provides the complex coordinates as the coordinates on the universal covering of the big orbit M ≃ (C * ) n , see e.g. [START_REF]Donaldson Kähler geometry on toric manifolds, and some other manifolds with large symmetry, Handbook of geometric analysis[END_REF]. In these coordinates the Kähler potential of the Kähler form ω is the Legendre transform of u.

Toric almost Kähler metrics.

An almost Kähler structure (g, J, ω) on M 2n has everything of a Kähler structure but the endomorphism J ∈ Γ(End(T M )), is not necessarily integrable. That is, g is a Riemannian metric, ω is a symlectic form, and J ∈ Γ(End(T M )) squares to minus the identity and they satisfy the following compatibility relation:

g(J•, J•) = g(•, •) g(J•, •) = ω(•, •).
A toric almost Kähler metric (g, J) is then an almost Kähler metric on a toric symplectic manifold/orbifold (M, ω, T ) such that (g, J) is compatible with ω and g (equivalently J) is invariant by the torus T .

Let (M, ω, T ) be a toric symplectic manifold with a momentum map x : M → t * and moment polytope P = x(M ) labelled by n ∈ N(P ). We use notation layed in §2.1.1 and fix a set of affine coordinates x = (x 1 , . . . , x n ) on t * . In [START_REF]Lejmi Extremal almost-Kahler metrics[END_REF], the author proves among other things that T -invariant almost Kähler structures compatible with (M, ω) and such that the g-orthogonal distribution to the orbit is involutive (we call it toric almost Kähler structure of involutive type) are parametrized by symmetric bilinear forms [START_REF] Chen | Sheng Uniform K-stability for extremal metrics on toric varieties[END_REF] H : P → Sym 2 (t * ) satisfying some conditions pointed out in [START_REF] Apostolov | Tønnesen-Friedman Hamiltonian 2-forms in Kähler geometry. II. Global classification[END_REF] that we now recall. (i) Smoothness H is the restriction on P of a smooth Sym 

g = i,j G ij dx i ⊗ dx j + H ij dθ i ⊗ dθ j , (14) 
where

G = (G ij ) = H -1 .
Remark 2.7. Condition [START_REF] Darvas | The Mabuchi completion of the space of Kähler potentials[END_REF] implies that H(u s , •) : P → R vanishes on F s and in particular is constant. Then for all y ∈ Fs , we have

(dH) y (u s , •) ∈ t * ⊗ (T y Fs ) 0 = t * ⊗ Ru s
where (T y Fs ) 0 = Ru s denotes the annihilator of T y Fs ⊂ T y (t * ) = t * in t. Therefore condition [START_REF]Delzant Hamiltoniens périodiques et images convexes de l'application moment[END_REF] is that the trace of (dH) y (u s , •) equals 2.

Fixing an affine invariant volume form dx = dx 1 ∧ • • • ∧ dx n , the labelling n ∈ N(P ) corresponds to a measure σ ∈ M(P ) as defined in §2.1.1. Observe that the Boundary Condition above (i.e condition (ii) namely [START_REF] Darvas | The Mabuchi completion of the space of Kähler potentials[END_REF],and ( 13)) implies that

2 σ = 1 2 n i,j=1 (-1) i H ij,j dx 1 ∧ • • • ∧ dx i ∧ • • • ∧ dx n . ( 15 
)
Assuming condition [START_REF] Darvas | The Mabuchi completion of the space of Kähler potentials[END_REF] holds condition ( 13) is equivalent to (15).

2 When a set of coordinates is fixed, we use the notation The inverse (u ij ) of the Hessian of symplectic potential u ∈ S(P, n) can be extended as a bilinear form H u ∈ AK(P, σ). Observe also that for H 0 , H 1 ∈ AK(P, σ) we have

f ,i = ∂ ∂x i f , f ,ij = ∂ 2 ∂x j ∂x i f ...
H t = tH 1 + (1 -t)H 0 ∈ AK(P, σ) ∀t ∈ [0, 1].
The space AK(P, σ) is then a convex infinite dimensional set of metrics.

