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Abstract—In this paper we study statistically sound ways of
comparing classifiers in absence for fully reliable reference data.
Based on previously published partial frameworks, we explore
a more comprehensive approach to comparing and ranking
classifiers that is robust to incomplete, erroneous or missing
reference evaluation data.

On the one hand, the use of a generalized McNemar’s test
is shown to give reliable confidence measures in the ranking of
two classifiers under the assumption of an existing better-than-
random reference classifier. We extend its use to cases where its
traditional formulation is notoriously unstable. We also provide a
computational context that allows it to be used for large amounts
of data.

Our classifier evaluation model is generic and applies to any
set of binary classifiers. We have more specifically tested and
validated it on synthetic and real data coming from document
image binarization.

I. INTRODUCTION

Many of the research issues in Pattern Recognition are ex-
pressed as classification problems. For instance, in Document
Image Analysis alone, number of significant contributions to
the field consist of more or less elaborate and specialized
classifiers [6], [8], [20]. This is true for the larger Pattern
Recognition domain. In many cases, there are multiple dif-
ferent classification approaches for a same class of problems,
each often developed for specific tasks and data types. It is
therefore important to be able to determine the ones most
suitable for the problem at hand.

Measuring advances to the state-of-the-art therefore largely
depends on the capacity of evaluating the differences in quality
between various approaches, and classifiers in particular. The
most commonly used approach consists of testing them on
known annotated reference data (Ground Truth or Golden
Standard) and then measuring their agreement/disagreement
level on these data. Often the result is expressed in terms of
precision and recall or similar measures [12]. The question of
how accurate these measures, and how significant conclusions
of ranking various classifiers can be, arises when the annotated
reference data cannot be fully trusted and may contain debat-
able interpretations. We have started investigating these issues
in previous work [7], [11]. In this paper we are pushing the
reasoning to a more extreme point, by considering classifier
evaluation in entire absence of reference data.

Everything that follows applies to generic binary classifiers,
but we will be using image binarization algorithms for their
convenience, low computational cost and broad availability

for setting up an experimental protocol. The reader should be
aware that all results extend easily to other binary classifiers.

The rest of this paper is organized as follows: Section II
outlines the general context of our work and previous efforts
related to evaluating classifier performance in absence of
reference data or Ground Truth; in Section IV we outline
the underlying theoretical basis to the Pseudo-Metrics and
Reference Method approaches used in this paper. Extensive
experimental validation is reported in Section V, and a final
analysis and conclusion can be found in Section VI.

II. CLASSIFIER EVALUATION WITH UNCERTAIN
REFERENCE DATA

A. Origins of Reference Data Uncertainty

In this paper we are assuming unreliable reference data.
Although it is common practice to consider the data on which
methods are evaluated as untainted and free of any error, it
can be quite easily proven that this is only the case on very
rare occasions [10]. In the specific context of document image
binarization, the problem has also been raised by others [1],
[2]. The origins of this general uncertainty on reference
data are multiple, and they are not always necessarily to be
considered as “errors”. In many cases, they can be traced back
to genuine ambiguity in the data, or legitimate differences in
interpretation that are open to discussion and debate [10] or
may be influenced by the application context and subsequent
actual use of the classification results, too.

It is beyond the scope of this paper to fully cover the
reasons and origins of reference data uncertainty. The core of
our argument is to claim that not taking it into account when
evaluating and ranking classifiers, one necessarily introduces
biases that may lead to false or incomplete conclusions [10].
This paper explores some tools to provide a statistically sound
framework framing this bias, and experimentally establishes
their scope of validity.

B. Comparing Binary Classifiers

In general, comparison of classifiers, be they binary or not,
is done using reference data. Classifier output is then compared
with Ground Truth and ranked using traditional metrics such
as F-Measure, PSNR, NRM, Cross correlation, etc..

In previous work [7] we have started to develop a proba-
bilistic approach that can assess performance without reference
data. The general idea behind this work is to replace the



traditional Ground Truth by the overall consensus between
classifiers, and by ranking them with respect to their relative
individual disagreement with this consensus. These probabilis-
tic metrics have been proven to correlate well with traditional
ones that rely on Ground Truth.

