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There has been a strong and recent research activity to obtain tunable wrinkling patterns in film/substrate

systems, which proposes to use geometric curvature as a control parameter. This paper studies core-shell

cylindrical systems under thermal loads, with the aim to describe possible wrinkling modes, bifurcation

diagrams and dimensionless parameters influencing the response of the system. In the companion case of

axially compressed core-shell cylinders, it was established that instability modes can be axisymmetric or

diamond-like, the post-buckling response of the system is governed by a single dimensionless parameter

C s , and the bifurcation becomes supercritical for a sufficiently stiff core. In the present case of cylindrical 

core-shells subjected to thermal loading, one finds quite different buckling patterns, named churro-like

modes that are characterized by a fast undulation in the circumferential direction. There exists another

curvature-related influencing parameter C t , and a subcritical to supercritical bifurcation transition is ob- 

served when the core stiffness increases. The problem is analyzed both theoretically and numerically

based on finite element calculations. Lastly, the obtained instability modes remain about the same as in

pure shell structures, the main difference being the stabilization of the post-bifurcation behavior.
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. Introduction

Quantitative characterization of wrinkling process for

lm/substrate systems has motivated considerable research

nterests during past few years for understanding and predicting

attern formation both in nature ( Mahadevan and Rica, 2005;

fimenko et al., 2005; Yin et al., 2009; Wang and Zhao, 2015;

hang et al., 2016; Sáez and Zöllner, 2017 ) and in modern industry

 Brau et al., 2011; Cai et al., 2011; Cao and Hutchinson, 2012; Sun

t al., 2012; Zang et al., 2012; Xu et al., 2014; 2015a; 2015b; Fu

nd Cai, 2015; Xu and Potier-Ferry, 2016a; Huang et al., 2016 ).

road applications range from micro/nano-fabrication of flexible

lectronic devices with functional surface patterning ( Bowden

t al., 1998; Rogers et al., 2010; Li, 2016 ), microlens arrays produc-

ion ( Chan and Crosby, 2006 ), adaptive aerodynamic drag control

 Terwagne et al., 2014 ), to the mechanical property measurement

f material characteristics ( Howarter and Stafford, 2010 ). Most
f  

e  

w  

o  

1

revious theoretical and computational works are concerned with

lanar film/substrate systems and suggest that wrinkling patterns

trongly depend on applied loading ( Chen and Hutchinson, 2004;

uang et al., 2005; Audoly and Boudaoud, 2008; Brau et al., 2011;

ai et al., 2011; Cao and Hutchinson, 2012; Xu et al., 2014; 2015b ).

ecent investigations revealed that wrinkling patterns may also

ary with the substrate curvature ( Yin et al., 2009; Chen and Yin,

010; Li et al., 2011; Breid and Crosby, 2013; Terwagne et al., 2014;

ia et al., 2015 ) so that much attention has been paid to explore

urvature effects on mode selection in non-planar film/substrate

ystems ( Zhao et al., 2014; Patrício et al., 2014; Stoop et al., 2015;

u and Potier-Ferry, 2016b; Shao et al., 2016 ), which demonstrates

he important impacts of the topological constraints of curved ge-

metry on instability patterns. For instance, a planar film/substrate

ilayer usually exhibits sinusoidal wrinkling patterns under uni-

xial compression. Nevertheless, considering a core-shell soft

ylinder subjected to axial compression, surface wrinkles may

orm in both axial and circumferential directions due to curvature

ffect, leading to the evolution from axisymmetric sinusoidal

rinkles to non-axisymmetric diamond-like mode, which depends

n one single dimensionless parameter C s = (E s /E f )(R/h f ) 
3 / 2 that
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is a function of modulus ratio and curvature of the structure ( Xu

and Potier-Ferry, 2016b ). This suggests that geometric curvature

and modulus effects play a key role in pattern formation in curved

surfaces, especially the core-shell cylinder that appears to be the

simplest structure with zero Gaussian curvature, which deserves

further investigations. 

In history, the nonlinear buckling and post-buckling analysis of

thin-walled circular cylindrical shells under various loading condi-

tions has received considerable attention ( von Kármán and Tsien,

1941; Koiter, 1945; Hutchinson and Koiter, 1970; Yamaki, 1984;

Bushnell, 1985 ), with the most representative loadings being the

axial compression and external pressure. Circular shell cylinders

subjected to axial compression can be characterized by a high

buckling stress ( σ cr ≈ 0.605 Eh / R ), short-wavelength instability pat-

terns ( � w 

≈
√ 

Rh ) and a very strong imperfection-sensitivity asso-

ciated with an extremely unstable post-buckling behavior. The im-

portance of this nonlinear post-bifurcation property has been early

recognized since 1940s ( von Kármán and Tsien, 1941; Koiter, 1945 ).

In the simplest bifurcation analysis, many buckling modes coincide,

including axisymmetric and diamond-like shapes. The co-existence

of these two pattern types is typical of cylindrical geometry and

it has been observed both in pure shell and core-shell structures.

However, the presence of a stiff core ( C s ≥ 0.9) leads to sinusoidally

deformed axisymmetric patterns that rarely appear in pure shells

without a core. In the literature on shell buckling, curvature effect

is often accounted through the dimensionless Batdorf parameter

Z = L 2 
√ 

1 − ν2 / (Rh ) ( Batdorf, 1947; Yamaki, 1984; Bushnell, 1985;

Abdelmoula et al., 1992; Abdelmoula and Leger, 2008 ). There are

a large number of references on the buckling of circular cylindri-

cal shells, namely a few textbooks ( Yamaki, 1984; Bushnell, 1985;

Julien, 1991; Teng and Rotter, 2006; Koiter, 2009 ), review papers

( Hutchinson and Koiter, 1970; Arbocz, 1987; Teng, 1996 ) and a

website named ‘Shell Buckling’ ( Bushnell and Bushnell, 2015 ). 

When a cylindrical shell is filled with a soft core, i.e. a core-

shell soft cylinder, short-wavelength bifurcation modes can be per-

sistently observed experimentally and numerically in both buck-

ling and post-buckling stages, and the unstable post-bifurcation

behavior can be stabilized by the presence of a core ( Zhao et al.,

2014; Xu and Potier-Ferry, 2016b ). There exist a few contributions

on the buckling analyses of a cylindrical shell filled with a soft

core, which either study the stabilizing effects of soft cores on

the buckling strength of shells ( Yao, 1962; Myint-U, 1969 ) or fo-

cus on axisymmetric instability modes ( Karam and Gibson, 1995;

Ye et al., 2011; Wu et al., 2012 ). Core-shell cylinders subjected to

axial compression have been thoroughly studied theoretically and

numerically from a quantitative point of view in the recent work

( Xu and Potier-Ferry, 2016b ), where the critical parameter C s deter-

mines a phase diagram of axisymmetric/diamond-like mode tran-

sition. For a stiff core ( C s ≥ 0.9), the buckling pattern is axisym-

metric and post-bifurcation solutions are stable; whereas for a soft

core ( C s ≤ 0.7), the bifurcated solution branch is often subcritical

and the associated instability modes tend to be diamond shaped

after secondary bifurcations. The stabilization of post-bifurcation

patterns turns out to be the major consequence of the presence

of a core. 

Deviating from the axial compression case, circular cylindri-

cal shells under external pressure or thermal loading would show

a totally different mechanical response with oscillations varying

much faster in circumferential direction than in the axial direction.

In other words, the wavelength in the axial direction can be global

( � x ≈ L ), while it is quite local in the circumferential direction

( � y � � x ), in the order of � y ∼ L 1/2 ( Rh ) 1/4 ( Abdelmoula and Leger,

2008 ). This implies that the explicit expression of this critical pa-

rameter C s may change its form and has to be re-defined. Besides,

this parameter would significantly affect supercritical/subcritical

d  

2

ost-bifurcation response of core-shell cylindrical structures and

equires to be thoroughly studied. As the instability mode is not lo-

al, the influence of boundary conditions becomes more important

han that in the case of axial compression, which induces bound-

ry layers ( Abdelmoula and Leger, 2008 ) and some strange effects

f boundary conditions ( Sobel, 1964 ). These features will be dis-

ussed in the present case of core-shell cylinders. 

This paper aims at exploring the occurrence and post-buckling

volution of 3D wrinkling patterns in core-shell soft cylindri-

al structures subjected to thermal loading, through applying ad-

anced numerical methods from a quantitative standpoint. The-

retical analyses based on the well-known nonlinear Donnell–

Mushtari–Vlassov (DMV) shell formulations are first carried out

o qualitatively determine dimensionless parameters that influence

he instability patterns. Spatial pattern formation is then quantita-

ively investigated based on a nonlinear 3D finite element model,

ssociating geometrically nonlinear shell formulations for the sur-

ace layer and linear elastic solids for the core, and a robust

ath-following continuation technique called Asymptotic Numeri-

al Method (ANM) ( Damil and Potier-Ferry, 1990; Cochelin et al.,

994; Cochelin, 1994; Cochelin et al., 2007 ). The same finite ele-

ent procedure has been validated and applied previously in Xu

t al. (2014) ; Xu and Potier-Ferry (2016b ). Here we consider geo-

etrically perfect core-shell structures without any imperfection.

he paper is organized as follows. In Section 2 , a nonlinear finite

lement model is concisely presented. Section 3 is devoted to sev-

ral theoretical analyses within the framework of the DMV shell

ormulations and the Biot - Winkler assumption on the substrate.

irst, one recalls why the buckling mode depends strongly on the

oading type and one explains why it has consequence on dimen-

ional analyses. A simplified core-shell model, established in the

ame way as in Abdelmoula et al. (1992) , allows deducing the buck-

ing stress and the post-buckling behavior of the system. Numerical

alculations are presented in Section 4 , including the deformation

hape of buckling patterns, bifurcation scenario and the influence

f leading parameters. 

