

Holocene glacier culminations in the Western Alps and their hemispheric relevance

Irene Schimmelpfennig, J.M. Schaefer, N. Akçar, S. Ivy-Ochs, R. C. Finkel, C.

Schlüchter

► To cite this version:

Irene Schimmelpfennig, J.M. Schaefer, N. Akçar, S. Ivy-Ochs, R. C. Finkel, et al.. Holocene glacier culminations in the Western Alps and their hemispheric relevance. Geology, 2012, 40 (10), pp.891-894. 10.1130/G33169.1 . hal-01680367

HAL Id: hal-01680367 https://hal.science/hal-01680367

Submitted on 1 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Holocene glacier culminations in the Western Alps and their

- 2 hemispheric relevance
- 3 I. Schimmelpfennig¹, J.M. Schaefer^{1,2}, N. Akçar³, S. Ivy-Ochs⁴, R.C. Finkel⁵, and C.
- 4 Schlüchter³
- 5 ¹Lamont-Doherty Earth Observatory, Palisades, NY, USA
- 6 ²Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
- 7 ³Institute of Geological Sciences, University of Bern, Switzerland
- 8 ⁴ Insitut für Teilchenphysik, Eidgenössische Technische Hochschule Zürich, Switzerland
- 9 ⁵Earth and Planetary Science Department, University of California–Berkeley, CA, USA
- 10 ABSTRACT

11 The natural variability of Holocene climate defines the baseline to assess ongoing climate 12 change. Greenland ice-core records indicate warming superimposed by abrupt climate 13 oscillations in the early Holocene, followed by a general cooling trend throughout the mid- and 14 late Holocene that culminated during the Little Ice Age (LIA). Tropical precipitation changes 15 correlate with these patterns throughout the Holocene.

Here we use mountain glaciers in the Alps to reconstruct the regional Holocene climate
evolution and to test for a link between mid-latitude, North Atlantic and tropical climate. Our
precise ¹⁰Be chronology from Tsidjiore Nouve Glacier, western Swiss Alps, indicates a glacier
culmination during the earliest Holocene ~11.4 k.y. ago, likely related to the Preboreal
Oscillation. Based on our data, no Holocene glacier advance of similar amplitude occurred until
~3.8 k.y. ago, when the glacier reached LIA limits. ¹⁰Be ages between 500 and 170 yr
correspond to the LIA, while the youngest ¹⁰Be ages overlap with the historically recorded post-

23	LIA glacier positions. Integrating our data with existing records, we propose a hemispheric
24	climate link between the Alps, North Atlantic temperature and tropical precipitation patterns for
25	the Holocene, supporting the concept of a pervasive climate driver. These findings from northern
26	mid-latitudes are consistent with the hypothesis formulated for the tropics that the earth's thermal
27	equator, responding to North Atlantic temperature changes, might have migrated southward
28	throughout the Holocene, reaching the southern turning point towards the end of the LIA.
29	INTRODUCTION
30	While there is increasing evidence that the climate during the current warm period, the
31	Holocene, has been less stable than originally thought (e.g., Haug et al., 2001), robust terrestrial
32	data quantifying Holocene climate changes remain sparse mostly due to their moderate
33	amplitude compared to the dramatic climate fluctuations during ice-ages. The Greenland
34	temperature record indicates rapid warming after the Younger Dryas (YD, ~12,900–11,700 years
35	ago), interrupted by early Holocene abrupt cold events such as the Preboreal Oscillation (PBO;
36	Rasmussen et al., 2007). Warm early Holocene conditions in the North Atlantic area are
37	followed by a long-term cooling (Cuffey and Clow, 1997), culminating in the Little Ice Age
38	(LIA, 1300–1850 common era, CE, e.g. Holzhauser et al., 2005). Hydrological changes in the
39	tropics correlate with long- and short-term climate events in the North Atlantic (Haug et al.,
40	2001; Sachs et al., 2009), implying shifts in the Intertropical Convergence Zone (ITCZ) as a
41	result of the thermal equator adjusting to northern temperature changes. If this scenario is
42	correct, the mid-latitudes should have responded to polar cold and warm spells, but evidence
43	remains controversial.

Here we use glacier fluctuations in the Western Alps to reconstruct regional Holoceneclimate patterns and to test the link between polar climate changes and mid-latitude mountain

46	glaciers, which are highly sensitive to regional climate changes and in particular, to summer
47	temperature variations (Oerlemans, 2005). We produced a detailed moraine map and a precise
48	¹⁰ Be chronology for one of the best resolved Holocene lateral moraine sequences in the Alps
49	(Fig. 1); it was deposited by the Tsidjiore Nouve Glacier in the Valais, Switzerland, one of the
50	most climate sensitive glaciers in the Swiss Alps (Röthlisberger, 1976). The overall goal of this
51	study is to test for glacier fluctuations related to the early Holocene abrupt climate changes and
52	to add constraints of climate's evolution during the mid- and late Holocene, including the LIA
53	period. In the Alps, Holocene moraine chronologies are scarce (Joerin et al., 2006), as the LIA
54	advances wiped out the older moraines in most places (Röthlisberger and Schneebeli, 1979). A
55	few pioneering surface exposure dating studies from the Swiss and Austrian Alps (Ivy-Ochs et
56	al., 2009; Schindelwig et al., 2011) report glacier advances exceeding the LIA position during
57	the early Holocene, and correlate those advances to North Atlantic cold pulses.

58 GEOMORPHIC SETTING

59 The well-preserved sequence of Holocene lateral moraine ridges at Tsidjiore Nouve 60 Glacier (Fig. 1) is composed of i) an outermost pre-LIA moraine: an up to 20 m high and 1 km 61 long well-defined moraine ridge. At least five recessional sub-ridges, less than 1 m high, line its 62 ice-proximal flank. Large boulders are embedded on all ridges; ii) a 'LIA' composite moraine: 63 An up to 60 m high and 3 km long moraine wall, formed by at least five sub-ridges with few 64 boulders. Such massive composite moraines fringing the non-vegetated glacier forefield are 65 typically referred to as 'LIA' moraines in the Alps (Röthlisberger and Schneebeli, 1979); iii) an 66 outer and an inner post-LIA moraine inside of the 'LIA' composite moraine with several 67 embedded boulders. These two moraines are assigned to 1920 CE and 1991 CE, respectively

68 (Abbühl et al., 2009; Fig. 1), based on direct measurements of the glacier length changes of

69 numerous glaciers in this region (Glaciological reports, 1881–2009, Fig. DR1).