2.4. The extremal vector field. Given a symplectic potential u ∈ S(P, n) the scalar curvature of the Kähler metric g u is given by the pull back to M of the following expression, called the Abreu formula ( 16)

S(H u ) = - n i,j=1 ∂ 2 u ij ∂x i ∂x j
as proved in [START_REF] Legendre | Abreu Kähler geometry of toric varieties and extremal metrics[END_REF] by direct computation. The function ( 16) extends as a smooth function on P because the boundary condition (2) of Proposition 2.3 implies that (u ij ) ∈ Γ(P, t * ⊗ t * ) extends as a smooth bilinear form on P , see [START_REF] Apostolov | Tønnesen-Friedman Hamiltonian 2-forms in Kähler geometry. II. Global classification[END_REF]. It is shown in [START_REF]Lejmi Extremal almost-Kahler metrics[END_REF] that the suitable connection one should consider in case of almost extremal metrics is the Chern connection (which do not coincides with the Levi-Civita connection in the non-Kähler setting). It turns out that the formulas in the toric case coincide in the sense that for H ∈ AK(P, σ), the Hermitian scalar curvature is the pull-back of

S(H) := - n i,j=1
H ij,ij .

Calabi's extremal Kähler metrics are caracterized by the condition that the Hamiltonian vector field of the scalar curvature is a Killing vector field [START_REF] Calabi | Extremal Kähler metrics. II., Differential geometry and complex analysis[END_REF] and extremal almost Kähler metric are defined with the same condition on the Hermitian scalar curvature [START_REF]Lejmi Extremal almost-Kahler metrics[END_REF]. Therefore, here, they correspond to the H ∈ AK(P, σ) such that [START_REF] Donaldson | Extremal metrics on toric surfaces: a continuity method[END_REF] S(H) ∈ Aff(t * , R).

As observed by Donaldson in [START_REF] Donaldson | Constant scalar curvature metrics on toric surfaces[END_REF], picking an invariant volume form dx = dx 1 ∧ .... ∧ dx n on t * , the L 2 -projection of S(H u ) on Aff(t * , R) does not depend on the choice of u ∈ S(P, n). This fact holds for H ∈ AK(P, σ) and is the effect of a more general theory of invariant developped in [START_REF] Futaki | An obstruction to the existence of Einstein Kähler metrics[END_REF][START_REF] Futaki | Bilinear forms and extremal Kähler vector fields associated with Kähler classes[END_REF][START_REF]Lejmi Extremal almost-Kahler metrics[END_REF] which in the toric case follows from integration by parts. Indeed, using the condition (ii) of definition of AK(P, σ) we have that for any f ∈ Aff(t * , R) and H ∈ AK(P, σ)

(18) P S(H)f dx = 2 ∂P f σ n .
These computations do not require the existence of a lattice containing n σ , the labelling associated to σ n ∈ M(P ) (see §2.1.1), or of a compact toric symplectic orbifold anywhere. Summing up these facts we get the following key result. Proposition 2.8. [START_REF] Futaki | An obstruction to the existence of Einstein Kähler metrics[END_REF][START_REF] Futaki | Bilinear forms and extremal Kähler vector fields associated with Kähler classes[END_REF][START_REF] Donaldson | Constant scalar curvature metrics on toric surfaces[END_REF][START_REF]Lejmi Extremal almost-Kahler metrics[END_REF] For any labelled polytope (P, σ), there exists a unique affine function A P,σ ∈ Aff(t * , R) such that (19)

P A P,σ f dx = P S(H)f dx = 2 ∂P f σ
for any f ∈ Aff(t * , R) and any H ∈ AK(P, σ). Moreover, if there exists H ∈ AK(P, σ) such that the metric g H is extremal almost Kähler in the sense of Calabi (and Lejmi) then [START_REF] Duistermaat | Pelayo Reduced phase space and toric variety coordinatizations of Delzant spaces[END_REF] S(H) = A P,σ .

Remark 2.9. A direct corollary of the last Proposition is that the functional L (P,σ) vanishes identically on affine-linear function.

Remark 2.10. The function A P,σ depends linearly on σ ∈ M(P ).

Extremal Kähler metrics unicity and an open condition.

Uniqueness of extremal toric Kähler metric in a given class for a fixed torus is not an issue thanks to the proof of Guan in [START_REF] Guan | On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles[END_REF], using the convexity of the K-energy functional over geodesics. His proof works very well on symplectic potentials in S(P, n) as soon as P is compact using the works of [START_REF] Donaldson | Constant scalar curvature metrics on toric surfaces[END_REF], see e.g. [31, §2.2.1], because S(P, n) is a convex set with respect to smooth geodesics for the Mabuchi metric (which, here, are the affine lines (1t)u 0 + tu 1 ) defined on the space of Kähler metrics [START_REF] Guan | On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles[END_REF]. Therefore, we get the following unicity result.

Proposition 2.11. Let (P, n) be a labelled polytope. If u 0 , u 1 ∈ S(P, n) satisfy S(u 0 ) = S(u 1 ) = A P, n then u 1u 0 is the restriction to P of an affine linear function on t * .

