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Ballistic transport through irradiated graphene
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The coherent charge transport through an illuminated graphene ribbon is studied as a function of electronic
doping and characteristics of the electromagnetic driving, for monochromatic circularly polarized light. We focus
on the DC current carried by 2D bulk carriers which is dominant (over edge transport) for short and wide enough
samples. We investigate how the ballistic conductance suppression, due to photon resonances between the valence
and conduction bands, evolves when the experimentally tunable parameters are varied. The residual conductance
can be associated with evanescent states and related to dynamical gaps in the Floquet quasienergy spectrum.

I. INTRODUCTION

Topological insulators [1,2] are a novel class of materials
which have attracted a lot of attention in the last few years.
These materials possess a bulk band gap, and due to a
specific topological order of the bands, robust metallic states
appear at their boundary. The topologically protected edge or
surface states arise from the particular crystalline structure of
the material, which is unfortunately not easy to engineer or
manipulate. Recently, it has been predicted that topologically
trivial materials can be turned into topological insulators
by driving them with a time-periodic external perturbation
[3–7]. The formalism used to study those periodically driven
systems is based on the Floquet theorem [8,9], which is the
analog of the Bloch theorem for periodic potentials in time.
These so-called Floquet topological insulators [5,10] (FTI’s)
have been classified using new types of topological invariants
[6,7,11].

An important candidate for the realization of a condensed
matter FTI is irradiated graphene. Two distinctive situations
may be encountered depending on whether the photon energy
h̄ω is larger or smaller than the bandwidth of the crystal.
In both cases, a gap opens at quasienergy ε = 0 realizing a
Haldane topological insulator with photoinduced chiral edge
states [3,5,6,12]. In the latter case, an additional dynamical
gap at ε = h̄ω/2 may also open due to one-photon resonance
between the two bands of graphene [13–15]. Photoinduced
chiral edge states appear in the gaps, thereby linking the
distinct Floquet bands [16–19]. The topological nature of
these edge states and their connection to transport prop-
erties (quantized Hall conductance) has been extensively
studied [12,18,20–22] mostly in the absence of dissipation.
Dissipation, occurring by coupling to phonons, leads to
nontrivial occupation probabilities which usually gives rise
to a nonquantized Hall conductance [23–27]. The Floquet-
Bloch states have been observed by irradiating the surface
states of a 3D topological insulator with circularly polarized
midinfrared light and measuring the Floquet spectrum through
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time resolved ARPES pump-probe experiments [28]. Note that
FTIs have also been realized in cold atom systems [29] and in
photonic crystals [30]. Besides, irradiated graphene has also
been studied extensively in connection with pumping effects
[31–33] and irradiated pn junctions for linear polarization
[34–37]. More recently driven conductance of graphene and
Weyl semimetal thin films under linear polarized THz radiation
has been investigated in the regime of strong driving and low
doping [38].

Our main motivation is to suggest the use of DC transport
measurements to investigate the features of the Floquet
quasienergy spectrum in coherent driven electronic systems.
We therefore compute the conductance of graphene transistors
driven by an electromagnetic wave, typically in the terahertz
(THz) or infrared (IR) range. Indeed photon energies in the
range 10–100 meV can be matched by chemical potential
variations in typical graphene samples. Recently, photon-
assisted shot noise has been studied experimentally in coherent
diffusive graphene samples irradiated in the THz range [39].

In this paper, we consider a graphene based field effect
transistor (gFET), whose conduction channel is irradiated by a
circularly polarized electromagnetic wave at normal incidence
(Fig. 1). The carrier density (in the absence of irradiation)
can be tuned using a DC electrostatic backgate. The source
and drain leads are heavily doped and are not irradiated. The
two-terminal differential conductance is studied as a function
of the irradiation strength, chemical potential μ in the central
region, and photon energy h̄ω for various lengths L and
widths W of the graphene ribbon (Fig. 1). We consider the
ballistic regime which has been reached experimentally in
high-mobility suspended or encapsulated graphene samples
[40–42]. The photon energies are in the range 10–100 meV,
therefore much smaller than the electronic bandwidth of
graphene. In this regime, during their time of flight across the
transistor, the electrons are dressed coherently by the photons.
The Floquet-Landauer-Büttiker scattering theory allows us
to evaluate the source-drain conductance of the gFET. This
approach implicitly assumes that the dissipation takes place
only in the leads and not in the central irradiated region. This
assumption puts a restriction in the length L of our sample.
Due to the low electron-phonon scattering [43] in graphene,
especially below the optical phonon energies (200 meV), we
expect that dissipation can be neglected in submicrons samples
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FIG. 1. Field effect transistor consisting in a rectangular graphene
ribbon contacted between source (S) and drain (D) leads. A remote
electrostatic backgate (not represented) allows us to tune the chemical
potential (and carrier density) in the central graphene region.
A circularly polarized electromagnetic wave is shone at normal
incidence, corresponding to an in-plane rotation vector potential
A(t) = A0(cos ωt, sin ωt).

at low enough temperatures. Experimentally, the conductance
in a coherent ballistic periodically driven conductor has not
been investigated yet for all μ, and most theoretical studies
focused so far on undoped graphene (μ = 0) [3,5,12,20]
and edge state transport. For doped graphene samples, the
conduction by bulk states is always important and often
exceeds the edge state contribution. For this reason, this paper
mainly focuses on the bulk conduction through 2D evanescent
and propagating electronic states. Finally the response of a
graphene-based transistor to electromagnetic driving remains
a crucial issue for optoelectronic applications [44].

The main results are the following. First, the conductance
can be strongly suppressed in broad domains of chemical
potential (or equivalently carrier density). The qualitative
picture is that time-dependent driving opens gaps in the
quasienergy spectrum, inducing evanescent states character-
ized by finite penetration lengths. Hence, the conductance-
chemical potential curves depend drastically on the length
of the central conducting channel. Such suppression of the
graphene DC conductance by irradiation was first predicted by
Calvo et al. [13–15]. In this paper, we study how these features
evolve when experimentally tunable parameters are varied.
Second, for undoped graphene, the conductance exhibits
nonmonotonic variations as a function of the irradiation
strength. At strong driving and high frequency, the conduc-
tance at the Dirac point has been interpreted as resulting from
an infinite set of evanescent states [12]. Here we provide
the full evolution of the conductance as a function of the
irradiation strength and sample length, while showing that only
a finite number of evanescent states contribute for moderate
driving.

The paper is organized as follows. In Sec. II, the Floquet
quasienergy spectrum of irradiated graphene is reviewed
[3,12,16,17,45]. In Sec. III, the scattering problem is for-
mulated and the expression for the differential conductance
is derived within the Floquet-Landauer-Büttiker formalism.
Section IV is devoted to the dependence of the conductance as
a function of μ and irradiation, while we focus on the case of
undoped graphene (μ = 0) in Sec. V. Suitable parameters for
experimental realizations are discussed in Sec. VI.