70 METHODS

71 We collected 29 surface samples from large boulders protruding >0.80 m from the lateral 72 moraine ridges of Tsidjiore Nouve Glacier (Figs. 1 and DR2). All samples were processed for ¹⁰Be measurements at the Lamont-Doherty Earth Observatory Cosmogenic Nuclide Laboratory 73 (method in Schaefer et al., 2009; http://www.ldeo.columbia.edu/cosmo/). ¹⁰Be/⁹Be ratios were 74 75 measured at the Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory. To calculate the surface exposure ages, we used the ¹⁰Be production rate calibrated 76 77 in northeastern North America (Balco et al., 2009), whose value is confirmed by several recent 78 calibration experiments elsewhere in the Northern Hemisphere (e.g., Fenton et al., 2011, Briner 79 et al., 2012). ¹⁰Be ages are reported in years before 2010 CE. RESULTS 80 81 The ¹⁰Be chronology at Tsidjiore Nouve is shown in Figure 1 and Table DR1. Ages from

82 the pre-LIA moraine crest (n = 10) range from 10.9 to 11.9 k.y. with an arithmetic mean and

standard deviation of 11.4 ± 0.4 k.y. (± 0.7 k.y. including the production rate uncertainty for

84 *comparison with other climate proxies,* shown in italic below; Fig. 2). Ages from the recessional

ridges of the pre-LIA moraine (n = 7) are between 10.9 and 11.5 k.y., and the arithmetic mean is

86 11.2 ± 0.2 k.y. (± 0.6 k.y.; Fig. 2). The error-weighted mean ages, 11.44 ± 0.06 k.y. for the crest

and 11.25 ± 0.08 k.y. for the recessional ridges are consistent with the stratigraphy.

88 The ages from the 'LIA' composite moraine can be divided into two groups. (i) Three 89 ages in the central part of the outmost crest are 3790 ± 200 (ARO-12), 3320 ± 170 (ARO-13) and 90 3200 ± 180 (ARO-11) years (Fig. 1). The oldest boulder protrudes from the ice-distal side of this

91	ridge, and the two younger boulders from the ice-proximal side (Fig. DR3), yielding an
92	arithmetic mean of 3260 ± 180 years. (ii) We obtain ages of 480 ± 30 (ARO-10) and 180 ± 10
93	years (ARO-9) for boulders on an inner crest; ARO-9 is from a more ice-proximal area than
94	boulder ARO-10 (Fig. DR3). On the lowest-elevation segment of the composite moraine, in a
95	stratigraphically similar position as ARO-10, sample ARO-23 yields an age of 580 ± 30 years.
96	The five samples from the outer post-LIA moraine yield ages of 170 ± 10 years (ARO-
97	66), 150 ± 10 years (ARO-67), 150 ± 10 (ARO-63), 110 ± 10 years (ARO-65) and 100 ± 10
98	years (ARO-64). One sample from the inner post-LIA moraine yields an age of 120 ± 10 years
99	(ARO-62).
100	DISCUSSION
101	The glacier chronology at Tsidjiore Nouve yields constraints for five periods of Holocene
102	glacier fluctuations (Fig. 3A), which we compare to other terrestrial records in the northern mid-
103	latitudes, and to North Atlantic temperature and tropical precipitation records (Fig. 3):
104	(i) Earliest Holocene: The mean age of the pre-LIA moraine crest of \sim 11.4 k.y. indicates that the
105	Tsidjiore Nouve Glacier was close to its LIA-limits at or shortly after the YD/earliest
106	Holocene transition. The mean age of the recessional ridges is slightly younger (~11.2 k.y.)
107	indicating that the glacier might have retreated slowly from the crest over a few centuries.
108	The age range for this moraine overlaps with both the late YD and the PBO (Fig. 3A), a brief
109	cold-spell identified in the Greenland ice cores, peaking 11.40 k.y. ago and terminating 11.27
110	k.y. ago (Rasmussen et al., 2007; Kobashi et al., 2008; Fig. 3G). Chronologically, two
111	scenarios are possible: Either the pre-LIA moraine corresponds to a late YD position of the
112	glacier, followed by a slow oscillatory retreat during the PBO marked by the recessional
113	ridges; or the pre-LIA moraine was deposited during the PBO, interrupting the glacier retreat

114	from the more extensive late glacial position. Traditionally, the YD has been related to the
115	'Egesen Stadial' in the Alps (Ivy-Ochs et al., 2009, and references herein) with Egesen
116	snowlines in the region of Tsidjiore Nouve Glacier (Valais) being ~200 m below the LIA
117	maximum (Maisch, 1987), far downstream of the pre-LIA moraine. Adopting this scenario
118	here, it appears more likely that the pre-LIA moraine is related to the PBO. Independent
119	evidence in the Alps further supports the PBO signature (Fig. 3): Burga (1987) reports an
120	increase in non-arboreal pollen during the earliest Holocene in a peat bog at Palü Glacier
121	(Eastern Swiss Alps) and infers a glacier advance beyond its LIA extent ("Palü Oscillation").
122	$\delta^{18}O$ changes in Swiss lake sediments showing a strong similarity with the Greenland $\delta^{18}O$
123	record reveal a distinct, 'PBO-type' signal shortly after the YD termination (Schwander et
124	al., 2000, Fig. 3F). Further evidence for the PBO in European and North American lacustrine
125	and glacial records (e.g., Björck et al., 1997; Hu et al., 2006) suggest a wide geographic
126	footprint of this short cold spell.
127	(ii) Early and mid-Holocene: It is characteristic for the Alps that no moraines are preserved
128	during the early and mid-Holocene, suggesting that glaciers were smaller during this period
129	than during the LIA (Holzhauser et al., 2005). In Greenland, a warming of 4 ± 1.5 °C within
130	\sim 14 years is recorded at the end of the PBO (Kobashi et al., 2008). The manifestation of this
131	abrupt warming might have driven glaciers in the Alps far inside their LIA configuration,
132	where they remained during the entire mid-Holocene. Warm early to mid-Holocene climate
133	is also supported by recent studies from the European Alps: Mont Miné Glacier, a
134	neighboring glacier of Tsidjiore Nouve, was smaller than today 9 k.y. ago, before a short-
135	lived, minor advance 8.2 k.y. ago killed many trees growing up-valley of today's glacier
136	terminus (Nicolussi and Schlüchter, 2012; Fig. 3C); Swiss glaciers were smaller than today