Donaldson proved in [START_REF] Donaldson | Extremal metrics on toric surfaces: a continuity method[END_REF] that the set of labelling n ∈ N(P ) for which the Abreu's equation has a solution is open in N(P ), the d-dimensional open cone of labellings of P in t d . Proposition 2.12 (Donaldson [START_REF] Donaldson | Extremal metrics on toric surfaces: a continuity method[END_REF]). Let (P, σ) be a labelled polytope. Assume that there is a potential u ∈ S(P, n σ ) satisfying the Abreu equation. Then there exists an open neighborhood U ⊂ M(P ) of σ such that for each σ ∈ U there exists a potential ũ ∈ S(P, n σ ) satisfying the Abreu equation.

The statement in [START_REF] Donaldson | Extremal metrics on toric surfaces: a continuity method[END_REF] is not exactly the one above but the proof works in this degree of generality. The argument is standard. The linearisation of u → S(H u ) is an elliptic operator. To get around the lack of compacity of P , Donaldson argue that the system of charts associated to the vertices, see §2.1.2, provides the kind of compactification needed. This idea is developped with details in [START_REF] Legendre | Toric Kähler-Einstein metrics and convex compact polytopes[END_REF].

Uniform K-stability and Extremal almost Kähler metrics

3.1. Uniform K-stability and Chen-Li-Sheng result. Consider the functional

L (P,σ) (f ) = ∂P f σ - 1 2 P f A σ dx
which can be defined on various spaces of functions on P , for example C 0 (P ). From Proposition 2.8 we get that L (P,σ) vanishes identically on the space of affine-linear functions.

Following [START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF], we define the set C ∞ of continuous convex function on P which are smooth on the interior, we have S(P, σ) ⊂ C ∞ for all σ ∈ M(P ). We fix p o ∈ P , the set of a normalized functions is

C := {f ∈ C ∞ | f (p) ≥ f (p o ) = 0 ∀p ∈ P }.
Note that the only affine-linear function in C is the trivial one.

Definition 3.1. A labelled polytope (P, σ) is uniformly K-stable if there exists λ > 0 such that

L (P,σ) (f ) ≥ λ ∂P f σ for any f ∈ C.
Remark 3.2. Let T (P ) be the set of continuous piecewise linear convex functions on P , that is f ∈ T (P ) if there are f 1 , . . . , f m ∈ Aff(t * , R) such that f (x) = max{f 1 (x), . . . , f m (x)} for x ∈ P . Given a lattice Λ ⊂ t, we define T (P, Λ) ⊂ T (P ), the set of continuous piecewise linear convex functions on P taking integral values on the dual lattice Λ * ⊂ t * . When (P, η, Λ) is rational Delzant and its vertices lie in the dual lattice Λ * ⊂ t * , the associated symplectic manifold (M, ω) is rational (that is [ω] ∈ H 2 dR (M, Q)) and for any compatible toric complex structure J on M the Kähler manifold (M, J, k[ω]) (for some k big enough) is polarized by a line bundle L k → M . In this situation, Donaldson presents in [START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF] a way to associate a test configuration (X f , L f ) over (M, L) to any function f ∈ T (P, Λ) such that the Donaldson-Futaki invariant of (X f , L f ) coincides, up to a positive multiplicative constant, with L (P,σ) (f ). These test configurations are called toric degenerations in [START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF] and [START_REF] Zhou | K-stability on toric manifolds[END_REF]. The Yau-Tian-Donaldson conjecture predicts that if A P, n is a constant and there exists a solution u ∈ S(P, n) of the Abreu equation (2) then L (P,σ) (f ) ≥ 0 for any f ∈ T (P, Λ) with equality if and only f is affine-linear.

Observe that the map f → ∂P f σ is a norm on C. Therefore, Definition 3.1 coincides with the notion of uniform K-stability in the sense of Székelyhidi [START_REF] Székelyhidi | Extremal metrics and K-stability[END_REF] but with a different norm and adapted to the toric situation. Moreover, this is the notion of stability in Definition 3.1 that Chen-Li-Sheng used in [START_REF] Chen | Sheng Uniform K-stability for extremal metrics on toric varieties[END_REF] to prove that Theorem 3.3. [START_REF] Chen | Sheng Uniform K-stability for extremal metrics on toric varieties[END_REF] If (P, σ) is a labelled polytope and that there exists a solution u ∈ S(P, σ) of the Abreu equation (2) then (P, σ) is uniformly K-stable.