II. FLOQUET SPECTRUM IN GRAPHENE

In this section, we review the Floquet quasienergy spectrum
of an infinite graphene sheet irradiated by a circularly polarized
electromagnetic wave [3,12,16,17,45]. The purpose of this
section is to set the stage for the transport calculations
(Secs. III, IV, and V) and make the paper self-contained.

A. Geometry of the system and Hamiltonian

The graphene sheet is irradiated by a circularly polarized
radiation of frequency ω = 2π/T . Photon energies h̄ω are
much smaller than the bandwidth of graphene, which allows us
to use the low-energy model for graphene. The massless Dirac
fermions come in two flavors located around the two corners
(valleys) of the Brillouin zone. Moreover, we consider ballistic
graphene and only vertical (namely conserving momentum)
electronic transitions (absorption or emission of photons) are
allowed. Therefore intervalley scattering can be neglected, and
the decoupled (K and K ′) valleys can be studied separately.

The time-dependent Hamiltonian describing the Dirac
fermions in valley ξ is written as:

Hξ (t) = H
ξ

0 + V ξ (t) , (1)

ξ = ±1 being the valley index. The time-independent Hamil-
tonian H

ξ

0 , corresponding to nonirradiated graphene, reads
[46,47]:

H
ξ

0 = v(ξσxpx + σypy) − μ, (2)

where σx and σy are the Pauli matrices associated with the
sublattice isospin, (px,py) = −ih̄(∂x,∂y) are the components
of the wave-vector operator p, v is the Fermi velocity, and μ

is the chemical potential.
The vector potential A(t) = A0(cos ωt, sin ωt) couples to

the electric charge via the Peierls substitution p → p − qA(t),
where q = −e is the electron charge. The Hamiltonian for the
coupling between electrons and the electromagnetic field can
therefore be expressed as:

V ξ (t) = (
V

ξ

1 eiωt + V
ξ

−1e
−iωt

)
, (3)

where the matrices V
ξ

1 and V
ξ

−1 read:

V
ξ

1 = evA0

2
(ξσx − iσy), V

ξ

−1 = evA0

2
(ξσx + iσy). (4)

An important dimensionless parameter is

β = evA0

h̄ω
, (5)

which quantifies the electromagnetic driving strength. Fol-
lowing a simple quasiclassical argument, evA0 is simply the
energy gained by an electron traveling at speed v in an electric
field E0 = ωA0 during a period of the electromagnetic wave
(1/ω), while h̄ω is the minimal energy quantum which can
be absorbed by the electron. The typical electric field can be
expressed as:

E0 = β
h̄ω

elω
, (6)

where lω = v/ω is the distance traveled by the electron during
a period of the electromagnetic field (divided by 2π).
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B. Floquet spectrum

In this section, we assume translational invariance along the
x and y axes and seek for solutions of the form 	(t)eikxx+ikyy .
According to the Floquet theorem, the time-dependent part of
the wave functions can be written as:

	(t) = 
ε(t)e−iεt/h̄ , (7)

where 
ε(t) is a T -periodic function and ε is the corresponding
quasienergy. The quasienergy ε is defined modulo h̄ω, thereby
making it possible to redefine ε such that it always belongs to
the interval [−h̄ω/2,h̄ω/2].

The wave function obeys the Schrödinger equation

ih̄∂t	(t) = Hξ (t)	(t). (8)

After injecting Eq. (7) in the Schrödinger equation, the T -
periodic function 
ε(t) appears to be an eigenstate of the
Floquet Hamiltonian HF (t) = H (t) − i∂t with eigenvalue ε,
namely:

(Hξ (t) − ih̄∂t )
ε(t) = ε
ε(t). (9)

Using the following Fourier expansion for 
(t):


ε(t) =
∑
m∈Z


meimωt , (10)

allows us to transform the time-dependent differential equation
Eq. (9) into a time-independent eigenstate problem [8,9]:∑

n

H
ξ

F,mn
n =
∑

n

(Hξ

0F,mn + V
ξ

F,mn)
n = ε
m , (11)

where the quasienergy index ε is omitted in all Fourier
components 
n, and (m,n) ∈ Z2. The Floquet Hamiltonian
H

ξ

0F,mn, defined as

H
ξ

0F,mn = (h̄v(ξσxkx + kyσy) − μ + mh̄ω)δmn, (12)

is diagonal in the Floquet basis. In contrast, the driving
Hamiltonian V

ξ

F,mn,

V
ξ

F,mn = V
ξ

1 δm,n−1 + V
ξ

−1δm,n+1, (13)

couples distinct Fourier components 
n. Matrices V
ξ

1 and V
ξ

−1
are defined by Eq. (4).

In this Floquet-Fourier representation, the wave function
is an infinite vector containing all the different Fourier
harmonics of the wave function. Since the Floquet matrix
is infinite, we need to set a cutoff N in the number of
Floquet replicas considered. The size of the matrix is thus
2(2N + 1) × 2(2N + 1) (taking into account the sublattice
isospin index). Afterwards, it will be necessary to check the
stability of the results by increasing N .

Once the cutoff is made, the Floquet matrix H
ξ

F can be easily
diagonalized numerically to obtain the dispersion relation.
Due to rotational invariance around k = 0, the spectrum only
depends on the norm k = |k| of the wave vector. The spectrum
consists of 2(2N + 1) bands having the dispersion relation
εα(k) for α ∈ [1,2(2N + 1)]. The Floquet bands centered
around ε = 0 are plotted as functions of k in Fig. 2 for
various driving strengths, using seven Fourier components
(N = 3).

(a)

(b)

(c)

FIG. 2. Dispersion relation εα(k) (k = |k|) of an infinite graphene
sheet irradiated by an electromagnetic wave at various driving
strengths: (a) β = 0.1, (b) β = 0.3, and (c) β = 0.6 using N = 3
Floquet replicas. The dashed lines correspond to the nonirradiated
case in the Floquet representation with dispersion ε = ±h̄vk + nh̄ω.
The circles on (a) and (b) indicate the nonequivalent gaps m, located
at momenta k = mω/2v, and at quasienergies ε = 0 and ε = h̄ω/2,
alternatively.