. Numerical model

The 3D core-shell cylindrical system will be analyzed by a non-

inear finite element model, which was first introduced in Xu et al.

2014) and then applied to hyperelastic film/substrate ( Xu et al.,

015a ) as well as core-shell cylindrical system ( Xu and Potier-Ferry,

016b ). This finite element framework appears to be sufficiently

ersatile for the present case of circular cylindrical geometry and

hermal loading. In this model, the surface layer is represented by

 thin shell model to allow large rotations, while the core is mod-

led by small strain elasticity. Indeed, the considered instabilities

re governed by nonlinear geometric effects for the stiff material,

hile the effects are much smaller for the soft material. For pla-

ar film/substrate systems, a thorough investigation on compari-

on between finite strain hyperelastic model and small strain elas-

ic model, with respect to a wide range of Young’s modulus, was

arried out in Xu et al. (2015a ). It demonstrates that deformation

f the system can be relatively large and finite strain constitutive

aws have to be taken into account, if the stiffness ratio is rather

mall, e.g. E f /E s ≈ O(10) . In most cases of film/substrate systems,

.e. E f /E s 	 O(10) , small strain elastic models appear to be suffi-

ient and are qualitatively or even quantitatively equivalent to fi-

ite strain hyperelastic models. This remains valid for core-shell

oft cylindrical structures as well, as seen in Zhao et al. (2014) ; Xu

nd Potier-Ferry (2016b ). Therefore, in what follows, we consider

ookean elasticity for the potential energy of the system for sim-

licity. 

Challenges in the numerical modeling of such core-shell cylin-

rical systems come from large aspect ratio ( 2 πR/h f � O(10 2 ) ,
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Fig. 1. Sketch of coupling at the interface. The coupling nodes are marked by red

color. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)
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/h f � O(10 2 ) ) and radius/thickness ratio ( R/h f � O(10) ), which

equire very fine meshes if employing 3D brick elements for both

he surface and the core. Since finite rotations of middle surface

nd small strains are considered in the surface layer, nonlinear

hell formulations are quite suitable and efficient for modeling. In

his part, a shell formulation in curvilinear coordinates, which is

roven to be suitable for core-shell cylinders ( Xu and Potier-Ferry,

016b ) and film/substrate bilayers ( Xu et al., 2014; 2015a ), is ap-

lied. It is incorporated via the Enhanced Assumed Strain (EAS)

oncept to improve the element performance and to avoid locking

henomena such as Poisson thickness locking, shear locking or vol-

me locking. This hybrid shell formulation can describe large ro-

ations and large displacements, and has been successively applied

o nonlinear elastic thin-walled structures such as cantilever beam,

quare plate, cylindrical roof and circular deep arch ( Zahrouni et al.,

999; Boutyour et al., 2004 ). 

Formulations of geometry and kinematics of the shell element

an be found in Xu et al. (2014) ; 2015a ); Xu and Potier-Ferry

2016b ). The hybrid shell formulation is derived from a three-field

ariational principle based on the Hu–Washizu functional ( Büchter

t al., 1994; Zahrouni et al., 1999 ). The stationary condition can be

ritten as 

f 

(
u f , ̃  γ , S 

)
= 

∫ 
� f

{ 
t S : ( γu + ̃

 γ ) − 1 

2 

t S : D 

−1 : S 

}
d�, (1) 

here D is the elastic stiffness tensor of the shell. The unknowns

re, respectively, the displacement field u f , the second Piola–

irchhoff stress tensor S and the compatible Green–Lagrange strain

u . The enhanced assumed strain 

˜ γ , satisfies the condition of or-

hogonality with respect to the stress field. 

A 8-node quadrilateral element with reduced integration is

sed for the 7-parameter shell formulation. The enhanced assumed

train 

˜ γ neither requires inter element continuity, nor contributes

o the total number of nodal degrees of freedom. Therefore, it can

e eliminated by condensation at the element level, which pre-

erves the formal structure of a 6-parameter shell theory with to-

ally 48 degrees of freedom per element. 

Since the displacement, rotation and strain remain relatively

mall in the core, the linear isotropic elasticity theory can accu-

ately describe the core ( Xu and Potier-Ferry, 2016b ). Hence, the

otential energy of the core can be expressed as 

s ( u s ) = 

∫ 
�s 

1 

2 

(
t ε : L s : ε − t ε : L s : ε th 

)
d�, (2) 

here L s is the elastic matrix of the core. The total strain and ther-

al strain are respectively denoted as ε and εth . In this paper, 8-

ode linear brick elements with reduced integration are applied

o discretize the core, with totally 24 degrees of freedom on each

rick element. Note that the core is subjected to the thermal load-

ng that can be expressed as 

 th = α
T I with 
T < 0 , (3)

here α, 
T and I denote the thermal expansion coefficient,

emperature change and second-order identity tensor, respectively.

his thermal shrinking loading εth can be characterized by a resid-

al strain ε th = ε res = −λI , while λ is a scalar load parameter and

nly normal strains are considered for isotropic loading. 

As the surface shell is bonded to the core, the displacement

hould be continuous at the interface ( Xu et al., 2014; Xu and

otier-Ferry, 2016b ). However, the shell elements and 3D brick

lements cannot be simply joined directly since they belong to

issimilar elements. Therefore, additional incorporating constraint

quations have to be employed. Here, Lagrange multipliers are ap-

lied to couple the corresponding nodal displacements in compat-

ble meshes between the shell and the core (see Fig. 1 ). Note that

sing 8-node linear brick element here is only for coupling con-

enience, and 20-node quadratic brick element would be another
3

ood candidate, while both of them follow the same coupling strat-

gy. Consequently, the stationary function of the core-shell system

s given in a Lagrangian form: 

 (u f , u s , � ) = � f + �s + 

∑ 

node i

� i 
[
u f (i ) − u s (i ) 

]
, (4)

here the displacements of the shell and the core are, respectively,

enoted as u f and u s , while the Lagrange multipliers are repre-

ented by � . From Eq. (4) , three equations are obtained according

o δu f , δu s and δ� : 

 

 

 

 

δ� f + 

∑ 

node i

� i δu f (i ) = 0 , 

δ�s −
∑ 

node i

� i δu s (i ) = 0 , ∑ 

node i

δ� i u f (i ) −
∑ 

node i

δ� i u s (i ) = 0 . 

(5) 

A path-following continuation technique named ANM ( Damil

nd Potier-Ferry, 1990; Cochelin et al., 1994; Cochelin, 1994; Coche-

in et al., 2007 ) is applied to solve the resulting nonlinear PDEs (5) .

he ANM is a numerical perturbation technique based on a succes-

ion of high-order power series expansions with respect to a well

hosen path parameter, which appears as an efficient continuation

redictor without any corrector iteration. Besides, one can get ap-

roximations of the solution path that are very accurate inside the

adius of convergence. In this paper, the main interest of the ANM

s its ability to trace the post-buckling evolution on the equilib-

ium path and to predict secondary bifurcations without any spe-

ial tool. Precisely, accumulation of small steps in the ANM is of-

en associated with the occurrence of a bifurcation ( Xu et al., 2014;

015a; 2015b; Xu and Potier-Ferry, 2016b ). 

. Theoretical analyses

In this section, the buckling of a core-shell cylinder under ther-

al loading is analyzed theoretically. The objective is to explain

he deformation shape of the corresponding buckling patterns and

o highlight the dimensionless quantities which influence the buck-

ing and post-buckling response of the core-shell system. Previ-

us works by Zhao et al. (2014) ; Xu and Potier-Ferry (2016b ) have

emonstrated that two types of modes can be observed when

he cylindrical core-shell is subjected to an axial compression:

xisymmetric sinusoidal or non-axisymmetric diamond-like shape

ccording to the value of one single dimensionless parameter C s =
(E s /E f )(R/h f ) 

3 / 2 . In fact, different wrinkling shapes have been ob-

ained from the numerical framework presented in Section 2 , with

nly one half-wave in the axial direction but short wave-length in-

tability circumferentially (see Fig. 2 ). In other words, the buckling



(a) (b) (c)

Fig. 2. Three representative instability patterns obtained from numerical calculations: (a) axisymmetric sinusoidal mode under axial compression; (b) non-axisymmetric

diamond-like mode under axial compression; (c) churro-like mode under thermal loading.

Fig. 3. Geometry of core-shell cylindrical structure.
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a  
of a core-shell cylinder under thermal loads approximates to the

buckling of a cylindrical shell under external hydrostatic pressure

that has been widely discussed in the literature ( Batdorf, 1947;

Sobel, 1964; Abdelmoula and Leger, 2008; Timoshenko and Gere,

1961; Brush and Almroth, 1975; Yamaki, 1984; Bažant and Cedolin,

1991 ). The explanation is simple: the thermal loading induces an

isotropic stress state in the pre-buckling stage ( σx = σy ), but it

is well known that the critical buckling stress is generally much

higher in the axial compression case than in the external pressure

situation, with the following orders of magnitude: ⎧ ⎪ ⎪⎪ ⎪ ⎨ ⎪ ⎪ ⎪⎪⎩ 

| σ c 
x | 

E f 
= 

1 √
3(1 − ν2 

f 
)

h f 

R 

≈ 0 . 605 

h f 

R 

when ν f = 0 . 3 , 

| σ c 
y | 

E f 
= O 

[ (
h f 

R 

)3 / 2
R 

L 

]
.

