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Some tight polynomial-exponential lower bounds
for an exponential function

Christophe Chesneaua,1

aLMNO, University of Caen Normandie, France

Abstract

This note is devoted to new sharp lower bounds for exp(x2). We first introduce and study a new lower
bound defined with polynomial of degree 2 and exponential (or hyperbolic) functions. Then we propose two
improvements of this lower bound by using two different approaches; the first approach consists in adding
well-chosen polynomial term to it, whereas the second approach aims to transform it for large values of |x|.
We show that they are better to well-known lower bounds. The analytic results are supported by some
numerical studies and graphics. A part of the study is devoted to some integral methods having the ability
to generate new lower bounds for exp(x2).

Keywords: Algebraic bounds, exponential function.
2000 MSC: 33B10, 26D07.

1. Introduction

Inequalities involving exponential functions are useful in all the areas of mathematics. The most famous
of them can be found in Mitrinović (1964), Bullen (1998) and Kuang (1993). See also Qi (1997), Bae (2007),
Kim (2007) and Bae and Kim (2009) for current developments on lower and upper bound for exp(x). The
purpose of this note is to provide simple and tight lower bounds for exp(x2). Such bounds are important
tools to evaluate lower or upper bounds of mathematical terms involving exp(x2). Basic examples include the

functions cosh(x2), sinh(x2) and tanh(x2), the integral
∫ x

0
exp(y2)dy, the sum

∞∑
k=0

exp(−k2), the cumulative

distribution function of the Gaussian or Kolmogorov distributions. Well-known lower bounds for exp(x2)
are cosh(

√
2x), sinh

(√
6x
)
/(
√

6x), exp(x)− x, 1 + x2 + x4/2 and
(
1 + x2/a

)a
with a > 0. The last one is

sharp for |x| large only for large values of a, corresponding to a polynomial with a high degree and large
coefficients when a is an integer. Recent sharp lower bounds can be found in Bagul (2017) for x is a an
interval of the form [0, b] with a precise value for b.

The motivation of this paper is to introduce new sharp lower bounds for exp(x2) defined with simple
functions, at least uniformly better to the two benchmarks: cosh(

√
2x) and 1 + x2 + x4/2, for all x ∈ R. In

a first part, a first lower bound is introduced. It is defined as an even function on R with simple polynomial
of degree 2 and exponential functions (without power of x2). Comparison to cosh(

√
2x), exp(x) − x and

1 + x2 + x4/2 are made analytically and with the used of graphics. Then we propose two significant
improvements of this lower bound via two different approaches. The first approach aims to add well chosen
polynomial terms to the former lower bound. The second approach adopts the transformation suggested in
Chesneau (2017). It consists in weighting and translating the former lower bound when |x| is large enough.
Only polynomial of degree 2 and exponential functions are used. In each case, the theoretical results are
supported by a short numerical study and some graphics, illustrating the tightness of the new lower bounds.
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Finally, we present new integration approaches to generate lower bounds for exp(x2) using existing lower
bounds. The link existing with this approach and the main lower bound of the study is discussed.

The rest of this note is structured as follows. Section 2 presents our main lower bound. Section 3 is
devoted to an improvement of this lower bound. Another improvement is developed in Section 4. Section 5
presents some integral approaches to determine lower bounds for exp(x2). All the proofs of our results are
postponed in Section 6.

2. Lower bound

The main lower bound for exp(x2) is presented in the proposition below.

Proposition 1. Let us define the function f(x) by

f(x) =
1

2

[
exp

(√
2x
)

(7− 4
√

2x+ 2x2) + exp
(
−
√

2x
)

(7 + 4
√

2x+ 2x2)− 12
]
. (1)

Then, for all x ∈ R,
exp(x2) ≥ f(x) ≥ 1.

Let us observe that f(x) is a continuous even function on R using simple polynomial-exponential func-
tions. It is of the form f(x) = (1/2)(G(x) + G(−x) − 12), where G(x) = exp

(√
2x
)

(7 − 4
√

2x + 2x2). It
can be also express in terms of hyperbolic cosh and sinh functions as:

f(x) = (7 + 2x2) cosh
(√

2x
)
− 4
√

2x sinh
(√

2x
)
− 6. (2)

A visual comparison between exp(x2) and f(x) is performed in Figure 1, for x ∈ [−1, 1] for the first graphic
and x ∈ [−2.5, 2.5] for the second graphic. We can see that the two curves are relatively close, specially for
small value for |x|. This comment is also supported by Table 1 which indicates the numerical values of the

error measure: R(b) =
∫ b

−b
[
f(x)− exp(x2)

]2
dx, for several values for b. The numerical studies are done

with the software Mathematica (version 11), see Wolfram (1999).