For weak driving, β = 0.1 [Fig. 2(a)], the bands corre-
sponding to the irradiated case (solid curves) follow closely
the nonirradiated ones (dashed curves) except around avoided
crossings 1 located at k = ±ω/2v and centered around
ε = ±h̄ω/2. Upon increasing the driving, more gaps open
at momenta km = ±mω/2v, with m integer [Fig. 2(b)]. These
gaps correspond to the anticrossing of two Dirac bands dressed
with n and n′ photons such that |n − n′| = m. For example,
at the gap 3 in Fig. 2(b), the electron is in a coherent
superposition of a valence band electron dressed with 2
photons (having absorbed two quanta of the electromagnetic
field) and a conduction band electron dressed with −1 photon
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(meaning having emitted one quantum of the field). For strong
driving, multiphoton processes are more likely, leading to a
strong modification of the quasienergy spectrum [Fig. 2(c)].

In the next sections, we study with more detail the gap
structure as a function of β. The spectrum is periodic in
energy (with period ω), so we restrict ourselves to the study
of the reduced bands where ε ∈ [−h̄ω/2,h̄ω/2]. The gaps are
located at different momenta because of the folding of the dis-
persion relation in the reduced Floquet zone [−h̄ω/2,h̄ω/2].
In this representation, there are two nonequivalent set of gaps
centered at ε = 0 and at ε = h̄ω/2 [Fig. 2(b)]. The gaps of even
order (0,2,4...) are located in the center of the Floquet
zone (ε = 0, Sec. II C) and the odd order ones (1,3...) are
located at the edge (ε = ±h̄ω/2) [Fig. 2(b)].

C. Photoinduced gaps vs β

The Floquet spectrum has a very rich gap structure [16] that
depends strongly on the driving strength β. Understanding this
structure is crucial in order to study the transport properties
of irradiated graphene (see Secs. IV and V). The gap 0 and
the gaps m with m � 1 have different origins. Multiphoton
processes of order m induce the gaps m. For m � 1, the gap
amplitudes have been derived within the generalized rotating
wave approximation (RWA) in Ref. [45]:

m

h̄ω
= β|Jm+1(2β) − Jm−1(2β)| ≈ βm

(m − 1)!
, (14)

where Jm is the mth order Bessel function, and the last
approximation is only valid for β � 1. For weak driving, the
size of the gap m (m � 1) is strongly reduced upon increasing
m. Increasing the driving strength β, the gaps evolve in a
nonmonotonic way and can also close. In this section, we will
compare analytical expressions of the gap size obtained within
the rotating wave approximation scheme and the results that we
get from diagonalizing in Floquet space (Fig. 3). The RWA fits
very well the numerics for low β, and describes qualitatively
the size of the gaps for β � 1 (Fig. 3).

At energy ε = 0, Oka and Aoki [3] first discussed the central
gap 0 at k = 0 and found that:

0

h̄ω
=

√
1 + 4β2 − 1 ≈ 2β2, (15)

where the last approximation correspond to weak driving β �
1. The quadratic dependence in β for weak driving points out
that this gap originates from a second order process in the
coupling: the emission and absorption of a virtual photon. The
analytic expression Eq. (15) fits perfectly our numerics. For
weak driving, the evolution is quadratic in β, and as the driving
increases, it becomes linear until the gap size reaches the size
of the Floquet zone ε = h̄ω at β = √

3/2. At this particular
value of β, the gap 1 vanishes as shown in Fig. 3(b). This is
a case of a band touching induced by strong electromagnetic
driving.

For weak driving, the gap 1 is located at wave vector k =
±ω/2v and around energy ε = h̄ω/2. This gap originates from
the anticrossing of the bands n = 1 and n′ = 0, and therefore
it is a first order process in β (exchange of one photon). This
explains why 1 is the largest gap for weak driving [Figs. 2(a)
and 2(b)]. The size of this gap first increases linearly with β,

(a)

(b)

FIG. 3. Size of the gaps at (a) μ = 0 and (b) μ = h̄ω/2 as a
function of the driving strength β calculated using the numerical
Floquet method (solid lines) and the rotating wave approximation
(RWA), namely Eqs. (15) and (14) (dashed curves). The numerical
calculations (solid lines) agrees with RWA estimations for weak
driving. The gap 1 closes while the gap 0 tends to h̄ω for
β = √

3/2.

then it reaches a maximum value around β ≈ 0.5, and starts
decreasing until it reaches zero [Fig. 3(b)]. We see that at the
same value of β, the gap 0 reaches h̄ω (Fig. 3), and as we have
seen earlier, this happens for β = √

3/2 ≈ 0.87. We conclude
that this value corresponds to a band touching.

The gap 2 originates from the anticrossing of two Dirac
bands dressed with n = 1 and n′ = −1 photons. This is
therefore a second order process in the coupling and is
proportional to β2 for weak driving. The idea is the same
for the gap 4; it originates from the anticrossing of bands
dressed with 2 and −2 photons, and is thus proportional to β4

for weak driving.

III. FORMALISM

In this section, we present the formalism used to compute
the two-terminal conductance of a graphene-based transistor
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whose central 2D conducting channel is irradiated by circularly
polarized light at normal incidence. The transmission and
reflection coefficients are evaluated within the Landauer-
Büttiker formalism extended to driven Floquet systems [48].
Note that the electromagnetic field is uniform in the central
gated graphene region, while the leads are not irradiated.

A. Geometry and scattering problem

We consider an irradiated rectangular ribbon of width W

and length L connected to two nonirradiated leads (Fig. 1).
The Hamiltonian being time dependent, the single electron
energy is not conserved. However, due to the invariance
under translations of time T , the quasienergy ε is still a
good quantum number. In the scattering problem, we consider
electrons incoming at energy ε = 0, which corresponds to the
Fermi level of the leads. The electrons propagating inside the
irradiated region can emit or absorb one or several photon(s)
of energy h̄ω. These inelastic scattering events are described
by a set of transmission (reflection) coefficients tn0 (rn0)
corresponding to the amplitude of being transmitted (reflected)
with a final energy ε + nh̄ω.

In order to determine those Floquet scattering coefficients,
periodic boundary conditions are used along the y direction.
Hence the transverse wave vector ky is quantized as:

ky = 2πny

W
, (16)

with ny a relative integer. Note that with such periodic
boundary conditions, only bulk 2D states are investigated. In
contrast to ky and μ, the longitudinal wave vector kx is not a
good quantum number because the system is not translationally
invariant along the x axis.

In the following, all the two-component wave functions are
written as 
(x,y,t) = 
(x,t)eikyy , and we will work with the

(x,t) wave functions (ky being omitted) corresponding to
the effective 1D transport problem at a given ky . In order to
calculate the two-terminal conductance, we need to match the
wave functions at the interfaces x = 0 and x = L.