(6)

Thus, the circumferential stress σ y would destabilize the system

much earlier than the axial stress σ x so that the corresponding

instability pattern should be similar to the external pressure load-

ing case. In the same way, it is known that the critical load in the

lateral pressure case ( σx = 0 ) is almost the same as in the hydro-

static pressure case ( σx = σy / 2 ) ( Batdorf, 1947 ), which confirms the

weak influence of the axial stress when the circumferential stress

is compressive. 

3.1. Core-shell DMV model with a foundation 

We consider an elastic cylindrical shell supported by a soft core,

which can buckle under external pressure p . Upon wrinkling, the

shell elastically buckles to relax the compressive stress and the

core concurrently deforms to maintain perfect bonding at the in-

terface. The core-shell cylindrical system is considered to be three-

dimensional and the geometry is as shown in Fig. 3 . In this study,

we consider the case where the thickness of the shell is much
4

maller than the radius of the cylinder, with R/h f � O(10) as usu-

lly accounted for thin shell models. Let x and y be axial and cir-

umferential coordinates, while z represents the radial direction

oordinate. The thickness of the shell, the radius and the length of

he system are denoted by h f , R and L , respectively. Young’s mod-

lus and Poisson’s ratio of the shell are respectively denoted by E f 
nd ν f , while E s and νs are the corresponding material properties

or the core. The same frame will be adapted to the components

f the displacements u, v, w , and the stress function F for stress

esultants. 

The Donnell - Mushtari - Vlassov (DMV) shell model ( Brush and

lmroth, 1975; Yamaki, 1984 ) that relies on the assumption of

oderately large rotations and various simplifications on curvature

s taken into account. It is not as general as the shell model used in

he numerical calculations, but it is sufficiently accurate for buck-

ing modes with at least four or five circumferential waves. It will

e also sufficient for the qualitative analysis aimed in this section.

n the version describing the membrane stress by a stress function,

he governing equations read 

 

 D 
2 w − 1 

R 

∂ 2 F 

∂x 2 
− [ F , w ] = p, 

1 

E f h f 


2 F + 

1 

R 

∂ 2 w 

∂x 2 
+ 

1 

2 

[ w, w ] = 0 , 

(7)

here 
2 and D = E f h 
3 
f 
/ [12(1 − ν2 

f 
)] respectively denote the bi-

armonic operator and flexural rigidities of the shell. The nonlinear

onge - Ampère operator is defined as 

 

a, b ] = 

∂ 2 a 

∂x 2 
∂ 2 b 

∂y 2 
+ 

∂ 2 a 

∂y 2 
∂ 2 b 

∂x 2 
− 2 

∂ 2 a 

∂ x∂ y 

∂ 2 b 

∂ x∂ y 
. (8)

he stress function F is related to the resultant stress by 

 x = 

∂ 2 F

∂y 2 
, N y = 

∂ 2 F

∂x 2 
, N xy = − ∂ 2 F

∂ x∂ y 
. (9)

In a cylindrical core-shell system, the normal pressure p ( x, y ) is

 function of the normal stress on the core boundary. Nevertheless,

ne can avoid the elastic solid description of the core by consider-

ng a Winkler-type approach: one assumes that this normal pres-

ure is proportional to the deflection w ( x, y ) at the same place. By

onsidering a sinusoidal load, Biot ( Biot, 1937; Allen, 1969 ) estab-

ished a closed form of the Winkler stiffness ratio that depends on

he half buckling wavelength � w 

that is a priori unknown: 

 s = 

E s 

(3 − νs )(1 + νs ) 

2 π

� w 

. (10)

he theoretical analyses will be conducted within this framework

nd the core-shell system is assumed to be governed by the fol-
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owing partial differential equations (PDEs): 

 

 D 
2 w − 1 

R 

∂ 2 F 

∂x 2 
− [ F , w ] + K s w = 0 , 

1 

E f h f 


2 F + 

1 

R 

∂ 2 w 

∂x 2 
+ 

1 

2 

[ w, w ] = 0 . 

(11) 

Various boundary conditions are concerned in the literature

 Sobel, 1964 ) and the most used boundary conditions can be ex-

ressed as follows: 

 1 : w = w ,x = u = v = 0 , S 1 : w = w ,xx = u = v = 0 , 

 2 : w = w ,x = u = N xy = 0 , S 2 : w = w ,xx = u = N xy = 0 , 

 3 : w = w ,x = v = N x = 0 , S 3 : w = w ,xx = v = N x = 0 , 

 4 : w = w ,x = N x = N xy = 0 , S 4 : w = w ,xx = N x = N xy = 0 , 

(12) 

n which C stands for clamped boundary conditions while S de-

otes simply supported ones. 

.2. Why instability patterns under thermal loading differ from axial 

oading? 

For the sake of completeness, we briefly re-discuss the linear

uckling analysis of a pure shell ( K s = 0 ) under axial compression

nd lateral pressure, for recalling the connection among load type,

ode shape and orders of magnitude. Essentially, these results can

e found in Batdorf (1947) and in several textbooks on shell buck-

ing. One seeks bifurcations from uniformly biaxial loading states

0 
x 
 = 0 , σ 0 

y 
 = 0 , σ 0 
xy = 0 �⇒ F 0 (x, y ) = 

1 

2 

(
σ 0 

y x 
2 + σ 0 

x y 
2 
)
. (13)

he critical states are deduced from the linearized version of

11) from F 0 ( x, y ) in Eq. (13) and w 

0 (x, y ) = 0 : 

 

 

 D 
2 w − 1 

R 

∂ 2 F 

∂x 2 
− h f 

(
σ 0 

x 

∂ 2 w 

∂x 2 
+ σ 0 

y 

∂ 2 w 

∂y 2 

)
= 0 ,

1 

E f h f 


2 F + 

1 

R 

∂ 2 w 

∂x 2 
= 0 . 

(14) 

he two equations in (14) can be classically combined to get one

ingle eighth-order partial differential equation ( Batdorf, 1947 ): 

 
4 w + 

E f h f 

R 

2 

∂ 4 w 

∂x 4 
− h f 

(
σ 0 

x 

∂ 2 
2 w 

∂x 2 
+ σ 0 

y 

∂ 2 
2 w 

∂y 2 

)
= 0 . (15)

lassical double-sinusoidal modes are assumed as w (x, y ) =
in (q x x + ϕ x ) sin (q y y + ϕ y ) . One seeks the critical stresses (as-

umed negative) as the smallest stresses such that Eq. (15) has a

olution, which leads to the minimization with respect to the wave

umbers ( q x , q y ). Thus, one can get the relation between load and

ave numbers from Eq. (15) : 

 f 

(| σ c 
x | q 2 x + | σ c 

y | q 2 y

)
= D 

(
q 2 x + q 2 y 

)2 + 

E f h f 

R 

2 

q 4 x (
q 2 x + q 2 y 

)2
. (16)

In the case of axial compression ( σ 0 
y = 0 ), the bifurcation con-

ition (16) can be expressed as 

 f | σ c 
x | = DA + 

E f h f 

R 

2 

1 

A 

, A = 

(
q x +

q 2 y 

q x 

)2

. (17)

he minimization of σ c 
x with respect to wave numbers is straight-

orward. There are lots of minima lying on the famous “Koiter cir-

le” ( Koiter, 1945 ) with the equation: 

 = 

(
q x + 

q 2 y 

q x 

)2

= 

√
E f h f 

DR 

2 
= 

√
12(1 − ν2 

f 
)

Rh f 

. (18)
5

his means that the linear stability theory can predict axisymmet-

ic ( q y = 0 ) as well as diamond-like modes ( q x 
 = 0, q y 
 = 0). A re-

ent paper ( Xu and Potier-Ferry, 2016b ) has established numeri-

ally that these two types of patterns can be observed for core-

hell cylinders under axial compression. Note that the wavelengths

f all these modes on the Koiter circle are very short as compared

ith the radius of the cylinder: 

 x = 

2 π

q x 
= O 

(√
Rh f 

)
, � y = 

2 π

q y 
= O 

(√
Rh f 

)
. (19)

he critical axial stress is the minimal value of (17) , which leads to

he famous formula (6) . 

In the case of lateral pressure ( σ 0 
x = 0 ), the bifurcation condi-

ion (16) reads 

 f | σ c 
y | = 

D (q 2 x + q 2 y ) 
2 

q 2 y 

+ 

E f h f 

R 

2 q 2 y 

1 (
1 + q 2 y / q 

2 
x 

)2
. (20)

ince the critical stress predicted by (20) is an increasing func-

ion of the axial wave number q x , the mathematical minimum

ith respect to the axial wave number requires q x = 0 , which is

ot permitted by boundary conditions. In fact, the axial wave-

ength is of the same order as the shell length ( � x = O(L ) ), and

he minimization of (20) with respect to the circumferential wave

umber q y leads to the critical circumferential wavelength that is

enerally smaller than the circle circumference 2 πR but always

arger than the wavelength (19) in the axial compression case. Sim-

le formulae for the critical circumferential stress and the critical

avelength � y can be obtained by considering a given axial wave

umber q x = O(1 /L ) that is smaller than the circumferential wave

umber q y . With these simplifications, Eq. (20) can be written as

 f | σ c 
y | = Dq 2 y + 

E f h f 

R 

2 

q 4 x 

q 6 y 

, (21)

nd the minimization with respect to q y is quite straightforward:

 

 

 

 

 

 

 

 

q y = 

[
36 

(
1 − ν2 

)]1 / 8 q 1 / 2x(
Rh f 

)1 / 4
�⇒ � y = 

2 π

q y 
= O 

[
L 1 / 2 

(
Rh f 

)1 / 4
]
,

| σ c 
y | = 

4 

[ 36(1 − ν2 ) ] 
3 / 4 

E f h 

3 / 2 

f 
q x 

R 

1 / 2 
.