137	during the early and mid-Holocene, based on sub-fossil wood and peat records (Joerin et al.,
138	2006, Fig. 3D); a speleothem record implies that the Upper Grindelwald Glacier (Swiss Alps)
139	was in a quasi-continuously retracted position until 5.8 k.y., followed by a period of larger
140	glaciers (Luetscher et al., 2011, Fig. 3E). Re-advances of glaciers in the Alps during the
141	second half of the Holocene agree with the general cooling trend in Greenland (Cuffey and
142	Clow, 1997; Fig. 3H) and correlate with a precipitation decrease in the tropics (Haug et al.,
143	2001; Fig. 3I), both beginning after the thermal maximum ~7.5 k.y. ago and culminating in
144	the LIA.
145	(iii) Late Holocene: The three boulder ages from the oldest segment of the 'LIA' composite
146	moraine provide less robust age constraints, but indicate that the glacier was similar to LIA
147	size 3.8–3.2 k.y. ago. We cannot entirely exclude the possibility of ¹⁰ Be accumulation prior
148	to final boulder deposition. However, several arguments support the view that these three
149	ages represent the formation of this moraine segment. First, the chronology agrees with the
150	stratigraphic order. Second, the ¹⁴ C-dating of a larch log found in the basal till of the
151	proglacial streambed yielded an age of 3440-2770 cal yr B.P. (Table DR2), consistent with
152	the two younger ¹⁰ Be ages, implying an advance of the glacier at that time (Röthlisberger,
153	1976). This scenario is further supported by ¹⁴ C dates on two fossil soils that formed on this
154	moraine 1510–1080 cal yr B.P. (lower horizon) and 1180–800 cal yr B.P. (upper horizon;
155	Röthlisberger, 1976, Table DR2). The ¹⁴ C dates assign a conservative minimum age to this
156	moraine, supporting the pre-LIA ¹⁰ Be ages. Interestingly, both soil-dates fall within the
157	Medieval Warm Period (MWP; Fig. 3B). Other studies in the European Alps support the
158	onset of substantial glacier re-advances to 'LIA extent' ~3.8 k.y. ago. The speleothem record
159	at Upper Grindelwald Glacier implies glacier advances close to its Holocene peak extent

160	from 3.8 k.y. ago onward (Luetscher et al., 2011, Fig. 3E). Patzelt and Bortenschlager (1973)
161	define the "Löbben Oscillation" ~4.0–3.0 cal kyr ago based on 14 C-dates of the advance of
162	two glaciers and climatic deterioration in a pollen record in Austria. Glacier culminations at
163	that time are also documented in other regions of the Northern Hemisphere. According to
164	Menounos et al. (2009) and references therein, glaciers in western Canada reached 'LIA-
165	extent' by 3.5 k.y. ago, based on ¹⁴ C-dates from proglacial detrital and in situ wood. In
166	southeastern Alaska, ¹⁴ C-dates of a tree-ring series indicate a glacial expansion \sim 3.4–3.0 k.y.
167	ago (Wiles et al., 2011). In the tropics, the period between \sim 3.8 and 2.8 k.y. ago is marked by
168	centennial-scale, large-amplitude variations in precipitation, including several precipitation
169	minima similar to those during the LIA (Haug et al., 2001; Fig. 3I).
170	(iv) Little Ice Age: Lasting from about 1300-1850 CE, the LIA in the Swiss Alps showed three
171	maxima, c. 1350, 1650 and 1850 CE (Holzhauser et al., 2005). The three younger ages on the
172	inner sub-ridge of the composite moraine correspond to the years 1430 ± 32 , 1534 ± 28 , 1829
173	\pm 11 CE, all within the LIA period. A drawing of Tsidjiore Nouve Glacier from 1836 CE
174	(Fig. DR4) testifies the advanced position of the glacier terminus to be more than 1 km
175	downvalley of its modern position, and is in general agreement with the boulder age
176	corresponding to 1829 ± 11 CE (ARO-9).
177	(v) Little Ice Age Termination: Our six post-LIA boulder ages correspond to the years between
178	1840 ± 13 and 1906 ± 11 CE, broadly overlapping with the historic record (Glaciological
179	reports, 1881–2009; Fig. DR1). Offsets of ~15 to 100 years between the 10 Be ages and the
180	historically recorded deposition years of the post-LIA moraines (Fig. 1) are probably due to a
181	small 10 Be signal (~300 - 2000 atoms 10 Be g ${}^{-1}$) inherited from previous exposure. This result
182	underlines the potential to resolve (sub-)centennial climate events during the last millennium

183 with ¹⁰Be dating of moraines, previously only reported from New Zealand (Schaefer et al.,

184 2009) and Peru (Licciardi et al., 2009).

185 CONCLUSION

186 We make the case that Holocene glacier fluctuations in the western Alps (i.e., mid-187 latitude temperatures) are related to North Atlantic temperature changes and the tropical 188 hydrological cycle, confirming a hemispheric climate link. Our observations thus reinforce the 189 concept of a common hemispheric driving mechanism and support the scenario that the earth's 190 thermal equator and the connected westerly winds have shifted south over several millennia 191 during the Holocene in response to North Atlantic temperature changes, reaching its 192 southernmost position during the LIA (Sachs et al., 2009). 193 ACKNOWLEDGMENTS 194 We thank R. Schwartz, J. Hanley and J. Frisch for help with sample preparation, A. 195 Putnam for assistance during figure preparation, and the staff of LLNL-CAMS for the 196 excellent measurements. We acknowledge support by the CRONUS-Earth project (NSF 197 Grant EAR-0345835), by the International Balzan Foundation and the German Academic 198 Exchange Service (DAAD). This is Lamont-Doherty Earth Observatory publication 7540. 199 Comments from Jason Briner and two anonymous reviewers greatly improved this 200 manuscript. 201 **REFERENCES CITED** 202 Abbühl, L., Akcar, N., Strasky, S., Graf, A., Ivy-Ochs, S., and Schlüchter, C., 2009, A zero-

203 exposure time experiment on an erratic boulder: Evaluating the problem of pre-exposure in

204 Surface Exposure Dating, Eiszeitalter und Gegenwart: Quaternary Sciences Journal, v. 58,

205 p. 1–11.

