
HAL Id: hal-01679889
https://hal.science/hal-01679889

Submitted on 10 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bisimulations on Data Graphs
Sergio Abriola, Pablo Barceló, Diego Figueira, Santiago Figueira

To cite this version:
Sergio Abriola, Pablo Barceló, Diego Figueira, Santiago Figueira. Bisimulations on Data Graphs.
Journal of Artificial Intelligence Research, 2018, 61, pp.171-213. �10.1613/jair.5637�. �hal-01679889�

https://hal.science/hal-01679889
https://hal.archives-ouvertes.fr

BISIMULATIONS ON DATA GRAPHS

Bisimulations on Data Graphs

Sergio Abriola SABRIOLA@DC.UBA.AR
Universidad de Buenos Aires & ICC-CONICET

Pablo Barceló PBARCELO@DCC.UCHILE.CL
Center for Semantic Web Research &
DCC, University of Chile

Diego Figueira DIEGO.FIGUEIRA@LABRI.FR
CNRS, LaBRI, France

Santiago Figueira SANTIAGO@DC.UBA.AR

Universidad de Buenos Aires & ICC-CONICET

Abstract
Bisimulation provides structural conditions to characterize indistinguishability from an exter-

nal observer between nodes on labeled graphs. It is a fundamental notion used in many areas, such
as verification, graph-structured databases, and constraint satisfaction. However, several current
applications use graphs where nodes also contain data (the so called “data graphs”), and where ob-
servers can test for equality or inequality of data values (e.g., asking the attribute ‘name’ of a node
to be different from that of all its neighbors). The present work constitutes a first investigation of
“data aware” bisimulations on data graphs. We study the problem of computing such bisimulations,
based on the observational indistinguishability for XPath —a language that extends modal logics
like PDL with tests for data equality— with and without transitive closure operators. We show
that in general the problem is PSPACE-complete, but identify several restrictions that yield better
complexity bounds (CO-NP, PTIME) by controlling suitable parameters of the problem, namely
the amount of non-locality allowed, and the class of models considered (graphs, DAGs, trees). In
particular this analysis yields a hierarchy of tractable fragments.

1. Introduction

1.1 The notion of bisimulation

Bisimulation is a fundamental notion that establishes when two nodes (or states) in a labeled graph
(e.g., a transition system) cannot be distinguished by an external observer. It was independently
discovered in the areas of computer science and philosophical logic during the 1970s —see the
work of Sangiorgi, 2009 for a thorough historical revision of the notion of bisimulation. In both
contexts, bisimulation (and its “half” version, simulation) appeared as a refinement of the notion of
morphism, i.e, “structure-preserving” mappings. In the case of computer science, bisimulation was
developed by Milner (and refined by Park) in the context of concurrency theory as a way to study
the behavior of programs (Milner, 1971; Park, 1981). In philosophical logic, it was introduced by
van Benthem in order to characterize the expressive power of the basic modal logic in terms of a
fragment of first-order logic (van Benthem, 1976).

Nowadays, different fields of computer science apply domain-specific notions of (bi)simulation.
For instance, (bi)simulation is used in concurrency to study behavioral equality for processes (Mil-
ner, 1999); in model checking to tackle the state-explosion problem (Clarke, Grumberg, & Peled,
2001); in databases as a method for indexing and compressing semi-structured data (Milo & Su-

1

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

ciu, 1999; Fan, Li, Wang, & Wu, 2012); in stochastic planning to solve Markov decision processes
efficiently (Givan, Dean, & Greig, 2003); in description logics to understand the expressiveness of
some languages (Kurtonina & de Rijke, 1999); in natural language generation to define semantic
counterparts to the notion of referring expression (Areces, Figueira, & Gorı́n, 2011); and, with a
data-aware definition of bisimulation, in the verification of data-aware processes as a way to ob-
tain decidability under suitable semantic restrictions (Hariri, Calvanese, De Giacomo, Deutsch, &
Montali, 2013a; Hariri, Calvanese, Montali, De Giacomo, De Masellis, & Felli, 2013b). Also, in
constraint satisfaction the closely related notion of arc consistency is used as an approximation of
satisfiability (Dechter, 1992, 2003) and as a method for finding tractable instances of SAT (Kolaitis
& Vardi, 2000; Dalmau, Kolaitis, & Vardi, 2002).

Let us quickly recall the notion of bisimulation for the basic multi-modal logic, here called ML.
An ML-structure is a tuple 〈G,E, V 〉, whereG is a set of nodes, E ⊆ G×A×G are directed edges
labeled with a letter from a given fixed and finite alphabet A, and V is a function mapping every
node in G with a set of propositional symbols.

Let G = 〈G,E, V 〉 and G′ = 〈G′, E′, V ′〉 be two ML-structures. A bisimulation between G and
G′ is a relation Z ⊆ G×G′ such that for each pair (u, u′) ∈ Z we have:

• (Atomic harmony) V (u) = V (u′)

• (Zig) if G contains an edge u a→v (for a ∈ A) then G′ contains an edge u′ a→v′ such that
(v, v′) ∈ Z.

• (Zag) if G′ contains an edge u′ a→v′ (for a ∈ A) then G contains an edge u a→v such that
(v, v′) ∈ Z.

The nodes u in G and u′ in G′ are bisimilar if there is a bisimulation between G and G′ that contains
the pair (u, u′).

The following are two important properties of this notion:

• First, bisimulation can be restated in terms of greatest fixed points, which in turn yields a
simple polynomial time algorithm for checking if u and u′ are bisimilar (more specifically,
for computing the maximal bisimulation between G and G′).

• Second, the notion of bisimulation captures, in a precise sense, the expressiveness of ML
on finite models. Formally, Hennesy-Milner’s Theorem establishes that nodes u and u′ are
bisimilar if and only if they cannot be distinguished by ML formulas (see, e.g., Blackburn,
de Rijke, & Venema, 2001). This result is robust, as it continues to hold if we replace ML by
more expressive navigational logics used in the analysis of programs (e.g., PDL, Fischer &
Ladner, 1979) and model checking (e.g., CTL∗, Clarke et al., 2001).

1.2 Data-aware bisimulations

A distinguishing feature of bisimulations is that they are defined in terms of the topology of the
graph structure only, i.e., the way in which nodes are linked by labeled edges. This is good enough
for applications on which this topology is the only relevant feature in their model. However, it is not
sufficient for other applications that impose higher demands on such models and query languages.
We are thinking here, in particular, of “data-aware” models such as data or property graphs, which
have become de-facto standard in the area of graph databases (see, e.g. Angles & Gutiérrez, 2008;

2

BISIMULATIONS ON DATA GRAPHS

Libkin & Vrgoč, 2012; Robinson, Webber, & Eifrem, 2013), or XML documents such as data
trees (Bojańczyk, Muscholl, Schwentick, & Segoufin, 2009). In addition to the topology defined by
labeled edges, such graph-based models allow nodes to be attributed, i.e., to be associated with a
set of property/value pairs. Moreover, languages over these models are endowed with the capability
of testing for equality of such data values.

Example 1. Consider a data graph representation of a movie database, in which (a) nodes represent
actors, directors, and movies, (b) edges establish relationships between such nodes, e.g. movie m
is directed by director d and casts actor a, and (c) nodes contain attributes, such as the name of the
actor and its age, or the title of the movie, its duration, and the company who produced it. �

An important feature of the query languages for data graphs is that they combine topology and
data to express relevant properties. An example is the query which asks whether a director has two
movies produced by different companies. This query cannot be expressed in a purely navigational
language such as ML, PDL or CTL∗ (simply because they cannot compare the attribute values of
two nodes), but can in turn be expressed in the “data-aware” language XPath= (Libkin, Martens, &
Vrgoc, 2016). This language extends the navigational core of XPath with data comparison formulas
of the form 〈α1 = α2〉 and 〈α1 6= α2〉. Intuitively, when evaluated on a node u these formulas ask
whether there are paths π1 and π2 starting in u such that πi satisfies the condition given by path
expression αi (for i = 1, 2) and the final nodes of π1 and π2 have the same (resp., different) data
value (we assume for the sake of simplicity that each node is attributed with a single data value,
given by function data).

As it has been recently shown in the context of XML/data trees, the language XPath= allows for
a Hennessy-Milner’s style characterization in terms of a natural class of “data-aware” bisimulations
(Figueira, Figueira, & Areces, 2015). We notice in this article that such characterization extends in
a straightforward way to the class of data graphs. Let us explain intuitively how such “data-aware”
bisimulation Z (called XPath=-bisimulation in the paper) between data graphs G = 〈G,E, data〉
and G′ = 〈G′, E′, data′〉 is defined. The (Zig=) property establishes that for each pair (u, u′) in Z
and paths π1 and π2 in G starting from u, there must be paths π′1 (having the same length as π1) and
π′2 (having the same length as π2) in G′ starting from u′ such that:

• Topology-preserving property: The sequence of labels of πi and π′i (for i = 1, 2) are the
same and the jth node of πi is in the Z-relation with the jth node of π′i, for every j.

• Data-awareness property: If the data values of the final nodes of π1 and π2 are equal (resp.,
different), so is the case for the data values of the final nodes of π′1 and π′2.

This is graphically depicted in Figure 1.2. The (Zag=) property is, of course, symmetric.
It is worth remarking here that, in general, languages for data graphs, such as XPath= and others

—e.g., Bojańczyk et al., 2009; Figueira, 2010; Libkin & Vrgoč, 2012; David, Gheerbrant, Libkin,
& Martens, 2013— allow to test for (in)equality of data values only, abstracting away the concrete
data. This means, in particular, that such query languages cannot check if a node is attributed with a
particular data value d. The reason is that meaningful properties of the graph topology are naturally
closed under renaming of data values through bijections. While the use of constants may be essential
for data retrieval, from an observational perspective the infinite domain of data values is merely a
source of unique names to relate nodes. This is why we work with languages and bisimulation
notions that are closed under bijections of data values and, therefore, domain-independent.

3

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

Z

G G0

... ..
.

u
e1

e2

en

d1

d2

dm

... ..
.

e1

e2

en

d1

d2

dm

= (6=) = (6=)

u0

8⇡1

8⇡2

9⇡0
1

9⇡0
2

...

Figure 1: The (Zig=) clause for XPath= on data graphs. In the picture, (ei)i≤n and (dj)j≤m are
labels.

1.3 Potential applications

Data-aware bisimulations have been used to study the expressive power of XPath= on data trees
(Figueira, Figueira, & Areces, 2014). We foresee several other potential applications of them when
interpreted over data graphs:

• Indexing: Finding bisimilar nodes over graph-structured data is the first step in many ap-
proaches to building indexing data structures for efficient evaluation of navigational languages
(Milo & Suciu, 1999; Fan et al., 2012). These approaches are based on the following idea: If
x and y are bisimilar and x is in the output of a query, also y is in the output. Extending this to
“data-aware” bisimulations might then serve as a building-block over which index structures
for XPath= expressions can be constructed.

• Clustering: Another motivation stems from the task of clustering in graph data mining
(Getoor & Diehl, 2005), i.e.,, the division of data into groups of similar objects. One way to
define similarity on data graphs is based on observational indistinguishability, that is, group-
ing together elements x, y that cannot be distinguished with a data aware logic L: x ≡L y.
For the logic XPath=, this notion corresponds to “data-aware” bisimilarity. Further, in cases
when the previous notion is too strict, it might prove useful to compute a degree of similar-
ity, where more similar elements are elements that are distinguished through more complex
formulas. This degree of similiarity can be defined, in turn, by restricting suitable parameters
in the definition of “data-aware” bisimulations (e.g., the amount of non-locality allowed, as
studied in this paper).