B. Irradiated ribbon

In the irradiated region (0 < x < L), we need to find the
Floquet eigenstates 
m and the longitudinal wave vector kx

corresponding to a given set (μ,ky) (still having in mind the
scattering problem for ε = 0 corresponding to an electron
incident from the lead Fermi level). Multiplying Eq. (11) by
ξσx and rearranging it allows us to get both kx(ε) and 
m by
solving the following equations:∑

n

(Kξ

0F,mn + K
ξ

V F,mn)
n = h̄vkx
m, (17)

where one has defined an infinite matrix K0F with matrix
elements:

K
ξ

0F,mn = ξ ((μ − mh̄ω)σx − iσzh̄vky)δmn, (18)

and the infinite matrix KV F by the matrix elements:

K
ξ

V F,mn = −ξσxV
ξ

1 δm,n−1 − ξσxV
ξ

−1δm,n+1 (19)

describing the effect of the electromagnetic field.

FIG. 4. Dispersion relation kα
x (ε) for β = 0.3 in the reduced

Floquet zone with the real and imaginary parts of the wave vector kx

for ky = 0 and N = 2.

Note that changing the valley index reverses the sign of kx ,
and because the ribbon is space-inversion symmetric along the
x direction, the eigenvalues kx always come in pairs, therefore
both valleys have the same contribution to the conductance.
In practice, one can solve the scattering problem and compute
the transport in a given valley, and multiply the single-valley
result by 2 to get the total conductance.

Besides, KF = K0F + KV F is not Hermitian so kx can
have an imaginary part, which corresponds to an evanes-
cent state (Fig. 4). As we have seen before, we need to
make a truncation in the number of Floquet side bands
such that m ∈ [−N,N ]. After numerical diagonalization, we
obtain 2(2N + 1) eigenvalues kα

x (ε) and eigenvectors 
α
m

with α ∈ {1,2(2N + 1)} labeling the different eigenmodes.
The resulting two-component wave function is written as a
superposition of the 2(2N + 1) eigenmodes labeled by index
α. The wave function of a given α eigenmode is expressed as:


α(x,t) = eikα
x x

N∑
m=−N


α
me−imωt , (20)

which is still a two-component spinor (attached to one valley,
here ξ = 1).

When the Fermi level lies in the gap, kα
x (ε) has a nonzero

imaginary part which signals an evanescent state. For a ribbon
with a finite length, these states will allow the current to tunnel
through the gapped central region. The penetration lengths
ξ are defined as the inverse of the imaginary part of the
longitudinal wave vector kx(ε) inside the gap (Fig. 4):

ξα = 1∣∣�{
kα
x

}∣∣ . (21)

For weak driving, β � 1, it is possible to associate each
eigenmode (α) with a given anticrossing between uncoupled
Floquet replicas. Moreover, there is a direct relation between
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the length ξ and the size of the gaps:

ξm = h̄v

m

. (22)

As the size of the gap increases, the imaginary part of kx(ε)
(where ε is in the gap) increases, thereby the characteristic
length decreases. According to Eqs. (15) and (14), and for
β � 1, the decay lengths are expressed as:

ξ0 = lω√
1 + 4β2 − 1

≈ lω

2β2
, (23)

ξm ≈ (m − 1)!

βm
lω , (24)

in terms of the length:

lω = v/ω , (25)

corresponding to the distance traveled by an electron during
one cycle of driving (divided by 2π). We compared the RWA
method and the numerics and we see a good agreement
between numerical diagonalization and RWA even for β ≈ 1.

C. Leads

To simplify the expression of the scattering states in the
leads, we consider heavily n-doped leads, in the same manner
as in Ref. [49] for the nonirradiated case. The chemical
potential in the leads is μ∞ > 0 for x < 0 and x > L such
that μ∞ 
 |μ|.

In order to account for electrons leaving the scattering
region with energy ε + nh̄ω, we use the Floquet theorem in
the leads. However, because there is no driving, the Floquet
replicas are decoupled. In the leads, for an infinite system,
Eq. (9) with ε = 0 becomes:

h̄v(σxkx + σyky)
m(x) = (μ∞ − mh̄ω)
m(x). (26)

For a given 2D wave vector (kx,ky), there is an infinite amount
of plane wave solutions labeled by their Floquet index m and
their band index s = ±1:


m,s(x) = 1√
2

(
s

eiϕ

)
eikxx (27)

with μ∞ = mh̄ω + sh̄v
√

k2
x + k2

y and cos ϕ = kx/μ∞, ϕ be-

ing the angle of incidence of the electron. Since μ∞ → ∞,
we have ϕ → 0,π and s = +1 in both source and drain leads.
Finally, the spinor in the leads is independent of m and we
obtain one left (+) and one right (−) going solution:


±
m(x) = 
±eik±

x x , (28)

with k±
x = ±μ∞, and


± = 1√
2

(
1

±1

)
. (29)

D. Matching at the interfaces

Using the expression of the eigenstates in the different
regions, it is possible to construct the scattering states. We
consider an incoming wave from the left lead at the quasienergy
ε = 0 and Floquet index n = 0. In the left lead, there will be

2N + 1 waves reflected at energies ε = nh̄ω with amplitude
rn0. The wave function in the left lead is then:

	L(x,t) =
(


+eik+
x x +

N∑
n=−N

rn0

−eik−

x xeinωt

)
e−iεt . (30)

In the irradiated region, the wave function is a superposition
of the eigenstates 
α with amplitudes aα:

	I (x,t) =
∑

α

aα
α(x,t)e−iεt

=
(∑

α

aαeikα
x x

N∑
n=−N


α
ne−inωt

)
e−iεt . (31)

In the right lead, only the right going states with amplitude tn0

on the n’s replica are chosen:

	R(x,t) =
(

N∑
n=−N

tn0

+
n eik+

x (x−L)einωt

)
e−iεt . (32)

To calculate the reflected and transmitted amplitudes, we
need to match the wave functions at the interfaces. The bound-
ary condition at x = 0 is 	L(x = 0−,t) = 	I (x = 0+,t):


+ +
N∑

n=−N

rn0

−
n e−inωt =

∑
α

N∑
n=−N

aα
α
ne−inωt , (33)

and at x = L, the condition is 	I (x = L−,y,t) = 	R(x =
L+,t) so:

∑
α

N∑
n=−N

aα
α
neikα

x Le−inωt =
N∑

n=−N

tn0

+
n e−inωt . (34)

These boundary conditions, at x = 0 and x = L, must be
valid at any time t , so we can project them on the different
Fourier harmonics:


+δn0 + rn0

− =

∑
α

aα
α
n, (35)

∑
α

aα
α
neikα

x L = tn0

+. (36)

Finally, on one hand, the number of unknown scattering
parameters is 4(2N + 1) since we have (2N + 1) reflection
coefficients rn0, (2N + 1) transmission coefficients tn0, and
2(2N + 1) coefficients aα to determine. On the other hand,
each matching condition represents 2N + 1 spinor relations,
hence there is a total of 4(2N + 1) linear relations between
those coefficients.