Proof of Proposition 1.3. Our Proposition 1.3 follows by observing that in the proof of the last Theorem, Chen-Li-Sheng only use the fact that the Hessian and inverse Hessian H u of the solution u ∈ S(P, σ) are positive definite on the interior of P . One important step for their proof is to show that : a labelled polytope (P, σ) is uniformly K-stable if and only if L (P,σ) (f ) ≥ 0 on some compactification C K * of C. But this is general and does not need any hypothesis on the existence of a solution of the Abreu equation. This latter hypothesis is only needed for Lemma 5.1 of [START_REF] Chen | Sheng Uniform K-stability for extremal metrics on toric varieties[END_REF]. The crucial observation is the following, if H : P → Sym 2 (t * ) satisfies equation [START_REF] Apostolov | Gauduchon Ambitoric geometry I: Einstein metrics and extremal ambikaehler structures[END_REF], that is S(H) = -n i,j=1 H ij,ij = A (P,σ) then the boundary conditions (ii) of §2.3 implies that [START_REF] Futaki | An obstruction to the existence of Einstein Kähler metrics[END_REF] L (P,σ) (f ) = P H, Hessf dx whenever f is twice differentiable. Formula ( 21) goes back to [START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF]. Therefore, let H be a solution of equation ( 6), then for any interval I ⊂⊂ P and sequence of convex functions f k ∈ C ∞ ⊂ C ∞ (P ) converging locally uniformly to f then we have, using [START_REF] Futaki | An obstruction to the existence of Einstein Kähler metrics[END_REF] and weak convergence of Monge-Ampère measures, that

L (P,σ) (f k ) ≥ τ m I (f )
where m I (f ) is the Monge-Ampère measure induced by f on I and τ is a positive constant independant of k. This is the claim of Lemma 5.1 of [START_REF] Chen | Sheng Uniform K-stability for extremal metrics on toric varieties[END_REF] from which one can derive Proposition 1.3 using the same argument than [START_REF] Chen | Sheng Uniform K-stability for extremal metrics on toric varieties[END_REF] in the last paragraph of their section 5.

3.2.

Uniform K-stability implies the existence of an extremal toric Kähler metric. In this paragraph we will put together the work of Donaldson [START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF], He in [START_REF] He | On Calabi's extremal metric and properness[END_REF] and Zhou-Zhu [START_REF] Zhou | K-stability on toric manifolds[END_REF] to prove that Proposition 3.4. Let (P, σ) be a compact convex simple polytope. If (P, n) is uniformly K-stable then there exists u ∈ S(P, σ) such that S(H u ) = A (P,σ) .

Given a compact group K ⊂ Aut 0 (M, J) containing the extremal vector field (the Hamiltonian Killing version of it [START_REF] Futaki | Bilinear forms and extremal Kähler vector fields associated with Kähler classes[END_REF]) in its Lie algebra center and a fixed J-compatible K-invariant Kähler metric ω, one can define the modified Mabuchi K-energy as a functional K on the space of K-invariant Kähler potentials

H K := {φ ∈ C ∞ (M ) K | ω + dd c φ > 0}.
This functional is important because it detects the K-invariant extremal Kähler metrics in (M, J, [ω]). Let K = K 0 be a compact subgroup of Aut 0 (M, J) whose complexified Lie algebra h 0 is the reduced part of h := LieAut 0 (M, J). Denote G 0 the complexification of K 0 in Aut 0 (M, J). An important ingredient in this theory is a certain distance d 1,G0 on H K introduced by Darvas [START_REF] Darvas | The Mabuchi completion of the space of Kähler potentials[END_REF] and corresponding to the L 1 -norm on T φ H K0 . That is for ψ ∈ T φ H K0 , the norm M |ψ|ω n φ allows to compute the lenght of curves and then d 1 (φ 0 , φ 1 ) is the infimum of the lenght of the curves joining φ 0 and φ 1 . Then d 1,G0 (φ 0 , φ 1 ) = inf g∈G0 d 1 (φ 0 , g * φ 1 ). Theorem 3.5. [Theorem 4 of He [START_REF] He | On Calabi's extremal metric and properness[END_REF]] There is a K 0 -invariant extremal Kähler metrics in (M, J, [ω]) if and only if the modified Mabuchi K-energy is bounded below on H K0 and proper with respect to d 1,G0 .