206	Balco, G., Briner, J., Finkel, R.C., Rayburn, J.A., Ridge, J.C., and Schaefer, J.M., 2009, Regional
207	beryllium-10 production rate calibration for late-glacial northeastern North America:
208	Quaternary Geochronology, v. 4, p. 93–107, doi:10.1016/j.quageo.2008.09.001.
209	Björck, S., Rundgren, M., Ingólfsson, Ó., and Funder, S., 1997, The Preboreal oscillation around
210	the Nordic Seas: Terrestrial and lacustrine responses: Journal of Quaternary Science, v. 12,
211	p. 455-465, doi:10.1002/(SICI)1099-1417(199711/12)12:6<455::AID-JQS316>3.0.CO;2-S.
212	Briner, J.P., Young, N.E., Goehring, B.M., and Schaefer, J.M., 2012, Constraining Holocene
213	¹⁰ Be production rates in Greenland, Journal of Quaternary Science, v. 27, p. 2-6, doi:
214	10.1002/jqs.1562.
215	Burga, C.A., 1987, Gletscher- und Vegetationsgeschichte der südrätischen Alpen seit der
216	Späteiszeit (Puschlav, Livigno, Bormiese): Denkschriften der Schweizerischen
217	Naturforschenden Gesellschaft, v. 101, 162 p.
218	Cuffey, K., and Clow, G., 1997, Temperature, accumulation, and ice sheet elevation in central
219	Greenland through the last deglacial transition: Journal of Geophysical Research, v. 102,
220	p. 26383–26396, doi:10.1029/96JC03981.
221	Fenton, C.R., Hermanns, R.L., Blikra, L.H., Kubik, P.W., Bryant, C., Niedermann, S., Meixner,
222	A., and Goethals, M.M., 2011, Regional ¹⁰ Be production rate calibration for the past 12 ka
223	deduced from the radiocarbon-dated Grøtlandsura and Russenes rock avalanches at 69°N,
224	Norway: Quaternary Geochronology, v. 6, p. 437–452, doi:10.1016/j.quageo.2011.04.005.
225	Glaciological reports, 1881–2009, "The Swiss Glaciers", Yearbooks of the Cryospheric
226	Commission of the Swiss Academy of Sciences (SCNAT) published since 1964 by the
227	Laboratory of Hydraulics, Hydrology and Glaciology (VAW) of ETH Zürich. No 1-126.
228	(http://glaciology.ethz.ch/swiss-glaciers/)

- Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., and Röhl, U., 2001, Southward
- 230 migration of the Intertropical Convergence Zone through the Holocene: Science, v. 293,
- 231 p. 1304–1308, doi:10.1126/science.1059725.
- 232 Holzhauser, H., Magny, M., and Zumbühl, H.J., 2005, Glacier and lake-level variations in west-
- central Europe over the last 3500 years: The Holocene, v. 15, p. 789–801,
- doi:10.1191/0959683605hl853ra.
- Hu, F., Nelson, D., Clarke, G., Rühland, K., Huang, Y., Kaufman, D., and Smol, J., 2006, Abrupt
- 236 climatic events during the last glacial-interglacial transition in Alaska: Geophysical
- 237 Research Letters, v. 33, L18708, 5 p.
- 238 Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P.W., and Schluechter, C., 2009,
- 239 Latest Pleistocene and Holocene glacier variations in the European Alps: Quaternary

240 Science Reviews, v. 28, p. 2137–2149, doi:10.1016/j.quascirev.2009.03.009.

- 241 Joerin, U.E., Stocker, T.F., and Schlüchter, C., 2006, Multicentury glacier fluctuations in the
- 242 Swiss Alps during the Holocene: The Holocene, v. 16, p. 697–704,
- 243 doi:10.1191/0959683606hl964rp.
- Kobashi, T., Severinghaus, J.P., and Barnola, J.-M., 2008, 4±1.5°C abrupt warming 11,270 yr
- ago identified from trapped air in Greenland ice: Earth and Planetary Science Letters, v. 268,
- 246 p. 397–407, doi:10.1016/j.epsl.2008.01.032.
- 247 Licciardi, J.M., Schaefer, J.M., Taggart, J.R., and Lund, D.C., 2009, Holocene glacier
- fluctuations in the Peruvian Andes indicate northern climate linkages. Science, v. 324, p.
- 249 1677-1679, doi: 10.1126/science.1175010.

- 250 Luetscher, M., Hoffmann, D.L., Frisia, S., and Spötl, C., 2011, Holocene glacier history from
- 251 alpine speleothems, Milchbach cave, Switzerland: Earth and Planetary Science Letters,
- v. 302, p. 95–106, doi:10.1016/j.epsl.2010.11.042.
- 253 Maisch, M., 1987, Zur Gletschergeschichte des alpinen Spätglazials: Analyse und Interpretation
- von Schneegrenzdaten: Geographica Helvetica, v. 42, p. 63–71.
- 255 Menounos, B., Osborn, G., Clague, J.J., and Luckman, B.H., 2009, Latest Pleistocene and
- Holocene glacier fluctuations in western Canada: Quaternary Science Reviews, v. 28,
- 257 p. 2049–2074, doi:10.1016/j.quascirev.2008.10.018.
- 258 Nicolussi, K., and Schlüchter, C., 2012, The 8.2 ka event calendar dated glacier response in the
- 259 Alps: Geology (in press).
- Oerlemans, J., 2005, Extracting a Climate Signal from 169 Glacier Records: Science, v. 308,
 p. 675–677, doi:10.1126/science.1107046.
- 262 Patzelt, G., and Bortenschlager, S., 1973, Die postglazialen Gletscher- und Klimaschwankungen
- 263 in der Venedigergruppe (Hohe Tauern, Ostalpen), Zeitschrift für Geomorphologie N.F:
- 264 Supplementband, v. 16, p. 27–48.
- 265 Rasmussen, S.O., Vinther, B.M., Clausen, H.B., and Andersen, K.K., 2007, Early Holocene
- 266 climate oscillations recorded in three Greenland ice cores: Quaternary Science Reviews,
- 267 v. 26, p. 1907–1914, doi:10.1016/j.quascirev.2007.06.015.
- 268 Röthlisberger, F., 1976, Gletscher- und Klimaschwankungen im Raum Zermatt, Ferpècle und
- 269 Arolla: Die Alpen, v. 52, p. 59–152.
- 270 Röthlisberger, F., and Schneebeli, W., 1979, Genesis of lateral moraine complexes, demonstrated
- by fossil soils and trunks: indicators of postglacial climatic fluctuations, *in* Schlüchter, C.,
- ed., Moraines and Varves: Rotterdam, A.A. Balkema, p. 387–419.