An other approach consists in pairwise comparison of
classifiers [18] rather than establishing an absolute metric-
based ranking. This paired testing is based on using a (third)
reference classifier as a benchmark. The authors show how
the comparison of output of the classifiers relates to the
underlying performance. They use a generalized McNemar’s
test for measuring the statistical significance for expressing the
agreement between the tested classifiers and the reference one
and measure the probability that one outperforms the other.
We use the same test in Section IV-B.

III. TESTED CLASSIFICATION ALGORITHMS

The performance evaluation metrics described above make
the assumption one tries to evaluate a collection of classifiers
addressing the same classification problem. As a consequence,
in order to set up a valid experimental protocol, it is important
to have a set of those for which the operational conditions
that can be easily controlled and reproduced, and that are
convenient for large runs of repeated execution within a
reasonable amount of time and computational resources. They
should also reflect settings that are representative of real
problems.

We have chosen two specific binary classification contexts.
The first consists in using image binarization algorithms (cf.
Section III-A). Image binarization is a well studied problem
and many algorithms exist. They can be seen as pixel-wise
classifiers, classifying each point into foreground or back-
ground classes. Their advantage is also to easily provide large
quantities of data.

The second is a more peculiar setup. We train a simple
perceptron neural network on the MNIST handwritten digit
dataset [13] to recognize one single digit, thus obtaining
a binary classifier. Using the same network topology, we
train perceptron multiple times (each time obtaining a new
classifier), changing the data sampling. The result gives a range
of classifiers supposedly solving the same problem (identifying
the same digit) but having slightly different behavior, given the
changed learning sampling.

It is important to note that the scope of this paper is not to
evaluate binarization or perceptron back-propagation as such,
but to use these contexts to generate binary classification data
in a controlled environment, in order to validate our various
models for comparing classifiers without ground truth. We
could have taken any other collection of binary classifiers.

A. Binarization Algorithms

The general approach for every binarization system is the
same: if a pixel (i, j) in the input image has a higher gray level
value than a given threshold, then this pixel is labeled as back-
ground, otherwise, it is labeled as foreground. Individual bina-
rization approaches differ in how the threshold is computed:

global algorithms calculate one for the entire image, while
local algorithms may have different threshold values for each
pixel of the image, depending on their surrounding region.
For our experiments, we have used Otsu’s global binarization
method [16]; a local version of Otsu’s method1; Bernsen’s
method [3]; Niblack’s method [15]; Breadly’s method [5];
local medium value; a modified version of Gatos’ method [8];
Wolf’s method [22]; Kittler’s method [9]; Sauvola’s method
[19].

The chosen algorithms have significant reported perfor-
mance differences. Most of them rank higher than others in at
least some specific context or for particular types of images
according to the DIBCO evaluation campaigns [17].

All these algorithms depend on operational parameters and
their performance is sometimes sensitive to subtle changes.
We applied consistent and near-optimal parameters for all
experiments, either by applying the recommended published
parameters, either experimentally determining parameters. It
should be clear to the reader that the scope of this paper
concerns Ground Truth-less performance metrics, and not
binarization. Therefore, whether the choice of parameters is
actually optimal or not is of no incidence to the conclusions
we will eventually draw form our study on the various metrics
we will be developing in Section VI.

B. Tested Machine-Learning Algorithms

Artificial neural network classifiers rely on large amounts
of annotated data to "learn" the weights of their synaptic links.
We assume most readers are familiar with the basics of neural
networks: information flows through a neural network in two
ways. The usual feed-forward (and actual classification) phase
consists of giving it input by activating the neurons of the first
layer. This data is propagated through the subsequent layers
by modulating their influence with the weight of each synaptic
link between neurons. If the weights of the synaptic links are
set correctly, the output of the network corresponds to the
classification result that is expected for the given input. When
the network is learning (being trained) the weights of the links
are progressively and iteratively adapted by feeding it patterns
of information with known expected outcomes using a back-
propagation gradient descent optimization.

What may be less known is that convergence to a usable
classifier largely depends on the learning data and the order in
which it is presented to the network, and that, consequently,
training the same network on the same data, but by shuf-
fling their order, may result in significantly different weight
distributions (and thus, different networks) while maintaining
very similar classification results. Furthermore, in order to
avoid over-fitting, the resulting networks never achieve a
100% classification result. The outcome is a series of similar
classifiers, with globally equivalent performance, but differing
slightly on individual inputs.