-1.0 -0.5 0.5 1.0

1.5

2.0

2.5

exp x2

f x)

-2 -1 1 2

20

40

60

80

100

exp x2

f x)

Figure 1: Superimposed curves of exp(x2) and f(x) for x ∈ [−1, 1] in the first graphic, and for x ∈ [−2.5, 2.5] in the second
graphic.

Table 1: Numerical evaluations of R(b) for b ∈ {0.5, 1, 1.5, 2, 2.5, 3}.

b = 0.5 b = 1 b = 1.5 b = 2 b = 2.5 b = 3

R(b) 1.57828× 10−8 0.000465217 0.478101 149.8 34020.2 1.02037× 107

The tightness of f(x) is highlighted in Proposition 2 below; we proves that f(x) is uniformly greater to
most well-known simple lower bounds for exp(x2): cosh

(√
2x
)
, exp(x)− x, 1 + x2 + x4/2.
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Proposition 2. Let f(x) be the function given by (1). We have, for all x ∈ R,

f(x) ≥ max

[
cosh

(√
2x
)
, exp(x)− x, 1 + x2 +

x4

2

]
.

Hence f(x) can be viewed as the best lower bounds among cosh
(√

2x
)
, exp(x) − x and 1 + x2 + x4/2.

Figure 2 illustrates this result by considering two intervals of values for x : [−1, 1] and [−3, 3], one for each
graphics. It shows that f(x) is closer to exp(x2) is comparison to cosh

(√
2x
)
, exp(x)−x and 1 +x2 +x4/2.
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Figure 2: Superimposed curves of f(x), 1 + x2 + x4/2, cosh
(√

2x
)

and exp(x)− x for x ∈ [−1, 1] in the first graphic, and for

x ∈ [−3, 3] in the second graphic.

Since cosh
(√

2x
)
≥ 1 or exp(x)−x ≥ 1 or 1 +x2 +x4/2 ≥ 1, Proposition 2 implies that f(x) ≥ 1, which

is the second inequality in Proposition 1.
If we consider the polynomial of degree 6: 1 + x2 + x4/2 + x6/6, which is also a loser bound for exp(x2),

we have f(x) ≥ 1 + x2 + x4/2 + x6/6 for some x, but their exists x such that the reverse holds. This
motivates the study of some improvements of f(x), which concerns the rest of the study. Two modifications
are proposed: adding a well-chosen polynomial term to f(x) or transforming f(x) for |x| large.

Remark 1. Let us mention that some continuous even upper bounds for exp(x2) using hyperbolic cosh and
sinh functions can be proved. An example with |x| bounded is the following: For any a > 0 and |x| ≤ a, we
have exp(x2) ≤ cosh (ax) + (x/a) sinh (ax) (≤ exp(a|x|)).

3. First improvement of the lower bound

First of all, let us consider an intermediary result which can be viewed as an improvement of the well-
known inequality: for all x ∈ R, exp(x2) ≥ cosh

(√
2x
)
.

Lemma 1. For all x ∈ R and n ∈ N, we define the polynomial Pn(x) by

Pn(x) = 2x4
n∑

k=0

x2k

k!(2k + 3)(k + 2)

Then, for all x ∈ R and n ∈ N, we have

exp(x2) ≥ cosh
(√

2x
)

+ Pn(x).

Since Pn(x) ≥ 0 for all x ∈ R and n ∈ N, it is clear that exp(x2) ≥ cosh
(√

2x
)

+ Pn(x) ≥ cosh
(√

2x
)
.

Let us observe that Pn(x) satisfies the recurrence relation: Pn(x) = Pn−1(x) + 2x2(n+2)/(n!(2n+ 3)(n+ 2)),
with P0(x) = x4/3. Expressions of Pn(x) for several values of n are given in Table 2.

Lemma 1 is a key tool to the proof of the following proposition in which we determine a tight lower
bound of exp(x2) uniformly greater to f(x).
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Table 2: Analytic expressions for Pn(x) with n ∈ {0, . . . , 5}.

n = 0 n = 1 n = 2 n = 3

Pn(x) 1
3x

4 1
3x

4 + 2
15x

6 1
3x

4 + 2
15x

6 + 1
28x

8 1
3x

4 + 2
15x

6 + 1
28x

8 + 1
135x

10

n = 4 n = 5

1
3x

4 + 2
15x

6 + 1
28x

8 + 1
135x

10 + 1
792x

12 1
3x

4 + 2
15x

6 + 1
28x

8 + 1
135x

10 + 1
792x

12 + 1
5460x

14

Proposition 3. For all x ∈ R and n ∈ N, we define the polynomial Qn(x) by

Qn(x) = 4x6
n∑

k=0

x2k

k!(2k + 3)(k + 2)

(
1

2(2k + 5)(k + 3)
+

x2

(k + 4)(2k + 7)

)
.