- 273 Sachs, J.P., Sachse, D., Smittenberg, R.H., Zhang, Z., Battisti, D.S., and Golubic, S., 2009,
- 274 Southward movement of the Pacific intertropical convergence zone AD 1400–1850: Nature
- 275 Geoscience, v. 2, p. 519–525, doi:10.1038/ngeo554.
- 276 Schaefer, J., Denton, G., Kaplan, M., Putnam, A., Finkel, R., Barrell, D., Andersen, B.,
- 277 Schwartz, R., Mackintosh, A., Chinn, T., and Schluechter, C., 2009, High-frequency
- 278 Holocene glacier fluctuations in New Zealand differ from the northern signature: Science,
- v. 324, p. 622–625, doi:10.1126/science.1169312.
- 280 Schindelwig, I., Akçar, N., Kubik, P.W., and Schlüchter, C., 2011, Lateglacial and early
- 281 Holocene dynamics of adjacent valley glaciers in the Western Swiss Alps: Journal of
- 282 Quaternary Science, doi:10.1002/jqs.1523.
- 283 Schwander, J., Eicher, U., and Ammann, B., 2000, Oxygen isotopes of lake marl at Gerzensee
- and Leysin (Switzerland), covering the Younger Dryas and two minor oscillations, and their
- correlation to the GRIP ice core: Palaeogeography, Palaeoclimatology, Palaeoecology,
- 286 v. 159, p. 203–214, doi:10.1016/S0031-0182(00)00085-7.
- 287 Stuiver, M., Grootes, P.M., and Braziunas, T.F., 1995, The GISP2 δ^{18} O climate record of the
- past 16,500 years and the role of the sun, ocean, and volcanoes: Quaternary Research, v. 44,
- 289 p. 341–354, doi:10.1006/qres.1995.1079.
- 290 Wiles, G.C., Lawson, D.E., Lyon, E., Wiesenberg, N., and D'Arrigo, R.D., 2011, Tree-ring dates
- on two pre-Little Ice Age advances in Glacier Bay National Park and Preserve, Alaska,
- 292 USA: Quaternary Research, v. 76, p. 190–195, doi:10.1016/j.yqres.2011.05.005.
- 293 FIGURES CAPTIONS
- Figure 1. Map of the Holocene moraine sequence at Tsidjiore Nouve Glacier with ¹⁰Be surface-
- exposure ages (arithmetic means, 1σ uncertainties and sample names). LIA = Little Ice Age. The

296	inset shows the study area in red. Individual ages of the pre-LIA moraine are given with
297	analytical errors only; the boulder ages of the other moraines include the production rate
298	uncertainty. Yellow boxes show the moraine names as used in the main text, blue boxes show the
299	ages of historically recorded moraines (Abbühl et al., 2009). Estimates of four moraine
300	deposition ages based on ¹⁴ C dated fossil soils and logs (Röthlisberger, 1976, Fig. DR5D) are
301	given in dark green boxes, and the calibrated ¹⁴ C ages of two fossil soils are shown in light green
302	(Röthlisberger, 1976, Fig. DR5A,B). Legend: "Late Holocene" refers here to the period starting
303	4 k.y. ago, excluding LIA and post-LIA. See Fig. DR3 for zoom-in of the 'Late Holocene/LIA'
304	complex.
305	Figure 2. Summed probability curves of ¹⁰ Be ages from the crest and the recessional ridges of the
306	pre-LIA moraine ridge. Individual ages in probability plots include propagation of analytical
307	errors. The yellow bands denote the arithmetic means (= Ar. mean) and the standard deviations
308	(= st.dv.). See Table DR3 for statistics.
309	Figure 3. Comparison of Holocene climate records in the European Alps (upper panel), in
310	Greenland (middle panel) and in the tropics (lower panel). Blue generally indicates colder (in the
311	tropics dryer) and red warmer (in tropics wetter) conditions. LIA = Little Ice Age; MWP =
312	Medieval Warm Period; PBO = Preboreal Oscillation; YD = Younger Dryas. A: Holocene
313	fluctuations of Tsidjiore Nouve Glacier (46°N), represented as approximate glacier length
314	changes, estimated based on lateral moraine positions and historic records. White vertical dashed
315	lines indicate glacier length uncertainties. ¹⁰ Be age error bars (1 σ) include the production rate
316	uncertainty. Note that moraine sequences are discontinuous records of glacier behavior, indicated
317	here by the dashed curves and the question marks. B: Two recession events of Tsidjiore Nouve
318	Glacier, evident from ¹⁴ C-dated soils within the 'LIA' composite moraine (Röthlisberger, 1976).

