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Abstract—Generalized belief propagation (GBP) is known to
be a well-suited technique for approximate inference problems in
loopy factor graphs. It can absorb problematic subgraphs inside
regions to reduce their influence on the inference. However, the
choice of regions to be used in GBP remains a delicate issue.
This paper proposes an approach to create specific regions when
dealing with Low-Density Parity-Check (LDPC) codes. We split
trapping sets, known to degrade the decoding performance, to
make GBP locally optimal. Experiments show that GBP can then
perform better than BP, especially in the error-floor region.

Index Terms—Generalized Belief Propagation, clustering,
LDPC codes, trapping set, error-floor.

I. INTRODUCTION

Belief propagation (BP) is known as a reliable algorithm to
approximate inference in factor graphs [1] in a wide variety of
disciplines, including statistical physics, artificial intelligence,
and digital communications. Originally created by Pearl [2],
BP is likely to exhibit suboptimal performance when graphs
have a loop-like topology [3], [4]. Alternative algorithms,
searching for the same solutions as BP, have been developed
but are relatively slow to converge [5], [6], [7].

A widespread approach for dealing with loopy factor graphs
is to convert them to equivalent loopfree graphical models. For
the most of practical cases, such an approach is intractable
because the size of the systems is too large. Approximate
methods are then necessary. The Region-Based Approximation
(RBA) can do so absorbing loopy subgraphs in larger nodes,
called regions inside a Bayesian network called the region-
graph [8], [9]. The Generalized Belief propagation (GBP) is
an iterative algorithm that passes messages between regions
along the edges of the region-graph. Messages are then used to
compute the marginal probabilities for regions, that solves the
inference. GBP is able to dramatically outperform BP if and
only if the regions are wisely chosen [10]. Different choices
of region graphs indeed give different RBA which GBP
algorithms offer various trade-offs between the complexity
and the accuracy. Besides, regions chosen regardless of the
factor graph topology surely lead to very poor results. How
to optimally choose regions for a GBP algorithm, though,
remains an open research problem.

In this work, we focus on Low-Density Parity-Check
(LDPC) codes [11], [12]. These codes are capacity-achieving

codes and usually decoded by BP. When approaching high
signal-to-noise ratios (SNRs), LDPC codes though reveal an
error-floor [13] due to special error events, the trapping sets,
that are not corrected by BP. Studies were conducted to lower
floors. The most of them were dedicated to codes design [14],
[15] but a very few was oriented toward decoding strategies
[16], [17]. Here, we propose a novel decoding strategy based
on the GBP. No dedicated region-graph has been proposed in
the literature for LDPC codes. This paper contributes to the
choice of regions by highlighting constructions that are likely
to give good results for LDPC codes. We propose to select
regions from trapping sets, each one being equivalent to a local
loopfree region-graphs on which GBP optimally performs.

In addition, GBP is known to be unstable [18], that degrades
its performance. We then append to this paper a study on the
damping of update equations of GBP messages to stabilize
them. We give a profile of the damping evolution along the
SNR to obtain better convergence and accuracy of GBP.

The outline for the paper is as follows. In section II, we
review the factor graphs, the rules of the RBA and the basics
to construct a region-graph. In section III, we introduce our
method to associate a well-suited region-graph to trapping sets
of LDPC codes. We detail in section IV how we damp GBP to
stabilize its update equations. We end by section V where we
present numerical results on the Binary Symmetric Channel
(BSC) and the Additive White Gaussian Channel (AWGNC).

II. PRELIMINARIES

A. Factor graphs

Consider a set of N binary variables X = {X1, . . . , XN},
and a set of M non-negative functions F = {f1, . . . , fM}. A
function fa softly constrains a few variables Xa ⊆ X, such
that the prior probability function is:

P (X = x) , p(x) =
1

Z

M∏
a=1

fa(xa) (1)

where Z =
∑

x
∏M
a=1 fa(xa) is a normalization constant. A

factor graph is a bipartite graph that represents the factoriza-
tion (1) with a variable node for each variable and a function
node for each function. We draw an edge eia ∈ E between



nodes Xi and fa if and only if Xi is an argument of fa. The
factor graph is then denoted by G = (X ∪ F, E).