(22) 

Therefore, this simple and classical buckling analysis predicts

uckling patterns under lateral pressure loading that are quite dif-

erent from those found in axial compression case. The circumfer-

ntial wavelength � y turns out to be smaller than the axial one

 L 1/2 ( Rh f ) 
1/4 � L ), and the critical stress is generally much smaller

han in the axial compression case ( h 3 / 2 
f 

q x /R 1 / 2 � h f /R ). This study

ill be continued to account for the effects of the core stiffness

nd boundary conditions. 

.3. A simplified analysis for pressure-type buckling 

In reality, the solutions of the nonlinear problems are not al-

ays harmonics so that the previous analysis can be only qual-

tative. Nevertheless, relatively simple critical and post-buckling

olutions are available ( Abdelmoula et al., 1992; Abdelmoula and

eger, 2008 ) based on the observation that the circumferential

avelength is much smaller than the cylindrical length. In this

aper, this simplified approach is extended to core-shells gov-

rned by system (11) . First, to distinguish the tangent opera-

or at the bifurcation point and the nonlinear part, we modify

q. (11) by introducing the additional stress function f (x, y ) =
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F (x, y ) − 1 

2 

(
σ 0 

y x 
2 + σ 0 

x y 
2 
)
: 

⎧⎪ ⎪ ⎨ ⎪⎪⎩
D 
2 w − 1 

R 

∂ 2 f 

∂x 2 
− h f 

(
σ 0 

x 

∂ 2 w 

∂x 2 
+ σ 0 

y 

∂ 2 w 

∂y 2 

)
+ K s w − [ f, w ] = 0 , 

1 

E f h f 


2 f + 

1 

R 

∂ 2 w 

∂x 2 
+ 

1 

2 

[ w, w ] = 0 . 

(23)

As shown in Fig. 2 , thermal or pressure loading generally leads

to the churro-like mode that is characterized by faster varia-

tions in the circumferential direction. This feature is the start-

ing point of a simplified approach established in Abdelmoula et al.

(1992) ; Abdelmoula and Leger (2008) . It consists in neglecting all

the axial derivatives ( ∂ / ∂ x � ∂ / ∂ y ), except for the coupling terms

(1/ R )( ∂ 2 / ∂x 2 ) due to the crucial role of the curvature in any shell

buckling problem, as well as the nonlinear terms [ f, w ] and [ w,

w ] that contain the same number of derivatives in both directions.

This leads to a simplified system: ⎧⎪ ⎪ ⎨ ⎪⎪⎩
D 

∂ 4 w 

∂y 4 
− 1 

R 

∂ 2 f 

∂x 2 
− h f σ

0 
y 

∂ 2 w 

∂y 2 
+ K s w − [ f, w ] = 0 , 

1 

E f h f 

∂ 4 f 

∂y 4 
+ 

1 

R 

∂ 2 w 

∂x 2 
+ 

1 

2 

[ w, w ] = 0 . 

(24)

In Abdelmoula and Leger (2008) , this simplified model has been

validated by an asymptotic expansion with respect to a small pa-

rameter related to the Batdorf parameter, i.e. 1 / 
√ 

Z ≈
√ 

Rh f /L . Each

equation in (24) is reduced to the second order with respect to

∂ / ∂ x from the starting model (23) that is of the fourth order. This

feature means that the solution of the initial system (23) involves

boundary layers that have consequences on boundary conditions to

be associated with the simplified system (24) . 

3.4. Dimensional analysis 

We now seek the parameters influencing the buckling behavior

of core-shell cylindrical systems under thermal loading. The inves-

tigation is based on the simplified model (24) , knowing that the

transition between the simplified system (24) and the initial one

(23) is governed by the Batdorf parameter. Generally, within non-

linear shell/plate theory, the deflection is assumed to be of the or-

der of the shell/plate thickness. According to the previous discus-

sion, the characteristic lengths are the structural length L in the

axial direction and the half wavelength � w 

in the circumferential

direction. But this half buckling wavelength � w 

is unknown and is

involved in the definition of the Winkler foundation stiffness K s , as

seen in Eq. (10) . Nevertheless, the order of its magnitude is known

so that we can scale the circumferential variable “y ” by another

length L y that is of the same order of magnitude as � w 

. This leads

to the following similitude assumptions: 

w = h f w̄ , x = L ̄x , y = L y ̄y , f = D ̄f , L y = L 1 / 2 
(
Rh f 

)1 / 4
. (25)

Next one has to replace the unknown wavelength by dimensionless

quantities and we propose the number of circumferential periods

“n ” that is an integer or the wave number q̄ associated with the

dimensionless variable ȳ . They are connected by 

π

� w 

= 

q̄

L y 
= 

n

R 

. (26)
b  

6

y substituting Eq. (25) into Eq. (24) and accounting for Eqs.

10) and (26) , one obtains 

 

 

 

 

∂ 4 w̄ 

∂ ̄y 4 
− ∂ 2 f̄ 

∂ ̄x 2 
− �

∂ 2 w̄ 

∂ ̄y 2 
+ q̄ C ∗t w̄ −

(
Rh f 

L 2 

)1 / 2 [
f̄ , w̄ 

]
= 0 , 

1 

12(1 − ν2 
f 
) 

∂ 4 f̄ 

∂ ̄y 4 
+ 

∂ 2 w̄

∂ ̄x 2 
+ 

1

2 

(
Rh f 

L 2 

)1 / 2

[ ̄w , w̄ ] = 0 , 

(27)

here the bracket operator is defined in (8) , but with respect

o the scaled dimensionless variables ( ̄x , ̄y ) . Four dimensionless

arameters appear in (27) . The first one is Poisson’s ratio ν f of

he shell, whose influence should be rather limited. The second

ne, � = σ 0 
y h f L 

2 
y /D ⇐⇒ σ 0 

y = E f h 
3 / 2 
f 

�/ [12(1 − ν2 
f 
) LR 1 / 2 ] , is the di-

ensionless loading parameter, i.e. the bifurcation parameter that

aries to study the response of the system. The third one combines

he modulus ratio and the structural geometry involving curvature:

 

 

 

 

 

 

 

 

C ∗t = 

24(1 − ν2 
f 
)

( 3 − νs ) ( 1 + νs ) 
C t , 

C t = 

E s

E f 

(
L y 

h f 

)3

= 

E s

E f 

(
L 

h f 

)3 / 2 (
R 

h f 

)3 / 4

.

(28)

his ratio C t or C ∗t is the main characteristic dimensionless parame-

er of the core-shell cylindrical system, which implies the influence

f the core stiffness with respect to the shell stiffness. It differs

rom the parameter C s introduced in Xu and Potier-Ferry (2016b )

ince the instability modes are quite different between external

ressure and axial compression. The last parameter ( Rh f / L 
2 ) 1/2 in

q. (27) recovers the Batdorf parameter, but one will see that it

an be dropped as it appears just before the two quadratic terms.

hrough re-scaling the unknowns of system (27) by 

¯
 = w 

∗/η, x̄ = x ∗, ȳ = y ∗, f = f ∗/η, η = 

(
Rh f /L 2 

)1 / 2
,

(29)

ne gets a new version of the model as
 

 

 

 

 

∂ 4 w 

∗

∂y ∗4 
− ∂ 2 f ∗

∂x ∗2 
− �

∂ 2 w 

∗

∂y ∗2 
+ q̄ C ∗t w 

∗ − [ f ∗, w 

∗] = 0 , 

1 

12(1 − ν2 
f 
) 

∂ 4 f ∗

∂y ∗4 
+ 

∂ 2 w 

∗

∂x ∗2 
+ 

1 

2 

[ w 

∗, w 

∗] = 0 . 

(30)

hus, in what follows, the behavior of the system will be discussed

s a function of the parameter C ∗t defined in (28) . 

.5. Boundary layers and boundary conditions 

The presence of boundary layers is one of the main features of

he buckling of cylindrical shells under circumferential compres-

ion ( σ y < 0). As theoretically explained in Abdelmoula and Leger

2008) , these boundary layers are associated with large values of

he Batdorf parameter Z = L 2 
√ 

1 − ν2 
f 
/ (Rh f ) , i.e. Z ≥ 100, which is

enerally the case for thin shell buckling. The rapid variations in

oundary regions have consequences for the boundary conditions

o be applied to the simplified model (24) . To illustrate this state-

ent, let us consider full finite element computations of core-shell

ylinders under thermal loading for two cases with the same Bat-

orf parameter Z = 954 but with different dimensionless parame-

ers C t = 0 . 0056 and C t = 266 , respectively. Fig. 4 illustrates the ax-

al profile of the deflection x → w ( x , 0) and its derivative around

he first bifurcation to be representative of bifurcation modes. It

hows a rapid variation of the slope w , x close to the boundary,

hich satisfies the clamped condition w ,x = 0 . In fact, it clearly

ppears that a smooth extrapolation of the slope w , x up to the

oundary would satisfy w ,xx = 0 but not w ,x = 0 . This boundary



Fig. 4. Buckling modes and the corresponding rotations obtained by the numerical model in Section 2 with boundary condition C 3 and Batdorf parameter Z = 954 : (a) 

C t = 0 . 0056 ; (b) C t = 266 . The size of the boundary layers remains the same since the same Batdorf parameter is taken into account. 