Let f(x) be the function given by (1). We define the function f∗(x;n) by

f∗(x;n) = f(x) +Qn(x).

Then, for all x ∈ R and n ∈ N, we have

exp(x2) ≥ f∗(x;n) ≥ f(x).

Thus f∗(x;n) is a better lower to f(x) for exp(x2), for all x ∈ R. Remark that Qn(x) satisfies the
recurrence relation: Qn(x) = Qn−1(x)+4x2(n+3)/(n!(2n+3)(n+2))[1/(2(2n+5)(n+3))+x2/((n+4)(2n+7))],
with Q0(x) = x6/45 + x8/42. Expressions of Qn(x) for several values of n are given in Table 3.

Table 3: Analytic expressions for Qn(x) with n ∈ {0, . . . , 5}.

n = 0 n = 1 n = 2

Qn(x) 1
45x

6 + 1
42x

8 1
45x

6 + 1
35x

8 + 4
675x

10 1
45x

6 + 1
35x

8 + 127
18900x

10 + 1
924x

12

n = 3 n = 4

1
45x

6 + 1
35x

8 + 127
18900x

10 + 149
124740x

12 + 2
12285x

14 1
45x

6 + 1
35x

8 + 127
18900x

10 + 149
124740x

12 + 191
1081080x

14 + 1
47520x

16

The result of Proposition 3 is illustrated in Figure 3. The two graphics consider the two intervals for x:
[−1, 1] and [−2.5, 2.5].
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Figure 3: Superimposed curves of exp(x2), f∗(x;n) for n = 0 and f(x) for x ∈ [−1, 1] in the first graphic, and for x ∈ [−2.5, 2.5]
in the second graphic.

Table 4 shows the numerical values of the error measure: R∗(b) =
∫ b

−b
[
f∗(x;n)− exp(x2)

]2
dx, for n = 0

and several values for b.

4



Table 4: Numerical evaluations of R∗(b) for b ∈ {0.5, 1, 1.5, 2, 2.5, 3}.

b = 0.5 b = 1 b = 1.5 b = 2 b = 2.5 b = 3

R∗(b) 4.89107× 10−11 0.0000226587 0.1001 73.0819 26273.5 9.5921× 106

4. Second improvement of the lower bound

We now investigate a transformation of f(x) for large |x|, based on a multiplicative exponential weight
and translation. It is an adaptation of the method developed by Chesneau (2017) to f(x).

Proposition 4. Let f(x) be the function given by (1). For any a ≥ 0, we define the function f(x; a) by

f◦(x; a) = f(x)1{|x|<a/2}(x) + f(|x| − a) exp(2a|x| − a2)1{|x|≥a/2}(x),

where 1A(x) denotes the indicator function over A, i.e. 1A(x) = 1 if x ∈ A and 0 elsewhere. Then, for all
a ≥ 0 and x ∈ R, we have

exp(x2) ≥ f◦(x; a) ≥ f(x).

Another look of the function f◦(x; a) is given by f◦(x; a) = max
[
f(x), f(|x| − a) exp(2a|x| − a2)

]
. Note

that f◦(x; a) is an even continuous function on R. It follows from Proposition 4 that f◦(x; a) is a better
lower to f(x) for exp(x2), for all a ≥ 0 and x ∈ R. Figure 4 proposes a graphical illustration of Proposition
4. The two graphics consider the two intervals respectively: [−1, 1] and [−3, 3]. We see that exp(x2) and
f◦(x, a) with a = 1 are near confounded for the considered values for x, showing the sharpness of the lower
bound.

Owing to Proposition 2, we have

f◦(x; a) ≥ max

[
cosh

(√
2x
)
, 1 + x2 +

x4

2

]
1{|x|<a/2}(x)

+ max

[
cosh

(√
2(|x| − a)

)
,

(
1 + (|x| − a)2 +

(|x| − a)4

2

)]
exp(2a|x| − a2)1{|x|≥a/2}(x).

Therefore, defining with the same a, this lower bound is sharper to the lower bounds exhibited in Chesneau
(2017).
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Figure 4: Superimposed curves of exp(x2), f◦(x; a) for a = 1 and f(x) for x ∈ [−1, 1] in the first graphic, and for x ∈ [−2.5, 2.5]
in the second graphic.

Table 5 shows the numerical values of the error measure: R◦(b) =
∫ b

−b
[
f◦(x; a)− exp(x2)

]2
dx, for a = 1

and several values for b.
The value a = 1 in the numerical study is arbitrary chosen; one can find a more optimal value for the

problem for a given criteria of optimization.
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Table 5: Numerical evaluations of R◦(b) for b ∈ {0.5, 1, 1.5, 2, 2.5, 3}.

b = 0.5 b = 1 b = 1.5 b = 2 b = 2.5 b = 3

R◦(b) 1.57828× 10−8 3.39908× 10−8 7.93014× 10−7 0.151264 1081.86 2.42278× 106

A comparison of the two lower bounds f∗(x;n) and f◦(x; a) is now discussed. When |x| is small, say
|x| < a/2 for a fixed a, we have f∗(x;n) ≥ f(x) = f◦(x; a), so f∗(x;n) is better. When |x| is large, in view
of Figure 4, and Tables 4 and 5, we claim that f◦(x;n) is better for some a and n.