Our setup thus provides a large quantity of similar classifiers
that occasionally disagree on individual training samples. This

1Local Otsu’s method and Gatos’ method were slightly modified with
respect to their published versions [7].



offers a reproducible and controllable framework for simulat-
ing the more broader context of multiple classifier evaluation
on "uncertain" data.

IV. STATISTICS AND TESTS FOR COMPARING CLASSIFIERS

Now that we have set up the general context and ex-
perimental environment of our work, the following sections
will describe how to compare multiple classifiers without
knowledge of ground truth. Section IV-A addresses traditional
ranking metrics, revisited in the light of unknown reference
evaluation data, Section IV-B addresses a statistic confidence
measure that two given classifiers can be ranked in a specific
order.

A. Comparing Classifiers Using Probabilistic Metrics

Given the legitimate objections to Ground Truth-based eval-
uation expressed in [1], [2], [10] the idea of using performance
metrics that can be used in absence of Ground Truth has
been experimented in [7]. The main idea behind the approach
is to replace the standard Ground Truth with a consensus
metric resulting from the collection of compared methods. In
this section we recall the reformulation of traditional metrics
in probabilistic terms with respect to this consensus metric.
We are using the notations introduced in [12]: the statistical
equivalent of GT is an array of expressing the probability
P (δi) for each data item δi to belong to the class ∆+. These
probabilities can be written:

P (δi) =
∑
k=1..s

Sk(δi)

s

Where Sn(δi) ∈ {0, 1} represents the classification result of
data item δi by classifier Sn, and s the number of classifiers.

1) F-Measure: under the hypothesis of equivalent distribu-
tion of all data items δi, probabilistic equivalents of Precision
and Recall can be defined as

Pr(Sk) =

∑
1..d P (δi)Sk(δi)∑

1..d Sk(δi)
Rc(Sk) =

∑
1..d P (δi)Sk(δi)∑

1..d P (δi)

where d is the total number of elements classified by
classifier Sk as belonging to one of classes. Pr(Sk) and
Rc(Sk) can be combined into a corresponding probabilistic
equivalent of the F-Measure by computing their harmonic
mean.

2) Negative Rate Metric: can be expressed in function of
the probabilistic equivalents of False Negative, False Positive,
True Positive and True Negative values. Resulting in

NRFN (Sk) = 1−
∑

1..d P (δi)Sk(δi)∑
1..d P (δi)

NRFP (Sk) =

∑
1..d(1− P (δi))Sk(δi)∑

1..d P (δi)

NRM is the average of the negative rate of false positive
and false negative values:

NRM =
NRFN + NRFP

2

In contrast to F-Measure and PSNR, the lower the value for
this metric, the better the classifier.

3) Normalized Cross Correlation: is the normalized corre-
lation between the probability that the elements δi belong to
class ∆+ given the majority voting P (δ) and the result given
by classifier Sk.

NCC =

∑
1..d

(
Sk(δi)− S̄k)(P (δi)− P̄δ

)√∑
1..d(Sk(δi)− S̄k)2

∑
1..d(P (δi)− P̄δ)2

The higher this value, the better both arrays correlate with
each other.

4) Peak Signal-Noise Rate:

PSNR = −ln

(∑
1..d

(Sk (δi)− Pδ(δi))2

d

)
The higher the value of PSNR, the higher the similarity of

the two arrays.
We refer the interested reader to [7] for further details.

B. Comparing two Classifiers Using a Reference Method

In the previous section, the probabilistic metrics are used to
rank classifiers from best to worst. We show in Section V-B
that this ranking comes very close to the one obtained with
Ground Truth. However, they don’t provide a measure of
confidence in the ranking that is obtained, nor do they provide
a level of reliability.

This can be solved by using a statistical significance
test like McNemar’s. Use of the McNemar test in classifier
performance analysis is not new [4]. However, the general
state-of-the-art applies it to traditional configurations, where
Ground Truth is available. In [18], the authors explore the
use of a general McNemar test for expressing a confidence
measure in the ranking of two classifiers when Ground Truth is
either unreliable or unavailable, provided a "decent" reference
classifier is available. In this section we apply their work to
our context.