On a toric manifold, following Donaldson [START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF], it is more natural to define the K-energy on the space of symplectic potentials as follow. Let (P, σ) be a labelled compact simple polytope with extremal affine function A P, n ∈ Aff(t * , R) and u ∈ S(P, σ), the modified Mabuchi K-energy (of the corresponding Kähler potential) is ( 22)

F (P,σ) (u) = - P log det(u ij )dx + L (P,σ) (u).
Indeed, direct calculation shows that the critical points of this functional on S(P, n) are the symplectic potentials satisfying

S(H u ) = A (P,σ) .
This allows us to translate He's Theorem (recalled in Theorem 3.5 above) in terms of (P, σ) only. As explained in [START_REF] Legendre | Toric Kähler-Einstein metrics and convex compact polytopes[END_REF], when it concerns T -invariant objects (T ⊂ K 0 in the toric case), analytic proofs eg. estimates of Chen-Cheng [START_REF] Chen | On the constant scalar curvature Kähler metrics (III), General automorphism group[END_REF], translate without problems using the smooth local complex charts (which do exist for any simple labeled polytope) and the compacity of P . Then to prove Proposition 3.4 it is suffisant to show that F (P,σ) is bounded below on C and that it is proper with respect to d 1,G0 . The first condition is given by Donaldson.

Lemma 3.6. [Lemma 3.2 of Donaldson [START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF]] If (P, σ) is uniformly K-stable then F (P,σ) is bounded below on C.

We will derive the second using the following result.

Lemma 3.7. [Lemma 2.3 of Zhou-Zhu [START_REF] Zhou | K-stability on toric manifolds[END_REF]] If (P, σ) is uniformly K-stable then there exist real positive constants C, D such that

(23) F (P,σ) (u) ≥ C P udx -D for all u ∈ C.
Given two normalized symplectic potentials u 0 , u 1 ∈ S(P, σ) ∩ C ∞ , we consider the curve u t = tu 1 + (1t)u 0 ∈ S(P, σ) and the curve given by its Legendre transform φ t : t → R (which is a curve of Kähler potentials in the sense that (ω = dd c φ t , J) is bihomorphically isometric to (ω, J ut ) on M , see eg. [START_REF] Legendre | Abreu Kähler geometry of toric varieties and extremal metrics[END_REF][START_REF]Donaldson Kähler geometry on toric manifolds, and some other manifolds with large symmetry, Handbook of geometric analysis[END_REF][START_REF] Legendre | Toric Kähler-Einstein metrics and convex compact polytopes[END_REF]).

Thanks to the normalization we have P udx = P |u|dx for u ∈ C and ut (x) = -φt ((∇u t ) x ) thus

P |u 0 |dx + P |u 1 |dx ≥ P |u 1 -u 0 |dx = 1 0 P | ut |dx dt = 1 0 P | φt ((∇u t ) x )|dx dt = 1 0 t | φt (y)| det(D∇φ t ) y dy dt
where the last equality uses the change of variables into complex coordinates, see Remark 2.5. This is used to get the expression

1 0 t | φt (y)| det(D∇φ t ) y dy dt = 1 (2π) n 1 0 M | φt |ω n φt dt.
Now, the right hand side of the last expression is the Darvas length [START_REF] Darvas | The Mabuchi completion of the space of Kähler potentials[END_REF] of the curve φ t connecting two Kähler potentials ψ 0 := φ 0φ and

ψ 1 := φ 1 -φ in H K0 , therefore 1 (2π) n 1 0 M | φt |ω n φt dt ≥ d 1 (ψ 0 , ψ 1 ) ≥ d 1,G0 (ψ 0 , ψ 1 ).
Summing up, for any u 1 ∈ S(P, σ) ∩ C ∞ , we have that

