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Remarkable features have been predicted for the mechanical fluctuations at the bistability tran-
sition of a classical oscillator coupled capacitively to a quantum dot [Phys. Rev. Lett. 115, 206802
(2015)]. These results have been obtained in the regime ~ω0 ≪ kBT ≪ ~Γ, where ω0, T , and Γ
are the mechanical resonating frequency, the temperature, and the tunneling rate, respectively. A
similar behavior could be expected in the quantum regime of ~Γ ≪ kBT ≪ ~ω0. We thus calcu-
late the energy and displacement fluctuation spectra and study their behavior as a function of the
electro-mechanical coupling constant when the system enters the Frank-Condon regime. We find
that, in analogy with the classical case, the energy fluctuation spectrum and the displacement spec-
trum widths show a maximum for values of the coupling constant at which a mechanical bistability
establishes.

I. INTRODUCTION

Nano-electromechanical systems (NEMS) have proved
to be devices of great interest, both from fundamental
and applicative point of views1. A paradigmatic exam-
ple of such devices is represented by suspended carbon-
nanotube mechanical resonators2–5. Due to their low
mass (10−18 g) and high Young modulus (1 TPa), carbon
nanotube mechanical oscillators are ideal candidates for
developing a new generation of ultra-sensitive force and
mass sensors. A lot of efforts were thus devoted in the
past decades in order to propose efficient schemes to ac-
tuate and detect the mechanical motion of such devices.

The mixing technique is one of those approaches2,5.
Initially proposed in Ref. 2, it enables to excite mechani-
cally a nanotube quantum dot by applying suitable time-
dependent gate and bias voltages. The resulting mechan-
ical oscillation of the nanotube in the frequency range
ω0/2π ≈ 100 MHz−10 GHz6,7 is then transduced toward
a measurable lower-frequency electronic mixing-current.
The later contains informations about both quadratures
of the nanotube displacement and thus about its me-
chanical susceptibility. This technique was used to mea-
sure tiny variations of the resonance frequency in real
time, upon adsorption of molecules on the surface of the
nanotube8. This enabled to perform mass-sensing ex-
periments with a record sensitivity reported at the yoc-
togram resolution (proton mass)8 and to detect the back-
action of single-electron tunneling events as a measurable
softening of the mechanical resonance frequency3,4,9,10.
The optimum sensitivity achievable with the mixing-
technique was investigated theoretically in Ref. 11 and
was shown to arise from a compromise between max-
imizing the mixing signal to overcome electronic shot-
noise and minimizing the added noise corresponding to
electronic back-action.

The higher the electromechanical coupling, the higher
the achieved sensitivity, thus justifying the goal of reach-
ing the strong-coupling regime between tunneling elec-
trons and one mechanical degree of freedom of the nan-
otube. Recent progresses in fabrication techniques were

reported that go along that direction12,13, by designing
local quantum dots on the surface of the nanotube, with
full control of their electrical and mechanical properties.
This enabled to probe regimes where the height of the
tunneling barriers Γ is either smaller or larger than ω0 as
well as to image spatially the excited mechanical mode
by changing the location of the quantum dot along the
nanotube direction13. In those experiments, the elec-
tromechanical coupling strength is given by the polaronic
energy scale ǫP = F 2

0 /k, with F0 the excess of force ap-
plied on the oscillator upon tunneling of a single elec-
tron, and k the nanotube spring constant. Typical elec-
tromechanical coupling strengths obtained in the exper-
iments of Ref.13 are estimated from the softening of the
resonance frequency to be of order ǫP ≈ 0.3 K at tem-
perature T = 16 K14. Less invasive and low-noise tech-
niques were recently proposed, the principle of which is to
extract the oscillator displacement fluctuation spectrum
Sxx(ω) from a measurement of the current-fluctuations
across the nanotube15. Large mechanical quality factors
Q up to 5 million were reported with this approach16 as
well as force sensing experiments with a resolution up to

≈ 12 zN.Hz−1/215.

Recently, some of the authors investigated theoreti-
cally measurable mechanical properties of a classical and
slow suspended carbon-nanotube14,17, for which ω0 ≪
V, T ≪ Γ (in the paper we use the notation that the
Planck constant ~, the Boltzmann constant kB and the
elementary electron charge e are all set to 1). They
showed that entering the strong electromechanical cou-
pling regime has a dramatic impact on the oscillator
displacement spectrum Sxx(ω). Upon increasing ǫP /Γ,
the maximum frequency of the spectrum ωmax is soft-
ened toward lower frequencies while the full width half
maximum (FWHM) ∆ω of the spectral line increases
up to a maximum value reached for a critical coupling
strength ǫP = πΓ. At this critical point, the lineshape
of the spectrum is dominated by a strong frequency-
noise induced by the dominating quartic non-linearities
of the mechanical oscillator14. It was predicted univer-
sal scaling behavior with bias-voltage of both ωmax and
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∆ω ≈ ω0 (V/Γ)
1/4 as well as a universal quality factor

Q ≈ 1.714. Increasing further the electromechanical cou-
pling ǫP > πΓ, the mechanical oscillator becomes ef-
fectively bistable and the electronic current across the
nanotube is progressively blocked. This phenomenon is
analogous to the current-blockade transition that was
predicted for a classical oscillator coupled to incoherent
tunneling electrons (Γ ≪ T ) when ǫP > V 18–21. Interest-
ingly, the critical point at which current-blockade occurs
coincides with the point at which the dephasing-rate due
to frequency-noise is maximum14 and the mixing tech-
nique has a maximum sensitivity22. The full stability
phase-diagram for the mechanical oscillator and the cor-
responding lineshapes of the position fluctuation spectra
were derived as a function of bias, gate voltage and tem-
perature in Ref. 17. This effect can be observed in prin-
ciple in existing samples13, provided they are measured
at temperature of the order of 20 mK.

A similar phenomenon, known as Franck-Condon
blockade, has been predicted23–26 and observed27,28 for
molecular systems in the opposite regime of large res-
onating frequency Γ ≪ T ≪ ω0, for which the oscillator
is close to its quantum ground state. The consequences
in electronic transport of the Franck-Condon blockade
has been investigated in details, but much less is known
about the dynamical properties of the mechanical oscil-
lator in this regime29–32.

The aim of the present paper is to investigate if there
is a quantum counterpart of the striking behavior of the
displacement fluctuation spectrum predicted in the clas-
sical regime: namely the existence and measurable man-
ifestations of a mechanical bistability and the coupling
constant dependence of the width ∆ω of the displace-
ment fluctuation spectrum. Concerning the bistability
it is well known that for strong coupling the current is
blocked. This means that electrons cannot tunnel any-
more keeping the electronic dot in either the empty or
full state. Can one regard this system as a bistable one
in a similar manner of the classical system? What is
the relation between the quantum displacement fluctu-
ation spectrum and the appearance of the bistability?
One can anticipate that at weak coupling, ∆ω exhibits
a quadratic dependence on the coupling constant, com-
ing from simple perturbative arguments, but the strong
coupling limit demands more insight since the width may
have different origin: energy dissipation, classical phase
fluctuations, and quantum decoherence. In order to an-
swer these questions we calculate in the quantum fast
oscillator regime the (non-symmetric) displacement spec-
trum, the energy fluctuation spectrum, and the Wigner
distribution for the oscillator. We find that the width of
the energy fluctuation spectrum shows a clear maximum
for the same value of the coupling constant for which the
probability distribution develops a double peak. This
can be interpreted as the onset of the bistability. The
energy scale for this transition turns out to be ǫP = 2ωo.
The same energy scale controls the washing out of the
bistability as a function of the temperature ǫP ≈ T , or

the voltage bias ǫP ≈ V . We present a detailed an-
alytical analysis, indicating that despite the similarity
with the classical case, the origin of the maximum of the
dissipation has a different origin in the quantum case.
The behavior predicted could be observed by detecting
finite frequency current noise through suspended carbon
nanotubes where electronic transport is coupled either
to GHz flexural modes6,7 or to THz nanotube breathing
modes27.