Table 1

Boundary conditions (BCs) imposed on models.

BCs for initial problem (7) BCs for simplified problem (24)

C 1, C 2, S 1, S 2 ( u = w = 0 ) w = w ,x = 0 

C 3, C 4, S 3, S 4 ( N x = w = 0 ) w = w ,xx = 0 
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ondition w ,xx = 0 is the one to be imposed on the simplified

odel (24) that disregards the boundary layers. Roughly, this is a

onsequence of boundary conditions on the axial force N x and it

ollows the linear version of Eq. (24 b): 

 x = 0 �⇒ 

∂ 2 f 

∂y 2 
= 0 

cf . (24 −b)︷︸︸︷ �⇒ 

∂ 2 w 

∂x 2 
= 0 . (31)

 rigorous explanation accounting for boundary layers is given in

bdelmoula and Leger (2008) as well as a treatment of the case

 = 0 . It was theoretically found that the width of boundary layers

s related to the Batdorf parameter and satisfies O(1 / 
√ 

Z ) . Indeed,

oundary layers shown in Fig. 4 have the same size. These results

or the boundary conditions associated with the model (24) are

ummarized in Table 1 . Note that only the axial boundary ( u = 0 or

 x = 0 ) has a strong effect on the bifurcation load, which was early

ecognized by Sobel (1964) . The other boundary conditions ( v = 0

r N xy = 0 , w , x or w ,xx = 0 ) offer a minor influence and act only

n the boundary layers. Of course the persistence of these conclu-

ions in the post-buckling regime and in the presence of the core

an be re-discussed. 

.6. Bifurcation analysis 

Bifurcation loads are obtained from the linearized version of the

imensionless system (30) . For simplicity, we omit the superscripts

tars. The bifurcation modes are assumed in a harmonic form along

he circumferential direction: 

w (x, y ) = 

ˆ w (x ) cos (qy ) , 

f (x, y ) = 

ˆ f (x ) cos (qy ) . 
(32) 

ence, the modes in the axial direction are the solutions of an or-

inary differential system obtained from the linear version of (30) :
7

 

 

 

 

 

 

 

(
q 4 + �q 2 + qC ∗t 

)
ˆ w − d 

2 f̂ 

d x 2 
= 0 , 

q 4 

12(1 − ν2 
f 
) 

ˆ f + 

d 

2 ˆ w 

d x 2 
= 0 . 

(33) 

hrough eliminating the stress function 

ˆ f , one finds a deflection

etermined by a fourth-order differential equation: 

2 

(
1 − ν2 

f

)d 

4 ˆ w 

d x 4 
+ 

(
q 8 + �q 6 + q 5 C ∗t 

)
ˆ w = 0 . (34)

his eigenvalue problem is well known ( e.g. vibration modes of

 beam) and it has been associated with buckling under external

ressure in Abdelmoula and Leger (2008) . Let us recall the small-

st eigenpair for x ∈ [ −1 / 2 , 1 / 2] . In the case without axial force

 N x = w = w ,xx = 0 ), the solution reads ( � < 0): 

 

ˆ w (x ) = cos (πx ) ,

| �(q ) | = q 2 + 

12(1 − ν2 
f 
) π4

q 6 
+ 

C ∗t 
q 

,
(35) 

r in the case where the axial displacement u is locked on the

oundary ( u = w = w ,x = 0 ): 

 

ˆ w (x ) = A cos (πρx ) + B cosh (πρx ) ,

| �(q ) | = q 2 + 

12(1 − ν2 
f 
) ρ4 π4

q 6 
+ 

C ∗t 
q 

,
(36) 

here A and B are constants and ρ ≈ 1.5056 is the smallest root of

an (πρ/ 2) + tanh (πρ/ 2) = 0 . As underlined in Karam and Gibson

1995) , the minimization of ( 35 -b) or ( 36 -b) with respect to q is

ifficult since this leads to an eighth-order polynomial equation.

evertheless, it is clear that the critical stress (minimum of �( q ))

epends only on two dimensionless parameters, i.e. Poisson’s ratio

f of the shell and the dimensionless parameter C ∗t . The numerical

inimization is quite straightforward as the possible values of the

ave number are discrete ( q = nL y /R ) (see Fig. 5 ). 

The values of the critical stress �cr and the associated wave

umber q cr are presented in Table 2 as a function of the core stiff-

ess parameter C ∗t in the case of ν f = 0 . 4 . These results correspond

o exact solutions of the simplified model (24) but not to the full

odel (7) . As expected, the wave number and the critical stress

ncrease with the rise of core stiffness C ∗t . Two groups of bound-

ry conditions defined in Table 1 are considered. For a very soft



Fig. 5. The load �( q ) in function of the wave number q . The markers stand for the critical load and its associated wave number. (a) boundary condition C 1 ; (b) boundary

condition C 3 .

Table 2

Critical stress �cr and wave number q cr with boundary conditions C 1 and C 3.

C ∗t = 10 −4 C ∗t = 1 C ∗t = 10 C ∗t = 30 C ∗t = 50 C ∗t = 100 C ∗t = 200 C ∗t = 300 

q C 1cr 3.33 3.34 3.39 3.51 3.65 4.01 4.74 5.35

�C 1 
cr 14.79 15.09 17.77 23.57 29.15 42.23 65.11 84.91

q C 3cr 2.71 2.72 2.80 3.00 3.22 3.78 4.66 5.32

�C 3 
cr 9.82 10.19 13.45 20.35 26.78 41.08 64.73 84.74

�C 1 
cr / �

C 3 
cr 1.51 1.48 1.32 1.16 1.09 1.03 1.01 1.00
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3

core, the critical stress for a full clamped case C 1 is 1.5 times larger

than that in the case C 3 with N x = 0 , which agrees well with the

solutions in Sobel (1964) ; Abdelmoula and Leger (2008) for a pure

shell structure. This additional buckling strength due to the bound-

ary condition u = 0 exists for a core-shell cylinder as well, but the

ratio �C 1 
cr / �

C 3 
cr decreases with the increase of C ∗t and tends to be
 

d  

8

ne for a relatively stiff core so that the buckling strength is al-

ost insensitive to BCs when C ∗t � 100 . 

.7. Post-bifurcation analysis 

The post-bifurcation behavior is a key result for core-shell cylin-

ers subjected to axial compression, and the post-buckling re-



Fig. 6. �2 in function of C ∗t with boundary condition C 3 and ν f = 0 . 4 . The sign of �2 changes at C ∗t = 15 . 27 . (b) zoom of (a). 

Fig. 7. Bifurcation diagram of Core-shell I with C t = 266 , Z = 2113 and boundary condition C 1. The points A and B are marked in Fig. 3 . Representative wrinkling shapes in 

Fig. 8 on the post-buckling evolution path are marked. ANM parameters: n = 15 , δ = 10 −4 , 18 steps. Each point corresponds to one ANM step. 
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ponse is usually unstable with a soft core and tends to be stable

ith a stiff core ( Zhao et al., 2014; Xu and Potier-Ferry, 2016b ). A

ost-critical bifurcation is not common for a curved shell and thus

he characteristics of stiff core-shells seem highly interesting. The

ifurcation theory ( Budiansky, 1974; Koiter, 1945; 2009 ) allows dis-

inguishing between subcritical and supercritical post-bifurcation

ccording to the sign of a number, named �2 in this paper. The

onlinear system (30) has a simple structure involving linear and

uadratic operators: 

 (U ) + (� − �0 ) L 

′ (U ) = Q(U , U ) , (37)

here the linear operators L (U ) and L 

′ (U ) are self-adjoint and

he first one is singular, i.e. ∃ U 1 
 = 0 such that L (U 1 ) = 0 . Classi-

al asymptotic expansions of the bifurcating curve emanating from

he bifurcation point (the standard case of a symmetric bifurcation)

an be written as 

U = a U 1 + a 2 U 2 + a 3 U 3 + . . . , 

� − �0 = a 2 �2 + a 4 �4 + . . . . 
(38) 

he bifurcation curve exists beyond the bifurcation point if the two

erms � and � have the same sign. Here � is negative so that
2 0 0 

9

he bifurcation is either supercritical and stable if �2 < 0, or sub-

ritical and unstable if �2 > 0. The identification of the powers of

he path parameter “a ” gives a sequence of equations: 
 

 

 

L (U 1 ) = 0 , 

L (U 2 ) = Q(U 1 , U 1 ) ,

L (U 3 ) + �2 L 

′ (U 1 ) = 2 Q(U 1 , U 2 ) .

(39) 

ne does not need to solve the last equation in (39) , but only

rites a solvability condition by taking the scalar product of ( 39 -c)

ith the kernel U 1 of the linear operator L : 

2 = 

2 〈 Q(U 1 , U 2 ) , U 1 〉
〈L 

′ (U 1 ) , U 1 〉 . (40) 

he analytical calculation of �2 is straightforward and more details

re presented in Appendix A . The value of �2 has been computed

s a function of the dimensionless parameter C ∗t , from Eqs. (39) ,

 40 ) and ( 55 )–( 60 ) in Appendix A, and with the aid of symbolic

ode in Mathematica ( Wolfram, 1991 ). The results are reported in

he case of boundary conditions C 3 − C 4 − S 3 − S 4 and ν f = 0 . 4 ,

s shown in Fig. 6 . For a small value of C ∗t , �2 is positive, which

s in good agreement with the well-known unstable post-buckling



Fig. 8. The left column shows two representative wrinkling patterns of Core-shell I with C t = 266 , Z = 2113 and boundary condition C 1, when the load increases. The color 

contour represents w / h f . The right column presents the associated instability modes along the length. (e) cross-section contour at x = L/ 2 at the final loading step, with wave 

number n = 12 . 