As a direct applications of our results, let us mention that sharp polynomial-exponential lower bounds
for exp(x2) give sharp polynomial-exponential lower bounds for cosh(x2) or sinh(x2); using the inequality
exp(y) ≥ 1 + y, for all y ∈ R, for any ψ(x) ∈ {f(x), f∗(x;n), f◦(x; a)}, for all x ∈ R, we have

cosh(x2) =
exp(x2) + exp(−x2)

2
≥ 1

2

(
ψ(x) + max(1− x2, 0)

)
.

On the other hand, using the inequality: exp(−y) ≤ 1− y + y2/2, for all y ≥ 0, for any x ∈ R, we have

sinh(x2) =
exp(x2)− exp(−x2)

2
≥ 1

2

(
ψ(x)−max

(
1− x2 +

x4

2
, 1

))
.

These inequalities can be usefull in various mathematical settings.

5. On some generators of lower bounds

We now present and discuss some general approaches based on integration to generate new lower bounds
for exp(x2) from existing lower bounds. When it is possible, conditions are mentioned to improved the
tightness of the former lower bounds.

5.1. First integral approach

The main result is described in the proposition below.

Proposition 5. Let θ(x) be a positive function on R and ω(x) be the function defined by

ω(x) =

∫ |x|
0

(∫ y

0

2(1 + 2t2)θ(t)dt

)
dy + 1.

• Suppose that exp(x2) ≥ θ(x) for all x ∈ R. Then exp(x2) ≥ ω(x) for all x ∈ R.

• Suppose that θ(x) is even, two times differentiable with θ(0) = 1, θ′(0) = 0 and 2(1+2x2)θ(x)−θ′′(x) ≥
0 for all x ≥ 0. Then, for all x ∈ R, we have

ω(x) ≥ θ(x).

Under the assumptions of the two points above, we have

exp(x2) ≥ ω(x) ≥ θ(x).

So ω(x) is a better lower bound to θ(x).

6



Connections between Proposition 5 and 1 exist. Indeed, let us consider the well-known lower bound for
exp(x2): θ(x) = cosh

(√
2x
)
. We have θ′(x) =

√
2 sinh

(√
2x
)

and θ′′(x) = 2 cosh
(√

2x
)
. Therefore θ(0) = 1,

θ′(0) = 0 and 2(1 + 2x2)θ(x) − θ′′(x) = 4x2 cosh
(√

2x
)
≥ 0. It follows from Proposition 5 that a better

lower bound of θ(x) = cosh
(√

2x
)

is given by

ω(x) =

∫ |x|
0

(∫ y

0

2(1 + 2t2)θ(t)dt

)
dy + 1

=

∫ |x|
0

(
−4y cosh

(√
2y
)

+ 3
√

2 sinh
(√

2y
)

+ 2
√

2y2 sinh
(√

2y
))

dy + 1

= (7 + 2x2) cosh
(√

2x
)
− 4
√

2x sinh
(√

2x
)
− 6.

We thus obtain the hyperbolic expression of the lower bound f(x) given by (2).
Naturally, the first point of Proposition 5 can be used to generate new lower bounds for exp(x2). For

instance, using the inequality exp(y) ≥ 1 + y for all y ∈ R, we have exp(x2) = exp(x2 − |x|) exp(|x|) ≥
(1 + x2 − |x|) exp(|x|). Let us set θ(x) = (1 + x2 − |x|) exp(|x|). Hence a new lower bound for exp(x2) is
given by

ω(x) =

∫ |x|
0

(∫ y

0

2(1 + 2t2)θ(t)dt

)
dy + 1

=

∫ |x|
0

[
exp(y)

(
136− 134y + 66y2 − 20y3 + 4y4

)
− 136

]
dy + 1

= exp(|x|)
(
618− 482|x|+ 174x2 − 36|x|3 + 4x4

)
− 617− 136|x|.

However, note that this lower bound is not better to θ(x). In particular, the assumption 2(1 + 2x2)θ(x) −
θ′′(x) ≥ 0 for all x ∈ R is not satisfied. This bound is tight but not shaper than f(x) for all x ∈ R. Moreover,
from a mathematical point of view, it is more difficult to manipulate to f(x).