The organization of the paper is the following. In
Sec. II, we introduce the microscopic Hamiltonian de-
scribing a mechanical oscillator coupled to a single-level
quantum dot. In Sec. III, we derive the generalized
master-equation with the Born-Markov approximation,
that enables to compute the dynamical properties of the
mechanical oscillator. The energy and position fluctu-
ation spectra are computed respectively in Sec. IV and
Sec. V. The dissipation and decoherence mechanisms are
analyzed in relation to the crossover toward bistability
of the mechanical oscillator. Finally, the bias-voltage de-
pendence of both energy and displacement spectra are
shown in Sec. VI.

II. THE MECHANICAL SYSTEM

FIG. 1. Representation of a nano-mechanical oscillator with
resonance frequency ω0. The oscillator is coupled to a quan-
tum dot, described by a single electronic level of energy ε0.
Charge is transferred from the left (right) lead to the dot with
a tunneling rate ΓL (ΓR). An externally applied bias voltage
V leads to a difference between the chemical potentials of the
electronic reservoirs µL − µR = V .

We consider a nano-mechanical oscillator coupled ca-
pacitively to a single-level quantum dot [see Fig. 1]. As-
suming spinless electrons, the microscopic Hamiltonian
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of the full electromechanical system is given by:

H = H0 +
∑

α=L,R

Hα +HT (1)

H0 =
[

ǫ0 + gω0

(

a+ a†
)]

d†d+ ω0a
†a (2)

Hα =
∑

k

(εαk − µα) c
†
αkcαk (3)

HT =
∑

α=L,R

∑

k

{tαkc†αkd+ t∗αkd
†cαk} , (4)

where d† and a† are respectively the creation operator for
an electron on the dot and a vibron on the mechanical
oscillator. The first term H0 describes the mechanical
oscillator of bare resonance frequency ω0 and the single-
level quantum dot of energy ε0. The charge operator
on the dot nd = d†d couples linearly to the oscillator
displacement operator

x = x0

(

a+ a†
)

(5)

with x0 =
√

1/2mω0 its zero-point motion. The elec-
tromechanical coupling strength in units of the vibron
energy is written gω0 with the excess force acting on the
oscillator when one electron is added F0 = gω0/x0. The
second term Hα is the Hamiltonian of the α = L (left)
and R (right) free electronic reservoirs, both character-
ized by an electronic band-structure εαk and a chem-
ical potential µα. A voltage bias V is externally ap-
plied, that we will suppose to be equally shared between
left and right metallic reservoirs, namely µL = V/2 and
µR = −V/2. Finally, the last term HT is the tunnel-
ing Hamiltonian. It describes charge transfer from the
electronic reservoir α = L,R to the quantum dot, with
a corresponding tunneling rate Γα = 2π|tα|2ρα. The for-
mer is proportional to the hopping term tαk ≡ tα sup-
posed to be real and independent of the wave-vector k
and to the electronic density of states ρα evaluated at
the Fermi energy (wide-band approximation). Note that
the relevant energy scale of the problem is the polaronic
energy defined above as ǫP = F 2

0 /k = 2g2ω0. We will see
that when ǫP crosses the other relevant energy scales, as
the temperature T , the bias voltage V , or the zero point
motion energy ω0, the strong coupling effects appear to
be relevant. When only ω0 matters, one can either use
g or ǫP /2ω0 = g2 as dimensionless coupling. We will
use both in the following, since certain expressions and
dependences are more transparent in terms of g2.
We begin by performing the Lang-Firsov unitary

transformation33 U = egnd(a−a†) to the Hamiltonian of
Eq. (1). The transformed Hamiltonian H̃ = UHU † is
obtained as:

H̃0 = ǫ̃0d
†d+ ω0a

†a (6)

H̃T =
∑

α=L,R

tα
∑

k

{c†αkD +D†cαk} . (7)

The meaning of Eq. (6) is the following: upon tun-
neling of a single electron, the quantum dot is excited

into a charged electronic state. The corresponding ex-
cess energy can be partially released by relaxation of
the mechanical oscillator into a new equilibrium posi-
tion X̃eq = −2gx0. The energy of the single-level quan-
tum dot ǫ̃0 = ǫ0 − ǫP /2 is consequently reduced by the
polaronic shift. Any explicit term involving the elec-
tromechanical coupling has thus disappeared from the
expression of H̃0, at the price of modifying the tunneling
Hamiltonian Eq. (7). The hopping terms tα belonging

to H̃T are renormalized by the polaron cloud operator

Q = eg(a−a†) and incorporated into a redefinition of the
dot annihilation operator D ≡ dQ. The displacement
operator is modified also by the same transformation and
can be written:

x → UxU † = X − 2gndx0 (8)

where X = x0(a+a†) and the dynamics of the operators

a and nd is now ruled by H̃ .

In the following, we consider the regime of electron in-
coherent transport and quantum oscillator. This regime
is achieved when the reservoir temperature T is larger
than the total tunneling rate Γ = ΓL + ΓR, but smaller
than the mechanical frequency ω0. The corresponding
hierarchy of frequencies Γ ≪ T ≪ ω0 is obtained for
example for the following realistic values of the parame-
ters: Γ = 500 MHz, T = 50 mK and ω0/2π = 10 GHz.
This gives rise to the well-known Franck-Condon regime
of electronic transport as studied in Ref.23,24,26,34.

III. MASTER EQUATION

A. Born-Markov approximation

We define ρ(t) the reduced density matrix of the me-
chanical oscillator and quantum dot subsystem, obtained
after tracing out the degrees of freedom of the electronic
reservoirs. In the sequential tunneling regime (Γ ≪ T ),
we derive a generalized master equation ruling the dy-
namics of the reduced density matrix within the Born-
Markov approximation31,32,35,36:

ρ̇(t) = Lρ(t) (9)

where L = Lc + Ld and

Lcρ = −i
[

H̃0, ρ
]

(10)

Ldρ =
[

Dhρ− ρDe, D
†
]

+H.c . (11)

The term Lc describes the coherent (unitary) evolution
of the reduced density matrix induced by the Hamilto-
nian H̃0 and Ld describes dissipation and decoherence of
the electromechanical subsystem due to its weak coupling
(tunneling term) to the electronic bath. It involves the



4

operator Dν=e,h defined as:

Dν =

∫ +∞

0

dτCν(−τ)DI(−τ) (12)

Cν(τ) =
∑

αk

|tα|2fνα (εαk) e
iεαkτ , (13)

with DI(−τ), the operator D written in interaction rep-

resentation with respect to H̃0. The correlation func-
tions Cν=e,h(τ) for the metallic reservoirs are written
in terms of the Fermi-Dirac distributions for electrons
feα (ω) ≡ f (ω − µα) and holes fhα (ω) ≡ 1− f (ω − µα),

with f(ω) =
{

eβω + 1
}−1

. The wide-band approxima-
tion enables to obtain a compact expression for the cor-

relation functions Cν(ω) =
∫ +∞

0 dτCν(τ)e−i(ω−iη)τ as:

Cν(ω) =
∑

α

Γα

2

{

isν
π

Re Ψ

[

1

2
+

iβ

2π
(ω − µα)

]

+ fαν (ω)

}

,

(14)

with Ψ[ω] the Euler digamma function37, obtained from
the Hilbert transform of Fermi distribution functions38

and sν=e(h) = 1(−1).