P |u 0 |dx + P u 1 dx ≥ d 1,G0 (ψ u0 , ψ u1 )
with ψ u being the Kähler potential corresponding to the metric associated to u. In particular, fixing u 0 and substituing to u 1 a sequence u 1,k such that d 1,G0 (φ u0 , φ u 1,k ) → +∞ we get that P u 1,k dx → +∞ which, using Zhou-Zhu properness Lemma 3.7, implies that F (P,σ) (u 1,k ) → +∞. This, with Lemma 3.6 above, is enough to fulfill He's condition and get that there exists a torus invariant extremal Kähler metric. That is, it concludes the proof of Proposition 3.4 which, together with Theorem 3.3 of Chen-Li-Sheng [START_REF] Chen | Sheng Uniform K-stability for extremal metrics on toric varieties[END_REF] gives Theorem 1.1. The only thing a Sym 2 (t * )-valued function H ∈ W misses to define an extremal toric almost Kähler metric in the sense of Lejmi is the positivity (that is condition (iii)). Therefore W + (σ) := AK(P, σ) ∩ W(σ) parametrizes the space of extremal toric almost Kähler metrics of involutive type on P × t with boundary conditions imposed by the condition (ii) with respect to σ (see [START_REF]Donaldson Interior estimates for solutions of Abreu's equation[END_REF]). Translated in our notation, Lejmi proved in [START_REF]Lejmi Extremal almost-Kahler metrics[END_REF], see also [START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF], that the set W + (σ) is either empty or infinite dimensional. Proof. First, note that the Abreu equation is linear on W and that the boundary condition data σ ∈ M(P ) depends lineary on the Sym 2 (t * )-valued function thanks to [START_REF]Donaldson Interior estimates for solutions of Abreu's equation[END_REF]. Therefore, it is sufficiant to find an open set U ⊂ M(P ) of σ's such that W(σ) is not empty to prove the first assertion. Indeed, in this case U would contain a basis {σ s } s=1,...,d ⊂ U and any σ ∈ M(P ) is such σ = d s=1 a s σ s with a s ∈ R. Picking any solution H s ∈ W(σ s ) we have d s=1 a s H s ∈ W(σ). According to [START_REF] Legendre | Toric Kähler-Einstein metrics and convex compact polytopes[END_REF] for each polytope there exists σ KE ∈ M(P ), unique up to dilatation, and a symplectic potential u KE ∈ S(P, n σKE ) such that the metric g uKE is Kähler-Einstein on P × t with respect to the natural symplectic structure on t * × t. In particular, H uKE is a solution of Abreu's equation and thus H uKE ∈ W + (σ KE ). Thanks to Donaldson openness result, see Proposition 2.12 above, there exists an open set U ⊂ M(P ) of σ's such that W + (σ) is not empty. The second assertion follows the same argument with a special care for positive definite condition. Proposition 1.7 is a direct consequence of the last proposition.

3.4. The space of formal solutions. Proposition 3.9. [Donaldson [START_REF] Donaldson | Scalar curvature and stablity of toric varieties[END_REF]] Let (P, σ) be a labelled polytope. Assume the set W + (σ) is non empty. Then the functional N : W + (σ) → R defined by

N (H) = P log(det H) dx
is concave and the critical point, if it exists, is the inverse of a Hessian of a potential u ∈ S(P, n σ ).

The union of the W + (σ) is a convex cone

W + := σ∈M(P ) W + (σ).
From the observation [START_REF]Donaldson Interior estimates for solutions of Abreu's equation[END_REF], the map m : W + → M(P ) taking H ∈ W + to the measure m(H) = σ ∈ M(P ) is well-defined. The "fibers" of m are the W + (σ). Proposition 1.3 implies that the image of the map m lies into uKs(P ).

Note that W + contains the inverse Hessians of the extremal Kähler potentials, that is the union over M(P ) of KW + (σ) := {H u | u ∈ S(P, u σ ), H u ∈ W + (σ)}. When non-empty, KW + (σ) contains a unique point, the maximum of H on W + (σ) thanks to Proposition 3.9. Since N is continuous on W + , KW + := σ∈M(P ) KW + (σ) is connected. The relative toric version of the Yau-Tian-Donaldson conjecture is then equivalent to (i) KW + meets each fiber W + (σ), (ii) m is onto.

The assertion (i) is that if there exists an extremal toric almost Kähler metric compatible with ω then there exists an extremal toric Kähler metric and assertion (ii) is that if (P, σ) is uniformly K-stable then there exists an extremal toric almost Kähler metric compatible with ω. This is Corollary 1.4.

Miscellaneous

4.1. The normal and the angle. Let m = ( m 1 , . . . , m d ) and n = ( n 1 , . . . , n d ) be two distinct sets of labels on the same polytope P ⊂ t * and assume that (P, m, Λ) is rational Delzant and thus associated to a compact toric symplectic manifold (M, ω, T = t/Λ) through the Delzant-Lerman-Tolman correspondance. For any u ∈ S(P, n) the metric g u , see [START_REF] Calderbank | Gauduchon The Guillemin formula and Kähler metrics on toric symplectic manifolds[END_REF], defines a smooth Kähler metric on P × t ≃ M = x -1 (P ) compatible with ω. However, since u / ∈ S(P, m) the metric g u is not the restriction of a smooth metric on M . The behavior of g u along the boundary of M has been analysed in [START_REF] Legendre | Toric Kähler-Einstein metrics and convex compact polytopes[END_REF] and we recall the conclusion below.