A Tanner graph of a binary LDPC code C is a factor graph
where functions are only valued in {0, 1}. They represent the
parity-check equations of C, which function nodes are called
check nodes. A word x is called a codeword when all parity-
check equations are satisfied, i.e. p(x) > 0.

B. Inference

Consider N independent observations y1, . . . , yN . The
Bayesian rule provides the joint probability function:

p(x, y) = p(y|x)p(x) =
1

Z

N∏
i=1

pi(yi|xi)
M∏
a=1

fa(xa) (2)

The inference problem consists in finding the state x̂ that max-
imizes p(x, y). Computing (2) for all 2N states is an intractable
job as N often reach very large values, e.g. N = 64800 in
DVB-S2 standard [19]. We need approximation methods to
approach the solution, as the region-based approximation that
we describe in the next parts.

C. Region-based approximation

Region-Based Approximation (RBA) introduced in [8] ap-
proaches (2) with a factorized distribution. The factors are
marginal functions {br(xr)}r,xr , that are called beliefs, over
subgraphs of G, called regions. We denote any region by
r = ({Xr ⊆ X} ∪ {Fr ⊆ F}, {Er ⊆ E}). A set of regions R
is valid for a given factor graph G if and only if:
• (C1) any region that contains fa also contains Xa,
• (C2) any node in G is contained in one region, at least.

R then approximates (2) by:

b(x, y) =
∏
r∈R

bcrr (xr, yr) (3)

Any region function br(xr) is weighted by a counting number
cr to comply with the Bayesian rule. Consider an example
with function nodes fa, fb, fc and four variable nodes such
that Xa = {X1, X2},Xb = {X2, X3},Xc = {X2, X4}. In the
factorizations (y is implicit):

bα(x1, x2, x3, x4) = ba(x1, x2)bb(x2, x3)bc(x2, x4) (4)

bβ(x1, x2, x3, x4) =
bab(x1, x2, x3)bc(x2, x4)

b2(x2)
(5)

bα is incorrect because X2 is counted twice too many on the
right side. On the contrary, bβ is valid as X2 is well-balanced
between the numerator and the denominator. A factorization
is then valid if and only if:

∀Xi ∈ X,
∑

Xr3Xi

cr = 1, ∀fa ∈ F,
∑

Fr3fa

cr = 1 (6)

An RBA is graphically represented by a region-graph. The
nodes of the region-graph are the regions of a valid set R.
The edges are given by the relationships between the regions
as we explain here after. Consider two regions s, r of R. We
define a restrictive inclusion law s ≺ r if and only if s ⊂ r,

i.e. Xs ⊆ Xr,Fs ⊆ Fr, Es ⊆ Er, and no region t could be
found in R s.t. s ⊂ t ⊂ r. Regions are then linked as:
• s ≺ r ≡ s belongs to Er the set of children of r, r belongs

to Ps the set of parents of s,
• s ⊂ r ≡ s belongs to Dr the set of descendants of r, r

belongs to As the set of ancestors of s,
• r ∪ Dr is the family of r denoted by Fr.

Two regions r, s, with s ∈ Er, draw a directed edge from the
node r to the node s in the region-graph.

For a given factor graph, we may find numerous valid sets of
regions that build numerous region-graphs. All region-graphs
offer distinct approximations (3) of various accuracies. In the
next parts, we then focus on the choice of R.

D. Region-graph construction

The first step of RBA is to cluster the factor graph: 1) we
determine loopy subgraphs in G that we want to neutralize,
2) we associate to each of these subgraphs a region, called
a cluster, in a set R. If R is valid according to (C1) and
(C2), it defines the first and highest generation of the region-
graph. However, R is incomplete because it does not define
a valid factorization yet (6). We complete R building other
generations of regions by this algorithm:

3) we search for the largest children that intersect regions
of the upper generation,

4) we associate to each of these children a region in the
current generation,

5) each children is then connected by directed edges to its
parents of the upper generation.