The master Eq. (9) is finally projected onto the basis of

eigenstates |q, n〉 of the Hamiltonian H̃0, corresponding
to q = 0, 1 charge populating the quantum dot and n
vibrons populating the mechanical mode. The eigenvalue
associated to the |q, n〉 eigenstate is εqn = qε̃0 + nω0.
The resulting linear equations for the reduced density
matrix can be solved numerically (exact Born-Markov
approximation).

B. Secular approximation

The dynamics of the coupled electromechanical sys-
tem, as described by Eq. (9), is quite complicated. A
series of approximations can be derived in order to sim-
plify the master equation: (i) by first dropping in the
dissipative evolution [Eq. (11)] terms that can be in-

corporated into a renormalization of H̃0 (Lamb-shift
terms), (ii) second by performing a secular approxima-
tion, which enables to separate the evolution of diagonal
elements of the density matrix π(q,n)(t) ≡ ρ(q,n)(q,n)(t)
(populations) from the evolution of off-diagonal terms

σ
(r,m)
(q,n) (t) ≡ ρ(q,n)(r,m)(t) (coherences). The secular ap-

proximation however, has to be done with some care, due
to the equidistance between energy levels of the mechan-
ical oscillator39. We finally obtain the following set of
linear equations describing the dynamics of the damped
mechanical oscillator coupled capacitively to a quantum

dot:

π̇(q,n)(t) =
∑

m∈N

{

Γ
(q̄,m)
(q,n) π(q̄,m)(t)− Γ

(q,n)
(q̄,m)π(q,n)(t)

}

(15)

σ̇
(r,m)
(q,n) (t) = −



iΩ
(r,m)
(q,n) +

Λ
(r,m)
(q,n)

2



σ
(r,m)
(q,n) (t)

+ δq,r
∑

p∈N

Ξ
(q̄,p)(q̄,p+m−n)
(q,n)(q,m) σ

(q̄,p+m−n)
(q̄,p) (t) , (16)

with δq,r the Kronecker delta and q̄ = 1, 0 when q = 0, 1.
Eq. (15) is the Pauli rate equation giving the evolution

of populations. The transition rates Γ
(q,n)
(q̄,m) between the

states |q, n〉 and |q̄,m〉 coincide with the expressions given
by Fermi golden rule24,26:

Γ
(0,n)
(1,m) =

∑

α

Γα|Qn,m|2feα(ε̃0 + (m− n)ω0) (17)

Γ
(1,n)
(0,m) =

∑

α

Γα|Qn,m|2fhα(ε̃0 − (m− n)ω0) , (18)

with Qn,m ≡ 〈n|Q |m〉 the overlap integral between the
state of the mechanical oscillator with n vibrons and
the state of the displaced mechanical oscillator with m
vibrons24,26. Eq. (16) provides the evolution of the off-
diagonal elements of the density matrix. We introduced
the following quantities:

Ω
(r,m)
(q,n) = [(q − r) ε̃0 + (n−m)ω0] (19)

Λ
(r,m)
(q,n) =

∑

p∈N

[

Γ
(q,n)
(q̄,p) + Γ

(r,m)
(r̄,p)

]

, (20)

with Ω
(r,m)
(q,n) the Bohr frequency associated to the states

|q, n〉 and |r,m〉, and Λ
(r,m)
(q,n) the decay rate that is respon-

sible for the damping of the corresponding off-diagonal
element of the density matrix. Finally, the matrix ele-

ment Ξ
(q̄,p)(q̄,p+m−n)
(q,n)(q,m) is associated to the transfer of co-

herences between the couple of states {|q, n〉 , |q,m〉} and
{|q̄, p〉 , |q̄, p+m− n〉} for the damped mechanical oscil-
lator. It is explicitly given by:

Ξ
(0,p)(0,p+m−n)
(1,n)(1,m) =

∑

α

ΓαQ
∗
p,nQp+m−n,mfeα(Ω

0,p
1,n)(21)

Ξ
(1,p)(1,p+m−n)
(0,n)(0,m) =

∑

α

ΓαQn,pQ
∗
m,p+m−nfhα(Ω

0,n
1,p ) .(22)

The evolution of the off-diagonal elements of the den-
sity matrix as described by Eqs. (16) was not taken into
account in Refs.24,26. This is due to the fact that they
are not needed to compute the average electronic current
in the sequential tunneling regime. However, when deal-
ing with the study of the mechanical oscillator dynamics,
these terms are necessary.

C. Fluctuation spectrum

We wish now to study observable properties charac-
terizing the dynamical state of the mechanical oscillator.
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For this purpose, we will investigate the average value
Ā ≡ 〈A〉 as well as the correlation function SAA(t) ≡
〈δA(t)δA(0)〉 associated to fluctuations δA(t) = A(t)− Ā
of the observable A acting on the mechanical oscillator.
In the following, A will stand for either the mechani-
cal energy operator E = ω0n that is proportional to
the phonon number operator n = a†a or for the posi-
tion operator as defined in Eq. (8). We further introduce
the vector ρ(t) made of the matrix elements of the re-
duced density matrix ρ(t) (including both diagonal and
off-diagonal terms). The master Eq. (9) can be given the
compact form:

ρ̇(t) = Ľρ(t) , (23)

with Ľ the super-operator associated to the linear opera-
tor L. Assuming a given initial condition for the density
matrix ρ(0), we obtain for ρ(t):

ρ(t) = eĽtρ(0) . (24)

The stationary density matrix ρst is the solution of the

equation Ľρst = 0, from which the average value of the
quantum mechanical observable A is obtained:

Ā = tr
(

ρstA
)

≡ wtǍρst , (25)

with wt the null left-eigenvector of the Ľ operator (wtĽ =
0). wt applied to any vector A, reproduces the ac-
tion of the quantum mechanical trace wtA = tr (A).
Defining the fluctuation spectrum of A as SAA(ω) =
∫ +∞

−∞
dteiωtSAA(t) and using the quantum regression

theorem39,40, we finally obtain:

SAA(ω) = −2Re

{

wtδǍ
1

(iω − η) Ǐd + Ľ
δǍρst

}

.(26)

In the following, we will consider the symmetrized
fluctuation spectrum of the A operator: Ssym

AA (ω) =
(SAA(ω) + SAA(−ω)) /2.

IV. ENERGY FLUCTUATION SPECTRUM

A. Dissipation of energy

We first characterize the dissipation rate γE of the
mechanical oscillator energy. For simplicity, we con-
sider the regime of symmetric tunneling to the leads
(ΓL = ΓR = Γ), electron-hole symmetric point for the
dot-level position (ε̃0 = 0), and symmetric bias-voltage
drop (µL = −µR = V/2). In this regime, we find that
the transition rates in Eq. (17) and Eq. (18) are equal,

namely Γ
(0,n)
(1,m) = Γ

(1,n)
(0,m) ≡ Γn→m. This simplification en-

ables to write a rate equation for the phonon distribution
πn(t) ≡ π0,n(t) + π1,n(t) using Eq. (15):

π̇n(t) =
∑

m∈N,m 6=n

{Γm→nπm(t)− Γn→mπn(t)} . (27)

−0.4 −0.2 0.0 0.2 0.4
ω[ω0 ]
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FIG. 2. Symmetrized energy fluctuation spectrum Ssym
EE (ω)

of the mechanical oscillator as a function of frequency ω. Plain
curves: numerical results using the secular approximation de-
veloped in Sec. III B. Dashed curves: analytical Lorentzian
shapes provided by Eq. (33). Various electromechanical cou-
pling strengths are probed: g2 = 0.04, 0.4, 1.0, 5.8. Parame-
ters common to all curves: Γ = 0.05ω0, ε̃0 = 0, T = 0.1ω0

and V = 0.2ω0.