• Referring expressions generation: A basic and active task in natural language generation
is referring expressions generation (REG); for a complete picture of the area, see the survey
of Krahmer & Van Deemter, 2012. The problem of REG can be stated as follows: given
a scene and a target element in that context, generate a grammatically correct expression,
called referring expression (RE), in a given language that uniquely represents the element.
It has been proposed by Krahmer, van Erk, & Verleg, 2003 to use labeled directed graphs
for representing the scene, while the work of Areces, Koller, & Striegnitz, 2008 resorts to

4

BISIMULATIONS ON DATA GRAPHS

Person
ID: 5774

Person
ID: 8750

Account
ID: 48719

Account
ID: 99843

Bank
ID: 56

Bank
ID: 18

Person
ID: 3348

Account
ID: 85994

Account
ID: 44769

Account
ID: 37619

Account
ID: 83420

A B C

has has has has has has

in in in in in in

Figure 2: A scene with people, accounts and banks.

description logics (DLs) as a formalism for representing a RE. Finally, the work of Areces
et al., 2011 shows that the latter approach can be efficiently implemented using bisimulations.

In some cases, though, a scene for the REG problem is better modeled as a data graph. Imag-
ine, e.g., a scene modeling clients, accounts, and banks (Figure 2). Each object has an ID.
Suppose we look for a RE for target B. It is impossible to distinguish nodes A and B using
ML or the DLs used in previous works, since they are bisimilar (assuming, of course, that
IDs are not part of the language). However, the RE for B “the person who has accounts in
different banks” can be formalized in XPath= as follows:

Person ∧ 〈↓has[Account]↓in[Bank] 6= ↓has[Account]↓in[Bank]〉.
Thus, extending the work of Areces et al., 2011, “data-aware” bisimulations might then be an
efficient tool for REG in cases when REs are expressed in the language of XPath=.

1.4 Computing “data-aware” bisimulations

In any of the previous cases one is faced with the fundamental problem of determining whether two
nodes are “data-aware” bisimilar (more in general, checking if there is a “data-aware” bisimulation
relating two data graphs). Recall that this problem can be solved in PTIME for usual (i.e., purely
topological) bisimulations. One of the reasons that explains this is that such bisimulations are local,
in the sense that the (Zig) and (Zag) conditions for a pair (u, u′) are defined in terms of nodes which
are adjacent to u and u′, resp. But this no longer holds for “data-aware” bisimulations, as the (Zig=)
and (Zag=) conditions are defined in terms of arbitrarily long paths (i.e., in a non-local way). As it
turns out, this makes the problem of computing “data-aware” bisimulations intractable.

1.5 Contributions

Our main contribution is an in-depth study of the complexity of computing “data-aware” bisimula-
tions by fine-tuning on the level of non-locality allowed. This non-locality is measured in terms of
(a) the lengths of the paths considered in the definition of bisimulation, and (b) the classes of models
over which bisimulations are computed. In particular, we show the following:

• In full generality, checking whether two data graphs are “data-aware” bisimilar is PSPACE-
complete. This is obtained by showing that the problem is polynomially equivalent to equiva-

5

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

lence of nondeterministic finite automata, which is PSPACE-complete (Meyer & Stockmeyer,
1972). In particular, there are cases in which the smallest witness (π1, π2) to the fact that two
data graphs are not bisimilar is a pair of paths of exponential size.

• The previous observation naturally calls for a restriction on the length of paths to be inspected
in the definition of “data-aware” bisimulation (restriction (a) above). We start by considering
paths of polynomial length only. While this decreases the complexity of the problem to the
class CO-NP, we show that it still does not yield tractability.

We thus restrict to paths of constant length only and show that this condition does guaran-
tee tractability. Interestingly, this restricted notion of bisimulation characterizes an important
fragment of the XPath language; namely, the one of bounded length data comparisons. This
fragment restricts the length of expressions α1 and α2 in formulas of the form 〈α1 = α2〉 and
〈α1 6= α2〉 only —but does not restrict the navigational expressions of the form 〈α〉, where
〈α〉 is true if there is a path starting at the current node of evaluation satisfying α.

• We then study how the underlying graphs affect the complexity of the problem (restriction
(b) above), and look at the two most important classes of acyclic graphs: trees and DAGs. We
show that checking “data-aware” bisimilarity is tractable for the former and CO-NP-complete
for the latter.

• Finally, we look at two-way XPath=, which allows to traverse edges in both directions. The
problem of checking “data aware” bisimilarity in this context remains PSPACE-complete. The
upper bound follows easily, but the lower bound needs a new proof. As before, the restric-
tion to paths of polynomial length yields a CO-NP bound, and for paths of constant length
we obtain tractability. Interestingly, the simulation problem remains PSPACE-hard even over
DAGs, establishing a contrast with the case when inverses are not allowed.

A preliminary version of the present paper appeared in the work of Abriola, Barceló, Figueira,
& Figueira, 2016. This article extends that version as follows:

• We provide full proofs of all results. In particular, we explain in detail in the proof of Theorem
9 how the (bi)simulation problem for all the logics we consider can be reduced in polynomial
time to automata containment (resp., equivalence). This yields a general PSPACE upper bound
for the problem studied in the paper. It is worth noticing that such a reduction was only
sketched in the proceedings of Abriola et al., 2016. While not technically difficult, we believe
that it provides interesting insights into the nature of the problem.

• We provide a PSPACE lower bound for the complexity of (bi)simulation for two-way XPath=
over DAGs. This problem had been left open in the work of Abriola et al., 2016. The proof is
of independent interest, as it involves proving a PSPACE lower bound for the complexity of
the containment problem for a restricted class of automata.

1.6 Related work

There are many different approaches to define logics that compare data values. Some of these for-
malisms include: first-order logic with two variables (FO2) with access to an equivalence relation
that represents equality of data values (Bojańczyk et al., 2009); extensions of modal temporal logics,

6

BISIMULATIONS ON DATA GRAPHS

such as LTL, CTL or µ-calculus, with a data binding mechanism for storing and comparing values
(Demri, Lazić, & Nowak, 2005; Jurdziński & Lazić, 2007; Kara, Schwentick, & Zeume, 2010);
formalisms based on regular expressions or automata equipped with registers (Libkin et al., 2016;
Demri & Lazić, 2009; Jurdziński & Lazić, 2011); and logics based on XPath (Libkin et al., 2016;
Figueira, 2013, 2012), similar to the one we study in this work. All these different approaches are
in general incomparable in terms of expressive power, and the corresponding bisimulation notions
for such languages would therefore differ from ours. Some of these languages, e.g., FO2, have a
strong modal flavour, and thus they may relate to more traditional (i.e., local) notions of bisimula-
tion. Others, on the other hand, such as register automata or modal logics with binding mechanisms,
may need some extra structure in the definition of the bisimulation relation (Murawski, Ramsay,
& Tzevelekos, 2015). One exception to this rule is the so-called logic of repeating values studied
in the works of Demri, D’Souza, & Gascon, 2007; Demri, Figueira, & Praveen, 2016; Abriola,
Figueira, & Figueira, 2017b, which can be seen as a common factor between the temporal approach
and XPath=. This logic, however, does not feature the non-local flavour of XPath= when testing for
data values, and thus its corresponding bisimulation notion (which has not been studied as of now)
is of different nature than ours.

Noticeably, our intractability results are in line with the intractability of other non-local notions
of bisimulations, such as the fair bisimulations studied in verification (Kupferman & Vardi, 1998).
An important point of departure, though, is that such notions are defined with respect to infinite paths
in transition systems, while our notion considers finite paths only. Since our notion of bisimulation
requires comparing the data values of the last nodes in two paths, it simply does not make sense to
consider infinite paths.

Interestingly, different notions of of data-aware bisimulations have been recently introduced in
the literature on verification of data-centric dynamic systems (Hariri et al., 2013a, 2013b; Belar-
dinelli, Lomuscio, & Patrizi, 2014). While such notions are defined “locally” – in the same way
than the usual notion of bisimulation – a “non-local” condition is externally imposed by requiring
pairs in the bisimulation relation to be isomorphic with respect to a bijection between the data do-
mains of the systems. It is difficult to study how such notions of bisimulation compare to ours, as
they are defined over a different data model that is suitable for the problems at hand. However, it
is clear that they allow to impose conditions that our notion cannot; e.g., that there is a path along
which n different data values occur. On the other hand, they include no explicit way of comparing
the data values of the last nodes of two paths, which is in turn allowed by our notion. Thus, it seems
that these notions are incomparable to ours. To the best of our knowledge, there has been no analysis
of the complexity of the notions of bisimulation used in the study data-centric dynamic systems.

Finally, the logics we study are related to description logics with concrete domains (Lutz, 2003;
Lutz, Areces, Horrocks, & Sattler, 2005) —a family of modal logics designed for the representation
of conceptual knowledge, equipped with means that allow to describe “concrete qualities” of real-
world objects such as their weight, temperature, and spatial extension. One can draw a connection
between, on the one hand, ALC when restricted to having binary predicates =, 6= on a concrete
domain, and, on the other hand, data-aware XPath without transitive axes on data graphs. The study
of such logics has concentrated, however, on static analysis tasks such as satisfiability and subsump-
tion, which have no direct relationship with bisimulations.

7

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

1.7 Organization of the paper

We present basic notions in Section 2. The XPath=-bisimulations are introduced in Section 3. The
complexity of XPath=-bisimulations is studied in Section 4. Restrictions on paths are presented in
Section 5, and those on data models in Section 6. The two-way version of XPath= is studied in
Section 7. Finally, Section 8 is devoted to conclusions.

2. Data Graphs and XPath

As is customary in graph-structured data, we work with edge-labeled data graphs, i.e., finite graphs
whose edges are labeled with an element of a finite alphabet A and whose nodes contain a single
value of an infinite domain D (Libkin & Vrgoč, 2012; Barceló, 2013). Formally, a data graph G
over A is a tuple 〈G,E, data〉, where G is a finite set of nodes, E ⊆ G×A×G, and data : G→ D
assigns values to nodes. Intuitively, an edge (x, a, y) ∈ E (for x, y nodes in G and a a symbol in
A) represents that there is an a-labeled edge from x to y. Also, data(x) = d iff the data value of
node x is d. By convention, the set of nodes of a data graph G will be denoted by G, the set of nodes
of a data graph G′ by G′, and so on. When E is clear from the context, we write x a→y instead of
(x, a, y) ∈ E.

We work with the language XPath=, a simplification of XPath, stripped of its syntactic sugar,
and adapted to reasoning with data values. While XPath= was initially designed for querying XML
documents with data values, suitably represented as data trees (Figueira et al., 2015), it is natural
to evaluate this language also over data graphs (see, e.g., Libkin, Martens, & Vrgoč, 2013). While
some works have used a different terminology to refer to the versions of XPath that are evaluated
over graphs (e.g., Libkin et al., 2013 calls such family of languages GXPath), we keep calling the
language XPath= for the sake of simplicity (and as, after all, the syntax remains unchanged).