319	C: Re-advance of Mont Miné Glacier (Valais) to its modern extent inferred from ¹⁴ C-dated
320	proglacial fossil trees (Nicolussi and Schlüchter, 2012). D: Recession periods of six Swiss
321	glaciers deduced from ¹⁴ C-dated proglacial wood and peat (Joerin et al., 2006). E: Behavior of
322	the Upper Grindelwald Glacier inferred from petrographic and stable isotope changes in
323	speleothems (Luetscher et al., 2011). F: δ^{18} O records in sediment of two Swiss lakes at
324	Gerzensee and Leysin (Schwander et al., 2000). G: GISP2 δ^{18} O record (Stuiver et al., 1995). H:
325	500-year smoothed record of Greenland surface temperature based on GISP2 borehole
326	measurements (Cuffey and Clow, 1997). I: Titanium concentrations in Cariaco Basin sediments
327	(10°N) as a proxy for precipitation changes (Haug et al., 2001).
328	¹ GSA Data Repository item 2012xxx, supporting data tables and figures, is available online at
329	www.geosociety.org/pubs/ft2012.htm, or on request from editing@geosociety.org or Documents

330 Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

Ar. mean ± st.dv.: 11,230 ± 210 yr Ar. mean ± st.dv.: 11,440 ± 380 yr Weighted mean: 11,250 ± 80 yr Weighted mean: 11,440 ± 60 yr

DATA REPOSITORY for:

Holocene glacier culminations in the Western Alps and their hemispheric relevance

Irene Schimmelpfennig, Joerg M. Schaefer, Naki Akçar, Susan Ivy-Ochs, Robert C. Finkel, Christian Schlüchter

Geology

Table DR1: Sample details, analytical data and surface exposure ages. Sample ${}^{10}\text{Be}{}^{9}\text{Be}$ ratios, measured at the Center for Accelerator Mass Spectrometry of the Lawrence Livermore National Laboratory, were normalized to one of the indicated standards, KNSTD (until mid-2007; ${}^{10}\text{Be}{}^{9}\text{Be} = 3.15 \times 10^{-12}$) or KNSTD07 (after the year 2007; ${}^{10}\text{Be}{}^{9}\text{Be} = 2.85 \times 10^{-12}$). Measurements normalized to KNSTD were corrected by a factor of 0.9048 during age calculation. The ages are calculated using the ${}^{10}\text{Be}$ production rate with a value of 3.85 ± 0.19 atoms (g yr)⁻¹ (Balco et al. 2009, normalized to standard 07KNSTD) and the scaling method 'Lm' (time-dependent version of Lal, 1991) according to Balco et al. (2008). They are reported in calendar years before 2010 CE. 1 σ analytical uncertainties range between 1.5% and 3%, except for samples younger than 500 years, which have uncertainties between 3% and 10%.