In the limit of low voltage and temperature (T, V < ω0),
the transition rates simplify to:

Γm→n ≈ 2Γ|Qm,n|2θm−n + Γ|Qn,n|2δn,m , (28)

with θm−n = 1 if m > n and θm−n = 0 zero otherwise.
The meaning of Eq. (28) is that close to equilibrium,
only transitions from higher energy states m to lower en-
ergy ones n < m are allowed. The stationary phonon
distribution πst

n is thus the one obtained for a mechan-
ical oscillator in its equilibrium quantum ground state,
namely πst

n = δn,0.
In order to find the energy relaxation for the mechanical
oscillator, we consider the time evolution towards steady
state of a weak fluctuation πn(t) ≈ πst

n + δπn(t) with
|δπn(t)| ≪ 1. Using Eq. (27) and Eq. (28), the average

vibron population n̄(t) =
∑+∞

n=1 nδπn(t) evolves as:

˙̄n(t) ≈ 2Γ

+∞
∑

n=1

n

+∞
∑

m=n+1

|Qm,n|2δπm(t)

− 2Γ

+∞
∑

n=1

n

n−1
∑

m=0

|Qn,m|2δπn(t) , (29)

which is not a closed equation in n̄(t). However, we
remark that in the regime T, V < ω0, it is very un-
likely that high-energy vibrational sidebands are signif-
icantly excited. We thus truncate the vibron distribu-
tion to the ground and first excited states δπn(t) ≈
δπ0(t)δn,0+δπ1(t)δn,1, such that the average vibron pop-
ulation becomes n̄(t) ≈ δπ1(t). This assumption is ver-
ified a posteriori and enables to rewrite Eq. (29) in a
closed form:

˙̄n(t) ≈ −γEn̄(t) , (30)

with:

γE = 2Γ|Q1,0|2 = 2Γg2e−g2

. (31)
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Since Ē(t) = n̄(t)ω0 one can identify γE with the en-
ergy dissipation rate. Its interpretation is straightfor-
ward. The energy of the mechanical oscillator is damped
due to the tunneling of single electrons on the dot, which
happens on a typical time scale given by the inverse elec-
tronic tunneling rate 1/Γ. The damping rate is thus pro-
portional to Γ and to the Franck-Condon overlap matrix

element |Q01|2 = g2e−g2

, which quantifies the probabil-
ity of a single tunneling electron to loose the energy of
the vibrational mode and change the charge state of the
dot.
Interestingly, γE is a non-monotonous function of

the electromechanical coupling g [see Fig. 3]. At low
coupling strengths (g < 1), it is proportional to the
square of the electromechanical coupling g2, as provided
by perturbation theory. At higher coupling strengths
(g > 1), the damping rate decreases exponentially due
to Franck-Condon blockade: the charge state of the
quantum dot becomes frozen thus prohibiting dissipation
to occur through charge fluctuations. Finally, the damp-
ing rate reaches a maximum value γmax

E = 2Γ/e for g = 1.

B. Energy fluctuations

0 1 2 3 4 5 6 7 8
g2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

∆
ω
E
E
[ω

0
]

∆ωE =4Γg2 e−g
2

Numerics

FIG. 3. FHWM of the energy fluctuation spectrum ∆ωE as a
function of electromechanical coupling g2. Circles: numerical
result using the secular approximation developed in Sec. III B.
Plain curve: analytical result given by Eq. (34). Parameters
common to both curves: same as in Fig. 2.

We now consider energy fluctuations of the mechan-
ical oscillator. Consistently with the Born-Markov ap-
proximation [see Sec. III A] and with Eq. (30), the time-
evolution for the mechanical energy E(t) is ruled by the
following Langevin equation:

Ė(t) = −γEE(t) + ξE(t) . (32)

The fluctuating part of the mechanical energy ξE(t) is of
zero average 〈ξE(t)〉 = 0 and is delta-correlated in time
〈ξE(t)ξE(t′)〉 = DEδ(t − t′). The diffusion coefficient
DE = 2γE∆n2 is related to the dissipation rate γE and
to fluctuations of the phonon population ∆n2 =

〈

n2
〉

−

n̄2. At thermal equilibrium, we obtain DE = 2γEnB,

with the Bose distribution nB =
{

eβω0 − 1
}−1

. After
Fourier transform, Eq. (32) enables to find an analytical
expression for the symmetrized spectrum Ssym

EE (ω):

Ssym
EE (ω) =

2γE∆n2

ω2 + γ2
E

. (33)

The energy fluctuation spectrum is thus a Lorentzian cen-
tered around zero frequency with FWHM ∆ωE given by
twice the dissipation rate:

∆ωE = 2γE = 4Γg2e−g2

. (34)

The energy fluctuation spectrum Ssym
EE (ω) is presented

in Fig. 2, in the regime T = 0.1ω0 and V = 0.2ω0, for
which the mechanical oscillator is close to equilibrium.
Plain curves are computed numerically using the secular
approximation developed in Sec. III B. Dashed curves are
the analytical Lorentzian shapes provided by Eq. (33).
The extraction of the FWHM from the numerical curves
is shown as a function of the electromechanical coupling
g2 in Fig. 3 (red circles). The plain red curve is obtained
from the analytical formula in Eq. (34). In both Fig. 2
and Fig. 3, the perfect agreement between the numer-
ics and the analytics, stands for a confirmation that the
broadening mechanism for energy fluctuations is indeed
controlled by electronic dissipation, so ultimately by tun-
neling of single electrons in and out the quantum dot.

C. Bistability of the mechanical oscillator

−10 −8 −6 −4 −2 0 2 4
x[x0 ]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

π
(x

)

g2 =0.04
g2 =0.4
g2 =1.0
g2 =5.8

FIG. 4. Stationary probability distribution of the oscillator
position π(x). Various electromechanical coupling strengths
are probed: g2 = 0.04, 0.4, 1.0, 5.8. Parameters common to
all curves: Γ = 0.05ω0, ε̃0 = 0, T = 0.1ω0 and V = 0.2ω0.

In this section, we compute the stationary probabil-
ity distribution π(x) of the mechanical oscillator posi-
tion. The stationary density matrix of the mechanical
oscillator coupled to the quantum dot is approximatively
diagonal in the basis of the eigenstates |qn〉, namely
ρst ≈ ∑

q,n π(q,n) |qn〉 〈qn|. The stationary distribution
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FIG. 5. Wigner distributionW (x, p) for the mechanical oscil-
lator as a function of the oscillator position x and momentum
p. 2D-maps obtained for various values of the electromechan-
ical coupling: g2 = 0.2, 1.0,

√
2, 6.0. Parameters common to

all panels: Γ = 0.05ω0, ε̃0 = 0, T = 0.1ω0, and V = 0.2ω0.

π(x) is thus approximated by:

π(x) ≈
∑

n∈N

{

π(0n)|φn(x)|2 + π(1n)|φn(x+ 2gx0)|2
}

.

(35)

In Eq. (35), φn(x) is the wave-function of the mechanical
oscillator’s n-th eigenstate:

φn(x) =
(2π)

− 1

4

√
x02nn!

Hn

[

x

x0

√
2

]

exp

[

−
(

x

2x0

)2
]

,(36)

with Hn [x] the n-th Hermite polynomial41.
We present in Fig. 4, the probability distribution π(x)

obtained with the same parameters as in Sec. IVA, for
which the mechanical oscillator is close to its quantum
ground state n = 0. We find that at low electromechan-
ical coupling (g < 1), the probability distribution π(x)
has a single peak, and the mechanical oscillator is monos-
table. At larger couplings (g > 1), the distribution de-
velops two peaks, and the mechanical oscillator becomes
bistable. The transition between the monostable behav-
ior and the bistable one happens for g = 1, for which the
distribution has a very flat top. The mechanism respon-
sible for this transition, is the following. For any value
of the coupling strength g, the mechanical oscillator has
two stable equilibrium positions located at x = 0 and
x = −2gx0, for which the charge state of the dot is re-
spectively frozen at q = 0 and q = 1. The double peak
structure is resolved whenever the average shift of the
equilibrium position ∆x = −2gx0 〈q〉 ≡ −gx0 induced
by electromechanical coupling overcomes the zero-point
quantum fluctuations −∆x = gx0 > x0. It is interesting
to notice that the transition point (g = 1) coincides with
the value of the electromechanical coupling for which the
damping of the mechanical oscillator is maximum [see
Fig. 3 in Sec. IVB].
We complete the picture of the transition to bistabil-

ity by showing in Fig. 5 the 2D-plots representing the

mechanical oscillator Wigner distribution42,43 defined as
W (x, p) = 1

2π

∫

dy〈x + y
2 |ρ

∣

∣x− y
2

〉

e−ipy , with p the os-

cillator momentum expressed in units of p0 =
√
2mω0.