XPath= is a two-sorted language, with path expressions (denoted α, β, γ) representing binary
relations on nodes, and node expressions (denoted ϕ,ψ, η) representing unary relations, or proper-
ties. Its syntax is defined by mutual recursion as follows:

α, β ::= ε | ↓a | αβ | α ∪ β | [ϕ] (a ∈ A)

ϕ,ψ ::= ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α = β〉 | 〈α 6= β〉.

A node expression is positive if it contains no negation.
We formally define the semantics of XPath= in Figure 3. Intuitively, ↓a corresponds to going to a

neighbor of the current node via an edge labeled with a, the formula [ϕ] is used to check that ϕ holds
in some node along a path, and 〈α = β〉 checks that we have witnesses for the path expressions α
and β such that their ending node have same data values (or different ones for 〈α 6= β〉).

Example 2. In order to ease the understanding of the semantics of XPath=, we present some exam-
ples of the interpretation of some path and node expressions of XPath=. Recall that the semantics of
a node expression correspond to a set of nodes, while the semantics for path expressions correspond
to a set of pairs of nodes. Consider then the formulas

α = ↓a↓b (1)

β = [ϕ] (2)

ϕ = 〈ε = α〉 (3)

8

BISIMULATIONS ON DATA GRAPHS

[[ε]]G = {(x, x) | x ∈ G}
[[↓a]]G = {(x, y) | (x, a, y) ∈ E}
[[[ϕ]]]G = {(x, x) | x ∈ [[ϕ]]G}
[[αβ]]G = {(x, z) | ∃y : (x, y) ∈ [[α]]G , (y, z) ∈ [[β]]G}

[[α ∪ β]]G = [[α]]G ∪ [[β]]G

[[〈α〉]]G = {x ∈ G | ∃y : (x, y) ∈ [[α]]G}
[[〈α = β〉]]G = {x ∈ G | ∃y, z : (x, y) ∈ [[α]]G , (x, z) ∈ [[β]]G , data(y) = data(z)}
[[〈α 6= β〉]]G = {x ∈ G | ∃y, z : (x, y) ∈ [[α]]G , (x, z) ∈ [[β]]G , data(y) 6= data(z)}

[[ϕ ∧ ψ]]G = [[ϕ]]G ∩ [[ψ]]G

[[¬ϕ]]G = G \ [[ϕ]]G

Figure 3: Semantics of XPath= for a data graph G = 〈G,E, data〉.

ψ = 〈α 6= α〉 (4)

The intuitive interpretation of such formulas is as follows.

1. The pairs (u, v) of nodes such that v can be reached from u by first following an edge labeled
a and then another one labeled b.

2. The pairs (u, u) such that u satisfies ϕ.

3. The nodes u such that from u there is a path to some node v for which it holds that (a) (u, v)
satisfies α, and (b) u and v have the same data value.

4. The nodes u such that from u there are paths to nodes v and v′ for which it holds that (a) both
(u, v) and (u, v′) satisfy α, and (b) v and v′ have different data values.

For a data graph G and u ∈ G, we write G, u |= ϕ to denote u ∈ [[ϕ]]G , and we say that G, u
satisfies ϕ.

Definition 3 (Indistinguishability). We write G, u ≡ G′, u′ if

G, u |= ϕ ⇐⇒ G′, u′ |= ϕ, for every node expression ϕ of XPath=.

Similarly, we write G, uV G′, u′ if

G, u |= ϕ =⇒ G′, u′ |= ϕ, for every positive node expression ϕ of XPath=.

As it is always the case, the notion of one-way indistinguishability (V), which is not symmetric,
applies only to formulas which are positive. If we considered formulas with negation in its definition,
one would have that G′, u′ |= ϕ iff G′, u′ 6|= ¬ϕ, and this would imply G, u 6|= ¬ϕ, i.e., G, u |= ϕ;
henceforth, the notion of⇒ in such a case would coincide with that of ≡.

In the next section we introduce a notion of (bi)simulation that characterizes, in a precise sense,
logical indistinguishability (i.e., the relations ≡ andV) for XPath=.

9

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

3. Bisimulations on Data Graphs

The notion of (bi)simulation for XPath= over data trees was developed in the work of Figueira et al.,
2014 and later extended by Abriola, Descotte, & Figueira, 2014. As we observe next, this notion is
robust and extends in a straightforward way to data graphs.1

Definition 4 (XPath=-bisimulations). Let G and G′ be data graphs over A. An XPath=-bisimulation
between u ∈ G and u′ ∈ G′ (written G, u↔ G′, u′) is a relation Z ⊆ G × G′ such that uZu′ and
for all (x, x′) ∈ G×G′ such that xZx′ we have:

• (Zig=) For every pair of paths in G of the form

π1 = x
e1→x1 e2→ . . .

en→xn and π2 = x
d1→y1 d2→ . . .

dm→ym (for ei, dj ∈ A),

there are paths in G′ of the form

π′1 = x′
e1→x′1

e2→ . . .
en→x′n and π′2 = x′

d1→y′1
d2→ . . .

dm→y′m,

such that the following holds:

1. xiZx′i for all 1 ≤ i ≤ n, and yjZy′j for all 1 ≤ j ≤ m.

2. data(xn) = data(ym)⇔ data(x′n) = data(y′m).

• (Zag=) For every paths in G′ of the form

π′1 = x′
e1→x′1

e2→ . . .
en→x′n and π′2 = x′

d1→y′1
d2→ . . .

dm→y′m, (for ei, dj ∈ A),

there are paths in G of the form

π1 = x
e1→x1 e2→ . . .

en→xn and π2 = x
d1→y1 d2→ . . .

dm→ym

such that conditions 1 and 2 above are verified.

Furthermore, an XPath=-simulation from u ∈ G to u′ ∈ G′ (denoted G, u→ G′, u′) is a relation
Z ⊆ G×G′ such that uZu′ and for all (x, x′) ∈ G×G′ such that xZx′ it is the case that condition
(Zig=) above is verified.

The nodes u in G and u′ in G′ are XPath=-(bi)similar if there is an XPath=-(bi)simulation
between G, u and G′, u′. �

It is worth comparing our XPath=-bisimulation with the classical bisimulation notion for ML.
There are two simple ways of transforming a data graph into an ML-structure.

1. We erase the data values, obtaining a ML-structure with empty valuation for the propositional
variables. Under this interpretation, it is clear that if two nodes are XPath=-bisimilar then
they are ML-bisimilar, while the converse implication is not true in general. This is explained
in the following example.

1. Strictly speaking, the notions presented below for data graphs are slightly different from the ones presented in the
work of Figueira et al., 2014 for data trees. This is because the data trees studied in such article are node-labeled
while our data graphs are edge-labeled. The difference is inessential to the results, as it is easy to define (bi)simulation
invariant translations from node-labeled data graphs to edge-labeled graphs, and viceversa.

10

BISIMULATIONS ON DATA GRAPHS

u1

u2 u3

u4

u0
1

u0
2

u0
3

G G0

1

2

3

1

1

2

3

Figure 4: Two data graphs with same label in all edges (not shown). The dotted lines represent the
maximal bisimulation for XPath=. The solid lines represent an ML-bisimulation when
data is absent.

Example 5. Consider the data graphs G and G′ in Figure 4. It can be checked that Z =
{(u1, u′1), (u2, u′2), (u3, u′2), (u4, u′3)} (represented by the solid lines) is an ML-bisimulation
on the ML-structures resulting from erasing the nodes’ data. However u1 and u′1 are not
bisimilar for XPath=. Indeed, the paths u1→u2 and u1→u3, arriving at nodes with different
data values, cannot be copied in G′, as the rule (Zig=) imposes. However one can check that
Z \ {(u1, u′1)} (represented by the dotted lines) is an XPath=-bisimulation. �

2. We assign a propositional letter pd to every node of the data graph with data value d in the data
graph. In contrast with the previous case, now the existence of an ML-bisimulation over the
ML-structure implies the existence of a data-aware bisimulation in the original data graph, but
the converse does not hold. See Figure 4: u2 and u′2 are XPath=-bisimilar but clearly not ML-
bisimilar as they do not verify (Atomic harmony). This is because XPath= (and, therefore,
the data-aware bisimulations studied in the paper) cannot speak about a particular data value
(it cannot express “data value d holds in the current node”), but can only check whether two
paths finish in nodes with the same (or different) data value.

XPath=-(bi)simulations are closed under union: if Z1 ⊆ G×G′ and Z2 ⊆ G×G′ are XPath=-
(bi)simulations between u ∈ G and u′ ∈ G, then so is Z1 ∪ Z2. This immediately implies the
following:

Proposition 6. If there is an XPath=-(bi)simulation between u ∈ G and u′ ∈ G, then there is a
maximal such XPath=-(bi)simulation.

3.1 The characterization

One can verify that the following theorem, originally stated in terms of data trees, holds also in the
general case of data graphs. It establishes the desired, Henessy-Milner-style characterization of the
notion of logical indistinguishability for XPath= in terms of XPath=-(bi)simulations.

Theorem 7. Let G and G′ be data graphs over the same alphabet A, and u and u′ nodes in G and
G′, respectively. Then G, u ≡ G′, u′ iff G, u↔ G′, u′, and G, uV G′, u′ iff G, u→ G′, u′.
Proof. We only prove the theorem for the case of bisimulation, as for simulation the proof is anal-
ogous. The idea is to reduce the case of data graphs to data trees by unravelling, and then use the
result of Figueira et al., 2015.

11

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

Let G be a data graph and u a node in G. We define G̃u as the data graph that corresponds to
the unraveling of G from node u. The idea is that nodes of G̃u are finite sequences of nodes from G
representing paths of G starting at u. Formally, the set of nodes of G̃u corresponds to the least subset
G̃u of G∗ such that (i) u ∈ G̃u, and (ii) for any σ ∈ G∗ and x, y ∈ G it is the case that

σxy ∈ G̃u ⇐⇒ σx ∈ G̃u and x a→y is an edge of G, for some label a ∈ A.

The set of edges of G̃u is defined as follows. For x, y ∈ G, σ ∈ G∗, and a label a we have

σx
a→σxy ∈ G̃u ⇐⇒ σx ∈ G̃u and x a→y ∈ G.

Finally, the data value of a node σx in G̃u is the data value of x in G. Observe that the unraveling of
a data graph is thus a possibly infinite (but finitely branching) data tree. The fact that the structure
is infinite does not change at all the semantics of XPath= given in Figure 3.

It can be seen that G, u↔ G̃u, u; in particular, that the relation that contains all pairs of the form
(x, σx) ∈ G × G̃u is an XPath= bisimulation between u in G and u in G̃u. On the other hand, it
can also be proved that G, u ≡ G̃u, u. In fact, one can show that G, u |= ϕ iff G̃u, σu |= ϕ for every
formula ϕ in XPath=. The proof goes by induction on the structural complexity of ϕ. The key points
are the following:

• Let x0
e1→x1 e2→ . . .

en→xn be a path in G such that x0 is reachable form u. Then from every
σ0 ∈ G̃u whose last symbol is x0 there is a path σ0

e1→σ1 e2→ . . .
en→σn in G̃u such that the data

value of xi coincides with that of σi, for each 0 ≤ i ≤ n.

• Analogously, for any path σ0
e1→σ1 e2→ . . .

en→σn in G̃u there is a path x0
e1→x1 e2→ . . .

en→xn in G,
where x0 (reachable from u) is the last symbol of σ0, and such that the data value of xi
coincides with that of σi for each 0 ≤ i ≤ n.