We repeat steps 3)-4)-5) while last built regions intersect. We
exhibit in Fig.1 a factor graph and a region-graph in Fig.2.
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Figure 1. An example of a factor graph

fa, fb, fc
X1, X2, X3

fc, fd, fe
X2, X3, X4

fe, ff , fg
X3, X4, X5

fc
X1, X2

fe
X2, X3

X2

Figure 2. A region graph for the factor graph in Fig.1. The highest regions
are the clusters.

E. Generalized Belief Propagation

Now the region-graph is built, we compute the marginal
distributions {br(xr)}r,xr . This job is done with Generalized
Belief Propagation (GBP). GBP is an iterative algorithm



that passes messages between regions of the region-graph.
According to [8], [9], for two regions r, s s.t. s ∈ Er, the
message from r to s, at any iteration k, is :

m(k)
rs (xs, ys) =

∑
xr∪xs

βr(xr, yr)
∏

u∈R\Fr

v∈Fr\Fs

m(k−1)
uv (xv, yv)

βs(xs, ys)
∏

u∈Dr\Fs

v∈Ds

m(k)
uv (xv, yv)

(7)

where:

βr(xr, yr) =
∏

Xi∈Xr

pi(yi|xi)
∏
fa∈Fr

fa(xa) (8)

Once all messages have been computed, we obtain the belief
of the region r:

b(k)r (xr, yr) = βr(xr, yr)
∏
v∈Fr

u∈Pv\Fr

m(k)
uv (xv, yv) (9)

In papers [8] and [10], authors perform RBA for factor
graphs that represent spin glasses: degree of fa’s is two
(pairwise interactions). Results are encouraging but hardly
applicable to LDPC codes which check nodes degree is larger
than two. Authors in [20] were the first to experiment GBP
on LDPC codes, they do not consider their topologies but the
dependence on partial-response channels. In [18] is taken into
account the codes structure. Promising results encourage us to
go deeper in this direction. We describe in the next section
our specific RBA for LDPC codes.

III. TANNER GRAPH CLUSTERING

In this section we apply RBA to decode LDPC codes. We
stress that RBA is aimed at neutralizing specific patterns in
factor graphs. We then focus on particular BP failures that we
want to treat: the trapping sets. After that, we describe the
method we use to absorb and neutralize them.

A. Trapping sets

A trapping set TS(a, b) is a structure of a variable nodes
which induced subgraph has b odd-degree check nodes [21],
see in Fig.3 a TS(5, 3).

X1 X2

X3

X4 X5

fa

fb

fd fc

fe

ff

fg

fh

fi : variable node

: check node

: odd-degree

check node

Figure 3. Tanner graph of a TS(5, 3)

In our work, we consider the Tanner code [22], an LDPC code
of length N = 155, which variable nodes degree is dv = 3
and check nodes degree is dc = 5. This code exactly contains

155 TS(5, 3) and any check node belongs to five of them. The
good point of this code is that trapping sets make BP results
significantly poor to easily observe improvements.

Trapping sets of any size should be taken as relevant bases
to run GBP on LDPC codes. Each trapping set of arbitrary
size (a, b) needs a deep study to be neutralized [23]. Here
we focus on TS(5, 3), our goal being to show that RBA is
able to decrease their influence on the decoding process. As
numerous region-graphs might be created from the Tanner
code, the challenge is then to present a region-graph which
GBP is more efficient than BP.

B. Novel clustering

The Tanner graph is a particular region-graph made with:
• the first generation of M clusters that contain each one

a distinct check node fa ∈ F and its neighborhood Xa,
• the second and last generation of N regions each one

having one distinct variable node Xi ∈ X.
In [10], good results show that appending upper clusters to
a region-graph may improve the performance of RBA. We
apply this method by inserting upper clusters in the Tanner
graph. The basic idea that consists in making a cluster from
a whole trapping set is unpractical. In fact, the computation
complexity of a GBP message grows with the size of the
transmitter region, see (7). In the Tanner code, the size of
a current cluster is dc whereas an upper cluster made of
a TS(5, 3) would contain 6(dc − 2) + 3(dc − 1) + 5 = 35
variable nodes, that is practically unreasonable. Instead,
we split a TS(5, 3) into several small clusters. This may
improve GBP performance if it is in accordance with our rule:

Local loopfree construction: The region-graph RTS of a
trapping set must be loopfree to have an optimal GBP onRTS .