Sample name	Latitude	Longitude	Elevation	Thickness	Shielding	Otz weight	Carrier	Carrier	¹⁰ Be/9Be	¹⁰ Be/ ⁹ Be	[¹⁰ Be]	¹⁰ Be age	1σ Analvt.	1σ error
I I I I I	(°N)	(°E)	(m)	(cm)	factor	(g)	(mg ⁹ Be)	(mg 9Be)	Standard	x10 ⁻¹⁴	$(x \ 10^{3} \text{ atoms g}^{-1})$	(years)	error	incl. prod.
									used					rate error
Pre-LIA MORAINE, BOUI	DERS ON CREST													
ARO-4	46.01820	7.46480	2393	2.30	0.977	9.97	0.2040	BE23706	KNSTD	25.15±0.36	332.9±4.8	11920	170	610
ARO-1	46.01824	7.46527	2387	4.36	0.977	16.55	0.2077	BE23715	KNSTD	39.93±0.66	325.1±5.4	11880	200	620
ARO-6	46.01746	7.45986	2433	2.04	0.970	21.33	0.2060	BE23716	KNSTD	54.0±1.0	338.6±6.5	11870	230	630
ARO-55	46.01838	7.46628	2371	1.89	0.977	12.04	0.1829	BE31219	07KNSTD	28.59±0.46	289.9±4.7	11610	190	600
ARO-5	46.01823	7.46434	2400	3.19	0.977	10.60	0.1991	BE23707	KNSTD	26.45±0.44	321.4±5.4	11510	200	600
ARO-52	46.01858	7.46791	2345	1.91	0.978	17.54	0.1830	BE31211	0/KNSTD	40.09±0.75	279.0±5.2	11350	210	600
ARO-59	46.01/52	7.4602	2432	1.43	0.970	20.08	0.1836	BE31213	0/KNSID	48.04±0.89	293.1±5.5	11290	210	600
ARO-3	46.01823	7.46509	2389	2.50	0.977	10.06	0.2043	BE23705	KNSID	23.59±0.39	309.9±5.2	11140	190	580
ARO-36	46.01/98	7.40207	2419	3.27	0.974	20.08	0.1840	BE31212	U/KINSID	45.85±0.85	2/9.4±5.2	10960	200	580
AKU-2 Dro LLA MODAINE DOLU	40.01824	7.40310	2389	3.31	0.977	10.07	0.2050	BE23704	KNSID	22.85±0.38	300.9±3.1	10880	180	570
ABO 21 2010Apr	JERS ON RECES	7 AGADE	3 2202	2.12	0.042	5 57	0 1969	DE20520	07PNSTD	12 00 0 21	295 617 0	11650	200	640
ARO-21_2010Api	46.01762	7.40403	2393	2.15	0.945	3.37	0.1808	DE29330	07KNSTD	12.90±0.51	283.0±7.0	11630	290	620
ARO-21 ARO 22	46.01762	7.40403	2393	2.15	0.945	42.19 5.24	0.2033	DE24922 DE28021	07KNSTD	09.0±1.0 12.22±0.28	203.1±3.7	11420	240	620
ARO-22 ABO 21 #2	46.01762	7.404//	2361	2.02	0.934	20.15	0.1894	DE20931	07KNSTD	12.25±0.28	279.2±0.0	11420	210	600
ARO-21_Ie	46.01762	7.46403	2393	2.15	0.945	20.15	0.1859	DE31210 DE38020	07KNSTD	43.49±0.83	2//.0±3.2 292 8±8 2	11330	210	650
ARO-18 ARO 8	46.01/602	7.46407	2399	2.02	0.900	4.55	0.1676	DE20930	VINSTD	10.00 ± 0.50 24.22±0.41	203.0±0.2 218 4±5 4	11280	100	500
ARO-8	40.01092	7.45004	2442	1.61	0.970	5 14	0.2051	DE23708	OTVNETD	11.02+0.21	318.4 ± 3.4	11250	200	500
ARO-10 ABO 7	40.01///	7.4036/	2399	2.50	0.934	20.27	0.1800	DE20929	U/KINSID	11.92±0.21	217.1 ± 3.1 217.4 \ 5.4	11070	200	590
ARO-7	46.01090	7.43634	2441	2.30	0.970	2 66	0.2048	DE23/1/	ANSID	72.3±1.2 8.22±0.21	31/.4±3.4	10010	190	580
ARO-15 (LLA? COMPOSITE MOP/	40.01775	1.40347	2404	1.05	0.934	5.00	0.1894	DE20920	0/KINSID	8.25±0.21	2/3.1±7.0	10910	280	010
APO 12	46.01678	7.46504	2416	2.24	0.081	20.05	0 2017	DE22712	VNSTD	24 40±0 41	106 4+1 8	2786	62	200
ARO-12 ABO 12	46.01604	7.40304	2410	3.24	0.981	20.22	0.2017	DE23712	KNSTD	24.49±0.41	016115	2220	55	170
ARO-15 ARO 11	46.01694	7.40377	2398	2.20	0.974	20.80	0.2041	DE23/13 DE22711	KNSTD	21.03±0.33	91.0±1.3 80.0±2.2	3320	33 70	170
ARO-11	NE LIA CUD DU	7.40476	2419	3.19	0.981	20.80	0.1820	BE25/11	KINGID	15.78±0.59	89.0±2.2	3201	13	180
ABO 22	46 01915	7 4601	2208	2.84	0.049	47.02	0.1525	DE26095	OTVNETD	6 24 0 14	12 02 0 22	577	15	22
ARO-23	46.01813	7.4091	2308	2.64	0.948	47.05	0.1355	DE20083	VINSTD	0.34 ± 0.14 2.27 ±0.11	12.92 ± 0.55 12.71±0.48	377	15	32
ARO-10	46.01593	7.40030	2475	2.69	0.988	20.27	0.2039	DE23710 DE23700	KNSTD	1 280±0.060	5 12+0 21	191	10	14
OUTER Post-I IA RECESS	IONAL MORAINE	7.43993	2478	2.08	0.988	30.27	0.2037	BE23709	KINSTD	1.289±0.009	5.12±0.51	101	11	14
ARO-66	16 01023	7 47315	2175	3.26	0.970	28.46	0 1558	BE32368	07KNSTD	0.008+0.058	3 55+0 22	170	10	13
ARO-63	46.01925	7.47515	2175	1.61	0.970	28.40 45.30	0.1553	BE32367	07KNSTD	1.470±0.058	3 30+0 15	1/0	7	10
ARO-63	46.0180	7.47057	2255	3.48	0.970	38.11	0.1555	BE32360	07KNSTD	1.470 ± 0.004 1.145 ± 0.067	3.06+0.19	148	ý	10
ARO-65	46.01921	7.47315	2105	2.41	0.970	10.06	0.1846	BE31215	07KNSTD	0.453+0.029	2 38+0 20	111	9	11
ARO-64	46.01923	7.47058	2254	1.23	0.958	10.06	0.1840	BE31213	07KNSTD	0.433 ± 0.023	2.33±0.20	104	10	11
INNER Post-I IA RECESSI	ONAL MORAINE	7.47050	2234	1.25	0.774	17.70	0.1042	DE51214	0/14100112	0.447±0.051	2.55-0.21	104	10	
ARO-62	46 01702	7 47225	2254	2.93	0.960	49 40	0 1248	BE32366	07KNSTD	1 532±0 072	2 53±0 12	116	6	8
Blank name	Processed	,		-17.6			Carrier	Carrier (mg	¹⁰ Be/ ⁹ Be	¹⁰ Be/ ⁹ Be	Total number of		*	·
Blank hand	with						(mg ⁹ Be)	⁹ Be)	Standard	x10 ⁻¹⁴	atoms ¹⁰ Be x 10 ³			
							(used					
Blank 1 07Feb23	AR0-23						0.2035	BE23703	KNSTD	0.117±0.021	15.4±2.7			
	458													
Blank 2 07Feb23	ARO-910						0.2051	BE23714	KNSTD	0.118±0.019	15.8±2.5			
	11,-12,-13													
Blank 2 07Jan19	ARO-167						0.2065	BE23718	KNSTD	0.073±0.017	9.8±2.3			
Blank 1 2010Jan22	ARO-15,-						0.1895	BE28932	07KNSTD	0.116±0.021	14.3±2.5			
	161822													
Blank 3 08Oct06	ARO-23						0.1534	BE26086	07KNSTD	0.252±0.053	25.1±5.3			
Blank 4 07Dec05	ARO-21						0.2066	BE24923	07KNSTD	0.747±0.013	10.0±1.8			
Blank 1 2010Apr20	ARO-21						0.1868	BE29537	07KNSTD	0.150±0.023	18.7±2.8			
1	2010Apr													
Blank 2 2011Jan18	ARO-21 re,-						0.1837	BE31218	07KNSTD	0.069±0.015	8.5±1.8			
	52,-56,-59													
	64,-65													
Blank 1 2011Jan18	ARO-55						0.1849	BE31221	07KNSTD	0.030±0.010	3.7±1.2			
Blank 1 2011Oct4	ARO-62						0.1238	BE32567	07KNSTD	0.026±0.015	2.1±1.3			
Blank 2 2011Oct4	ARO-63,-						0.1546	BE32376	07KNSTD	0.027±0.009	2.8±0.9			
	66,-67													

Table DR2: Radiocarbon dates on fossil soils within superimposed deposits of the 'LIA' composite moraine (Figs. 1 and DR5a,b) and detrital logs found in basal till of the proglacial streambed at Tsidjiore Nouve Glacier (Fig. DR5c) and glacierclimatic significance (Röthlisberger, 1976, Röthlisberger and Schneebeli, 1979). All calibrated ages below are given as 2σ intervals, referenced to the year 1950 CE (=BP, before present). They are calibrated with OxCal 4.1 (Bronk Ramsey, 2009, 2011) relative to the IntCal09 calibration data set (Reimer et al., 2009).