The number of Floquet replicas N defines the cutoff used
to calculate the eigenstates and eigenvectors of the system
and therefore to obtain the transmission coefficients. We have
systematically checked the convergence of our results with
respect to N .

E. Conductance formula

To calculate the conductance of the sample, we use the
scattering theory extended to Floquet systems [48]. The scat-
tering matrix element tn0,ky ,μ(ε) is the probability amplitude
for an electron entering from the left lead at energy ε and wave
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vector ky to exit in the right lead with energy ε + nh̄ω. The
expression of the current through the sample is [48,50]:

I (μ) = e

h

∫ ∞

−∞
dε

N∑
n=−N

(Tn(ε)fL(ε) − T ′
n(ε)fR(ε)), (37)

where fL(ε) and fR(ε) are the Fermi-Dirac distributions in
the left and right leads, respectively. The transmission Tn(ε) is
the sum over all ky channels of the transmission probabilities
of electrons from energy ε in the left lead towards energy
ε + nh̄ω in the right lead:

Tn =
∑
ky

|tn0,ky
|2 . (38)

The current flowing in the scatterer is conserved so the
scattering matrix is unitary. This implies the relation:

n=N∑
n=−N

(Tn + Rn) = 1 , (39)

where Rn is defined as the sum of the reflection probabilities
|rn0,ky

|2 of the transverse modes ky :

Rn =
∑
ky

|rn0,ky
|2 . (40)

We checked that the unitary relation Eq. (39) is fulfilled
in the numerical implementation. We can also notice that
Tn(ε) = T ′

n(ε), T ′
n(ε) being the transmission probability de-

fined similarly as Tn(ε), but for the reversed scattering process
(incident electron going from the right lead and transmitted
to the left lead). The equality Tn(ε) = T ′

n(ε) ensures that
there is no pumped current for zero bias. Therefore, at zero
temperature, for small bias so that the transmission coefficient
varies weakly, we obtain the conductance formula:

G(μ) = ∂I

∂V
= G0

N∑
n=−N

Tn(μ), (41)

where G0 = 4e2

h
, where the factor 4 accounts for valley and

spin degeneracy.

IV. CONDUCTANCE-CHEMICAL POTENTIAL CURVES

The main goal of this paper is to evaluate the two-terminal
conductance G of graphene-based transistors as a function of
the chemical potential μ, radiation strength β, frequency ω,
and geometrical parameters L and W (Fig. 1). We consider the
ballistic regime relevant for currently achievable high-mobility
samples [40–42]. In this section, the dependence of the
conductance upon the chemical potential is discussed for
various irradiation strengths β. After a short review of the
nonirradiated case (β = 0) [49], the results are presented by
increasing the driving parameter β from low to strong driving.
The main features consist of strong suppressions of the conduc-
tance in wide ranges of chemical potential, especially around
μ = ±h̄ω/2. The suppression of the conductance originates
from photoinduced gaps in the quasienergy spectrum which
lead to evanescent states. A simple phenomenological model is
introduced which accounts for the residual conductance around
μ = ±h̄ω/2. A crossover between 2D transport through

bulk evanescent states and 1D edge transport is predicted
and shown to depend on the geometrical parameters L

and W of the graphene ribbon. Specific features at μ = 0
(undoped graphene) are discussed more thoroughly in the next
section V.

A. Nonirradiated ribbon β = 0

The conductance of a graphene ribbon contacted by two
heavily doped leads as a function of the chemical potential
has been studied by Tworzydlo et al. [49]. The system acts as
an electronic Fabry-Perot interferometer whose transmission
coefficient reads:

T
(p)
ky

= k2
x

k2
x cos2(kxL) + (

μ

h̄v

)2
sin2(kxL)

, (42)

for propagating modes with transverse wave vector ky =
2πny/W . The longitudinal wave vector, which is given by

kx = ±
√( μ

h̄v

)2
− k2

y, (43)

is real for low enough incident angles: h̄vky < μ.
For larger transverse wave vector (h̄vky > μ), the longitu-

dinal wave vector kx becomes imaginary:

kx = ±iκx = ±i

√
k2
y −

( μ

h̄v

)2
, (44)

and the transmission is given by:

T
(e)
ky

= κ2
x

κ2
x cosh2(κxL) + (

μ

h̄v

)2
sinh2(κxL)

. (45)

Since the conductance of the ribbon is obtained by summing
over all ky modes, the transport originates from two contribu-
tions: the evanescent modes and the propagating ones, such
that the total conductance reads:

G(μ) = G0

∑
ny

Tky
= G0W

2π

∫ k∞

−k∞
dkyTky

(46)

= G0W

π

[∫ μ

hv

0
dkyT

(p)
ky

+
∫ k∞

μ

h̄v

dkyT
(e)
ky

]
, (47)

where k∞ is the (very large) Fermi wave vector in the leads.
Note that the discrete sum has been replaced by an integral
over ky since large width W is assumed. There is a competition
between two contributions: for small μ, the transport will be
dominated by evanescent modes, whereas the propagating ones
dominate for large μ.

At the Dirac point (μ = 0), the conductance originates only
from evanescent modes with transmission probability:

T
(e)
ky

= 1

cosh2(kyL)
, (48)

leading to the minimal conductance:

G(μ = 0) = G0

π

W

L

∫ k∞L

0

dkyL

cosh2(kyL)
= G0

π

W

L
. (49)
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TABLE I. Table of the gap sizes and the characteristic length of
the corresponding evanescent states for a driving strength of β = 0.1.

Gaps at ε = 0 Gaps at ε = h̄ω/2

m = 0 m = 2 m = 1 m = 3

m/h̄ω 0.02 0.01 0.1 0.0005
ξm/lω 50 100 10 2000

In this large W regime, the conductance at the Dirac point
is proportional to W and 1/L. It is therefore convenient to
normalize the conductance by the ratio W/L, as in Fig. 5, green
curves, which corresponds to the conductivity σ = GL/W of
the rectangular ribbon.