We find that the Wigner distribution goes smoothly from
a single-peak distribution at low electromechanical cou-
pling g2 = 0.2 towards a double-peak distribution at
higher-coupling g2 = 6.0. The critical coupling g2 = 1
is characterized by a flattened distribution, in agreement
with Fig. 4. It is to be noted that no negative contribu-
tion to the Wigner distribution is obtained. This is due
to the fact that the Wigner distribution of a harmonic
oscillator in its quantum ground state is a Gaussian pos-
itive distribution43.

V. DISPLACEMENT FLUCTUATION

SPECTRUM

A. Oscillator decoherence time

In this section, we investigate the evolution of the av-

erage of the X-operator: X(t) = x0

{

a(t) + a†(t)
}

, ob-

tained as:

X(t) = 2x0

+∞
∑

n=0

√
n+ 1 Re

{

ρ
(mec)
nn+1 (t)

}

, (37)

with ρ
(mec)
nm (t) =

∑

q=0,1 ρ(qn)(qm)(t) the reduced density
matrix of the mechanical oscillator, obtained after tracing
out the charge degrees of freedom of the dot. Note that
the physical displacement is given by Eq. (8) and implies
also the charge operator nd. We will see that the relevant
fluctuations of nd are at low-frequency, allowing to regard
x ≈ X at high-frequency ω ≈ ω0.
We consider the same regime of low voltage and

temperature (T, V < ω0) and symmetric electron-hole
point (ε̃0 = 0), as in Sec. IVA. Within the same ap-
proximation consisting of truncating the oscillator re-
duced density matrix to at most one vibron excitation
(n,m = 0, 1), the average position is obtained as X(t) ≈
2x0 Re

{

ρ
(mec)
01 (t)

}

. Using Eq. (16) and Eq. (28), one can

show after some algebra, that in this quasi-equilibrium

regime, the time evolution of ρ
(q)
01 (t) ≡ ρ(q0)(q1)(t) is given

by:

ρ̇
(q)
01 (t) ≈

{

iω0 − Γ

[

|Q10|2 +
|Q00|2 + |Q11|2

2

]}

ρ
(q)
01 (t)

+ ΓQ00Q11ρ
(q̄)
01 (t) , (38)

The first term in Eq. (38) describes the coherent evolu-
tion between the states of same charge q = 0, 1 and dif-
ferent number of phonons n = 0 and m = 1. The second
(third) term describes the incoherent evolution between
the states of same (different) charge q = 0, 1 (q̄ = 1, 0)
and different number of phonons n = 0 and m = 1, due
to electromechanical coupling. We deduce from Eq. (38)
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the evolution of the oscillator reduced density matrix:

ρ̇
(mec)
01 (t) ≈ {iω0 − γX} ρ(mec)

01 (t) (39)

γX = Γ

{

|Q10|2 +
|Q00|2 + |Q11|2

2
−Q00Q11

}

, (40)

with γX the decoherence rate of the mechanical oscillator.
Eq. (39) enables to write the equation for X(t):

Ẍ(t) + 2γXẊ(t) +
(

ω2
0 + γ2

X

)

X(t) = 0 , (41)

γX = Γg2
[

1 +
g2

2

]

e−g2

. (42)

Eq. (41) coincides with the equation of motion of a clas-
sical damped harmonic oscillator. Interestingly, the de-
coherence rate γX as given by Eq. (42), does not coin-
cide with the energy dissipation rate γE/2 obtained in
Eq. (31). The decoherence rate can be also written as:

γX =
γE
2

+ γφ (43)

γφ = g2
γE
4

=
Γ

2
g4e−g2

. (44)

The first term γE/2 in Eq. (43) gives the standard con-
tribution of the dissipation to the decoherence of the me-
chanical oscillator. The second term γφ is an additional
dephasing rate. This term has some interesting conse-
quences. First of all, the decoherence rate γX of the
mechanical oscillator is larger than the contribution in-
duced by pure energy dissipation: γX ≥ γE/2. Then, γX
as a function of g2 reaches a maximum for a value of the
electromechanical coupling g2 =

√
2 that is larger than

the value g2 = 1 for which dissipation is maximal [see
Fig. 8]. In other words, the maximal decoherence rate is
obtained after entering in the region of bistability of the
mechanical oscillator, while the maximal dissipation rate
coincides with the frontier between the monostable and
bistable region [see Fig. 4 and 3].

B. Microscopic mechanism for decoherence

The decoherence rate is obtained by the additive con-
tribution of several elementary microscopic processes in
Eq. (40). The first term ∝ Γ|Q10|2 is the degenerate
contribution of the processes picture in Fig. 6-(a) and
(b). Those processes, responsible for energy dissipation
γE , are inelastic processes during which one mechani-
cal vibron is absorbed, while the charge state of the
quantum dot is modified. The second and third terms
∝ Γ/2

(

|Q00|2 + |Q11|2
)

are purely elastic processes for
which no mechanical vibron is emitted nor absorbed,
while the charge state of the quantum dot is modified.
They are presented in Fig. 6-(c) and (d), respectively.
The last terms ∝ −ΓQ00Q11 are elastic processes corre-
sponding to transfer of coherences between pair of states
(00), (01) and (10), (11). They are pictured in Fig. 6-(e).
It is interesting to notice that the dephasing rate γφ

in Eq. (42) originates entirely from the elastic processes.

FIG. 6. Schematics of the microscopic processes respon-
sible for the decoherence rate γX of the off-diagonal ele-

ment of the mechanical oscillator density-matrix ρ
(mec)
01 (t) =

∑
q=0,1 ρ

(q)
01 (t). (a) and (b): Inelastic processes (red dashed)

responsible for energy dissipation γE . One mechanical vi-
bron is absorbed while the charge state of the quantum dot is
modified. (c), (d), (e) and (f): Elastic processes (red dashed)
responsible for dephasing γφ. No mechanical vibron is emit-
ted nor absorbed, while the charge state of the quantum dot is
modified. (e): Transfer of coherences (red dashed). Common
to all: The red circles in the charge sector q = 0, 1 stands for

the matrix element ρ
(q)
01 (t) in Eq. (38). It is coupled either to

itself or to the matrix element ρ
(q̄)
01 (t) of the complementary

charge sector q̄ = 1, 0.

Those are higher-order terms in the electromechanical
coupling. Note that the standard description of a quan-
tum damped harmonic oscillator35 does not predicts a
difference between the decoherence rate and half the dis-
sipation rate. This originates here from the presence of
the additional charge degree of freedom.