Recall that m s and n s are inward to P and normal to the facet F s . We denote a s > 0 the real number such that a s n s = m s .

Note that the boundary condition of S(P, n) depends on the labelling via the Guillemin potential u n , see Remark 2.4. Also, all the potentials in S(P, n) have the same behavior along ∂P and for every u ∈ S(P, n), g u differs from g u n only by the addition of a smooth tensor on P × T ⊂ t * × T . Therefore, without loss of generality, we pick u n ∈ S(P, n) to understand that behavior.

The metric g u n which is smooth on M = P × T = x -1 (P ), has a

• singularity of cone angle type and angle 2a s π along x -1 ( Fs ), if a s < 1;

• smooth extension on x -1 (P ∪ Fs ), if a s = 1;

• singularity caracterized by a large angle 2a s π > 2π along x -1 ( Fs ), if a s > 1.

where, here, we have adopted the terminology in [START_REF] Donaldson | Kähler metrics with cone singularities along a divisor[END_REF].

Proposition 4.1.

[30] Let (M, ω, T ) be a toric compact symplectic manifold with labelled moment polytope (P, m, Λ) and momentum map x : M → t * . For any labelling n of P , any potential u ∈ S(P, n) provides a Kähler metric g u , defined via (9), smooth and compatible with ω on M = x -1 (P ) and with cone angle singularity 2π( n s / m s ) transverse to the divisor x -1 ( Fs ). Conversely, any compatible T -invariant Kähler metric smooth outside a divisor D and with cone angle singularity transverse to D is of this form.

It is straighforward to extend the argument proving the last proposition to almost Kähler metric. Indeed we just compared the behaviour of the Hessian and inverse Hessian of u n and u m . Therefore, any H ∈ AK(P, σ n ) defines an almost Kähler metrics on M and with cone angle singularity 2π( n s / m s ) transverse to the divisor x -1 ( Fs ). 4.2. The constant scalar curvature case. In case (P, n, Λ) is rational and associated to a compact toric symplectic orbifold (M, ω, T ) via the Delzant-Lerman-Tolman correspondance and assuming we fix a compatible toric Kähler structure (g u , J u ) (so that u ∈ S(P, n)) then the classical Futaki invariant evaluated on the real holomorphic vector field J u X f induced by the affine linear function f ∈ Aff(t * , R) is defined in [START_REF] Futaki | An obstruction to the existence of Einstein Kähler metrics[END_REF] to be [START_REF] Guan | On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles[END_REF] Fut(M, [ω])(f ) :=

M (S(H u ) -S [ω] )(x * f )ω n /n!
where S [ω] = M S(H u )ω n / M ω n is the normalized total scalar curvature. Now using [START_REF] Donaldson | Constant scalar curvature metrics on toric surfaces[END_REF] and the Fubini's Theorem of product integration, to express Fut(M, [ω]) in terms of (P, n) and dx we see that S which in the rational case, up to a multiplicative positive constant, is the classical Futaki invariant restricted to the complex Lie algebra t ⊕ Jt. Moreover, in the case the classical Futaki invariant vanishes, equivalently when A σ is a constant (which is then A σ = 2 ∂P σ u / P dx) then Fut(P, n)(f ) = 2

P dx L (P,σ) (f ) for any f ∈ Aff(t * , R).

Corollary 4.2. Given any labelled polytope (P, n), if there exists a symplectic potential u ∈ S(P, n) such that g u has constant scalar curvature then Fut(P, n) vanishes identically on Aff(t * , R).

Let η and n be labellings for the same polytope P . Then, for each s = 1, . . . , d, η s and n s are inward to P and normal to the facet F s and so there is a real number a s > 0 such that a s n s = η s .

When restricted on F s , we have dσ n = a s dσ η . Therefore, Note that, whenever (P, η, Λ) is rational Delzant and thus associated to a compact toric symplectic manifold (M, ω, T = t/Λ) through the Delzant-Lerman-Tolman correspondance, the last expression coincides, up to some multiplicative positive constant, with the log Futaki invariant (relative to the torus T ) defined in [START_REF] Donaldson | Kähler metrics with cone singularities along a divisor[END_REF]. Indeed, consider the case where a 1 = β and a s = 1 for s = 2, . . . , d then we recover from ( 27) that [START_REF] Keller | Lejmi On the lower bounds of the L 2 -norm of the Hermitian scalar curvature[END_REF] Fut D,β (Ξ f , [ω]) = 2(2π) n Fut(P, n)(f )

M ω n where we follow the notation of [START_REF] Hashimoto | Scalar curvature and Futaki invariant of Kähler metrics with cone singularities along a divisor[END_REF] with D = x -1 (F 1 ).