Let us mention that the well-known lower bounds: 1 +x2 +x4/2 and exp(|x|)−|x|, also satisfy θ(0) = 1,
θ′(0) = 0 and 2(1 + 2x2)θ(x)− θ′′(x) ≥ 0 for all x ≥ 0, yielding more sharp lower bounds ω(x) for exp(x2).
However, one can show that they are not better to f(x) for all x ∈ R (and the presented improvements).

5.2. Generalization

Proposition 6 below presents a generalization of Proposition 5. From two lower bounds θ1(x) and θ2(x)
of exp(x2), one can construct a lower bound better to θ1(x) or θ2(x), under some assumptions.

Proposition 6. Let θ1(x) and θ2(x) be two positive functions on R and κ(x) be the function defined by

κ(x) =

∫ |x|
0

(∫ y

0

2(θ1(t) + 2t2θ2(t))dt

)
dy + 1.

• Suppose that exp(x2) ≥ max [θ1(x), θ2(x)] for all x ∈ R. Then exp(x2) ≥ κ(x) for all x ∈ R.

• Suppose that θ1(x) and θ2(x) are even, two times differentiable with

– θ1(0) = 1, θ′1(0) = 0, 2(θ1(x) + 2x2θ2(x))− θ′′1 (x) ≥ 0 for all x ≥ 0. Then, for all x ∈ R, we have

κ(x) ≥ θ1(x).

This inequality holds with θ2(x) by inverting the role of θ1(x) and θ2(x) in the definition of κ(x)
and the conditions.

– θ1(0) = 1, θ2(0) = 1, θ′1(0) = 0, θ′2(0) = 0, 2(θ1(x) + 2x2θ2(x)) − θ′′1 (x) ≥ 0 and 2(θ1(x) +
2x2θ2(x))− θ′′2 (x) ≥ 0 for all x ≥ 0. Then, for all x ∈ R, we have

κ(x) ≥ max [θ1(x), θ2(x)] .

7



Under the assumptions of the first point and the second item of the second point, we have

exp(x2) ≥ κ(x) ≥ max [θ1(x), θ2(x)] .

So κ(x) is a better lower bound to θ1(x) for exp(x2), or both of them.

Taking θ1(x) = θ2(x) in Proposition 6, we obtain Proposition 5 with θ(x) = θ1(x).

Note that, taking θ1(x) = cosh
(√

2x
)

and θ2(x) =
n∑

k=0

x2k/(k!), the first point and the first item of the

second point of Proposition 6 are satisfied; we thus obtain Lemma 1.
Another example is given by chosing θ1(x) = f(x) and θ2(x) = cosh

(√
2x
)
. After some calculus, we

have
κ(x) = 27 cosh

(√
2x
)
− 2x2

(
3− 2 cosh

(√
2x
))
− 12

√
2x sinh

(√
2x
)
− 26.

Also, one can show that the first point and the second item of the second point of Proposition 6 are satisfied;
κ(x) is a better lower bound to f(x). However, the comparison with the proposed improvements for f(x)
need further investigations.

5.3. Another integral approach

We conclude this section by presenting another generator of lower bounds for exp(x2).

Proposition 7. Let θ(x) be a positive function on R and γ(x) be the function defined by

γ(x) = exp(−|x|)
∫ |x|
0

exp(t) [(1 + 2t)θ(t)− 1] dt+ 1.

If exp(x2) ≥ θ(x) for all x ∈ R. Then exp(x2) ≥ ω(x) for all x ∈ R.

For instance, if θ(x) = cosh
(√

2x
)
, we have

γ(x) = 8 exp(−|x|)− (7 + 2|x|) cosh
(√

2x
)

+
√

2(5 + 2|x|) sinh
(√

2|x|
)
.

However, one can show that γ(x) is not better to f(x) for all x ∈ R.

6. Proofs

Proof of Proposition 1. Let us set g(x) = exp(x2) − f(x). We aim to study this function. It follows from
several algebraic manipulations that

g′(x) = 2x exp(x2)− 1

2

[
exp

(√
2x
)

(3
√

2− 4x+ 2
√

2x2)− exp
(
−
√

2x
)

(3
√

2 + 4x+ 2
√

2x2)
]
. (3)

In order to study the sign of g′(x), let us investigate g′′(x). Algebraic manipulations and simplifications give

g′′(x) = 2(1 + 2x2)
[
exp(x2)− cosh

(√
2x
)]
. (4)

Owing to the elementary inequality: exp(x2) ≥ cosh
(√

2x
)
, we have g′′(x) ≥ 0. Thus g′(x) is increasing.

Since g′(0) = 0, the minimum of g(x) is attained in x = 0: for all x ∈ R, we have g(x) ≥ g(0) = 0, implying
that exp(x2) ≥ f(x).