We justify this construction by stressing that trapping sets are
very harmful for BP when the SNR is high. In this context, the
subgraphs induced by trapping sets rarely all contain harmful
errors in the same channel noise realization, very few of
them are simultaneously concerned with BP failures. As a
consequence, RBA has not to take into account the whole
Tanner graph topology but only local structures. Each one
describes an error event that might be eventually corrected
by GBP. We represent in Fig.4 how we split a TS(5, 3) to
obtain a loopfree region-graph shown in Fig.5.

X1 X2

X4

fa

fd

fg

X2

X3

X4

fb

fe fh

X2

X4 X5

fc

ff

fi

Figure 4. Split of a TS(5, 3)



fa, fd, fg
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fc, ff , fi
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X2, X4

Figure 5. Region-graph resulting from the split of a TS(5, 3)

Now we have a well-suited region-graph to deal with
TS(5, 3), we are about to run GBP on the Tanner code.
However this decoder is not stable at this time. In the next
section, we propose a solution to stabilize and improve it in
terms of computation time and BER performance.

IV. DAMPED GBP
In [8] is noticed that GBP hardly converges. This may be

due to the computation of a message (7) that involves at
once numerous other messages from two iterations, contrary
to BP that is “more local”. Then, GBP cannot converge as
easily as BP even for harmless channel realizations. Authors
in [8] partly solve this instability by uniformly blending, at
any iteration k, any message m(k−1)

rs from the former iteration
with the update (7), denoted by Frs. However, nothing ensures
that this mixture is optimal. In [9], authors propose another
mixture modeled by a decreasing damping factor {wk}k:

∀k ∈ {1, . . . ,K}, m(k)
rs = wkFrs + (1− wk)m(k−1)

rs (10)

with wK = 0, K being the last iteration given by the
experimenter. This process stabilizes GBP by forcing its con-
vergence, but it does not take into account the performance in
terms of the BER. In [18] is given a first study on this problem,
considering different evolutions of the damping factor. Here,
we show new results considering a constant damping factor
w ∈ [0; 1]. For any couple r, s ∈ Er:

∀k ∈ {1, . . . ,K}, m(k)
rs = wFrs + (1− w)m(k−1)

rs . (11)

We do not have any mathematical method to get the factor
w∗ that stabilizes GBP and offers the best BER. We obtain
w∗ through a brute force algorithm: we make vary w and
we compute, over numerous channel realizations, the average
BER and k̂, the average number of iterations needed either to
converge or to reach a codeword. We perform this for moderate
and low noise powers on the BSC, see Fig.6.
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Figure 6. Damped GBP on the Tanner code with BSC, p ∈ {0.01, 0.05}
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Figure 7. Optimal damping factor for
GBP on the Tanner code with a BSC

On one hand, a no damped
GBP, i.e. w = 1.0, is
clearly outperformed by any
damped GBP. On the other
hand, Frs must not be com-
pletely dominated by the
memory, as low w values
increase BER and k̂. Be-
sides, we see that the uni-
form mixture (w = 0.5)
is not optimal, especially
when channel noise is low.

As an example, at p = 0.01, BER(0.95) = 0.2 × BER(0.5)
and k̂(0.95) = 0.42 × k̂(0.5). We finally stress that the best
strategy is to softly increase w as the noise gets weaker. We
show this strategy in Fig.7 where we see the average value w∗

against the crossover probability p.
From now on, we are able to run GBP expecting relevant

performance in terms of k̂ and BER. In the next section we
present numerical results of our work.