Let A and B be two classifiers to be compared, and R a
"decent" reference classifier; "decent" meaning that the correct
classification rate of R > 50%. Furthermore let NAB̄R (resp.
NĀBR) be the number of classification samples where A and
R agree with one another, and disagree with B (resp. B and
R agree with one another, and disagree with A). Let NAB =
NAB̄R +NĀBR.

[18] establishes that the p-value related to the test’s signifi-
cance can be computed with a binomial probability distribution
B of parameters σ = NAB ;µ = 0.5

p =


2B (NAB̄R ≤ n ≤ NAB) if NAB̄R > NĀBR
2B (0 ≤ n ≤ NAB̄R) if NAB̄R < NĀBR
1 if NAB̄R = NĀBR

(1)



If the p-value is smaller than a given rejection threshold, it
can be safely assumed that the sign of NAB̄R−NĀBR reflects
the classification quality of A vs. B. On the other hand, if p-
value is above the rejection threshold, then the comparison is
considered non conclusive.

V. EMPIRICAL COMPARISON OF CLASSIFIERS

In this section we establish that the previous approaches
can be used when Ground Truth is unavailable or unreliable.
In order to achieve this we compare our methods to traditional
Ground Truth-based evaluations. It is obvious that this is
uniquely for benchmarking and experimental validation. Field
use of our metrics does not require Ground Truth.

A. Using Pseudo-Metrics

The first question we are trying to answer is how good the
probabilistic metrics described in Section IV-A are in ranking
classifiers in comparison with Ground Truth based approaches.
We used three different test configurations: one using a set
of artificially generated binary images, one using a collection
of real images from the Digital Image Binarization Contests
(DIBCO 2009–2013 [17]) with binarization algorithms de-
scribed in Section III-A and one using MNIST data [13] and
a set of classifiers built by machine learning algorithms as
described in Section III-B.

For each configuration we used the same testing protocol:

1) we rank all tested classifiers using known Ground Truth
and using standard metrics, giving for each metric µi
a vector RGT (µi) = (r1, r2, . . . r10) with the rank of
each classifier;

2) we rank all tested classifiers without relying on Ground
Truth by using the probabilistic metrics mentioned
in Section IV-A, giving for each metric µi a vector
RP (µi) = (r1, r2, . . . r10) with the rank of each classi-
fier;

3) we compute the correlation between the pairs of
(RGT ,RP ) for each metric µi.

Metrics with a higher correlation value more reliably re-
produce Ground Truth based ranking than metrics with lower
correlation.

1) Artificial Data: in order to establish baseline observa-
tions, we have generated an artificial 1000 × 1000 black and
white image and use this as Ground Truth. This image is then
randomly modified in order to obtain 10 new artificial images
with a controlled level of "errors" compared to the reference
image. These are supposed to imitate binary classifiers with
different performance levels. In our experiments we used
the following artificial error levels: (0.5%, 1%, . . . 5%) and
(5%, 10%, . . . 50%). The results are reported in Tables I and II.
When comparing the raw metric values between the Ground
Truth-based metrics and their probabilistic counter-part, we
obtain the best results with the NRM metric. However, their
impact is marginal in the sense that it doesn’t influence the
ranking (cf. Table II).

Metric Correlation up to
1% error:
0.1%, 0.2%... 1%

Correlation up to
5% error:
0.5%, 1%... 5%

Correlation up to
50% error:
5%, 10%... 50%

PSNR 0.998 (4 10−4) 0.997 (6 10−4) 0. 967 (2 10−3)
F-Measure 0.999 (5 10−5) 0.999 (7 10−5) 0. 997 (1 10−3)

NCC 0.999 (7 10−5) 0.999 (7 10−5) 0. 997 (5 10−3)
NRM 0.999 (7 10−5) 0.999 (7 10−5) 0. 997 (5 10−4)

TABLE I
AVERAGE CORRELATION AND STANDARD DEVIATION OF METRIC VALUES

ON ARTIFICIAL IMAGES.

Metric Correlation up to
1% error:
0.1%, 0.2%... 1%

Correlation up to
5% error:
0.5%, 1%... 5%

Correlation up to
50% error:
5%, 10%... 50%

PSNR 1 1 1
F-Measure 1 1 1

NCC 1 1 1
NRM 1 1 1

TABLE II
AVERAGE CORRELATION OF RANKING ON ARTIFICIAL IMAGES.