To obtain the desired result, we lift our data trees G, u and G′, u′ to their corresponding unravelings
and then use Theorem 8 from the work of Figueira et al., 2015, which states the coincidence of
logical equivalence and bisimulation over possibly infinite but finitely branching data trees.

Example 8. (Example 5 continued). Consider the data graphs of Figure 4. These data graphs contain
the same letter a in all its edges (not shown in the figure). In what follows we write ↓ instead of ↓a.
We have that G, u1 6≡ G′, u′1 since G, u1 |= 〈↓ 6= ↓〉 but G′, u′1 6|= 〈↓ 6= ↓〉. Another distinguishing
node expression could be 〈ε = ↓〉. Notice that u2 and u′2 cannot be distinguished in XPath= though
they have different data values (as this cannot be expressed in the logic).

It is worth remarking that adding the transitive reflexive closure ↓∗a of ↓a to XPath= does not
change the notion of (bi)simulation, and, in particular, Theorem 7 continues to hold (when ≡ and
V are replaced with the corresponding indistinguishability notion in the extended language).

4. Computing XPath=-(Bi)Simulations

As mentioned in the introduction, a fundamental problem when dealing with (bi)simulations is
checking whether a pair of nodes is (bi)similar. In this section we study the complexity of such
problem for XPath=-(bi)simulations and show it to be PSPACE-complete. This establishes an im-
portant difference with the problem of computing bisimulations in the absence of data, which can be

12

BISIMULATIONS ON DATA GRAPHS

solved in polynomial time, as it is essentially equal to computing bisimulations for the basic modal
logic.

Formally, we study the following problems:

XPATH=-(BI)SIMILARITY

INPUT : Data graphs G and G′, nodes u ∈ G and u′ ∈ G′.
QUESTION : G, u→ G′, u′? (G, u↔ G′, u′?, resp.)

Our main result establishes the following:

Theorem 9. The problems of XPATH=-BISIMILARITY and XPATH=-SIMILARITY are PSPACE-
complete.

From Theorem 7 we obtain:

Corollary 10. The problem of checking G, u ≡ G′, u′ or G, uV G′, u′, given data graphs G and G′
and nodes u ∈ G and u′ ∈ G′, is PSPACE-complete.

Furthermore, the proof of Theorem 9 will imply that the PSPACE lower bound is quite resilient,
as it holds even when checking indistinguishability for the restricted class of formulas of the form
〈ε = ↓e1 . . . ↓en〉, for e1 . . . en ∈ A. These formulas simply check if, starting from a node u, it is
possible to follow a path labeled e1 . . . en and reach a node with the same data value as u. Formally,
let us write G, u ≡paths G′, u′ if G, u and G′, u′ are indistinguishable with respect to this class of
formulas; that is, if for every e1, . . . , en ∈ A we have that

G, u |= 〈ε = ↓e1 . . . ↓en〉 ⇔ G′, u′ |= 〈ε = ↓e1 . . . ↓en〉.

Analogously, we define G, uVpaths G′, u′. We then obtain the following corollary.

Corollary 11. Checking G, u ≡paths G′, u′ or G, uVpaths G′, u′ is PSPACE-complete.

The proof of Theorem 9 shows that (essentially) XPATH=-(BI)SIMILARITY is polynomially
equivalent to the containment problem (resp., equivalence problem) for nondeterministic finite au-
tomata (NFAs). Although the proof is not very involved, both directions are non-trivial, and, in
particular, the reduction from containment to bisimilarity requires a clever encoding. Below, we
briefly recall basic notions on NFA and its containment and equivalence problems.

Basics on automata. Recall that an NFA over a finite alphabet A is given as a tupleA = (Q, q0, F, δ),
where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and
δ ⊆ Q×A×Q is the transition relation. A word w ∈ A∗ is accepted by A if there is an accepting
run of A over w that respects the transition relation δ. Formally, if w = a1 . . . an, where each ai
is a symbol in A, an accepting run of A over w is a sequence q0 . . . qn of states in Q such that (i)
(qi, ai+1, qi+1) ∈ δ for each 0 ≤ i < n, and (ii) qn ∈ F . (Notice that the first state of this accept-
ing run corresponds to the initial state of A). The set of words in A∗ that are accepted by A is the
language of A, denoted with L(A).

The containment problem for NFAs is defined as follows. Given NFAs A1 and A2 over A, is
L(A1) ⊆ L(A2)? Respectively, we define the equivalence problem for NFAs, but this time we
ask whether L(A1) = L(A2). Both containment and equivalence of NFAs are PSPACE-complete
(Meyer & Stockmeyer, 1972). We prove Theorem 9 below by reductions to and from these problems.

13

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

4.1 Upper bound

We start by explaining how to obtain a PSPACE upper bound for XPATH=-SIMILARITY. The al-
gorithm receives a pair of graphs G,G′ and a pair of nodes u, u′, it guesses a candidate relation
Z ⊆ G×G′ containing (u, u′), and then checks that Z satisfies the (Zig=) property. Since Z is of
polynomial size and PSPACE = NPSPACE from Savitch’s Theorem (Savitch, 1970), i.e., PSPACE

is closed under non-determinism, we only need to show that the latter can be checked in PSPACE.
This is done by reducing the problem in polynomial time to containment of NFAs. Since NFA
containment is in PSPACE the result follows (as PSPACE computable functions are closed under
composition).

Let us explain now the reduction to containment of NFAs. Given a node x ∈ G, we construct
(details below) in polynomial time an NFA AG,x over the alphabet A × G ∪ {=, 6=} that accepts
precisely the language L of words of the form:

(e1, x1) . . . (en, xn) ? (f1, y1) . . . (fm, ym), (5)

for (ei, xi), (fj , yj) ∈ A×G and ? ∈ {=, 6=}, such that G contains paths:

x
e1→x1 e2→ . . .

en→xn and x
f1→y1 f2→ . . .

fm→ym

for which data(xn) ? data(ym).
We also construct (details below) an NFAAG,ZG′,x′ over the alphabet A×G∪{=, 6=} that accepts

precisely the language L′ of words of the form (5) such that G′ contains paths:

x′
e1→x′1

e2→ . . .
en→x′n and x′

d1→y′1
d2→ . . .

dm→y′m,

and the following holds:

• xiZx′i for each 1 ≤ i ≤ n, and yjZy′j for each 1 ≤ j ≤ m.

• data(x′n) ? data(y′m).

Finally, we verify (details below) that

Z satisfies (Zig=) ⇐⇒ L(AG,x) ⊆ L(AG,ZG′,x), for each (x, x′) ∈ Z. (6)

Since Z is of polynomial size, Equation (6) tells us that in order to check whether (Zig=) holds
we only need to check containment for a polynomial number of pairs of NFAs. This establishes the
upper bound since each such containment can be checked in PSPACE.

The proof for bisimilarity is analogous. In fact, Z satisfies (Zig=) and (Zag=) if and only if for
each (x, x′) ∈ Z it is the case that

L(AG,x) ⊆ L(AG,ZG′,x′) and L(AG′,x′) ⊆ L(AG′,Z−1

G,x).

This can clearly be checked in PSPACE.
In what follows, we give the definitions of AG,x and AG,ZG′,x′ , and the verification that (6) holds.

14

BISIMULATIONS ON DATA GRAPHS

Definition of AG,x. The set of states of AG,x is defined as

{y, y=d , y 6=d | y ∈ G and d is the data value of some node in G}.

The initial state is x and the set of final states corresponds to:

{y=d | data(y) = d} ∪ {y 6=d | data(y) 6= d}.

Finally, the transition relation of AG,x corresponds to the union of the following sets:

1. {(y, (e, z) , z) | (y
e→z) is an edge in G}.

2. {(y=d , (e, z) , z=d) | (y
e→z) is an edge in G and d is a data value in G}.

3. {(y 6=d , (e, z) , z 6=d) | (y
e→z) is an edge in G and d is a data value in G}.

4. {(y, (=) , x=d) | data(y) = d}.

5. {(y, (6=) , x6=d) | data(y) = d}.
Clearly, AG,x can be constructed in polynomial time from G. We prove next that L(AG,x) = L,
where L is the language defined above.

Notice first that any accepting run of AG,x must be a sequence of states of the form

xx1 . . . xn x
?
d (y1)

?
d . . . (ym)?d.

By definition, the word w accepted by this run is of the form:

(e1, x1) . . . (en, xn) ? (f1, y1) . . . (fm, ym),

for ei, fj ∈ A and ? ∈ {=, 6=}, and it is the case that G contains paths

x
e1→x1 e2→ . . .

en→xn and x
f1→y1 f2→ . . .

fm→ym
such that data(xn) = d if and only if ? corresponds to the symbol =. Since (ym)?d is an accepting
state, it must be the case then that

data(xn) = data(ym) ⇐⇒ ? corresponds to the symbol =.

We conclude that data(xn) ? data(ym), and therefore that w ∈ L. This tells us that L(AG,x) ⊆ L
since w was chosen arbitrarily.

On the other hand, consider a word w in L of the form

(e1, x1) . . . (en, xn) ? (f1, y1) . . . (fm, ym).

By definition, G contains paths:

x
e1→x1 e2→ . . .

en→xn and x
f1→y1 f2→ . . .

fm→ym
for which data(xn) ? data(ym). It is easy to see then that

xx1 . . . xn x
?
d (y1)

?
d . . . (ym)?d,

for d = data(xn), is an accepting run of AG,x over w. Thus, w ∈ L(AG,x), and, therefore,
L(AG,x) ⊆ L since w was chosen arbitrarily.

15

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

Definition of AG,ZG′,x′ . The set of states of AG,ZG′,x′ is defined by:

{(y, y′), (y, y′)=d , (y, y′)6=d | (y, y′) ∈ G×G′ and d is the data value of some node in G′}.
The initial state is (x, x′) and the set of final states corresponds to:

{(y, y′)=d | data(y′) = d} ∪ {(y, y′)6=d | data(y′) 6= d}.
Finally, the transition relation of AG,ZG′,x′ corresponds to the union of the following sets:

1. {
(
(y, y′), (e, z) , (z, z′)

)
| (y

e→z) is an edge in G, (y′
e→z′) is an edge in G′, and zZz′}.

2. {
(
(y, y′)=d , (e, z) , (z, z′)=d

)
| (y

e→z) is an edge in G, (y′
e→z′) is an edge in G′,

zZz′, and d is a data value in G′}.

3. {
(
(y, y′)6=d , (e, z) , (z, z′) 6=d

)
| (y

e→z) is an edge in G, (y′
e→z′) is an edge in G′,

zZz′, and d is a data value in G′}.

4. {
(
(y, y′), (=) , (x, x′)=d

)
| data(y′) = d}.

5. {
(
(y, y′), (6=) , (x, x′)6=d

)
| data(y′) = d}.

Clearly, AG,ZG′,x′ can be constructed in polynomial time from G. It is also quite easy to prove that

L(AG,ZG′,x′) = L′

Verification. Note that Z satisfies (Zig=) if and only if for every (x, x′) ∈ Z and paths in G of
the form

π1 = x
e1→x1 e2→ . . .

en→xn and π2 = x
d1→y1 d2→ . . .

dm→ym, where ei, dj ∈ A,

there are paths in G′ of the form

π′1 = x′
e1→x′1

e2→ . . .
en→x′n and π′2 = x′

d1→y′1
d2→ . . .

dm→y′m,
such that the following holds:

1. xiZx′i for all 1 ≤ i ≤ n, and yjZy′j for all 1 ≤ j ≤ m.