C. Displacement fluctuations

We consider now the influence of the stochastic force
fluctuations acting on X : ξX(t). The corresponding
Langevin equation reads:

Ẍ(t) + 2γXẊ(t) +
(

ω2
0 + γ2

X

)

X(t) = ξX(t) , (45)

with 〈ξX(t)ξX(t′) = DXδ(t− t′)〉. The diffusion coeffi-
cient for the fluctuations of X is defined as DX and
can in general be expressed in terms of its variance

DX = 4ω2
0γX∆X2, with ∆X2 =

〈

X2
〉

−X
2
. At thermal

equilibrium, the fluctuation-dissipation theorem44 gives
DX = 4ω2

0x
2
0γX coth (βω0/2). After Fourier transform-

ing Eq. (45), we obtain in the limit of weak electronic
damping (γX ≪ ω0):

Ssym
XX (ω) ≈

∑

s=±1

γX∆X2

(ω + sω0)
2
+ γ2

X

. (46)
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FIG. 7. Fluctuation spectrum of the oscillator displace-
ment Sxx(ω) as a function of frequency ω. (a) Asymmetric
spectrum Sxx(ω) computed within the secular approximation
developed in Sec. III B. Various electromechanical coupling
strengths are probed: g2 = 0.1, 0.4, 1.4, 4.4. (b) Symmetrized
displacement spectrum Ssym

xx (ω) around the phonon-emission
peak at ω ≈ ω0. Plain curves: numerical results. Dashed
curves: analytical Lorentzian shapes provided by Eq. (46).
Parameters common to both panels: Γ = 0.05ω0, ε̃0 = 0,
T = 0.1ω0 and V = 0.2ω0.

The symmetrizedX fluctuation spectrum is thus a sum of
Lorentzians centered at frequencies ω = ±ω0. Its FWHM
∆ωX is given by:

∆ωX =
∆ωE

2
+ ∆ωφ = 2Γg2

[

1 +
g2

2

]

e−g2

, (47)

with the contribution of dephasing ∆ωφ = 2γφ.
The displacement fluctuation spectrum for the oscilla-

tor position x = X − 2gx0nd reads:

Sxx(ω) = SXX(ω) + 4g2x2
0Sndnd

(ω) (48)

− 2gx0 {SXnd
(ω) + SndX(ω)} . (49)

It is the sum of three terms: (i) the contribution of ther-
momechanical noise SXX(ω), (ii) a contribution of charge
noise Sndnd

(ω) shifting randomly the mechanical oscilla-
tor equilibrium position, (iii) a contribution associated to
correlations between the charge state of the dot and the
oscillator position SXnd

(ω)+SndX(ω). The symmetrized
charge noise contribution can be evaluated with the same
methods as derived in Sec. IVA. We obtain for the total
symmetrized displacement spectrum:

Ssym
xx (ω) ≈

∑

s=±1

γX∆X2

(ω + sω0)
2
+ γ2

X

+ 2g2x2
0

γE
ω2 + γ2

E

,

(50)

where we neglected the mixed therms Xnd since the two
quantities fluctuate at very different frequency scales: nd

at low frequencies ω < γE ≪ ω0, andX at |ω−ω0| ≪ γX .
Fig. 7-(a) shows the displacement spectrum Sxx(ω) of
the mechanical oscillator as a function of frequency, com-
puted numerically within the secular approximation. The
spectrum of this quantum noise is strongly asymmetric.

0 1 2 3 4 5 6 7 8
g2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

∆
ω
x
[ω

0
]

∆ω
(d)

X
=∆ωE /2

∆ωX =∆ωE /2+∆ωφ

Numerics

FIG. 8. FHWM of the displacement fluctuation spectrum
∆ωx as a function of electromechanical coupling g2. Circles:
numerical result using the secular approximation developed in
Sec. III B. Dashed curve: analytical result for the contribution

induced by dissipation ∆ω
(d)
X = ∆ωE/2. Plain curve: analyt-

ical result including the additional contribution of dephasing
∆ωφ (filled blue sector) as given by Eq. (47). Parameters
common to both curves: same as in Fig. 7.

It has a main peak at ω ≈ ω0 associated to phonon
emission, which dominates the spectrum at low tem-
perature and voltage (only phonon emission is possible
at low temperature). A secondary peak is observed at
ω ≈ −ω0 associated to phonon absorption. Its height
is very weak since phonon absorption is strongly sup-
pressed for a mechanical oscillator close to its quantum
mechanical ground state. Finally a last peak is observed
at low frequencies ω ≈ 0, associated to the contribu-
tion of charge noise in Eq. (48). The symmetrized noise
Ssym
xx (ω) is presented in Fig. 7-(b) close to the phonon

emission peak. The analytical curves (dashed curves)
obtained with Eq. (46) are perfectly matching the curves
computed numerically (plain curves).
The dependence of the FWHM ∆ωx as a function of

electromechanical coupling g2 is shown in Fig. 8. Here
also, the agreement between the analytical formula in
Eq. (47) (plain curve) and the numerics (circles) is very
good. This validates the scenario of decoherence pre-
sented in Sec. VB, that results from the combination of
dissipation due to inelastic processes and dephasing in-
duced by elastic processes.

VI. VOLTAGE DEPENDENCE

A. Heating of the mechanical oscillator

In Sec. V, we studied the dynamical properties of the
mechanical oscillator at low voltages and temperatures
(T, V < ω0). In this section, we will unravel the ef-
fect of imposing a bias-voltage larger than the typical
vibron frequency V/2 > ω0, keeping the temperature of
the electronic environment at low values T ≪ ω0. The
main physical consequence of increasing the bias-voltage
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FIG. 9. (a) Stationary distribution of the vi-
bronic population πn. Histograms obtained for vari-
ous values of the electromechanical coupling: ǫP [ω0] =
1.0, 5.0, 9.1, 21.0. Corresponding average phonon popula-
tion: n̄ = 2.29, 1.05, 0.99, 0.42 and effective temperature:
Teff [ω0] = 2.76, 1.49, 1.44, 0.82. Circle-Dashed curves: ther-
mal distributions πth

n with effective temperature Teff having
the same average phonon number n̄. (b) Corresponding sta-
tionary probability distribution of the oscillator position π(x).
Parameters common to both panels: Γ = 0.05ω0, ε̃0 = 0,
T = 0.1ω0, and V = 4.5ω0.

is to open an additional inelastic channel each time the
bias-voltage crosses a multiple of the vibron frequency
V/2 > nω0, thus modifying the expression for the tran-
sition rates in Eq. (28) to

Γm→n ≈ Γ
∑

α=±

|Qm,n|2θ
[

α
V

2
− (n−m)ω0

]

. (51)

This gives rise to new possibilities of exciting vibrons in
the rate equation Eq. (27) and thus to heat up the me-
chanical oscillator.
We show in Fig. 9-(a) the stationary out-of-equilibrium
phonon distribution πn under a bias-voltage V = 4.5ω0.
In contrast to Sec. V, where only the ground state of
the mechanical oscillator was significantly populated, the
phonon distribution now spreads up to high-energy ex-
cited vibronic states. In the regime we investigate, this
spreading is interpreted as a bias-induced heating of the
mechanical oscillator. In order to quantify it more pre-
cisely, we compared the phonon distribution πn (his-
tograms in Fig. 9-(a)) computed numerically to an ef-
fective thermal distribution πth

n (circle-dashed curves in
Fig. 9-(a)) defined as

πth
n =

(

1− e−βeffω0

)

e−nβeffω0 , (52)

βeff ≡ 1

Teff
=

1

ω0
ln

(

1 + n̄

n̄

)

. (53)

The effective temperature Teff in Eq. (53) is chosen in
such a way to reproduce the exact average vibron popu-
lation n̄ computed from the distribution πn. We find that
for various electromechanical couplings g2 = ǫP /2ω0, the
vibron distribution πn is not far from the fitted ther-
mal distribution πth

n of Eq. (52). At low ǫP = ω0, the
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FIG. 10. (a) Effective temperature Teff [ω0] of the me-
chanical oscillator as a function of bias-voltage V , for var-
ious values of the electromechanical coupling: ǫP [ω0] =
0.4, 1.0, 2.0, 9.0. (b) Same plot as a function of electrome-
chanical coupling ǫP /2, for various values of the bias-voltage:
V [ω0] = 0.2, 2.5, 4.5, 6.5. Parameters common to both panels:
Γ = 0.05ω0, ε̃0 = 0, T = 0.1ω0.