B. Weak driving β = 0.1

In the presence of electromagnetic radiation, the conduc-
tance (blue curves in Fig. 5) exhibits broad dips around chem-
ical potentials μ = ±h̄ω/2. These dips mainly correspond
to gaps centered at quasienergy ε = ±h̄ω/2, and located
near k = ±ω/2v, in the quasienergy dispersion relation,
see Fig. 2(a). These gaps originate from the one-photon
resonance between the valence and the conduction band. The
electromagnetic coupling leads to an avoided crossing and the
opening of a gap 1, associated to a typical decay length
ξ1 = h̄v/1. Besides this main gap, the quasienergy spectrum
Fig. 2(a) also contains a set of very tiny gaps located at higher
wave vectors, around k = ±3ω/2v, ± 5ω/2v..., and also all
nested around ±h̄ω/2. However, for weak driving, the weight
of the wave function on these states is negligible, and therefore
their contribution to the conductance turns out to be far smaller
(than the 1 contribution) although their decay lengths are
much larger (nearly propagating states).

The conductance at μ = ±h̄ω/2 is therefore controlled by
the ratio between the sample length L and the decay length
ξ1 of the evanescent state associated to the gap 1, typically
1 � 0.1 h̄ω and ξ1 = 10 lω for β = 0.1 according to Eq. (14)
(see also Table I). Indeed the conductance dips become more
pronounced and deeper as the length L increases. For L =
10 lω = ξ1, the conductance is significantly suppressed (about
25 percent less than the nonirradiated sample conductance)
around μ = ±h̄ω/2 [Fig. 5(a)]. For L = 25 lω = 2.5 ξ1, the
conductance is strongly reduced, roughly by a factor 4, with
respect to the nonirradiated value [Fig. 5(b)]. Finally when the
length exceeds the penetration length by an order of magnitude,
namely for L = 100 lω = 10 ξ1, the conductance dips are sharp
and well defined [Fig. 5(c)]. Besides, the width of the dips
[which is well defined only in Fig. 5(c)] corresponds to the
value of the gap 1: 1 = 0.1 h̄ω (see Table I). The remaining
conductance originates from the states in the gap 3 that have
a very long characteristic length.

Away from these dips, the conductance of the irradiated
ribbon follows approximately the nonirradiated one. Here, for
β = 0.1, one can notice that the gaps around ε = 0 are very
small so their characteristic length are much larger than at
±h̄ω/2 (Table I), which means that even for L = 100 lω, the
deviation from the nonirradiated curve keeps rather small. The
conductance near the Dirac point, μ = 0, is discussed in more

(a)

(b)

(c)

FIG. 5. Conductance of a rectangular graphene ribbon as a
function of chemical potential for the nonirradiated case (β = 0 in
green) and for β = 0.1 in blue (N = 2) for a width W = 250 lω
and various lengths: (a) L = 10 lω = ξ1, (b) L = 25 lω = 2.5 ξ1, and
(c) L = 100 lω = 10 ξ1. For the irradiated case, some dips develop
around filling μ = ±h̄ω/2 which corresponds to the gaps of order
m = 1 at k = ±ω/2v in Fig. 2.
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detail in Sec. V. We conclude that for weak driving, the effect
of the driving on the conductance is mainly observable around
μ = ±h̄ω/2.

C. Bulk and edge conductance versus length L for β = 0.1
near μ = ±h̄ω/2

1. Bulk states

Inside the dips at μ = ±h̄ω/2, the current is mainly carried
by evanescent modes, thus, the conductance of the sample is
expected to decrease exponentially with the length. At short
length, the conductance in the gap ε = h̄ω/2 is dominated
by the evanescent modes coming from the gap 1, but for
larger length, the modes originating from the gap 3 will be
dominant. Therefore, it is possible to express the conductivity
in the gap ε = h̄ω/2 with a simple model taking into account
this interplay between states at gaps 1 and 3. First, we have
checked that the conductance is proportional to W , and thus
our ansatz reads:

Gbulk = G0W (ae−L/ξ1 + be−L/ξ3 ), (50)

where ξ1 and ξ3 are given by Table I, a and b being the
only fitting parameters of our model that depend only on
β. The latter parameters (expressed in units of l−1

ω ) quantify
the relative importance of the evanescent states in transport.
Finally, using the rescaling by G0W/L, we have plotted in
Fig. 6(b) the following ratio:

G

G0

L

W
= L(ae−L/ξ1 + be−L/ξ3 ) , (51)

and extracted the value of a and b. The peak with maximum
around L = 10 lω corresponds to the current carried by the
evanescent modes carried mainly by the evanescent states
originating from the first order side band (ξ1 = 10lω). The
curve reaches a minimum around L = 70 lω and then increases
again as the states coming from the third order side band
become the dominant source of current. The parameter b is
two orders of magnitude smaller than a, which indicates that
for β = 0.1, the weight of the wave function on the evanescent
states corresponding to the gap 3 is very weak. This fact
corroborates the approximation we made by considering only
the evanescent states originating from the gaps 1 and 3.

2. Edge states

So far only transport through 2D bulk states (propagating
or evanescent) has been evaluated and discussed. One can
evaluate the edge state contribution and compare it with the
bulk contribution. The dotted lines correspond to the edge state
contribution. There is one edge state per valley that contributes
to the dc conductance [16,17,21], taking into account for valley
and edge degeneracy, the maximal conductance is equal to:

Gedge(μ = h̄ω/2) = 4e2

h
. (52)

We said “maximal” conductance because the irradiation may
reduce the conductance of the edge states. This effect has been
studied by Aaron et al. [51] using the Bernevig-Hugues-Zhang
model [52]. They found that the conductance is reduced by
a Bessel factor with argument β, in the same fashion as
in the photon-assisted transport problem. In this paper, as

(a)

(b)

FIG. 6. Conductance of a ribbon as a function of the length L

of the ribbon for driving strength β = 0.1 and chemical potential
μ = h̄ω/2 (N = 3) using two different representations: (a) logarithm
of the conductance for W = 100lω, and (b) conductance normalized
by the ratio W/L (independent of the ribbon width W ). The green
smooth curve corresponds to the fit in Eq. (51), and the resulting
fitting parameters are a and b. For length L � 70lω, the conductance
is carried mainly by the modes with characteristic length ξ1 and for
larger length, the modes with length ξ3 dominate.

we consider weak driving, we will not take into account
this reduced edge state conductance. Interedge scattering is
neglected as only large sample widths W are considered. We
have plotted the ratio GedgeL/G0W for the edge states for
different widths of the sample (Fig. 6). This demonstrates that
the conductance is dominated by edge states only for long
enough samples, namely when L exceeds the typical decay
length of the bulk evanescent states. This crossover between
2D transport by evanescent states and 1D edge transport occurs
at a typical length Lc which increases with the ribbon width
W . Using the fit function (50) with the parameters a and b, it
is possible to plot Lc as a function of W using the relation:

Gbulk(W,Lc) = Gedge. (53)
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FIG. 7. Critical length Lc where bulk and edge have the same
contribution to the current at μ = h̄ω/2 for a driving strength β =
0.1. For lengths longer than Lc, the current is carried mainly by edge
states whereas for shorter lengths, the current is dominated by the
evanescent bulk states.