 

 

 

 

a  

o  
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w

behavior of a pure shell without a core under lateral or external

pressure ( Yamaki, 1984 ). The sign of �2 changes to be negative

for C ∗t = 15 . 27 and decreases significantly with the increase of C ∗t ,
which indicates a strongly supercritical post-buckling behavior in

the presence of rather stiff core. Note that discontinuities in Fig. 6 a
10
re due to the change of circumferential wave number “n ”. Thus

ne recovers the same features as in axial compression: an unsta-

le post-buckling response for a soft core that turns out to be sta-

le for a sufficiently stiff core. These results will be re-discussed in

hat follows from finite element calculations. 



Fig. 9. The post-buckling evolution of boundary layers beyond bifurcation of Core-shell I with C t = 266 , Z = 2113 and boundary condition C 1, when the load increases. The 

boundary layers affect the bulk response that becomes more flattened for larger values of the thermal load.

Fig. 10. Bifurcation diagram of Core-shell II with C t = 0 . 1 , Z = 2113 and boundary condition C 1. The points A and B are marked in Fig. 3 . Representative wrinkling shapes in 

Fig. 11 on the post-buckling evolution path are marked. ANM parameters: n = 15 , δ = 10 −4 , 16 steps. Each point corresponds to one ANM step. 

11



Fig. 11. The left column shows a sequence of representative wrinkling patterns of Core-shell II with C t = 0 . 1 , Z = 2113 and boundary condition C 1. The color contour denotes 

w / h f . The right column presents the associated instability modes along the length.
12



Fig. 12. A shape evolution of cross-section ( x = L/ 2 ) of Core-shell II with C t = 0 . 1 , Z = 2113 and boundary condition C 1. Wave number n = 4 at the final step. 

Table 3

Material and geometric properties of various core-shell cylindrical structures.

Core-shell E f (MPa) E s (MPa) ν f νs h f ( mm ) R ( mm ) L ( mm ) C t C ∗t Z n cr

I 1.3 × 10 3 1.8 0.4 0.48 10−3 69 . 4 × 10 −3 0.4 266 1438 2113 11

II 3.45 × 10 6 1.8 0.4 0.48 10−3 69 . 4 × 10 −3 0.4 0.1 0.5 2113 4

III 2.16 × 10 4 1.8 0.4 0.48 10−3 91 . 0 × 10 −3 0.1 2.5 13.5 101 8

IV 2.16 × 10 4 1.8 0.4 0.48 10−3 32 . 0 × 10 −3 0.2 3.2 17.3 1146 3

V 2.16 × 10 4 1.8 0.4 0.48 10−3 94 . 0 × 10 −3 0.1 2.5 13.5 98 10

VI 2.16 × 10 4 1.8 0.4 0.48 10−3 28 . 0 × 10 −3 0.2 2.9 15.7 1309 3

VII 1.3 × 10 3 5.1 0.4 0.48 10−3 69 . 4 × 10 −3 0.2 266 1438 528 16

4
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. Results and discussion

.1. Computational methodology 

The nonlinear post-buckling of core-shell cylindrical structures

ubjected to thermal loading will be investigated numerically by

onsidering shell elements for the surface layer and solid elements

or the core, as presented in Section 2 . The following computational

echnique has been chosen to avoid most restrictive assumptions

n initial geometric imperfections that are generally performed in

he literature ( Zhao et al., 2014; Jia et al., 2015 ): the considered do-

ain herein is three-dimensional without geometric imperfection

nd path-following technique provides the post-buckling response

f the system beyond the primary bifurcation ( Xu and Potier-Ferry,

016b ). 

Material and geometric properties of core-shell composite sys-

ems are shown in Table 3 . According to the dimensional analy-

is performed in Section 3.4 , the two key parameters to determine
13
uckling response are core stiffness parameter C t and the Batdorf

arameter Z , which are in function of geometric and physical con-

tants: radius/thickness ratio R / h f , length/thickness ratio L / h f and

odulus ratio E f / E s . Hence, various cases with representative geo-

etric and material properties are considered for the calculations:

ome of them have a relatively big C t or Z while the others may

old a small value (see Table 3 ). Poisson’s ratio is a dimension-

ess measure of the degree of compressibility. Compliant mate-

ials for the core, such as elastomers, are nearly incompressible

ith νs = 0 . 48 . In this paper, thermal load is applied to the core

hereas the shell is load free, as formulated in Section 2 . In or-

er to trigger a transition from the fundamental to the bifurcated

ranch, a small perturbation force, f z = 10 −6 , is imposed on the

hell. Introduction of such small perturbation forces is a common

echnique for solving bifurcation problems by continuation tech-

iques ( Doedel, 1981; Allgower and Georg, 1990 ), even when using

ommercial finite element codes. This artifice could be avoided by

pplying a specific procedure to compute the bifurcation branch



Fig. 13. Comparison of bifurcation diagrams between (a) Core-shell III with C ∗t = 13 . 5 and (b) Core-shell IV with C ∗t = 17 . 3 . The boundary condition C 3 is applied. ANM 

parameters: n = 15 , δ = 10 −6 . Each point corresponds to one ANM step. 
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as in Boutyour et al. (2004) ; Vannucci et al. (1998) . In this paper,

the perturbation force f z allows computing the whole bifurcated

branch with a single continuation algorithm. The number of ele-

ments required for a convergent solution was carefully examined.

Bifurcation points are detected by the criterion of small step accu-

mulation. Indeed, when the starting point of a step is close to bi-

furcation, the radius of convergence of Taylor series coincides with

the distance to the singular point, which explains that the contin-

uation process ‘knocks’ against the bifurcation ( Baguet and Coche-

lin, 2003 ). More advanced techniques are available for bifurcation

detection such as bifurcation indicator ( Xu et al., 2014; 2015b ) and

power series analysis ( Cochelin and Medale, 2013 ), but the sim-

ple detection by sight will prove to be sufficient in our analyses.
14
n what follows, we will explore the formation and evolution of

everal instability modes with different C t and Z through the es-

ablished model (5) . 

Due to geometric symmetry, only one quarter of the system is

onsidered for the mesh for reduction of computational cost, and

he corresponding symmetric boundary conditions on the circum-

erential edges are suitably applied. Consequently, the surface layer

s meshed with 30 × 50 shell elements to ensure at least five el-

ments within a single wave. The core is compatibly discretized

y 7500 brick elements with five layers. Mesh convergence was

arefully examined as in Xu and Potier-Ferry (2016b ). Totally, the

ore-shell system contains 61,167 degrees of freedom (DOF) includ-

ng the Lagrange multipliers. Note that some wrinkling modes and



Fig. 14. Bifurcation curve of Core-shell IV with C ∗t = 17 . 3 and boundary condition C 3. The points A and B are marked in Fig. 3 . 
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ode interactions may be disregarded by considering only a part

f the structure, especially the modes with an odd wave number

n ”. 

.2. Numerical results 

Seven numerical tests presented in Table 3 will be discussed by

onsidering two classical boundary conditions C 1 and C 3, cf. (12) .

ndeed, according to the simplified analysis in Section 3.5 , there

re two main classes of boundary conditions that are distinguished

y the axial condition ( u = 0 or N x = 0 ), and the chosen boundary

onditions are representatives of these two classes. 

Let us begin with the cases with a relatively stiff core and soft

ore, respectively, which are characterized by the dimensionless ra-

io C t : a large value C t = 266 for the stiff core case and a small

alue C t = 0 . 1 for the soft core one. The boundary condition ( C 1)

nd the Batdorf parameter ( Z = 2133 ) are the same in these two

ests. The bifurcation curves (| w |/ h f vs. εth ) are given in Figs. 7 and

0 , respectively. There exists a single bifurcation point, while this

ifurcation is supercritical for the stiff core case and subcriti-

al for the soft core case, which was predicted by the analyti-

al post-bifurcation analysis in Section 3.7 (the latter analysis was

onducted for the other class of BCs). This subcritical/supercritical

ransition has also been observed in the case of axial compression

 Xu and Potier-Ferry, 2016b ) and is probably a characteristic fea-

ure for many core-shell buckling problems. The response with a

ysteresis loop in the soft core case (see Fig. 10 ) is very close to

he corresponding one in pure shell structures ( Yamaki, 1984 ). Rep-

esentative wrinkling patterns are illustrated in Figs. 8 , 11 and 12 ,

espectively. A churro-like buckling mode occurs at the bifurcation

n the center of the core-shell system, with an axial profile similar

o the prediction of the simplified approach in Section 3.6 , see Eq.

36) . Boundary layers appear clearly near the two ends of the sys-

em in the case of large Batdorf parameter (see Figs. 8 b and 11 b),

s discussed in Section 3.5 . The boundary layer holds a relatively

table thickness in the post-bifurcation range, while it has a con-

iderable effect on the bulk response that becomes more flattened

or large values of the thermal load, as illustrated in Fig. 9 . When

he load increases, the churro-like pattern evolves and the bound-
15
ry layers turn out to diminish. The computational wave num-

er along the circumferential direction in Fig. 8 e is counted by 12,

hich is very close to the analytical solution n cr = 11 shown in

able 3 . Note that n = 11 is not permitted due to geometric sym-

etry consideration in finite element calculations. In the soft core

ase with C t = 0 . 1 , the numerical wave number n = 4 (see Fig. 12 )

oincides with the analytical prediction in Table 3 . 