mechanical oscillator is heated above the temperature
of the electronic environment Teff ≈ 2.76ω0 ≫ T =
0.1ω0. Upon increasing the electromechanical coupling
to ǫP = 21.0ω0, the effective temperature decreases down
to Teff ≈ 0.82ω0. The obtained effective temperature
depends on both voltage V and electromechanical cou-
pling ǫP

31,45–47, as shown in Fig. 10-(a) and Fig. 10-(b).
We find that at voltages much lower than the vibron fre-
quency (V/2 ≪ ω0), the effective temperature converges
to the environment temperature Teff ≈ 0.1ω0, indepen-
dently of the coupling strength, as expected for a mechan-
ical oscillator at thermal equilibrium. Upon increasing
the bias-voltage with V/2 > ω0, the effective temperature
Teff becomes larger than T 47, consistently with Fig. 9-
(a). The main tendency is a step-wise increase of Teff

each time a vibronic sideband is excited. At sufficiently
high voltage, the step-wise increase of Teff becomes in
average linear in V with a slope that increases with de-
creasing ǫP : the smaller the electromechanical coupling,
the higher the effective temperature29.

Finally, we plot in Fig. 9-(b) the stationary probabil-
ity distribution of the oscillator position π(x), for the
same range of parameters as in Fig. 9-(a). We find that,
similarly to the quasi-equilibrium case [see Fig. 4], π(x)
undergoes a transition from a monostable situation (one
peak) at low coupling ǫP = ω0 to a bistable situation (two
peaks) at sufficiently high-coupling strength ǫP = 21.0ω0.
However, in contrast to Fig. 4, the intermediate regime
(ǫP ≈ 9.1ω0) is characterized by a multistable situa-
tion for which the distribution π(x) develops two minima
rather than a single broad maximum. This difference is
due to the fact that in this regime n̄ ≈ 1, so that not only
the ground state of the mechanical oscillator (n = 0) con-
tributes significantly to Eq. (35) but also the first excited
states (n = 1, 2).
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B. Displacement fluctuation spectrum
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FIG. 11. Fluctuation spectrum of the oscillator displacement
Sxx(ω) as a function of frequency ω. (a) Asymmetric spec-
trum Sxx(ω) computed numerically. Plain curve: full Born-
Markov result as developed in Sec. IIIA. Dashed curve: secu-
lar approximation developed in Sec. III B. (b) Same curves for
the symmetrized displacement spectrum Ssym

xx (ω) computed
around the phonon-emission peak at ω ≈ ω0. Parameters
common to both panels: Γ = 0.05ω0, ε̃0 = 0, T = 0.1ω0,
ǫP = 5.0ω0 and V = 4.5ω0.

In this section, we investigate the role of the bias-
voltage on the displacement fluctuation spectrum Sxx(ω).
In contrast to Sec. V, it is more difficult to obtain analyt-
ical insight on the Sxx(ω) curves. This is due to heating
of vibron excitations, that precludes a simple truncation
of the master equation [see Eq. (15) and Eq. (16)] for the
vibron mode.
One can consider the limit of vanishing damping and

decoherence rates γE , γX → 0. In this limit, we compute
the correlation function 〈δA(t)δA(0)〉 of any operator A
taking into account only the coherent evolution with re-
spect to the free Hamiltonian H̃0 in Eq. (9). Similarly to
Eq. (50), the displacement fluctuation spectrum Sxx(ω)
can be approximated as the sum of a thermomechanical
noise SXX(ω) plus a contribution due to low-frequency
charge noise fluctuations of the dot

SXX(ω) = Sabs(ω) + Sem(ω) + 2πg2x2
0δ (ω) , (54)

Sabs(ω) ≈ 2πx2
0n̄δ (ω + ω0) , (55)

Sem(ω) ≈ 2πx2
0 (1 + n̄) δ (ω − ω0) . (56)

The thermomechanical noise spectrum in Eq. (54) is com-
posed of an absorption noise Sabs(ω) of height propor-
tional to the (voltage and coupling-dependent) average
phonon population n̄ plus an emission noise Sem(ω) of
height proportional to 1+ n̄. The ratio between the emis-
sion noise and absorption noise Sem(ω)/Sabs(ω) is pro-
portional to (1 + n̄) /n̄ = eβeffω0 , and is thus related the
oscillator effective temperature Teff [see Eq. (53)]. The
symmetrized thermomechanical noise is readily obtained
as

Ssym
XX (ω) ≈ 2πx2

0

(

n̄+
1

2

)

∑

s=±

δ (ω + sω0) . (57)
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FIG. 12. FHWM of the displacement fluctuation spectrum
∆ωx as a function of electromechanical coupling ǫP /2. Nu-
merical results using the secular approximation developed
in Sec. III B. Various voltage biases are probed: V [ω0] =
0.2, 2.0, 3.0, 4.5. Parameters common to all curves, apart from
voltage: same as in Fig. 7.

Ssym
XX (ω) has thus a height proportional to the oscilla-

tor average mechanical energy. Interestingly, Eq. (57)
recovers the limits γE , γX → 0 in Eq. (46), obtained for
the case of an oscillator in the low bias and temperature
regimes.

We present in Fig. 11-(a) the displacement fluctua-
tion spectrum computed numerically, using either the
full Born-Markov result (plain curve) as developed in
Sec. III A or the secular approximation (dashed curve)
developed in Sec. III B. In contrast to Fig. 7, the
spectrum presents now a non-vanishing absorption peak
at ω ≈ −ω0. For voltage V = 4.5ω0 and electromechan-
ical coupling ǫP = 5.0ω0, we find the computed ratio
Sem(ω)/Sabs(ω) ≈ 2.0, which is consistent with having
heating of the mechanical oscillator, with an average
number of phonons n̄ ≈ 1.0 and an effective temperature
Teff ≈ 1.5ω0 [see Fig. 9-(a)].
Moreover, we find an overall good agreement between
the Born-Markov and secular approximation results.
Some differences emerge in the tails of the three main
peaks of the spectrum. A zoom onto the symmetrized
spectrum close to the emission peak at ω ≈ ω0 is plotted
on Fig. 11-(b). It is shown there that the Lamb-shift
terms generated by Eq. (14) are responsible for a weak
softening of the mechanical mode frequency that is
otherwise neglected within the secular approximation.

Finally, we investigate on Fig. 12 the dependence of
the FWHM ∆ωx for the displacement fluctuation spec-
trum with both bias-voltage and electromechanical cou-
pling. Upon increasing the bias-voltage from V = 0.2ω0

to V = 4.5ω0, we show that the maximum of the FWHM
∆ωmax

x is shifted toward higher values of ǫP . We at-
tribute this effect to the entering of additional vibronic
sidebands into the bias-voltage window, which opens new
electric channels for decoherence and dephasing ∆ωmax

φ
of the mechanical oscillator.
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The distribution ∆ωx as a function of ǫP becomes also
much broader at higher voltages compared to the low-
bias case. This implies more sensitivity of the mechan-
ical oscillator to decoherence. Indeed the unavoidable
fluctuations in experimental ǫP values due to disorder,
will induce an enhanced inhomogeneous broadening of
the spectral line through the flat dependence of ∆ωx with
ǫP .