The resulting Lc(W ) curve is plotted in Fig. 7. This “phase
diagram” allows us to see the competition between bulk and
edge current which depends on the shape of the sample and
the frequency of irradiation (through lω). This curve shows that
bulk transport dominates for short and wide graphene ribbons
which can be understood qualitatively. Quantitatively, it gives
a criterium needed to separate bulk and edge conductance in
a particular experiment. There is a clear break in the curve
around W = 500lω, where the edge conductance becomes
smaller than the conductance carried by bulk evanescent states
originating from the 3 gap.

D. Electromagnetic driving β = 0.3

For β = 0.3, the scenario is similar to the case with β = 0.1,
except that some dips develop at μ = 0 and ±h̄ω in addition to
the dips at ±h̄ω/2. Those dips correspond to the second order
processes in β which are not negligible anymore. Table II
shows the gap sizes and the length of the corresponding
evanescent states. As the length increases, the dips develop
and are better defined.

Each gap is larger at β = 0.3 than its value at β = 0.1
case (Fig. 3). Hence the corresponding evanescent state
decay lengths have all decreased, thereby making the residual
conductance larger, provided L is kept constant. However, the
weight of the wave function on the higher order sidebands has

TABLE II. Table of the gaps size and the characteristic length of
the corresponding evanescent states for a driving strength of β = 0.3.

Gaps at ε = 0 Gaps at ε = h̄ω/2

m = 0 m = 2 m = 4 m = 1 m = 3

m/h̄ω 0.16 0.08 0.0013 0.3 0.0135
ξm/lω 6.25 12.5 761 3.33 74.1

(a)

(b)

(c)

FIG. 8. Conductance of an irradiated graphene ribbon as a
function of chemical potential for the nonirradiated case (β = 0,
green curve) and for β = 0.3 (N = 2, blue curve) for a width W =
250lω and a length: (a) L = 10lω, (b) L = 25lω, and (c) L = 100lω. In
the irradiated case, some dips develop around filling μ = 0, ± h̄ω/2
and ±h̄ω which corresponds to the gaps of order m = 1 at k = ±ω/2v

and the gaps in Fig. 2.
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increased. In the gaps at μ = ±h̄ω/2, we can see in Fig. 8(c)
that the conductance is not zero anymore because the third
order sidebands now carry some current. We can also see the
presence of the gap 3 at μ = ±h̄ω/2 inside the gap 1

because there is a small dip in the middle inside the larger
dip. Nevertheless, the gap at μ = 0 is perfectly defined for
L = 100lω because the current carried by the fourth order
sidebands is zero. In the gaps at μ = ±h̄ω, the current is not
zero because the density of states is much higher than in the
gap at μ = 0.

V. UNDOPED GRAPHENE

In this section, we analyze more thoroughly the contribution
of bulk states to the conductance when the chemical potential
is equal to zero. We discuss the evolution of the conductance at
the Dirac point as a function of the irradiation strength β, and as
a function of length L, comparing it with the edge contribution.
We compare our results with those of Gu et al. [12].

A. Minimal conductivity vs driving strength

At the Dirac point, for β = 0, the current is carried by
evanescent states that belong to the elastic channel. Due to
the semimetallic nature of graphene, their decay length is
infinite for ky = 0 and decreases as |ky | increases [Eq. (48)].
For β �= 0, the Floquet bands are coupled, so the inelastic
channels with m �= 0 are opened and the whole set of
evanescent states located at wave vector km

x = ±mω/2v, with
even m, will contribute to the current. The evanescent states
in the gap at k = 0 that originate from the elastic channel
m = 0 are now gapped, and their decay length is no longer
infinite.

The characteristic length of the evanescent states in the
gap of order m is given by Eqs. (23) and (24). When β

increases, their decay length decreases and therefore the
current carried by the evanescent state with number of photon
m should decrease. However, with increasing β, the amplitude
of the wave function over states with higher number of
photons m inside the irradiated region increases. There is a
competition between these two effects that creates oscillations
of the conductance at the Dirac point when varying β

(Fig. 9).
To understand this competition, it is useful to plot the con-

ductivity Gm carried by each channel m, where m corresponds
to the even number m of photons absorbed or emitted, defined
as:

Gm = 4e2

h
(Tm + T−m) , (54)

evaluated at μ = 0. We normalize this quantity by W/L in
order to compare our results to the nonirradiated case. We
realize that the shape of this curve is independent of W which
means that the conductance G is a linear function of W . This is
consistent with the fact that the density of states is proportional
to 1/W . However this curve depends on L because L has to
be compared to the characteristic length ξ of the evanescent
states (which are functions of β). The effect of varying L on
this curve is to compress or expand the curve along the β axis.
In the next section, we study the evolution of the conductance
as a function of L for a fixed β.

FIG. 9. Conductance Gm at the Dirac point carried by electrons
having emitted or absorbed m photons in a function of the driving
strength for a length L = 50lω and N = 5 Floquet replicas. Gm

is defined by Eq. (54) in the text. The competition between the
decreasing characteristic length of the evanescent states and the
increasing weight of the wave function over replicas with a higher
number of photons creates these oscillations.

For β = 0, we recover the nonirradiated result minimal
conductance:

G(μ = 0,β = 0) = G0

π

W

L
. (55)

For β < 0.15, the two main contributions come from the
channels m = 0 and m = 2 (Fig. 9). As expected, the current
carried by the channel m = 0 decreases with β because: (i)
the gap 0 increases and (ii) the weight of the wave function
on this channel decreases. We now turn to the current carried
by the channel m = 2: For β = 0 it is zero because there
is no irradiation, thus it necessarily increases with β as we
open this channel. We can see in Fig. 9 that the conductance
G2 increases faster than G0 decreases, therefore the total
conductance increases.

At β = 0.15, the channel m = 4 starts to contribute al-
though the main part of the current is being carried by channel
m = 2. Then for β > 0.2, the conductance G2 of this channel
m = 2 starts to decrease while the conductance G4 increases
with β. Around β = 0.3, the total conductance G reaches
a minimum, while contributions from the m = 2 and m = 4
channels are almost equal. The same scenario repeats with
increasing β.