The second inequality can be prove in a similar manner. Let us set h(x) = f(x) − 1. It follows from
several algebraic manipulations that

h′(x) =
1

2

[
exp

(√
2x
)

(3
√

2− 4x+ 2
√

2x2)− exp
(
−
√

2x
)

(3
√

2 + 4x+ 2
√

2x2)
]
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and

h′′(x) = 2(1 + 2x2) cosh
(√

2x
)
.

So h′′(x) ≥ 0 and h′(x) is increasing. Since h′(0) = 0, for all x ∈ R, we have h(x) ≥ h(0) = 0. Hence
f(x) ≥ 1. This ends the proof of Proposition 1.

Proof of Proposition 2. Let us prove that, for all x ∈ R, f(x) ≥ cosh
(√

2x
)
, f(x) ≥ exp(x) − x and

f(x) ≥ 1 + x2 + x4/2, in turn.

• Proof for f(x) ≥ cosh
(√

2x
)
. Let us set k(x) = f(x)− cosh

(√
2x
)
. After calculus and simplifications,

we obtain
k′(x) = (

√
2− 2x+

√
2x2) exp

(√
2x
)
− (
√

2 + 2x+
√

2x2) exp
(
−
√

2x
)

and
k′′(x) = 4 cosh

(√
2x
)
x2.

Since k′′(x) ≥ 0, k′(x) is increasing. Since k′(0) = 0, for all x ∈ R, we have k(x) ≥ k(0) = 0, implying
the desired inequality.

• Proof for f(x) ≥ exp(x)− x. Let us set `(x) = f(x)− exp(x) + x. After calculus and simplifications,
we obtain

`′(x) =
1

2

[
exp

(√
2x
)

(3
√

2− 4x+ 2
√

2x2)− exp
(
−
√

2x
)

(3
√

2 + 4x+ 2
√

2x2)− 2 exp(x) + 2
]

and
`′′(x) = 2(1 + 2x2) cosh

(√
2x
)
− exp(x).

We have `′′(x) ≥ 2 cosh
(√

2x
)
− exp(x) ≥ 0, so `′(x) is increasing. Since `′(0) = 0, for all x ∈ R, we

have `(x) ≥ `(0) = 0, implying the desired inequality.

• Proof for f(x) ≥ 1 + x2 + x4/2. Let us set m(x) = f(x) − (1 + x2 + x4/2). After calculus and
simplifications, we obtain

m′(x) =
1

2

[
exp

(√
2x
)

(3
√

2− 4x+ 2
√

2x2)− exp
(
−
√

2x
)

(3
√

2 + 4x+ 2
√

2x2)− 4x(1 + x2)
]

and
m′′(x) = 2(1 + 2x2) cosh

(√
2x
)
− 2− 6x2.

Since cosh
(√

2x
)

=
+∞∑
k=0

(√
2x
)2k

/(2k)! > 1+x2, we havem′′(x) ≥ 2(1+2x2)(1+x2)−2−6x2 = 4x4 ≥ 0.

Thus m′(x) is increasing. Since m′(0) = 0, for all x ∈ R, we have m(x) ≥ m(0) = 0, implying the
desired inequality.

The proof of Proposition 2 is complete.

On Remark 1. Let us set ρ(x) = (1/2)[1 + (x/a)]. Since |x| ≤ a, observe that ρ(x) ∈ [0, 1]. Also, we can
write x2 = ρ(x)(ax) + (1− ρ(x))(−ax). Owing to the convexity of the function exp(y), we have

exp(x2) = exp [ρ(x)(ax) + (1− ρ(x))(−ax)]

≤ ρ(x) exp(ax) + (1− ρ(x)) exp(−ax) = cosh (ax) +
x

a
sinh (ax) .

This completes Remark 1.
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Proof of Lemma 1. Let us set p(x) = exp(x2)− cosh
(√

2x
)
− Pn(x). Then we have

p′(x) = 2x exp(x2)−
√

2 sinh
(√

2x
)
− 4

n∑
k=0

x2k+3

k!(2k + 3)

and

p′′(x) = 2 exp(x2) + 4x2 exp(x2)− 2 cosh
(√

2x
)
− 4x2

n∑
k=0

x2k

k!

= 2
(

exp(x2)− cosh
(√

2x
))

+ 4x2

(
exp(x2)−

n∑
k=0

x2k

k!

)
.

It follows from the well-know inequalities: exp(x2) ≥ cosh
(√

2x
)

and exp(x2) =
+∞∑
k=0

x2k/k! >
n∑

k=0

x2k/k!

that p′′(x) ≥ 0. So p′(x) is increasing and since p′(0) = 0, for all x ∈ R, we have p(x) ≥ p(0) = 0. This
concludes the proof of Lemma 1.