Observe from [START_REF] Hashimoto | Scalar curvature and Futaki invariant of Kähler metrics with cone singularities along a divisor[END_REF] that the vanishing of the Futaki invariant imposes linear conditions on the labelling normals. In [START_REF] Legendre | Toric Kähler-Einstein metrics and convex compact polytopes[END_REF] the last proposition follows non trivial consideratio, we give an elementary proof here.

Proof. Put coordinates x = (x 1 , . . . , x n ) on t * and translate P if necessary so that This is onto by convexity of P , indeed, for any coordinates x i there is a facet of P on wich x i is sign definite. Basic consideration on barycenter and the observation that 0 ∈ P imply that the kernel of the map (29) contains an element of the positive quadrant of R d .

  they construct explicit examples of almost Kähler metrics compatible with ω. One can check directly that these metrics are of involutive type. As an application of Corollary 1.4 we get the following. Corollary 1.6. Each Kähler class of P(O ⊕ O(k 1 ) ⊕ O(k 2 )) admits a compatible extremal toric Kähler metric.

  Thanks to Proposition 2.6 we can parametrize the space of compatible toric almost Kähler metrics of involutive type as AK(P, σ) := {H : P → Sym 2 (t * ) | H satisfies conditions (i), (ii) and (iii)}.

3. 3 .

 3 Extremal almost Kähler metrics. In this note we are interested in the H ∈ AK(P, σ) satisfying the Abreu equation[START_REF] Duistermaat | Pelayo Reduced phase space and toric variety coordinatizations of Delzant spaces[END_REF]. We will consider the following set of formal solutions W(σ) := {H : P → Sym 2 (t * ) | H satisfies conditions (i), (ii) and S(H) = A P,σ } W := σ∈M(P ) W(σ).

Proposition 3 . 8 .

 38 Let P be a simple polytope. For any labelling σ ∈ M(P ) the set W(σ) is not empty. Moreover, the set{σ ∈ M(P ) | W + (σ) = ∅}is a non-empty open convex cone in M(P ).

Fut

  [ω] = 2 ∂P σ u / P dx and

( 26 )

 26 Fut(P, n)(f ) = n)(f ) =Fut(P, η)(f )

Proposition 4 . 3 .

 43 Given a polytope P ⊂ t * of dimension n with d facets, there exists a (dn)-dimensional cone C(P ) ⊂ t d of labelling n ∈ C(P ) such that Fut(P, n) vanishes identically on Aff(t * , R).

P

  x i dx = 0 for any i = 1, . . . , n. The result follows if the linear map R d -→ R n n i=1,...,n is onto and his kernel meets the positive quadrant of R d . With the suitable coordinate chosen the rhs of (29) is up to non-zero multiplicative constant n ∈ R n .

  2 (t * )-valued function defined on an open neighborhood of P . (ii) Boundary condition For any point y in interior of a codimension 1 face F

s ⊂ P , we have

[START_REF] Darvas | The Mabuchi completion of the space of Kähler potentials[END_REF] 

H y ( n s , •) = 0

[START_REF]Delzant Hamiltoniens périodiques et images convexes de l'application moment[END_REF] 

dH y ( n s , n s ) = 2 n s .

(iii) Positivity For any point y in interior F of a face F ⊂ P , H is positive definite as Sym 2 (T y F )-valued function.

Proposition 2.6. [

[START_REF] Apostolov | Tønnesen-Friedman Hamiltonian 2-forms in Kähler geometry. II. Global classification[END_REF][START_REF]Lejmi Extremal almost-Kahler metrics[END_REF]

] Let (M, ω, T ) be a toric symplectic manifold and (g, J) be a compatible T -invariant almost Kähler metric of involutive type compatible with ω. Then the symmetric bilinear form defined for a, b ∈ t and x ∈ P by H x (a, b) := g p (X a , X b ) for any p ∈ M such that x(p) = x, satisfies the conditions (i), (ii) and (iii). Moreover, for any such symmetric bilinear form H : P → Sym 2 (t * ) satisfying conditions (i), (ii) and (iii) there is a unique compatible T -invariant almost Kähler metric (g H , J H ) of involutive type satisfying H x(p) (a, b) = g H p (X a , X b ) for any p ∈ M . With respect to action angle coordinates (x, [θ]) on t * × T ≃ M , the metric g is given as

Here uniform K-stability should be understand as defined above, see Remark §3.2.