2. data(xn) = data(ym)⇔ data(x′n) = data(y′m).

In other words,Z satisfies (Zig=) if and only if for every (x, x′) ∈ Z and word over A×G ∪ {=, 6=}
of the form (5) such that G contains paths:

x
e1→x1 e2→ . . .

en→xn and x
f1→y1 f2→ . . .

fm→ym
for which data(xn) ? data(ym), it is the case that G′ contains paths:

x′
e1→x′1

e2→ . . .
en→x′n and x′

d1→y′1
d2→ . . .

dm→y′m,
for which the following holds:

• xiZx′i for each 1 ≤ i ≤ n, and yjZy′j for each 1 ≤ j ≤ m.

• data(x′n) ? data(y′m).

That is, Z satisfies (Zig=) if and only if for every (x, x′) ∈ Z it is the case that every word in
L(AG,x) is also in L(AG,ZG′,x′), i.e., L(AG,x) ⊆ L(AG,ZG′,x′).

16

BISIMULATIONS ON DATA GRAPHS

4.2 Lower bound

We start by showing the lower bound for XPATH=-SIMILARITY. We proceed by constructing a poly-
nomial time reduction from containment of NFAs to XPATH=-SIMILARITY. LetAi = (Qi, qi, Fi, δi)
be NFAs over alphabet A, for i = 1, 2. Here, Qi is the finite set of states of Ai, qi is the initial state,
Fi ⊆ Qi is the set of final states, and δi ⊆ Qi×A×Qi is its transition relation. We assume, without
loss of generality, that qi has no incoming transitions and Fi consists of a single state fi 6= qi without
outgoing transitions. Furthermore, we assume that fi (for i = 1, 2) is reachable from every state in
Qi and that Q1 ∩Q2 = ∅. It is easy to see that containment of NFAs continues being PSPACE-hard
even under such restrictions.

Let u1, u2, v1, v2, w1, w2 be fresh elements that do not belong to Q1 ∪ Q2. For i = 1, 2, we
define a data graph Gi = (Gi, Ei, datai) as follows (see Figure 5).

1. Gi = Qi ∪ {ui, vi, wi}.

2. (x, a, y) ∈ Ei if and only if one of the following holds:

• (x, a, y) ∈ δi
• x ∈ Qi \ {qi, fi} and y ∈ {ui, vi, wi}
• x = qi and y = ui

• x = ui and y ∈ {ui, vi, wi}

3. datai(q) =





1 if q ∈ {qi} ∪ Fi,
2 if q ∈ {ui} ∪Qi \ {qi, fi},
3 if q = vi,
4 if q = wi.

Clearly, Gi can be constructed in polynomial time from Ai, for i = 1, 2. We show next that

L(A1) ⊆ L(A2) ⇐⇒ G1, q1 → G2, q2.

We start with the right-to-left direction. Take an arbitrary word e1 . . . en ∈ L(A1). Therefore, n >
0 since A1 does not accept the empty word. Let ϕ := 〈ε = ↓e1 . . . ↓en〉. Then by construction
G1, q1 |= ϕ (as there is a path from q1 to f1 in G1 labeled e1 . . . en and data1(q1) = data1(f1)).
Hence, since G1, q1 → G2, q2 and ϕ is a positive node XPath= expression, Theorem 7 tells us that
G2, q2 |= ϕ. That is, there exists a path

π = q2
e1→u1 . . . en→un in G2 such that data2(q2) = data2(un).

Since n > 0, the node un can only be f2. By construction, then, all internal nodes of π must
belong to Q2 \ {q2, f2} (as there is no path linking nodes u2, v2, w2 with f2). This implies that
e1 . . . en ∈ L(A2).

For the left-to-right direction, let us define Z ⊆ G1 ×G2 as follows (see Figure 5): xZy iff one
of the following holds:

1. x = q1 and y = q2.

2. x ∈ {u1} ∪Q1 \ {q1, f1} and y ∈ {u2} ∪Q2 \ {q2, f2}.

17

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

q1

u1

v1 w1

1

2

1

2

3 4

A1

Q1 \ {q1, f1}

1

2

1 3 4

Q2 \ {q2, f2}

q2 A2

u2

v2 w2

G1 G2

Z

Z

Zf1 f2

2

Figure 5: The data graphs Gi = (Gi, Ei, datai) (i = 1, 2), constructed from NFAs A1 and A2, and
the bisimulation Z ⊆ G1 × G2 used in the left-to-right direction of the reduction. All
nodes inside a dotted area on G1 are related to all nodes inside a dotted on G2 area via Z.

3. x ∈ {v1, w1, f1} and y ∈ {v2, w2, f2}.
We show next that Z satisfies the (Zig=) clause for any pair (x1, x2) ∈ G1 ×G2 such that x1Zx2.
We do this by cases:

a. If x1 ∈ {f1, v1, w1} and x2 ∈ {f2, v2, w2}, then (Zig=) holds trivially as there are no outgo-
ing paths from f1, v1 or w1.

b. If x1 ∈ Q1 \ {q1, f1} ∪ {u1} and x2 ∈ Q2 \ {q2, f2} ∪ {u2}, let α, β be two paths starting in
x1. Suppose first that α = x1 (i.e. the empty path starting at x1) and

β = x1
e1→y2 e2→ . . .

em−1→ ym
em→z (resp. x1

e1→y2 e2→ . . .
em−1→ ym),

where the yi’s are in (Q1 \ {q1, f1})∪ {u1} and z ∈ {f1, v1, w1}. Then the corresponding β′

in G2 is
x2

e1→u2 e2→ . . .
em−1→ u2

em→v2 (resp., x2
e1→u2 e2→ . . .

em−1→ u2),

where there are m− 1 occurrences of u2. If both α and β have length greater than 0, then the
procedure is similar, but one path may end in w2 if the data values of the endpoints of α, β
are different elements in {1, 3, 4}.

c. Finally, if x1 = q1 and x2 = q2, there are two main cases for the type of paths α, β in G1 to
be replicated in G2 while respecting the (Zig=) condition with respect to Z. If both α and β
are of length greater than 0, then copying them is straightforward using the nodes u2, v2, w2.
If both are of length 0 the result is trivial. Suppose one of them is length 0 and the other one
is of length greater than 0, say α = q1 and

β = q1
e1→y2 e2→ . . .

en−1→ yn
en→z.

18

BISIMULATIONS ON DATA GRAPHS

We need to find paths α′ and β′ in G2, both starting in q2, which “copy” α and β respectively.
Clearly α′ is just q2, as it has to have length 0. The definition of β′ depends on z. If z ∈
Q1 \ {q1, f1} ∪ {u1, v1, w1}, then β′ is of the form

β′ = q2
e1→y′2

e2→ . . .
en−1→ y′n

en→z′, (7)

where y′i = u2 (i = 2 . . . n) and z′ is either u2, v2, or w2 if z is u1, v1, or w1, respectively.
If z = f1, then the endpoints of α and β have both data value 1. Since the word e1 . . . en ∈
L(A1) and by hypothesisL(A1) ⊆ L(A2), we conclude that e1 . . . en is accepted byA2. This
means that there is a path of the form (7) where y′i ∈ Q \ {q2, f2, u2, v2, w2} and z′ = f2.
This path satisfies the required condition of (Zig=), as the condition on Z is verified and the
data value of q2 and f2 (the endpoints of α′ and β′) are equal, namely have data value 1.

For XPATH=-BISIMILARITY the proof is analogous, but using this time a reduction from NFA
equivalence. In fact, it can be easily checked that with exactly the same construction shown above
we obtain that

L(A1) ≡ L(A2) ⇐⇒ G1, q1 ↔ G2, q2.
Notice that this construction also immediately implies Corollary 11. In fact, for the right-to-left

direction of the reduction to hold we only require invariance of (G2, q2) with respect to (G1, q1)
referred to those formulas of the form 〈ε = ↓e1 . . . ↓en〉, for e1 . . . en ∈ A. In other words, we only
require (G1, q1)Vpaths (G2, q2) or (G1, q1) ≡paths (G2, q2) depending on whether we are reducing
from containment or equivalence of NFAs, respectively.

5. Restricting Paths in Bisimulations

The smallest witness to the fact that two NFAs are not equivalent (resp., one NFA is not contained in
another one) might be a path of exponential length (Meyer & Stockmeyer, 1972). As a corollary to
the proof of Theorem 9, we obtain then that the smallest witness to the fact that a given relation Z ⊆
G × G′ does not satisfy the (Zig=) condition might also be a pair (π1, π2) of paths of exponential
length. This naturally calls for a restriction on the length of paths considered in the definition of
XPath=-(bi)simulation as a way to obtain better complexity bounds. We consider this restriction
natural for the following reasons:

• Long witnesses correspond to large distinguishing formulas in XPath=. But rarely will users
be interested in checking if nodes are distinguishable by formulas that they cannot even write.
Thus, the restriction to shorter paths can be seen as an approximation to the notion of XPath=-
(bi)similarity based on user-understandable formulas.

• In practice, algorithms for computing (bi)simulations in the absence of data stop after a few
iterations (Luo, Fletcher, Hidders, Wu, & Bra, 2013b; Luo, Fletcher, Hidders, Bra, & Wu,
2013a). This tells us that when nodes in real-world graphs are distinguishable by ML formu-
las, they are distinguishable by some small formula. One might expect a similar behavior for
XPath=, implying that the restriction to shorter paths provides a fair approximation of the
problem in practice.

In this section we study the complexity of XPath=-(bi)similarity for paths of restricted length.
We show that the problem becomes CO-NP-complete for paths of polynomial length, and tractable

19

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

for paths of constant length. This notion of bisimilarity further captures the expressive power of
a natural fragment of XPath=; namely, the one formed by expressions of bounded length. This
fragment only restricts formulas of the form 〈α ? β〉, for ? ∈ {=, 6=}.

5.1 Bounded bisimulation and equivalence

Let f : N → N be a positive, non-decreasing function. We define the notion of f -XPath=-
(bi)simulation as in Definition 4, but now in the (Zig=) (resp., (Zag=)) condition we only consider
paths π1 and π2 (resp., π′1 and π′2) of length at most f(max(|G|, |G′|)), where |G| denotes the
number of edges in G. We call the new conditions (Zigf=) and (Zagf=), respectively.

More formally, an f -XPath=-bisimulation between u ∈ G and u′ ∈ G′ (written G, u↔f G′, u′)
is a relation Z ⊆ G×G′ such that uZu′ and for all (x, x′) ∈ G×G′ such that xZx′ we have:

• (Zigf=) For every paths in G of the form

π1 = x
e1→x1 e2→ . . .

en→xn and π2 = x
d1→y1 d2→ . . .

dm→ym

such that m,n ≤ f(max(|G|, |G′|)), there are paths in G′ of the form

π′1 = x′
e1→x′1

e2→ . . .
en→x′n and π′2 = x′

d1→y′1
d2→ . . .

dm→y′m,

such that the following holds:

1. xiZx′i for all 1 ≤ i ≤ n, and yjZy′j for all 1 ≤ j ≤ m.

2. data(xn) = data(ym)⇔ data(x′n) = data(y′m).

• (Zagf=) For every paths in G′ of the form

π′1 = x′
e1→x′1

e2→ . . .
en→x′n and π′2 = x′

d1→y′1
d2→ . . .

dm→y′m

such that m,n ≤ f(max(|G|, |G′|)), there are paths in G of the form

π1 = x
e1→x1 e2→ . . .

en→xn and π2 = x
d1→y1 d2→ . . .

dm→ym,

such that conditions 1 and 2 above are verified.