2) Real Data: we used the 56 manually ground truthed
DIBCO 2009–2013 contest images and applied the bina-
rization algorithms described in Section III-A. The results
are reported in Table III. We grouped the results by year
and type of image (printed, hand written) as done for the
contests. This allows us to compute average correlation and
standard deviation. Best results are obtained for PSNR (highest
correlation) and F-Measure (lowest standard deviation). NRM
is definitely not suited for our purposes.

Metric Avg. Correlation Std. Dev
PSNR 0.856 0.06

F-Measure 0.845 0.051
NCC 0.783 0.234
NRM 0.373 0.163

TABLE III
AVERAGE CORRELATION AND STANDARD DEVIATION OF RANKING ON

REAL IMAGES.

3) Neural Network Classifiers: showed highly unstable
correlation results. The main reason is that the overall per-
formance of the classifiers is very similar, and differences
between them are so small (0.3% – 0.5%) that the pseudo-
metrics run into stability issues (very small variations imme-
diately induce large effects on the ranking).

We can make following conclusions after these tests:
1) Pseudo-metrics have high correlation with Ground-Truth

based metrics for classifier ranking and can therefore be
applied in absence of reference data.

2) Classifiers showing only marginal performance differ-
ences create instabilities and failure to correctly distin-
guish them by using pseudo-metrics.

3) We did not report experiments where we used increasing
numbers of classifiers from 3 to 10. They confirmed the
findings reported in [7]: the more classifiers one uses
the more robust and reliable the probabilistic metrics be-



come, and the higher the correlation with Ground Truth
based metrics (resp. the lower the standard deviation).

B. Using the McNemar Test and a Reference Method

In order to evaluate the second approach, we need to slightly
adapt our experimental protocol. Indeed, as described in Sec-
tion IV-B and in [18] the method based on the generalized
McNemar test only allows for comparing 2 classifiers at the
time, provided there is a third reference classifier available
with a better than 50% classification rate.

1) Experimental Protocol: since the approach only allows
comparison between two classifiers we have used the fol-
lowing protocol for all experiments in this section and in
Section V-C. For a given reference classifier R and a set of
classifiers {Sk}, we generate all possible pairs (Si, Sj) and
compare them with using R. When the p-value < 0.05, the
global rank value of Si (resp. Sj) is incremented if Sj < Si|R
(resp. Sj < Si|R). In the end, classifiers are ranked from
highest to lowest rank values.

2) Testing Reference Classifier Influence: the method re-
quires the reference classifier R to have better than 50%
classification performance.We have evaluated experimentally
in how far the quality of this classifiers influences on the
overall robustness. We therefore used the same technique as
described in Section V-A1 and generated artificial images with
controlled error rates for R, and progressively increased the
error rate by 1% steps. We ran 100 tests for each value of
classification performance.

Fig. 1. Influence of reference classifier quality on classifier comparison

When trying to correctly rank 2, 3 and 5 classifiers while
varying the quality of R, ranking remained correct up to a
classification error rate of 49% for R. The classifiers used
for this test have different controlled error rates according
to a benchmark initial classifier and were set with steps
of 5% (5%, 10%, 15%...). When increasing the number of
classifiers, sensitivity to R increased. Ranking 10 classifiers
yielded correct ranking orders more than 50% of the time
for classification error rates of R up to 47%. This is further
confirmed in the next experiment.

Fig. 1, shows the results for ranking 2 and 10 classifiers
respectively with varying classification errors of R.

3) Quality in Function of Number of Classifiers: contrary
to our findings in Section V-A, the more classifiers are used for
evaluation, the lower the ranking quality. This is reported in
Table IV showing the results on artificially generated images.

# Classfiers Error betwn
Classifiers

Max Error – 90%
Correct Ranking

Max Error – 50%
Correct Ranking

2 5% 49% 49%
3 5% 49% 49%

10 5% 47% 48%
2 3.8% 47% 49%
3 3.8% 45% 47%

10 3.8% 37% 42%

TABLE IV
RANKING QUALITY IN FUNCTION OF R ERROR RATE AND NUMBER OF

CLASSIFIERS

Experiments were performed 100 times for every percent of
error in R.