Proof of Proposition 3. Set g(x) = exp(x2) − f(x) and q(x) = exp(x2) − f∗(x;n) = g(x) − Qn(x). Let us
recall that g′(x) and g′′(x) have been determined in (3) and (4) respectively. We have

q′(x) = g′(x)− 4x5
n∑

k=0

x2k

k!(2k + 3)(k + 2)

(
1

2k + 5
+

2x2

2k + 7

)
and, by (4),

q′′(x) = g′′(x)− 4(1 + 2x2)x4
n∑

k=0

x2k

k!(2k + 3)(k + 2)

= 2(1 + 2x2)

[
exp(x2)− cosh

(√
2x
)
− 2x4

n∑
k=0

x2k

k!(2k + 3)(k + 2)

]
.

It follows from Lemma 1 that q′′(x) ≥ 0, implying that q′(x) is increasing and since q′(0) = 0, for all
x ∈ R, we have q(x) ≥ q(0) = 0. So exp(x2) ≥ f∗(x;n). Since Qn(x) ≥ 0 for all x ∈ R and n ∈ N, it is clear
that f∗(x;n) ≥ f(x). The proof of Proposition 3 is complete.

Proof of Proposition 4. Using x2 = (|x| − a)2 + 2a|x| − a2 and Proposition 1, we have

exp(x2) = exp((|x| − a)2) exp(2a|x| − a2) ≥ f(|x| − a) exp(2a|x| − a2).

Let us set v(x; a) = f(|x| − a) exp(2a|x| − a2). Hence we have exp(x2) ≥ max [f(x), v(x; a)]. We will now
show that v(x; a) can be a better lower bound to f(x) for some x. Let us study it according to the variable
a. After several algebraic calculus and simplifications, we obtain

∂

∂a
v(x; a) = exp

(
2a|x| − a2

)
w(|x| − a),

where w(y) is the function defined by

w(y) =
1

2

[
exp

(
−
√

2y
)

(3
√

2 + 18y + 10
√

2y2 + 4y3) + exp
(√

2y
)

(−3
√

2 + 18y − 10
√

2y2 + 4y3)
]
− 12y,

Since exp
(
2a|x| − a2

)
> 0, we need to determine the sign of w(|x| − a). Let us show that w(y) is increasing

on R. After several algebraic calculus and simplifications, we have

w′(y) = exp
(
−
√

2y
)

(6 +
√

2y − 4y2 − 2
√

2y3) + exp
(√

2y
)

(6−
√

2y − 4y2 + 2
√

2y3)− 12,
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w′′(y) = exp
(
−
√

2y
)

(−5
√

2− 10y − 2
√

2y2 + 4y3) + exp
(√

2y
)

(5
√

2− 10y + 2
√

2y2 + 4y3)

and

w′′′(y) = 2y
[
exp

(
−
√

2y
)

(3
√

2 + 8y − 2
√

2y2) + exp
(√

2y
)

(−3
√

2 + 8y + 2
√

2y2)
]
.

Let us observe that this last function is even and of the form w′′′(y) = 2y (R(y)−R(−y)), with R(y) =
exp

(√
2y
)

(−3
√

2 + 8y + 2
√

2y2). So it is enough to study its sign on [0,∞), which corresponds to the sign
of R(y)−R(−y) on [0,∞). We have, for all y ≥ 0,

(R(y)−R(−y))′ = 2
[
exp

(
−
√

2y
)

(1− 6
√

2y + 2y2) + exp
(√

2y
)

(1 + 6
√

2y + 2y2)
]

= 4(1 + 2y2) cosh
(√

2y
)

+ 24
√

2y sinh
(√

2y
)
≥ 0.

So R(y) − R(−y) is increasing on [0,∞), we have R(y) − R(−y) ≥ R(0) − R(−0) = 0 for all y ≥ 0, and,
a fortiori, w′′′(y) = 2y (R(y)−R(−y)) ≥ 0 for all y ≥ 0. Since w′′′(y) is even, we have w′′′(y) ≥ 0 for
all y ∈ R. This implies that w′′(y) is increasing on R. Since w′′(0) = 0, w′(y) is decreasing (−∞, 0] and
increasing on (0,∞). So w′(y) ≥ w′(0) = 0 implying that w(y) is increasing on R.

It follows from this result that, if a < |x|, we have w(|x| − a) > w(0) = 0, implying that ∂
∂av(x; a) > 0,

so v(x; a) is strictly increasing according to a. If a > |x|, we have w(|x| − a) < w(0) = 0, implying that
∂
∂av(x; a) < 0, so v(x; a) is strictly decreasing according to a. Clearly, we have ∂

∂av(x; a) = 0 if and only if
a = |x|. Since f(x) is an even function and v(x; 0) = v(x; 2|x|) = f(x), for all |x| ≥ a/2, we have

exp(x2) = v(x; |x|) = sup
a∈[0,2|x|]

v(x; a) ≥ v(x; a) ≥ inf
a∈[0,2|x|]

v(x; a) = inf [v(x; 0), v(x; 2|x|)] = f(x).