• (Zig) For every y ∈ G and e ∈ A such that x e→y there is y′ ∈ G′ such that x′ e→y′ and yZy′.

• (Zag) For every y′ ∈ G′ and e ∈ A such that x′ e→y′ there is y ∈ G such that x e→y and yZy′.

The reason why we add the one-step, comparison-free rules of (Zig) and (Zag) will become
clearer below, in the characterization theorem for a fragment of XPath= to be studied next (Theo-
rem 13). The idea is that we want to restrict with f the length of pairs of paths which compare data
values at their terminating nodes, but we do not want to restrict the length of single paths which do
not compare data values.

Similarly, an f -XPath=-simulation from u ∈ G to u′ ∈ G′ (denoted G, u→f G′, u′) is a relation
Z ⊆ G×G′ such that uZu′ and for all (x, x′) ∈ G×G′ such that xZx′ it is the case that condition
(Zigf=) and (Zig) above are verified.

20

BISIMULATIONS ON DATA GRAPHS

The characterization. We define the logical counterpart of this refined notion of bisimulation. We
aim at an analog of Theorem 7 relative to the adequate restriction of indistinguishability (cf. Def-
inition 3). As we show below, this restriction is defined by the fragment of XPath= whose path
expressions α occurring in an expression of the form 〈α?β〉 (for ? ∈ {=, 6=}) have length bounded
by f . In the following we formalize this idea.

The length of a path expression α, denoted len(α), was defined in the work of Abriola, Descotte,
& Figueira, 2017a. It corresponds to the number of ↓a’s occurring in α at the uppermost level, i.e.,
outside any test of the form [ϕ]. E.g., len(↓a[〈↓b = ↓a↓b↓c〉]↓b) = len(↓a↓b) = 2. We use this notion
to define the maximum length of a node or path expression. This represents the maximum length of
paths that are involved in expressions of the form 〈α ? β〉, for ? ∈ {=, 6=}.

Definition 12 (Maximum length). Given a node or path expression θ, we write ml(θ) to denote the
maximum length of θ. Formally, ml is recursively defined as follows:

ml(λ) = 0
ml(εα) = ml(α)

ml([ϕ]α) = max{ml(ϕ),ml(α)}
ml(↓aα) = ml(α)

ml(ϕ ∧ ψ) = max{ml(ϕ),ml(ψ)}
ml(¬ϕ) = ml(ϕ)
ml(〈α〉) = ml(α)

ml(〈α ? β〉) = max{len(α), len(β),ml(α),ml(β)},

where α is any path expression or the empty string λ. �

As an example,
ml(〈↓a[〈↓b↓a↓c〉]↓b = ↓b[〈↓a↓b↓a↓b〉]〉) = 2.

We now introduce the notion of f -XPath=-indistinguishability which coincides with f -XPath=-
bisimulation (cf. Definition 3). We write G, u ≡f G′, u′ (resp. G, u Vf G′, u′) if G, u |= ϕ ⇔
G′, u′ |= ϕ (resp. G, u |= ϕ ⇒ G′, u′ |= ϕ) for every (positive) node expression ϕ of XPath= such
that ml(ϕ) ≤ f(max(|G|, |G′|)).

As in Theorem 7 we obtain the following characterization:

Proposition 13. G, u ≡f G′, u′ iff G, u↔f G′, u′, and G, uVf G′, u′ iff G, u→f G′, u′.

Proof. It follows using the idea in the proof of Theorem 8 from the work of Figueira et al., 2015.
Formulas of the form 〈α ? β〉 of ml bounded by f(max(|G|, |G′|)) (for ? ∈ {=, 6=}) are handled
by rules (Zigf=) and (Zagf=). Formulas of the form 〈↓α〉 are equivalent to 〈↓[〈α〉]〉, and these are
handled by rules (Zig) and (Zag).

5.2 Computing f -XPath=-bisimulations

Here we study the complexity of computing f -XPath=-(bi)simulations:

f -XPATH=-(BI)SIMILARITY

INPUT : Data graphs G and G′, nodes u ∈ G and u′ ∈ G′.
QUESTION : G, u→f G′, u′? (G, u↔f G′, u′?, resp.)

21

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

Since this problem is PSPACE-complete when f is an exponential function, it is natural to start
by restricting f to be a polynomial. We show next that while this restriction lowers the complexity
of our problem, it still does not yield tractability:

Proposition 14. The following holds:

1. The problem p-XPATH=-(BI)SIMILARITY is in CO-NP for every non-decreasing polynomial
p : N→ N.

2. The problem p-XPATH=-(BI)SIMILARITY can be CO-NP-hard even if p : N → N is the
identity function.

Proof. We only prove the claim for p-XPATH=-SIMILARITY. The proof for bisimilarity is analo-
gous. We start with item 1. Let G and G′ be data graphs and u, u′ nodes in G,G′, respectively. In
order to check whether there is an XPath=-simulation from u to u′ we can use the standard greatest
fixed point algorithm for computing the maximal simulation in the absence of data. We adapt it here
to the (Zigp=) condition of XPath=-simulations.

The algorithm computes the maximal XPath=-simulation from G to G′. We start by defining
Z = G × G′. At each step we choose an arbitrary pair (x, x′) ∈ Z. If (Zigp=) fails when evaluated
on this pair we simply remove it from Z. We proceed iteratively until we reach a fixed point. Finally,
we check whether (u, u′) ∈ Z. Only if this is the case we declare that there is an XPath=-simulation
from u to u′.

Thus, in order to check that there is no XPath=-simulation from u to u′, we can simply guess
a computation of the algorithm that removes the pair (u, u′) from Z. Such computation consists of
(a) pairs (x1, x

′
1), . . . , (xm, x

′
m); (b) relations Z0, . . . , Zm such that: Z0 = G × G′, Zi = Zi−1 \

{(xi, x′i)} for each 1 ≤ i ≤ m, and Zm does not contain (u, u′); and (c) suitable witnesses for the
fact that (xi, x

′
i) does not satisfy (Zigp=) with respect to Zi−1, for each 1 ≤ i ≤ m. Such witness

consists of a pair (π1, π2) of paths of length at most p(max (|G|, |G′|)) in G starting from xi, and yet
another witness for the fact that no pair (π′1, π

′
2) of paths in G′ starting from x′i satisfies (Zigp=) with

respect to (π1, π2). The latter can be represented by an accepting run of the complement of the NFA
AG′,x′i,Zi−1

(as defined in the proof of the upper bound of Theorem 9) over the word that represents
the pair (π1, π2) in AG,xi . Clearly, each one of the components of this guess can be represented
using polynomial space. Further, it can be checked in polynomial time that the guess satisfies the
required conditions It follows that checking whether there is no XPath=-simulation from u to u′ is
in NP (and, thus, that our problem is in CO-NP).

For item 2 we use the following claim:

Claim 15. The problem of checking containment of NFA A1 in A2, restricted to words of length
at most max (|A1|, |A2|) is CO-NP-hard. (Here, |Ai| defines the number of tuples in the transition
relation of Ai, for i = 1, 2).

Proof. We use a reduction from the complement of 3CNF satisfiability. Given a 3CNF formula ϕ
of the form

(`11 ∨ `21 ∨ `31) ∧ . . . ∧ (`1n ∨ `2n ∨ `3n),

over the set {h1, . . . , hm} of propositional symbols, we construct in polynomial time NFAsA1 and
A2 over the alphabet A := {h1, . . . , hm,¬h1, . . . ,¬hm} such that

ϕ is satisfiable ⇐⇒ L(A1) 6⊆ L(A2). (8)

22

BISIMULATIONS ON DATA GRAPHS

The NFA A1 consists of states q0, . . . , qn, with q0 and qn being the initial and final state. The
transitions of A1 are the ones in the set:

{(qi, `ji+1, qi+1) | 0 ≤ i < n, j = 1, 2, 3}.

That is, the words accepted byA1 codify the different ways in which we can choose one literal from
each clause in ϕ. One of these words encodes a satisfying assignment of ϕ if and only if it does not
contain an “error”, i.e., it does not mention a propositional variable and its negation. We then take
A2 as the NFA that accepts those words over the alphabet A that do mention a propositional variable
in {h1, . . . , hm} and its negation, i.e.,

L(A2) =
⋃

1≤i≤m
A∗hiA∗¬hiA∗ ∪ A∗¬hiA∗hiA∗.

Such A2 can be easily defined as follows. The states of A2 are r0 and si, ti, s′i, t
′
i, for each 1 ≤ i ≤

m. The initial state is r0 and the set of final states is {ti, t′i | 1 ≤ i ≤ m}. For each symbol a ∈ A
and state q inA2, there is a transition (q, a, q). Moroever, for each 1 ≤ i ≤ m the NFA A2 contains
transitions

(r0, hi, si), (si,¬hi, ti), (r0,¬hi, s′i), (s′i, hi, t′i).
It is easy to see that (8) holds. In fact, ϕ is satisfiable if and only if there is a word in L(A1) that
does not contain an “error”, that is, it does not belong to L(A2).

Notice, in addition, that |A1| = 3n and |A2| = 8m2 + 6m ≤ 14m2. Moreover, the words
in L(A1) are of length at most n. This tells us that not only (8) holds, but it holds even if the
containment ofA1 intoA2 is restricted to words of length at most max (|A1|, |A2|)) ≥ 3n > n.

We then reduce the restricted containment problem from Claim 15 to p-XPATH=-SIMILARITY,
where p : N → N is the identity function, by using the same construction than in the proof of the
lower bound of Theorem 9. In fact, it can be readily checked that, starting from NFAs A1 and A2,
such reduction constructs data graphs G1 and G2 with distinguished nodes q1 and q2, respectively,
such that the following are equivalent:

1. A1 is contained in A2 up to words of length at most max (|A1|, |A2|)).

2. (G, q1)→max (|G1|,|G2|)) (G2, q2).

This finishes the proof of the proposition.

The reason why the previous restriction is not sufficient to obtain tractability is that there are
too many paths of polynomial length in a data graph. We solve this issue by restricting to paths of
constant length only. In the following we identify the function that takes constant value c ∈ N with
the letter c.

For c ≥ 0, we call XPath=(c) the syntactical fragment of XPath= of ml bounded by c. Further,
fragments of the form XPath=(c) (for c ≥ 1) extend multi-modal logic, which in turn coincides
with XPath=(0):

Proposition 16. XPath=(0) is semantically equivalent to multi-modal logic with no propositions
and only atoms > and ⊥.

23

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

Proof. In the jargon of ML, we have a language with modalities 〈a〉 for each a ∈ A. On the one
hand, any node expression of the form 〈α ? β〉 in XPath=(0) is also of the form

〈[ϕ1] . . . [ϕn] ? [ψ1] . . . [ψm]〉,

which is equivalent to
∧

i ϕi ∧
∧

j ψj , if ? is =, and to a contradiction (e.g., ¬〈ε〉) otherwise. On
the other hand, a node expression 〈↓aα〉 is equivalent to 〈↓a[〈α〉]〉. Any node expression of the form
〈↓a[ϕ]〉 of XPath=(0) can be straightforwardly translated (in a truth preserving way) to ML via T
as 〈a〉T (ϕ). The translation from modal logic to XPath=(0) is obvious.

Proposition 17. The problem of c-XPATH=-(BI)SIMULATION is PTIME-complete for each con-
stant c > 0.