The load-displacement curves in Figs. 7 and 10 are depicted in

erms of the applied thermal strain εth in the core. The connec-

ion between this strain and the circumferential stress σ f in the

hell is not apparent in general, while it can be established ana-

ytically in the pre-buckling stage if one assumes a uniform and

sotropic stress field in the core, as seen in Eq. (64) in Appendix B .

or a very soft core ( E s / E f � h f / R ), the compressive stress can be ap-

roximated by σ f ≈ E s Rε th / 
[
(1 − 2 νs ) h f 

]
. This implies a quite high

evel of thermal strain at the bifurcation, which would require a

arge strain framework to be considered for the core. Of course an

xtremely soft core is unable to induce sufficiently large compres-

ive stresses in the shell. On the contrary, the critical load is much

ower in the case of a relatively stiff core ( εth ≈ 1.1% in Fig. 7 ). 

The circumferential profiles remain constant in the two cases

p to large deflections. The established 3D model based on the

NM offers a very high computing speed to reach the critical point

ith only a few steps, with an adaptive reduction of step length.

n accumulation of small steps close to the first bifurcation is ob-

erved, but there is nothing similar beyond, which indicates that

here is no secondary bifurcation in these two cases. 

According to the analytical post-buckling analysis, the subcrit-

cal/supercritical transition occurs once for C ∗t = 15 . 27 in the case

f boundary conditions w = 0 , N x = 0 ( C 3 − C 4 − S 3 − S 4 accord-

ng to the nomenclature recalled in Eq. (12)) . The bifurcation is

ubcritical below this value, and supercritical beyond this value.

wo bifurcation curves are reported in Fig. 13 corresponding to

 

∗
t = 13 . 5 and C ∗t = 17 . 3 , respectively, with the boundary condi-

ion C 3. The results are in accordance with the analytical solution:

he first bifurcation is subcritical for C ∗t = 13 . 5 and supercritical for

 

∗
t = 17 . 3 . In the first case, one observes a hysteresis loop and a

e-stabilization of the post-buckling path, which were generally re-



Fig. 15. Comparison of bifurcation diagram between (a) Core-shell V with C ∗t = 13 . 5 and (b) Core-shell VI with C ∗t = 15 . 7 . The boundary condition C 1 is set. ANM parameters: 

n = 15 , δ = 10 −6 . Each point corresponds to one ANM step. 
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vealed for pure shells under circumferential loadings, i.e. lateral or

hydrostatic pressure. In the second case with C ∗t = 17 . 3 , there is

also a hysteresis loop, and an accumulation of small steps near

the maximal load ( | w | /h f = 2 . 8 and ε th = 0 . 057 ) indicates that this

maximum corresponds to a perturbed bifurcation. To understand

this quasi-bifurcation phenomenon, we have plotted the deflection

at two points A and B chosen in the middle circle ( θ = 0 for A and

θ = π/ 4 for B as depicted in Fig. 3 ). Indeed one finds a smooth

evolution for the deflection at point A, while there exist strong

slope discontinuities for the deflection at point B, as seen in Fig. 14 .

Hence it turns out that this hysteresis loop is associated with an

evolution of the profile along the circumference. 

Finite element computations have been performed for the other

class of BCs as well, i.e. boundary condition C 1 and C ∗t = 13 . 5 and

 

∗ = 15 . 7 , as shown in Fig. 15 . The results are quite similar to the
t 

16
ase of boundary condition C 3: subcritical/supercritical transition

or C ∗t = 15 ± 1 , hysteresis loops and re-stabilization of the post-

uckling curve, and presence of a quasi-bifurcation for the stiffer

ore with C ∗t = 15 . 7 . 

Lastly, we evaluate the influence of the Batdorf parameter by

omparing Core-shells I and VII, which hold the same stiffness ra-

io C ∗t = 1438 but different Batdorf parameters Z = 2133 and Z =
28 ≈ 2133 / 4 , respectively. According to Abdelmoula and Leger

2008) , the size of the boundary layer is proportional to 1 / 
√ 

Z .

his theoretical result is corroborated by the axial profiles obtained

rom the finite element model, as shown in Fig. 16 . It demonstrates

hat the boundary layer becomes effectively about twice larger

hen the Batdorf parameter is divided by 4. Details on the asso-

iated wrinkling modes for various cases listed in Table 3 are re-

orted in Supplementary material. 



Fig. 16. Comparison of boundary layers at the critical load between Core-shell I with Z = 2113 and Core-shell VII with Z = 528 . The boundary condition C 1 is imposed. 
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. Conclusion

The buckling and post-buckling of cylindrical core-shells sub-

ected to uniform thermal loading were investigated, which com-

letes the previous work on the same curved structure under ax-

al compression ( Xu and Potier-Ferry, 2016b ). This study has been

arried out first from theoretical considerations within the DMV

hell theory, then from finite element analyses based on a core

escribed by a linear elastic solid and a surface layer by a non-

inear shell model. In all the studied cases, the instability mode is

hurro-like, with one half wave in the axial direction and several

aves in the circumferential direction, but with a shorter wave-

ength than that in the axial compression case. In fact, these buck-

ing modes of cylindrical core-shells do not differ significantly from

he modes of a pure shell structure without a core, and the de-

ormed shape appears more dependent on geometry and loading

han on the presence of the substrate. Indeed the curvature in-

reases the stiffness of cylindrical structures in such a way that

heir stability is more sensitive to the circumferential compres-

ive stress than the axial one. Roughly the same response could

e observed for axially compressed core-shell cylinders ( Zhao et al.,

014; Xu and Potier-Ferry, 2016b ) or spherical core-shell structures

nder pressure ( Stoop et al., 2015 ). 

The dimensional analysis establishes that the governing

quations depend mainly on a dimensionless parameter C t =
(E s /E f )(L/h f ) 

3 / 2 (R/h f ) 
3 / 4 (or C ∗t defined in Eq. (28)) that measures

he relative core stiffness. For a soft core, the first bifurcation is

ubcritical and turns out to be supercritical for a stiffer core, the

urning point being C ∗t ≈ 15 . This result was obtained from an an-

lytical post-bifurcation analysis and confirmed by finite element

omputations. This stabilization of the post-buckling response is

he main contribution of the substrate and it was also observed

nder other loadings and geometries. 

As established in historical studies on pure cylindrical shells,

he response of core-shells depends on the famous Batdorf param-

ter Z = L 2 
√ 

1 − ν2 
f 
/ (Rh f ) as well, while the Batdorf parameter acts

ainly in boundary layers, which leads to boundary effects on the

rst bifurcation load. Nevertheless, the influence of these bound-

ry layers diminishes in the post-buckling stage. It also decreases

hen the core stiffness increases, and becomes insignificant for C ∗t 
arger than 100. 
o  
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ppendix A. Nonlinear post-buckling calculation 

The main objective is to discuss whether the bifurcated branch

s supercritical or subcritical. In this respect one calculates analyti-

ally the coefficient �2 according to the formulae (39) and (40) . By

omparing (30) with (37) , the two linear operators L (. ) and L 

′ (. ) ,
nd the quadratic operator Q (., .) read 

 

 

 

 

 

 

 

L 

[
w

f 

]
= 

⎡⎢ ⎢⎣
∂ 4 w 

∂y 4 
− ∂ 2 f 

∂x 2 
− �0 

∂ 2 w 

∂y 2 
+ qC ∗t w 

− 1 

12(1 − ν2 
f 
) 

∂ 4 f 

∂y 4 
− ∂ 2 w

∂x 2 

⎤⎥⎥ ⎦ 

,

L 

′ 
[

w

f 

]
= 

⎡⎣−∂ 2 w

∂y 2 

0 

⎤⎦ ,

Q 

[(
w

f 

)
,

(
w

f 

)]
= 

[ 

[ f, w ]

1 

2 

[ w, w ] 

]
.

(41) 

ow let us describe the differential Eq. (39 -b) to get the second

erm of the asymptotic expansion by starting from the first term

 1 = 

[
w 1 

f 1 

]
= 

[
ˆ w (x ) 
ˆ f (x ) 

]
cos (qy ) obtained in Section 3.6 . 

 

 

 

∂ 4 w 2 

∂y 4 
− ∂ 2 f 2 

∂x 2 
− �0 

∂ 2 w 2 

∂y 2 
+ qC ∗t w 2 = [ w 1 , f 1 ] , 

1 

12(1 − ν2 
f 
) 

∂ 4 f 2 
∂y 4 

+ 

∂ 2 w 2

∂x 2 
= −1

2 

[ w 1 , w 1 ] . 