B. Minimal conductivity vs length

For β = 0.3, we obtain that the conductance can be fitted
by a simple model including only three evanescent states
[associated with three nested gaps around ε = 0 in Fig. 2(a)]:

G

G0

L

W
= L(ae−L/ξ0 + be−L/ξ2 + ce−L/ξ4 ) , (56)

where the fitting parameters a, b, and c are shown on the plot.
For β = 0.3, the conductance originating from evanescent
states that belong to the 4 gap is very weak. We checked
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(a)

(b)

FIG. 10. Conductance of a ribbon as a function of the length L

of the ribbon for driving strength β = 0.3 and chemical potential
μ = 0 (N = 3) using two different representation: (a) logarithm of
the conductance for W = 100lω and (b) conductance normalized by
the ratio W/L (this curve is independent of the ribbon width W ). The
smooth green curve corresponds to the fit in Eq. (56), and the resulting
fitting parameters are a, b, and c. The dashed lines correspond to the
edge state conductance given by Eq. (57), which are linear with
respect to L because of their ballistic nature.

that adding the conductance states originating from the gap
6 in the fitting function (56) doesn’t change the results
(for lengths smaller than 800lω, according to Table II).
Therefore the scaling of the bulk conductance is quite different
than the one obtained by Gu et al. [12]. Our model suggests
that the bulk conductance is described by Eq. (56) where
only the evanescent states with small m (m is the order of
the anticrossing) are required, whereas in Gu et al., the whole
set of evanescent states originating from the gaps m including
those with high m has to be taken into account, resulting in
an approximate power law behavior [12]. The discrepancy is
related to the fact that we have considered the regime of small
β < 1 which corresponds to moderate laser powers for photon
energy below 100 meV to avoid heating. In this regime we

FIG. 11. Critical length Lc where bulk and edge have the same
contribution to the current at μ = 0 for a driving strength β = 0.3.
For lengths longer than Lc, the current is carried mainly by edge
states whereas for shorter lengths, the current is dominated by the
evanescent bulk states.

find that only a finite number of Floquet replica is needed to
get the DC conductance.

1. Edge state conductance

So far, only the bulk conductance has been evaluated and it
is necessary to explicit the conditions upon which edge state
contributions dominates. The dotted lines in Fig. 10 correspond
to the edge state conductance. There is one edge state linking
the valleys that contributes to dc conductance [12,16,20,21],
therefore the maximal edge conductance is equal to:

Gedge(μ = 0) = 2e2

h
= G0/2. (57)

This situation is completely identical to the case studied in
Sec. IV C except for the factor 1/2 in the edge conductance
and the different expression for the bulk conductance (56).
We don’t take into account the nonquantization of the edge
states due to the driving [51] but we know that the edge states
are chiral and robust to disorder, so that their conductance
is independent of the size of the sample. We apply the same
procedure as in Sec. IV C to see the competition between edge
and bulk states and obtain the curve Lc(W ) for which the edge
and the bulk states conductance is equal (Fig. 11).

VI. EXPERIMENTAL PARAMETERS

Here we discuss the assumptions made in the previous
sections and the conditions necessary to observe the various
transport phenomena investigated in this paper.

A. Dissipation

The Landauer-Büttiker formalism implicitly assumes that
dissipation occurs only in the leads. In the irradiated region, the
electrons are coherently dressed by one or several quanta of
the electromagnetic radiation, and the corresponding excess
energy is dissipated in the drain electrode of the transistor.
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Clearly, this is only valid when the irradiated region length L

is short enough. If one considers coupling to a phonon bath,
the relevant time scales are the characteristic time for excited
electrons to emit phonons, and the dwell time of the electron
through the central irradiated graphene region. In the ballistic
limit, this condition gives an upper bound on the sample length

L < vτph, (58)

where τph is the average time between electron-phonon inelas-
tic scattering processes. The dominant process for relaxation of
excited electrons is the emission of optical phonons of energy
194 or 330 meV [53]. The characteristic time for this process
is τopt ≈ 1 ps, which limits the sample length to L < 1μm. For
electrons with smaller energy, the only dissipating channel is
the acoustic phonon [54,55], which is a much slower process
that takes place on a timescale of the order of a nanosecond
[55], which corresponds to length L < 1 mm. Finally, the
assumption of a ballistic conductor requires the length of the
sample to be smaller than the mean free path le of scattering
of electrons by impurities, which in high-quality graphene is
le ≈ 1–10 μm.

In conclusion, dissipation by (optical) phonons can be
safely neglected for photon energies h̄ω smaller than 200 meV.
Besides, we note that such photon energies are much smaller
than the bandwidth of graphene, so the low energy Dirac
equation approximation is valid.

B. Observability

According to the previous section, we consider photon
energies ranging from 10 to 100 meV, namely terahertz
frequencies from 2.5 to 25 THz. This frequency window
corresponds to characteristic lengths lω = 6 nm to 0.6 nm.

Experimentally, the typical electron densities that can
be reached in graphene are around 5 × 1012 cm−2 which
corresponds to Fermi energies up to 250 meV. With the electron
energies considered, it is experimentally feasible to reach the
energy dips at ±h̄ω/2.

Finally, the laser intensity required to reach the driving
strength β = 1 (considered as an upper limit for the scope of
this paper) is 1 mW μm−2 for photons with energy 10 meV
and 104 mW μm−2 for photons of 100 meV, which are very

high. This is why we have restricted our plots to values of β

much smaller than one (typically β = 0.1 or β = 0.3).

VII. CONCLUSIONS

The two-terminal conductance of a rectangular graphene
ribbon irradiated by an electromagnetic wave (frequency ω)
has been studied using the Floquet theory for experimentally
realizable setups. In the ballistic regime our numerical cal-
culations confirm that the coherent dressing of the original
Dirac cone leads to the opening of a set of two nonequivalent
photoinduced gaps in the Floquet zone, around quasienergies
ε = 0 and ε = h̄ω/2. The size of the gaps are found to
be in good agreement with RWA estimations [45] at low
irradiation β. When the chemical potential is tuned inside one
of these photoinduced gaps, the conductance of the sample
decreases drastically because the current is now carried by
evanescent states (rather than propagating states when β = 0).
The conductance curve as a function of the chemical follows
closely the nonirradiated one except at integer multiples
of h̄ω/2 where broad dips appear. For weak driving, the
main effect on the conductance is seen at doping μ = h̄ω/2,
while for stronger driving additional dips also develop around
μ = h̄ω. The effect of the irradiation is also effective at the
Dirac point where it modulates the value of bulk minimal
conductance. The widths of these dips (on the axis of chemical
potential) correspond to the sizes of the gaps in the Floquet
spectrum, while the depth of these dips (on the conductance
axis) depends on the length of the sample. The residual
conductance in dips has been fitted by assuming that the current
is carried by a few evanescent states characterized by distinct
decay lengths.

Besides the transport by 2D bulk states, electrons may
also propagate through photoinduced 1D edge states. We have
shown that the edge state contribution to the total conductance
can be neglected for short enough samples, and a quantitative
criterium, for being in the bulk transport regime, has been
given.
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