Proof. We use the same algorithm as in the proof of the previous upper bound. The difference now
is that checking whether a pair (x, x′) ∈ Z satisfies (Zigc=) can be solved efficiently for each c > 0.
This is because there is at most a polynomial number of paths of length ≤ c in G starting from x.
We conclude that checking whether G, u→c G′, u′ is in PTIME. The same holds for G, u↔c G′, u′.
The lower bound follows straightforwardly from Proposition 16 and PTIME-hardness for usual ML
bisimulations (Balcázar, Gabarro, & Santha, 1992).

Proposition 13 establishes that c-XPath=-simulations characterize the expressive power of the
fragment of XPath= defined by formulas of ml bounded by the constant c. The following corollary
to the proof of Proposition 17 states that when two nodes are not c-XPath=-bisimilar, it is possible
to compute in polynomial time a node expression in this fragment that distinguishes them.

Corollary 18. There is a polynomial time algorithm which given G, u 6↔c G′, u′ (resp., G, u 6→c

G′, u′), constructs2 a (positive) node expression ϕ of XPath=(c) such that G, u |= ϕ and G′, u′ 6|= ϕ.

Proof. We adapt the algorithm given in the work of Areces et al., 2011 for the basic ML to our
notion of bisimulation. We only explain the case of c-XPath=-simulation, as for bisimulation the
proof is analogous.

We construct a polynomial time algorithm which, on input G and G′, computes, for each x ∈ G,
a set S(x) = {x′ ∈ G′ | x →c x

′} and a positive node expression N(x) such that G, x |= N(x)
and [[N(x)]]G

′
= S(x). The existence of this algorithm is enough to prove the desired result: if

G, u 6→c G′, u′, we have that u′ /∈ S(u) and therefore G, x |= N(x) and G′, x′ 6|= N(x), hence
satisfying the statement of the Corollary.

The algorithm is as follows. We start by setting, for all x ∈ G, S(x) := G′ and N(x) := >
(representing any positive tautology, e.g.〈ε〉).We repeat the following process until none of the items
below are true:

• There are (x, x′) ∈ G × G′ such that (Zigc=) does not hold at (x, x′), in the sense that there
are paths in G of the form

π1 = x
e1→x1 e2→ . . .

en→xn and π2 = x
d1→y1 d2→ . . .

dm→ym
with m,n ≤ c, and such that there are no paths in G′ of the form

π′1 = x′
e1→x′1

e2→ . . .
en→x′n and π′2 = x′

d1→y′1
d2→ . . .

dm→y′m,
2. Provided an adequate representation for such formula is chosen (Figueira & Gorı́n, 2010).

24

BISIMULATIONS ON DATA GRAPHS

satisfying x′i ∈ S(xi) for all 1 ≤ i ≤ n, y′i ∈ S(yi) for all 1 ≤ j ≤ m, and data(xn) =
data(ym) iff data(x′n) = data(y′m). In this case we set S(x) := S(x) \ {x′} and

N(x) := N(x) ∧ 〈↓e1 [N(x1)]↓e2 . . . ↓en [N(xn)] ? ↓d1 [N(y1)]↓d2 . . . ↓dm [N(ym)]〉,

where ? is = in case data(xn) = data(ym) and 6= otherwise.

• There are (x, x′) ∈ G × G′ such that (Zig) does not hold at (x, x′), in the sense that there is
y ∈ G such that x e→y and there is no y′ ∈ G′ such that y e→y′ and y′ ∈ S(y). In this case, we
set S(x) := S(x) \ {x′} and N(x) := N(x) ∧ 〈↓e[N(y)]〉.

The idea is that at each step, if either (Zigf=) or (Zig) are false, we shrink S(x) for some x, and the
“reason” behind the falsity of (Zigf=) or (Zig) is encoded in the node expressionN(x). The invariant
of the cycle states that for all x ∈ Gwe have [[N(x)]]G

′ ⊆ S(x) and G, x |= N(x). Since at execution
of the body of the cycle, one element is removed from S(x), for some (x, x′) ∈ G × G′, the total
number of iterations is polynomial in the size of the data graphs. Furthermore, at each iteration, we
only search for paths of length at most c, and so the total number of steps taken by this algorithm is
polynomial.

6. Restricting the Models

Here we follow a different approach from the one in Section 5: We constrain the topology of graphs
instead of the (bi)simulations. Since our goal is restricting the number and/or length of the paths
considered in the analysis of (bi)simulations, it is natural to look into acyclic graphs; namely, trees
and DAGs.

Let us start with data trees, i.e., data graphs whose underlying graph is a directed tree. This case
is relevant as XML documents are (essentially) data trees, and the study of XPath=-bisimulations
was started in such context. Notice that for data trees both the number and the length of paths one
needs to consider when checking the (Zig=) and (Zag=) conditions are polynomial. This implies
that the problem of computing XPath=-(bi)simulations over data trees is tractable:

Theorem 19. The problem of XPATH=-(BI)SIMULATION for data trees is in PTIME.

As a second case, let us consider data DAGs, which allow for undirected cycles only. In this case
the length, but not the number, of the paths one needs to consider at the moment of checking the
(Zig=) and (Zag=) conditions is polynomial. The first observation helps lowering the complexity of
computing XPath=-(bi)simulations in this context from PSPACE to CO-NP, while the second one
prevents us from obtaining tractability.

Proposition 20. The problem XPATH=-(BI)SIMULATION for data DAGs is CO-NP-complete.

Proof. The following result is instrumental for our proof.

Lemma 21. The problems of containment or equivalence of NFAs whose underlying graph is a
DAG are both CO-NP-COMPLETE.

Proof. The CO-NP-hardness of the NFA DAG containment problem follows from Claim 15, since
the number of tuples in the transition relations of a DAG form an upper bound to the length of
words accepted by it. The completeness of the problem is then immediate, as a witness of L(A1) 6⊆

25

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

L(A2) can be checked in polynomial time, since there is a linear bound on the length of words
accepted by DAGs. For the hardness of the equivalence problem, we can reduce the problem of
DAG containment to equivalence by adding a disjoint copy of A2 to A1 and then joining by a same
parent node: L(A1) ⊆ L(A2) iff L(A1 t A2) ≡ L(A2). The completeness follows as in the case
of containment.

The problem is in CO-NP as a consequence of the first item of Proposition 14, since paths in
DAGs are of linear size. To prove CO-NP-hardness, we reduce the problem of DAG containment
(equivalence) to the problem of data DAG (bi)simulation, and then use Lemma 21. We will see
the proof only for simulation, with a construction that can also be used for the analogous case of
bisimulation.

Given two DAG NFAs Ai = (Qi, qi, Fi, δi), for i = 1, 2, (i.e., NFA whose transition graphs
have no cycles) we construct data DAGs Gi = (Gi, Ei, datai), with i = 1, 2, as in the proof of the
lower bound of Theorem 9. The main difference is that the node ui of Figure 5 will be replaced by
some DAGs that we will now construct. Let n = max{|Q1|, |Q2|}, and let Qj

i be the set of nodes
q ∈ Qi at “maximum distance j” from fi, that is, so that there is a directed path from q to fi of
length j but there is no such path of length > j (note that Qi =

⋃
j≤nQ

j
i). Now, each ui of Figure 5

is replaced with n fresh nodes u1i , . . . , u
n
i of data value 2, with every possible edge from Qj

i to uj
′

i

for every 1 ≤ j′ < j, from qi to uni , from uji to vi and wi, and from uji to uj
′

i for every j′ < j. It
is straightforward to check that the resulting data graphs are DAGs, and that as in the lower bound
proof of Theorem 9 we have that G1, q1→ G2, q2 if and only if L(A1) ⊆ L(A2); here the simulation
differs in that all nodes from a Qj

1 will be related with uj2 (and those of Qj
2 with uj1), and each uj1 is

related with the corresponding uj2.

7. Two-way XPath=

A common expressive extension for languages on graphs is to consider a two-way version that
allows to traverse edges in both directions (see, e.g., Calvanese, De Giacomo, Lenzerini, & Vardi,
2000; Libkin et al., 2013). We call XPathl= the extension of XPath= with path expressions of the
form ↑a, for a ∈ A. The semantics of these expressions over G = 〈G,E, data〉 is as follows:

[[↑a]]G = {(x, y) | (y, a, x) ∈ E}.

We write G, u ≡l G′, u′ (resp. G, u Vl G′, u′) if G, u |= ϕ ⇔ G′, u′ |= ϕ (resp. G, u |= ϕ ⇒
G′, u′ |= ϕ) for every (positive) node expression ϕ of XPathl=.

A notion of (bi)simulation for XPathl= over data trees was introduced in the work of Figueira
et al., 2015, and turns out to be tractable. It heavily relies on the determinism of ↑a over trees, and
hence does not fit in the context of data graphs. However, there is a simple way to adapt XPath=-
bisimulations to the case of two-way XPath=.

Given a data graph G = 〈G,E, data〉 over A, we define its completion over A ∪ A−, where
A− := {a− | a ∈ A}, as the data graph Gc = 〈G,Ec, data〉, where Ec extends E by adding the
edge (v, a−, u), for each edge (u, a, v) ∈ E. That is, Gc extends G with the “inverse” of every edge
in E. We also define a bijection ϕ 7→ ϕc mapping node expressions of XPath= over A to node
expressions of XPathl= over A ∪ A− as follows: ϕc is the result of replacing each occurrence of ↑a
in ϕ (for a ∈ A) with ↓a− . The following proposition is straightforward:

26

BISIMULATIONS ON DATA GRAPHS

Proposition 22. G, u |= ϕ iff Gc, u |= ϕc.

We say that there is an XPathl=-bisimulation between u ∈ G and u′ ∈ G′ (denoted G, u ↔l
G′, u′) if Gc, u ↔ G′c, u′ (over the extended alphabet A ∪ A−). Similarly, we define XPathl=-
simulations→l. Analogously to Theorem 7, one can show the following result.

Theorem 23. G, u ≡l G′, u′ iff G, u↔l G′, u′, and G, uVl G′, u′ iff G, u→l G′, u′.

We study the complexity of the following problem:

XPATHl
=-(BI)SIMILARITY

INPUT : Data graphs G and G′, nodes u ∈ G and u′ ∈ G′.
QUESTION : G, u→l G′, u′? (G, u↔l G′, u′?, resp.)

The bounded notions of bisimulation introduced in §5 are defined over XPathl= and an alpha-
bet A in the expected way: reducing to XPath= over the signature A ∪ A− and the correspond-
ing completion of the data graphs. We use symbols→lf (resp.↔lf) for referring to the f -XPathl=
(bi)simulations. Observe that in this ‘two-way’ case the f bounds the total number of edges tra-
versed, regardless of whether their labels are in A or in A− We then study:

f -XPATHl
=-(BI)SIMILARITY

INPUT : Data graphs G and G′, nodes u ∈ G and u′ ∈ G′.
QUESTION : G, u→l

f G′, u′? (G, u↔l
f G′, u′?, resp.)

The identification of XPathl= over A with XPath= over A ∪ A− and the corresponding comple-
tions of graphs allows us to straightforwardly transfer some upper bounds:

• XPATHl=-(BI)SIMILARITY is in PSPACE (§4.1).

• p-XPATHl=-(BI)SIMILARITY, for p a non-decreasing polynomial, is in CO-NP (item 1 of
Proposition 14).