Dated material	Uncal. age (¹⁴ C-yr)	Cal. age (yr BP)	Glacier-climatic significance		
Upper fossil soil in moraine	1075 ± 80	1180-800	Timing of 'favorable' (warm)		
Lower fossil soil in moraine	1380 ± 85	1510-1080	moraine deposition		
Fossil log	2940 ± 150	3440-2770	Timing of glacier advance,		
Fossil log	8400 ± 200	10120-8780	following a period of warmer climate		

Table DR3: Statistics of the ¹⁰Be ages from the crest and the recessional ridges of the pre-LIA moraine including different mean ages with respective uncertainties and the reduced chi-squares. For the 'weighted mean', both mean age and uncertainty were weighted by the inverse variances (e.g. Taylor, 1997). The relative high chi-square value is a result of the exceptionally small 1 σ analytical errors of the individual ages (~1.5%). Hence, for both crest and recessional ridges the boulder age distributions indicate that significant errors due to complex geological conditions (inheritance from prior exposure, erosion, or boulder instability) or snow cover are unlikely.

	10 B ages on crest (n=10)	¹⁰ Be ages on recessional ridges (n=7)
Arithmetic mean \pm standard deviation	11,440±380 years	11,230±210 years
- incl. production rate uncertainty	11,440±680 years	11,230±590 years
Weighted mean	11,440±60 years	11,250±80 years
Peak age	11,470 years	11,190 years
Median age \pm interquartile range	11,430±730 years	11,230±290 years
Reduced X^2	3.9	0.9

Fig. DR1: Post-LIA length measurements of several glaciers in the Valais, Switzerland. The red and dark blue graph shows length changes of Arolla Glacier (direct neighboring glacier of Tsidjiore Nouve; Glaciological reports, 1881-2009). The dashed thick line of this graph indicates lack of continuous measurements between the years 1856 and 1886. Thin superposed lines are length measurements of seven other glaciers in the Valais starting around the year 1880, with the thick black line representing their average: 1 Fee Glacier, 2 Schwarzberg Glacier, 3 Lang Glacier, 4 Rossbode Glacier, 5 Trient Glacier, 6 Allalin Glacier, 7 Findelen Glacier. All glaciers show similar fluctuation patterns, i.e. during the general retreat from the LIA maximum a two-fold re-advance occurred between 1890 and 1930 CE, followed by another re-advance between 1970 CE and 1990 CE. The thick light blue curve is the summed probability plot of the individual ¹⁰Be ages (thin light blue curves) from the outer post-LIA moraine.

Fig. DR2: Examples of sampled boulders. A and B: ARO-1 (view west) and ARO-59 (view east), respectively, both embedded on the crest of the pre-LIA moraine. C: ARO-16, protruding from a recessional ridge of the pre-LIA moraine, view east.

Fig. DR3: Positions of late Holocene and LIA boulders on the 'LIA' composite moraine. The upper panel displays the corresponding sample sites and ages in a zoom-in of the moraine map given in Fig. 1. The left photograph shows the position of boulder ARO-9, which is on a more ice-proximal and thus stratigraphically younger subsection of the composite moraine than boulder ARO-10, in agreement with the ¹⁰Be chronology. Similarly, the right picture shows that ARO-12 is in a slightly more ice-distal and therefore stratigraphically older position than ARO-11, again in agreement with the ¹⁰Be ages.

Fig. DR4: Upper panel: Drawing by Bühlmann from the year 1836 CE (Skizzenbücher Bd. 10, 256, Graphische Sammlung ETH, Zürich) showing the Tsidjiore Nouve Glacier on the right, the Arolla Glacier on the left and the village Arolla in the front. Glacier terminus positions are close to their Little Ice Age peak extent. Lower panel: Google Earth picture of approximately the same view in the year 2009 CE.

Fig. DR5: Figures from the earlier work on the Holocene moraine sequence at Tsidjiore Nouve Glacier (Röthlisberger, 1976; Röthlisberger and Schneebeli, 1979). A: Photograph of the glacier and the moraine sequence in the year 1972 with white arrow pointing to the location of the excavated fossil soils. B: Schematic illustration of the two fossil soils found in superimposed moraine deposits in the 'LIA' composite moraine and corresponding ¹⁴C ages. According to the authors, the younger fossil soil was covered by solifluction during a cold period. C: Radiocarbon dated larch log embedded in basal till and washed out by the glacial stream (3440-2770 cal years BP). D: Left lateral moraine sequence with pilot age estimates, which are based on 4 radiocarbon dates at Tsidjiore Nouve Glacier (summary in Table DR2) in combination with radiocarbon dates from the nearby glaciers Findelen, Mont Miné, and Ferpècle (Röthlisberger, 1976; Röthlisberger and Schneebeli, 1979). The deposition ages of 2500, 1500 and 900 years are presumably mostly inferred from ¹⁴C ages at the three nearby glaciers. The white arrow in the back points to terminal moraine of the year 1817 CE.

References:

- Balco, G., Stone, J., Lifton, N., and Dunai, T., 2008, A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quaternary Geochronology 3, p. 174-195.
- Balco, G., Briner, J., Finkel, R. C., Rayburn, J. A., Ridge, J. C., and Schaefer, J. M., 2009, Regional beryllium-10 production rate calibration for late-glacial northeastern North America, Quaternary Geochronology 4, p. 93-107.

Bronk Ramsey, C., 2009, Bayesian analysis of radiocarbon dates, Radiocarbon, 51, p. 337-360.

Bronk Ramsey, C., 2011. OxCal Program 4.1, http://c14.arch.ox.ac.uk/oxcalhelp/hlp contents.html

- Glaciological reports (1881-2009) "The Swiss Glaciers", Yearbooks of the Cryospheric Commission of the Swiss Academy of Sciences (SCNAT) published since 1964 by the Labratory of Hydraulics, Hydrology and Glaciology (VAW) of ETH Zürich. No 1-126, (http://glaciology.ethz.ch/swiss-glaciers/).
- Lal, D., 1991, Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth and Planetary Science Letters 104, p. 424-439.
- Reimer, P.J., and 27 others, 2009, IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP, Radiocarbon 51, p. 1111-1150.
- Röthlisberger, F., 1976, Gletscher- und Klimaschwankungen im Raum Zermatt, Ferpècle und Arolla, Die Alpen 52, p.59-152.
- Röthlisberger, F., and Schneebeli, W., 1979, Genesis of lateral moraine complexes, demonstrated by fossil soils and trunks: indicators of postglacial climatic fluctuations, *in* Schlüchter, C., ed., Moraines and Varves. A.A. Balkema, Rotterdam, p. 387-419.

Taylor J.R., 1997, An Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements, University Science Books, Sausalito, 327 p.