4) Testing the Sensitivity to Classifier Similarity: our tests
also showed that the minimum required quality difference
between classifiers that will allow them to be ranked correctly
more than 50% of times is 3.8% when comparing 10 classi-
fiers, and 3.6% when ranking 5 classifiers.

Results on a machine learned classifiers were inconclusive.
Average ranking correlation with Ground Truth ranking was
around 0.6, but in more than half of cases the p-value was too
large, and ranking had to be rejected. This is due to the fact
that the differences between the classification systems were
around 0.3% – 0.5%, as already mentioned in Section V-A.

We can make following conclusions after these tests:
1) The less classifiers we compare, the better the results and

a higher tolerance in the quality of R can be accepted.
2) Again, when classifiers have very similar performance

levels, ranking becomes unstable and results are unreli-
able.

3) However, McNemar’s rejection test efficiently identifies
statistical inconsistent comparisons (and notably reduces
the influence of the previous case, when performance
levels are too similar).

C. Comparing both Statistical Approachess

Finally, we compared both approaches of classifier ranking.
We did not test machine learnt classifiers since the previous
evaluations for both the reference method and the probabilistic
metrics were inconclusive or insufficient.

In order to reduce possible bias from the way results are
measured, we have used two other metrics besides correlation
for comparing ranking results: word-edit distance [14] and se-
quence alignment cost [21]. These two additional metrics were
chosen considering that the order of the evaluated classifiers is
eventually a more reliable way to make conclusions about the
approach than correlation of this order with the one obtained
by using Ground Truth.

We compared the probabilistic F-Measure with the reference
method on real and artificial binary images. The results are
reported in Tables V and VI. For the real images, we detailed
the results in function of the DIBCO datasets, per year. The
same comparison was done on 9000 artificial images in which
we used, for every test, a set of 10 artificially-generated images
with differences of 5%, 0.5% and 0.1%.



DIBCO
2013

DIBCO
2012

DIBCO
2011

DIBCO
2009

Total

Avg. Correlation
F-Measure 0.597 0.719 0.70 0.636 0.664
Reference 0.605 0.461 0.72 0.904 0.654
Avg. Word-Edit Distance
F-Measure 6.3 5.6 5.1 5.5 5.6
Reference 4.6 5.4 4.7 2.9 4.5
Avg. Sequence Alignment Cost
F-Measure 12.8 11.8 10.9 11.9 11.8
Reference 8.81 11.4 9.75 6.00 9.23

TABLE V
RELIABILITY IN CLASSIFIER RANKING ON REAL DATA

5% 0.5% 0.1% Total
Avg.Correlation
F-Measure 1 1 1 1
Reference 0.9988 0.9903 0.9006 0.9632
Avg. Word-Edit Distance
F-Measure 0 0 0 0
Reference 0.2 0.6 3.9 1.56
Avg. Sequence Alignment Cost
F-Measure 0 0 0 0
Reference 0.2 1.2 7.6 3

TABLE VI
RELIABILITY IN CLASSIFIER RANKING ON ARTIFICIAL DATA

After these tests, we can make the following conclusions:
1) On real images overall average ranking correlation is

slightly better for F-Measure, but results are on par with
the reference classifier method, and actually significantly
better for the latter in most DIBCO series. Furthermore,
the latter also outperforms F-Measure on the word-edit
distance and sequence alignment. Overall, the reference
classifier method does a better job ranking classifiers.

2) On the artificial images, tests show better correlation,
sequence alignment cost and word edit distance with
the F-measure. Also, the reference approach significantly
decreases in reliability as classifiers converge to lower
error rates.

VI. CONCLUSION

We can conclude that both approaches are reliable sub-
stitutes for performance evaluation when Ground Truth is
unavailable or unreliable. However, this mainly holds provided
the classifiers present sufficient levels of difference. Although
F-measure seems to perform better than the reference method
on artificial data, this doesn’t seem to be consistently the case
on real data, and will require further investigation.

It would be useful to extend the validation of each of
the statistically based approaches on different types of real
data and associated binary classifiers (e.g. speech recognition,
image recognition ...). Further work on this topic will extend
both proposed methods to multiclass classifier evaluation.
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