(42) 

ince U 1 is harmonic along the y direction, the right-hand sides

f (42) combine terms that do not depend on y (harmonic 0) and
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terms proportional to cos (2 qy ) (harmonic 2): ⎧ ⎨ ⎩ 

[ w 1 , f 1 ] = −q 2 

2 

(
ˆ w ̂

 f 

)′′
− q 2

2 

cos (2 qy ) 
(

ˆ w ̂

 f ′′ + 

ˆ w 

′′ ˆ f − 2 ̂

 w 

′ ˆ f ′
)
,

[ w 1 , w 1 ] = −q 2 

2 

(
ˆ w 

2 
)′′ − q 2 cos (2 qy ) 

(
ˆ w ̂

 w 

′′ − ˆ w 

′ 2).
(43)

Hence, the solution of (42) is expressed in the form [
ˆ w 2 (x, y ) 
ˆ f 2 (x, y ) 

]
= 

[
ˆ w 

(0) (x ) 
ˆ f (0) (x ) 

]
+ 

[
ˆ w 

(2) (x ) 
ˆ f (2) (x ) 

]
cos (2 qy ) , (44)

in which w 

(0) ( x ) and f (0) ( x ) are solutions of ⎧⎨ ⎩ 

− f (0) ′′ + qC ∗t w 

(0) = −q 2

2 

(
ˆ w ̂

 f 

)′′
,

w 

(0) ′′ = 

q 2 

4 

(
ˆ w 

2 
)′′

,

(45)

and w 

(2) ( x ) and f (2) ( x ) are solutions of ⎧ ⎪ ⎨ ⎪ ⎩ 

(
16 q 4 + 4�q 2 + qC ∗t 

)
w 

(2) − f (2) ′′ = −q 2 

2 

(
ˆ w ̂

 f ′′ + 

ˆ w 

′′ ˆ f − 2 ̂

 w 

′ ˆ f ′
)
,

4 q 4 

3(1 − ν2 
f 
) 

f (2) + w 

(2) ′′ = 

q 2 

2 

(
ˆ w 

2 ˆ w 

′′ − ˆ w 

′ 2).
(46)

The solution of ( 45 -b) is obvious ( w 

(0) = q 2 ˆ w 

2 / 4 eventually de-

pends on boundary conditions). Eq. (46) can be transformed into

a differential equation for the deflection. In fact, the stress func-

tion can be extracted from Eq. (46 -b): 

f (2) = −
3(1 − ν2 

f 
)

4 q 4 
w 

(2) ′′ + 

3(1 − ν2 
f 
) 

8 q 2 

(
ˆ w ̂

 w 

′′ − ˆ w 

′ 2). (47)

Through introducing it into Eq. (46 -a), one gets 

w 

(2) ′′′′ + σ 4 w 

(2) = 

q2 

2 

(
ˆ w ̂

 w 

′′ − ˆ w 

′ 2)′′
− 2 q 6 

3(1 − ν2 
f 
)

(
ˆ w ̂

 f ′′ + 

ˆ w 

′′ ˆ f − 2 ̂

 w 

′ ˆ f ′
)
, (48)

in which σ is given by 

σ 4 = 

4 q 4 

3(1 − ν2 
f 
)

(
16 q 4 + 4�q 2 + qC ∗t 

)
. (49)

To obtain specific solutions, boundary conditions have to be taken

into account. 

Case : prescribed applied force N x = 0 and w = w ,x = 0 for the

simplified model ( 30 ) 

In this case the mode can be written as (see Eq. (35 -a)) { 

ˆ w (x ) = cos (πx ) ,

ˆ f (x ) = 

12(1 − ν2 
f 
) π2

q 4 
cos ( πx ) . 

(50)

Now let us compute two quantities in the right-hand side of Eq.

(48) :⎧ ⎨ ⎩ 

ˆ w ̂

 w 

′′ − ˆ w 

′ 2 = −π2 ,

ˆ w ̂

 f ′′ + 

ˆ w 

′′ ˆ f − 2 ̂

 w 

′ ˆ f ′ = −
24(1 − ν2 

f 
) π4

q 4 
.

(51)

Thus, Eq. (48) becomes 

w 

(2) ′′′′ + σ 4 w 

(2) = 16 q 2 π4 . (52)

The solution of the system (45) consequently reads (a useless arbi-

trary constant is dropped)⎧⎪ ⎨ ⎪ ⎩ 

w 

(0) = 

q 2

4 

cos 2 (πx ) , 

f (0) = 

C ∗t q 
3 

16 

x 2 + cos (2 πx ) 

(
3(1 − ν2 

f 
) π2 

q 2 
− q 3 C ∗t 

32 π2 

)
.

(53)
18
o solve the ODE (52) , boundary conditions require to be ac-

ounted, two of which are w 

(2) (±1 / 2) = 0 . The condition N x = 0

ields f (2) (±1 / 2) = 0 and through considering Eqs. (46) and (51) ,

ne gets 

w 

(2) ′′ (±1 / 2) = −q 2 π2

2 

,

w 

(2) (±1 / 2) = 0 . 

(54)

et us pass to the solution of the boundary value problems

52) and (54) . The general solution of (52) reads 

w 

(2) (x ) = 

16 q 2 π4

σ 4 

[
1 + C cosh 

(
σ x√ 

2 

)
cos 

(
σ x√ 

2 

)
(55)

+ D sinh 

(
σ x√ 

2 

)
sin 

(
σ x√ 

2 

)]
, (55)

here the parameters C and D are arbitrary at this level. Next the

wo boundary conditions in (54) yield (with ξ = σ/ 2 
√ 

2 ) 

C cosh (ξ ) cos (ξ ) + D sinh (ξ ) sin (ξ ) = −1 , 

−C sinh (ξ ) sin (ξ ) + D cosh (ξ ) cos (ξ ) = − σ 2 

32 π2 
,

(56)

hich gives the expressions of two constants C and D : 
 

 

 

 

 

 

 

C = 

(
− cosh (ξ ) cos (ξ ) + 

σ 2 

32 π2 
sinh (ξ ) sin (ξ ) 

)
/φ, 

D = 

(
− sinh (ξ ) sin (ξ ) − σ 2 

32 π2 
cosh (ξ ) cos (ξ ) 

)
/φ, 

(57)

here 

= cos 2 (ξ ) + sinh 

2 
(ξ ) . (58)

rom Eqs. (47) and (51) , one obtains 

f (2) (x ) = −
3(1 − ν2 

f 
)

4 q 4 

[
16 q 2 π4 

σ

(
−C sinh 

(
σ x√ 

2 

)
sin 

(
σ x√ 

2 

)
+ D cosh 

(
σ x√ 

2 

)
cos 

(
σ x√ 

2 

))
+ 

π2 q 2 

2 

]
. (59)

ence, the solution at order 2 is completely established. One can

ompute the coefficient �2 in Eq. (40) from the quadratic operator

 (., .), the scalar product 〈 ., . 〉 being the L 2 ( �) × L 2 ( �)-one in the

omain � = [ −1 / 2 , 1 / 2] × [0 , 2 π/q ] : 

2 = 

2 〈 Q(U 1 , U 2 ) , U 1 ) 〉 
〈 L 

′ (U 1 ) , U 1 〉 = 

∫ ∫ 
� ( 2[ f 1 , w 1 ] w 2 + [ w 1 , w 1 ] f 2 ) d�∫ ∫ 

�

(
∂w 1 

∂x 

)2

d�

.

(60)

ppendix B. Connection between thermal strain and 

embrane stress 

In Section 2 , the thermal loading has been represented by an

pplied uniform residual strain εth in the core. In the analyti-

al study in Section 3 , it has been accounted by a plane uniform

sotropic stress state ( σx = σy ) in the shell. Of course there is no

pparent reason why the stress will be uniform in the surface

ayer, especially in the post-buckling stage. Nevertheless, it has

een proved that the assumption of a uniform membrane stress

s almost valid up to the first bifurcation, which will lead to an

xplicit and simple relation between the thermal strain εth in the

ore and the membrane stress in the shell. 

First, it has been established numerically that the stress field

n the core is nearly uniform and isotropic ( σ s 
i j 

≈ σ s δi j ), and it is

lane and isotropic in the shell ( σ f 

αβ
= σ f δαβ, σ f 

i 3
= 0 ), where Latin



Fig. 17. Equilibrium of forces applied to a half core-shell cylinder.
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ndices i, j run from 1 to 3, whereas Greek indices α, β take values

n {1, 2}. Second, one can assume that small strain elasticity applies

n the pre-buckling stage:

 

 

 

 

ε s i j = ε th δi j + 

1 + νs 

E s 
σ s 

i j −
νs 

E s 
tr (σ s ) δi j , 

ε f 
i j 

= 

1 + ν f 

E f 
σ f 

i j 
− ν f 

E f 
tr (σ f ) δi j , 

(61) 

hich leads to values of the strains, for instance the strains along

x :
 

 

 

 

 

ε s x = ε th + 

1 − 2 νs 

E s 
σ s , 

ε f x = 

1 − ν f 

E f 
σ f . 

(62) 

hese two strains should be continuous at the interface: ε f x = ε s x .

ast, the equilibrium of forces applied to a half core-shell cylinder

see Fig. 17 ) gives a relation between the stress in the shell and the

ne in the core: 

f h f + σ s R = 0 . (63)

ombining these four relations, one can obtain the stress state as

 function of the thermal strain: 

 th = 

(
1 − ν f 

E f 
+ 

(1 − 2 νs ) h f 

E s R 

)
σ f = −

(
(1 − ν f ) R 

E f h f 

+ 

1 − 2 νs

E s 

)
σ s 

(64) 
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Supplementary Information 

Table S1 

Various instability patterns are depicted for core-shell cylinders reported in Table 3 

under thermal loading. The analytical wave number ncr well agrees with the numerical 

wave number n. Note that the wrinkling modes with an odd wave number ncr cannot be 

exactly recovered by numerical results due to the geometric symmetry consideration in 

computations. 

Core-shell Ct/Ct
* Z ncr/n Wrinkling patterns 

I 266/1438 2113 11/12 

II 0.1/0.5 2113 4/4 

III 2.5/13.5 101 8/8 

IV 3.2/17.3 1146 3/2 

21



V 2.5/13.5 98 10/10 

VI 2.9/15.7 1309 3/2 

VII 266/1438 528 16/18 

22