V. RESULTS

Here, we present experimental results of GBP run on the
Tanner code. GBP may well perform as a decoder only for BP
failures, in particular when related to TS(5, 3). GBP is then
unnecessary for error events correctly decoded by BP. Thus,
we build a Hybrid Decoder (HD) that runs GBP only if BP
fails, i.e. neither it converges nor it reaches a codeword. We
consider the BSC and the AWGNC. HD and BP are run for
K = 100 iterations. GBP is damped with a various weight w
according to Fig.7 on BSC and a similar profile on AWGNC.
All next quantities are averaged over 1012 channel realizations.
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Figure 8. GBP success rate on the Tanner code

We evaluate the success rate of GBP defined as the ratio
between the number of GBP decodings that succeed when BP
fails, and the number of BP failures. As shown in Fig.8, GBP
is gradually more successful as the SNR is increased. We then
confirm that TS(5, 3) wield much influence for weak noise and
that splitting TS(5, 3) entails a decline in this influence.

We exhibit in Fig.9 the computation time modeled by the
average value of k̂ against the SNR. When error events are
highly weighted for large noise powers, GBP is not fast as the



region-graph cannot deal well with such situations. In contrast,
when error events are low weighted, we see a clear decreasing
in k̂. GBP then performs locally, treating well each TS(5, 3)
in a loopfree region-graph.
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Figure 9. Number of iterations of BP and GBP on Tanner code

This observation is confirmed in Fig.10 where we represent
the average BER of HD and BP as functions of the noise
power. The gap between performance of HD and BP widens
as the SNR is increased. In other words, trapping sets TS(5, 3)
wield less influence on HD. The error-floor of HD is then
lower than that of BP. We can observe this phenomenon on the
BSC for p ≤ 3.10−2 and on the AWGNC for Eb/N0 ≥ 6.0dB.
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Figure 10. Hybrid decoder BER on Tanner code

In addition, we append to Fig.10(a) the average BER
obtained from Finite Alphabet Iterative Decoders (FAID) [17].
We observe that HD reaches similar performance as FAID.
The diversity of RBA remains in its capacity to consider any
trapping set of various size. We hope then that this diversity
will be a major asset to offer an even more competitive GBP.

VI. CONCLUSION

In this paper we have dealt with the choice of regions in
RBA to run an efficient GBP for LDPC codes. We presented a
new approach where regions are made with split trapping sets
and added bottom-up to the Tanner graph. GBP then becomes
locally loopfree on trapping sets.

We also elevate the GBP instability by a new damping
scheme, improving the computation time and the BER. The
experimental results have shown that RBA can be applicable
to LDPC codes, which GBP outperforms BP in the error-floor.

We stressed that RBA is dedicated to deal with specific BP
failures, i.e. other trapping sets of different sizes need other
region-graphs to be neutralized. Designing other RBAs for
each trapping set would offer even better improvements.
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Figure 11. Number of iterations of BP and GBP on Tanner code. For GBP,
we only consider the simulations for which BP fails, explaining why KGBP

is greater than KBP
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Figure 12. Call rate of GBP: number of calls to GBP (i.e. number of BP
failures) divided by number of simulations

ACTIVITY

As a decoder is passing messages along the edges of a
graph, trapping sets manifest by making the iterative output
estimate x̂(k) oscillate. The amplitude of these oscillations
somehow refers to the intensity of the trapping sets influence,
or simply the trapping sets activity. To define this activity, we
first define the K-variance of Xi:

σ2
i =

1

K

K∑
k=1

(
x̂
(k)
i − x̄i

)2
(12)

where x̄i = is the average output value of the i-th bit. The
activity of a trapping set T that belongs to the set of all
trapping sets (5, 3) is then:

αT =
1

NT

∑
Xi∈XT

σi. (13)

We finally define the α-activity as the number of trapping
sets which activity αT is greater than α. Fig.13 displays the
mean rate of α-active trapping sets for different values of the
BSC crossover probability p. We observe the hybrid decoder
decreases the oscillations of trapping sets, i.e. HD appears
more stable than regular BP.
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Figure 13. α-activity of trapping sets with α ∈ {0.2, 0.3, 0.4}