For |x| < a/2, we have
f(x) = inf

a∈[0,2|x|]
v(x; a) ≥ sup

a>2|x|
v(x; a) ≥ v(x; a).

Hence, for all x ∈ R, we have

exp(x2) ≥ max [f(x), v(x; a)] = f(x)1{|x|<a/2}(x) + v(x; a)1{|x|≥a/2}(x) = f◦(x; a) ≥ f(x).

Proposition 1 is proved.

Proof of Proposition 5. Let us prove the two points in turn.

• Let us remark that, by two successive integrations, we have∫ |x|
0

(∫ y

0

2(1 + 2t2) exp(t2)dt

)
dy =

∫ |x|
0

2y exp(y2)dy = exp(x2)− 1,

so

exp(x2) =

∫ |x|
0

(∫ y

0

2(1 + 2t2) exp(t2)dt

)
dy + 1. (5)

Owing to exp(x2) ≥ θ(x), we have

exp(x2)− ω(x) =

∫ |x|
0

(∫ y

0

2(1 + 2t2)
[
exp(t2)− θ(t)

]
dt

)
dy ≥ 0.

Hence exp(x2) ≥ ω(x).
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• Let us define the function β(x) by

β(x) =

∫ x

0

(∫ y

0

2(1 + 2t2)θ(t)dt

)
dy + 1− θ(x).

Then we have

β′(x) =

∫ x

0

2(1 + 2t2)θ(t)dt− θ′(x), β′′(x) = 2(1 + 2x2)θ(x)− θ′′(x).

Thanks to the assumption 2(1 + 2x2)θ(x) − θ′′(x) ≥ 0, we have β′′(x) ≥ 0, implying that β′(x) is
increasing. Since θ′(0) = 0, we have β′(0) = 0 and the minimum of β(x) is attained in x = 0. Since
θ(0) = 1, for all x ≥ 0, we have β(x) ≥ β(0) = 0, implying that β(|x|) ≥ 0 for all x ∈ R. Since θ(x) is
even, we have

ω(x) =

∫ |x|
0

(∫ y

0

2(1 + 2t2)θ(t)dt

)
dy + 1 ≥ θ(x).

The proof of Proposition 5 is complete.

Proof of Proposition 6. We proceed as the proof of Proposition 5.

• If follows from the equality (5), exp(x2) ≥ θ1(x) and exp(x2) ≥ θ2(x) that

exp(x2)− κ(x) =

∫ |x|
0

(∫ y

0

2
[
(exp(t2)− θ1(t)) + 2t2(exp(t2)− θ2(t))

]
dt

)
dy ≥ 0.

Hence exp(x2) ≥ κ(x).

• Let us define the function φ(x) by

φ(x) =

∫ x

0

(∫ y

0

2(θ1(t) + 2t2θ2(t))dt

)
dy + 1− θ1(x).

Two differentiations give

φ′(x) =

∫ x

0

2(θ1(t) + 2t2θ2(t))dt− θ′1(x), φ′′(x) = 2(θ1(x) + 2x2θ2(x))− θ′′1 (x).

Since 2(θ1(x) + 2x2θ2(x)) − θ′′1 (x) ≥ 0, we have φ′′(x) ≥ 0, implying that φ′(x) is increasing. Since
θ′1(0) = 0, we have φ′(0) = 0 and the minimum of φ(x) is attained in x = 0. Since θ(0) = 1, for all
x ≥ 0, we have φ(x) ≥ φ(0) = 0, implying that φ(|x|) ≥ 0 for all x ∈ R. Since θ(x) is even, we have

κ(x) =

∫ |x|
0

(∫ y

0

2(θ1(t) + 2t2θ2(t))dt

)
dy + 1 ≥ θ1(x).

By exchanging the role of θ1(x) and θ2(x), we obtain

κ(x) =

∫ |x|
0

(∫ y

0

2(θ1(t) + 2t2θ2(t))dt

)
dy + 1 ≥ θ2(x).

This ends the proof of Proposition 6.

Proof of Proposition 7. We have∫ |x|
0

exp(t)
[
(1 + 2t) exp(t2)− 1

]
dt =

[
exp(t2 + t)− exp(t)

]|x|
0

= exp(|x|)
(
exp(x2)− 1

)
,
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so

exp(x2) = 1 + exp(−|x|)
∫ |x|
0

exp(t)
[
(1 + 2t) exp(t2)− 1

]
dt.

If exp(x2) ≥ θ(x) for all x ∈ R, we have

exp(x2) ≥ 1 + exp(−|x|)
∫ |x|
0

exp(t) [(1 + 2t)θ(t)− 1] dt = γ(x).

Proposition 7 is proved.
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