C. Phase diagram

0 1 2 3 4 5
εP [2ω0 ]

0

1

2

3

4

5

V
[ω

0
]

εP /2ω0 =1.0

εP /2ω0 =V/ω0

∆ωmax
E

∆ωmax
x

FIG. 13. Locus of the points (ǫP /2, V ) of maxima in the
FHWM ∆ωmax

E (blue triangles) and ∆ωmax
x (red circles). Nu-

merical results using the secular approximation developed in
Sec. III B. Red dashed curve: critical coupling for the cur-
rent blockade transition in the classical regime ǫP /2 = V .
Blue dashed curve: critical coupling for the current block-
ade transition induced by ground-state quantum fluctuations
ǫP = 2.0ω0. Chosen parameters: Γ = 0.05ω0, ε̃0 = 0 and
T = 0.1ω0.

We summarize our findings in a phase diagram repre-
sented in Fig. 13. The locus of the points (ǫP /2, V ) of
maxima in the FHWM ∆ωmax

E is plotted with blue trian-
gles. For 0 < V/2 < ω0, namely when the mechanical os-
cillator is close to its quantum ground state, we find that
the position of those maxima is independent of voltage
and located at values of the electromechanical coupling
g2 = ǫP /2ω0 = 1 (blue-dashed curve). This is consis-
tent with the results of Sec. IVA, for which the point of
maximum energy dissipation coincides with the transi-
tion from a monostable mechanical oscillator (for g2 < 1)
to a bistable one (for g2 > 1). Upon increasing voltage
above the first vibrational sideband (ω0 < V/2 < 2ω0),
the location of the maxima increases toward a larger
voltage-independent value ǫP /2ω0 ≈ 1.3. Consistently
with Sec. VIA, we assign this increased energy dissipa-
tion rate to the opening of new inelastic electronic chan-
nels, each time a vibron sideband (n) is excited by the
bias voltage (V/2 > nω0).
Finally, the corresponding curve representing the loca-

tion of the maxima in the FWHM ∆ωmax
x is presented

with red circles. The obtained red curve is always on

the right of the previous blue curve. This is consistent
with the analysis performed in Sec. VA, for which it is
shown that the decoherence rate of the mechanical oscil-
lator is larger than the dissipation rate of energy because
of additional dephasing induced by elastically tunneling
electrons. A low voltages (0 < V/2 < ω0) the red curve
is voltage independent and pinned at electromechanical
coupling g2 = ǫP /2ω0 =

√
2 > 1. This coincides with

the value of g2 maximizing the decoherence rate. Upon
increasing voltage to the range ω0 < V/2 < 2ω0, we find
that the locus of maximum decoherence increases in a
step-like manner towards a larger value of the coupling
strength ǫP /2ω0 ≈ 3.3. This corresponds to the entering
of a new vibron sideband n = 1, which increases both the
dissipation rate (through inelastic transitions) and the
dephasing rate (through enhanced elastic transitions).
Interestingly, we find that upon increasing sufficiently

the bias voltage, the location of the maxima in the
FWHM ∆ωmax

x gets closer to the red-dashed curve V =
ǫP /2. We give a simple explanation of this phenomenon
based on a semi-classical argument (at high-voltage in-
deed, many phonons populate the mechanical oscillator,
which becomes semi-classical). The argument follows
closely the analysis of the current-blockade phenomena
in semi-classical mechanical oscillators18–21. We use for
this the Hamiltonian written in Eq. (2). The tunnel-
ing electrons on the dot induce a back-action force on
the mechanical oscillator 〈F 〉 = −F0 〈nd〉. This back-
action force in turn produces a shift of the oscillator
equilibrium position ∆Xeq = −F0/k 〈nd〉. The work per-
formed by the force 〈F 〉 for displacing the equilibrium
position of the oscillator by an amount ∆Xeq can be in-
terpreted as a reorganization energy of the dot-level po-
sition ∆ǫ0 = −〈F 〉∆Xeq. At half-filling (〈nd〉 = 1/2),
we obtain ∆ǫ0 = −ǫP/4. If ∆ǫ0 is smaller than −V/2,
namely that ǫP /2 > V , the dot-level position is effec-
tively shifted away from the conduction window and the
current is blocked. The critical value for this transition
happens at ǫP /2 = V (red-dashed curve) and coincides
at high-voltage with the transition from a monostable to
a bistable state of the semi-classical oscillator.

VII. CONCLUSION

It is well known that a nano-electromechanical oscilla-
tor in the regime Γ ≪ T ≪ ω0 for large coupling con-
stant g2 = ǫP /2ω0 enters in the so-called Franck-Condon
blockade regime. We have shown that the blockade sets
in with a behavior similar to what observed in the semi-
classical case, namely the appearance of a double max-
imum in the probability distribution for the position of
the oscillator. This property can be interpreted as a me-
chanical bistability present also in the quantum regime,
even if one cannot define an effective potential as in the
classical case. At T ≪ ω0 the transition point can be
identified for ǫP = 2ω0 (g2 = 1) [see Fig. 4] while in pres-
ence of bias voltage ǫP /2 ≈ V [see Fig. 9]. This is similar
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to what is found in the classical case for Γ ≫ T ≫ ω0

for which the transition happens at ǫP = πΓ14,17, with a
smoothing given by thermal or non-equilibrium fluctua-
tions. Despite the similarity, the main difference between
the two regimes is that in the classical case the transi-
tion is controlled by the change of the effective potential,
while in the quantum case the quantum fluctuations are
responsible for the disappearance of the bistability.
In analogy with the classical case we have investi-

gated the displacement and energy fluctuation spectra.
In the case of a quantum and fast oscillator, the line-
shape of the spectra remains Lorentzian. Somewhat sur-
prisingly we find that the width ∆ω of both is not mono-
tonic and that the spectra are maximal exactly at the
bistable transition for ∆ωE and at slightly stronger cou-
pling (ǫP = 2

√
2ω0) for ∆ωx. We presented a simple

analytical analysis valid at low excitation probability of
the oscillator (low T or V ) that allows to understand the
origin of these widths. In the weak coupling limit this is
simply the lowest non-vanishing order in the perturba-
tive expansion which shows a quadratic behavior. In the
strong coupling limit the suppression of the tunneling due
to the Franck-Condon terms suppresses also dissipation
and decoherence, that can only be mediated by the elec-
trons. Like in the classical case the width of the displace-
ment spectrum (decoherence rate) is larger than (half)
∆ωE , the typical dissipation rate. In the quantum case
the origin is not the non-linear effective potential, but the
elastic transitions, that introduce decoherence without
dissipation. We also investigate the same quantities as a
function of the bias voltage and found that the dissipa-
tion and decoherence rates increase abruptly, each time
a new vibrational side-band enters into the conduction
window, namely when V/2 becomes larger than a multi-
ple of the mechanical frequency ω0. This gives rise to a
phase diagram recovering the semi-classical limit for the
current-blockade transition (occurring when ǫP ≫ V )21

at sufficiently high-voltages (V ≫ ω0). We found that
the Wigner distribution of such an oscillator even close
to its quantum ground state or to the threshold for in-
elastic transitions does not exhibit negative values. This
is due to the incoherent nature of the electron tunneling
in this regime.

In conclusion we have found that the classical picture
applies, at least partially, also in the quantum regime.
This scenario could be observed in high frequency me-
chanical oscillators. From the theoretical point of view
other questions are still open. It would be interesting
to extend the present work to regimes of higher tunnel-
ing rates Γ/T , taking into account corrections induced
by cotunneling of electrons. Addressing the fate of the
bistability transition in the regime of both coherent tun-
neling of electrons and quantum mechanical oscillator is
still an opened theoretical issue even if recently a map-
ping has been established to an effective Kondo problem
in the limit of slow oscillator in equilibrium48. Finally,
it would be of interest for future works to investigate
the possibility of generating non-classical states of the
mechanical oscillator by parametric driving49, or by a
suitable coupling of the nanotube mechanical oscillator
to superconducting electrodes50–52. These results and
perspectives contribute to show that non-trivial physical
behavior arises from the strong coupling between tunnel-
ing electrons and a well-controlled mechanical degree of
freedom of the oscillator.
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