• c-XPATHl=-(BI)SIMILARITY, for c a constant function, is in PTIME (Proposition 17)

Regarding the lower bounds, we focus here on the general case of XPathl=. One can check that
the proof given in §4.2 does not work because in the two way context, more nodes in the graphs can
be reached through the accessibility relations. The main result of this section is the following:

Theorem 24. XPATHl=-(BI)SIMILARITY is PSPACE-complete.

Proof. We only need to prove the lower bound. We will actually prove something stronger later
in Theorems 25 and 28, where we show that similarity and bisimilarity for XPathl=, respectively,
remain PSPACE-hard even over DAG data graphs. However, such proofs are quite more complicated,
and we believe it is useful to show that over arbitrary data graphs one can obtain a simpler proof.
We only give the proof for bisimilarity. We use a reduction from the PSPACE-complete problem of
universality for NFA (i.e., does an NFA accept all words?). LetA be a NFA over A, with initial state
q0 and final state qf . We build data graphs G and G′ as in Figure 6. We claim that G, u1↔l G′, u′1 if

27

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

q0

2

A

Z

Z

Z

qf

2

2

G

1 3 4 4 3
v1 v2 v3 v4 v5

w1

w2

2

1 3

u0
2

1

v01

3

v02

w0
1

G0

1 3 4 4 3

u2 u3 u4 u5 u6

1

u1 u0
1

Figure 6: Definition of the data graphs G and G′ based on an NFA A over alphabet A. Boldface
arrows have, as label, all symbols from A. Lightface arrows have all the same label e /∈ A
for some e. All nodes of A (the grey area) have data value 2. All nodes inside a dotted
area on G are related to all nodes inside a dotted area on G′ via Z.

and only if L(A) = Σ∗.
For the left-to-right direction we proceed as follows. Given a word ω = a1 . . . an in Σ∗, we con-

sider the formula ϕ = 〈ε = ↓e↓a1 . . . ↓an↓e〉. By construction, G′, u′1 |= ϕ, and from the hypothesis
G, u1↔l G′, u′1 and Theorem 23, we have that G, u1 |= ϕ. On the one hand, the only way to transit
from u1 is through e, getting to q0. On the other hand, in order to satisfy ϕ in u1, there is a path:

u1
e→q0 a1→ . . .

an→z1 e→z2

where data(z2) = data(u1) = 1. One can see that the only possibility is that z2 = v1. One could
arrive to v1 from qf or w1, but w1 is downwardly inaccessible from A, and therefore z1 = qf . Even
more, all the nodes in the path q0

a1→ . . .
an→z1 are in A, and so ω ∈ L(A).

For the right-to-left direction, one can check that the relation Z depicted in Figure 6 is an
XPathl=-bisimulation. In all cases, the (Zig=) condition is easily satisfied thanks to the construction
of G′, so we will only check (Zag=) for every pair (x, x′) ∈ G×G′. We do this by cases.

• To prove (Zag=) for the pair (u1, u
′), with u′ ∈ {u′1, u′2}, let α = u′

e1→x2 e2→ . . .
em−1→ xm and

β = u′
e′1→y2

e′2→ . . .
e′n−1→ yn, where ei, e′i ∈ A ∪ A−. The interesting case is that where one of

the paths has length 0, say α = u′; yn has the same data value as u′; and all e′i belong to A.
In this case, we only need to use the hypothesis that L(A) = Σ∗, and here it is important that
w2 cannot reach down into v1.

• For all other pairs (u, u′) with u ∈ {u2, u3, u4, u5, u6}, u′ ∈ {u′1, u′2} in the topmost level of
the figure, the general strategy for the construction of our needed paths is to mimic the paths
in G′ by going into w1 or w2 whenever the original paths go to w′1. Whenever the paths on
G′ go to u′1, u

′
2, v
′
1, or v′2, and the path does not end there, the path on G mirrors the move

28

BISIMULATIONS ON DATA GRAPHS

by going into any node in the top or bottom part of G, as appropriate. Finally, depending on
whether the original paths end in different or same data value, the path in G can go to two
nodes with data value 3 and 4 or to the same node, respectively.

• To prove that (Zag=) holds for all pairs (w,w′) with w ∈ A ∪ {w1, w2}, w′ = w′1 of the
middle level, the hard case is when w is a node of the A portion of the graph. Here, the idea
of the procedure is the same as in the previous item.

• Finally, for pairs (v, v′) with v ∈ {v1, v2, v3, v4, v5}, v′ ∈ {v′1, v′2} of the bottom level, we
also proceed as before, going upwards into w1 as soon as the path in G′ goes upwards into
w′1, and afterward mimicking the behaviours of the paths as needed.

This concludes the proof.

7.1 Restricting the models

Interestingly, for two-way (bi)similarity the PSPACE-hardness holds even over data DAGs. This es-
tablishes a stark difference with the one-way (bi)similarity problem for XPath= over data DAGs,
which lies in CO-NP (as stated in Proposition 20). Our lower bound proofs are more involved
than the ones we have seen so far, as they require to establish PSPACE-hardness for the contain-
ment/equivalence problems over restricted classes of NFAs. We prove the lower bound for similarity
and bisimilarity separately. We believe that this improves the clarity of the presentation, as it allows
us to incrementally construct the more complicated gadgets used for the bisimilarity lower bound in
terms of the simpler ones used for similarity.

We first show the following result.

Theorem 25. XPATHl=-SIMILARITY for data DAGs is PSPACE-hard.

Proof. The proof consists of two parts. In Lemma 26 we use the idea of the proof of PSPACE-
hardness of NFA containment (implicit in the work of Kozen, 1977) to show that hardness holds
even when the transition graphs of the automata are ‘almost’ DAGs. Then we prove in Lemma 27
that the containment problem for such a class of NFAs can be reduced to a data DAG simulation
problem for XPathl=.

We say that G is a #-quasi-DAG (or simply a quasi-DAG when the symbol # is implicit) if it is
an edge-labeled graph over an alphabet with a distinguished symbol #, such that reversing all those
edges labeled # in G results in a DAG.

Lemma 26. The containment problem for NFAs is PSPACE-complete, even if the input consists of
two automata A1 and A2 whose underlying graphs are quasi-DAGs.

Proof of Lemma 26. We show that there is a polynomial-time computable translation such that,
given inputs n ∈ N (in unary) and a Turing machine M = 〈Q, {0, 1}, δ, q0, F 〉, constructs two
automata A1

n,M ,A2
n,M over the alphabet {0, 1,#} ∪Q such that:

1. L(A1
n,M) ⊆ L(A2

n,M) iff there does not exists an accepting run of M in SPACE(n).

2. If we reverse the arrows of the transitions reading the symbol # inA1
n,M andA2

n,M we obtain
the NFAs Â1

n,M and Â2
n,M . These automata are DAGs.

29

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

0,10,10,10,1

0,10,10,1

Q Q Q
s0 s1 s2 sn

s01 s02 s0n

. . .

. . .

0,10,10,10,1

0,10,10,1

. . .

. . .�

F F F

#

s̃01 s̃02 s̃0n

s̃0 s̃1 s̃2 s̃n

Figure 7: The automaton A1
n,M , with initial state s0 and final state s̃′n, accepts all non-empty se-

quences of configurations c1 . . . ciqci+1 . . . cn separated with the symbol #, and such
that in the last configuration the symbol chosen from Q is actually from the set F of final
states of M .

The lemma then follows since PSPACE-complete is closed under complement.
The main idea is that A1

n,M accepts encodings of all possible sequences of tape configurations
(in a syntactic sense, not necessarily obtainable in M) such that the ending configuration contains
a final state (some qf ∈ F), while A2

n,M accepts all words that are not valid sequences of con-
figurations for M (for example, because two consecutive configurations are not related via a valid
transition of δ). Thus, L(A1

n,M) being included in L(A2
n,M) means that no possible run of M re-

stricted to tape space n can reach a final state.
As we restrict the space of the Turing machine M to n cells, we can encode each configuration

C in the form of C = c1 . . . ciqci+1 . . . cn, where cj ∈ {0, 1} for each 1 ≤ i ≤ n, and q ∈ Q;
here we interpret that the head of the machine is over cell i and the machine is in state q. We can
then encode a run of M as a sequence C1#C2 . . .#Cm, where C1 must satisfy validity conditions
corresponding to the initialization of M , and where each Ci+1 must be reachable from Ci using
the transition δ of M . The main difficulty of this Lemma lies in building the NFA A2

n,M satisfying
condition 2 and accepting all sequences of configurations that are not valid. While we show the
construction of Ai

n,M using empty transitions (i.e., λ-transitions) for ease of understanding, it is
straightforward to modify these NFA to avoid such transitions.

The construction ofA1
n,M is simple, and is graphically given in Figure 7. Observe that reversing

its # arrow turns the structure of the automata into a DAG, satisfying condition 2.
For the construction of A2

n,M , we will divide the problem into various parts, building different
automata that accept sequences of configurations that are not valid runs. We will construct different
automata accepting various sequences:

• An automaton Einit that accepts sequences such that the first n+1 symbols do not correspond
to an initial tape configuration of M .

• An automaton Elocal that detects when two successive configurations are not valid because
some cell has changed its value without having the head of the machine over it.

30

BISIMULATIONS ON DATA GRAPHS

. . .wn+1 wn w1 w0
0,1,Q 0,1,Q 0,1,Q 0,1,Q

#

Figure 8: The graphical representation of Wn+1. In general, Wi is defined in the same way, but
having as the sole initial state the state wi. All states are final states.

. . .0 0 0

Wn Wn�1 W0

1,Q 1,Q 0,1,Q \ {q0}
i0 i1 in

Figure 9: The automaton Einit has no final states, except for all those in the Wi. It only accepts
words if the initial n + 1 symbols are not the word 0 . . . 0q0, which corresponds to the
initial configuration of the tape of M .

• n automata Ehead(i) that detect an error in successive configurations, when first the head is
over cell i, and the following position or state of the head and the symbol on the cell i are not
consistent with transition δ.

The automatonA2
n,M simply consists of an initial state that can make a λ-transition to the initial

states of Einit, Elocal or some Ehead(i); if these automata satisfy the property 2, then so does A2
n,M .

We now proceed to the construction of these automata. First, we construct auxiliary automata
Wi, for each 0 ≤ i ≤ n+1. Intuitively, they will serve the function of, once an error has been found,
potentially writing the remaining i symbols from the alphabet {0, 1} ∪ Q and then proceeding to
write new groups of n+ 1 symbols separated with #. See Figure 8 for details.

For the construction of Einit, see Figure 9.
For the construction of Elocal, we first build the automata Ci, 0 ≤ i ≤ n+ 1, which reads a word

of length n+ 1 such that the i-th letter is a 0 or 1, and the following symbol, if any, is not in Q. The
idea for the construction of Elocal is to start reading groups of words of length n+ 1, separated with
a #, and then nondeterministically choose one position with a 0 or 1, such that the next letter is not
a symbol in Q, and such that the next ‘configuration’ has a 1 or 0 in that position, respectively; this
should not be a valid run of M , as in one step there has been a change to a cell where the head was
not positioned. See Figure 10 for more details.

For the construction of Ehead(i), the idea is as in Elocal, only that now we need to take into
account all possible local inconsistencies (around the cell position i in two successive ‘configura-
tions’) with respect to the transition function δ. At some point Ehead(i) reads an n+1 symbols word,
and the automaton nondeterministically takes many different paths according to the symbol 0 or
1 corresponding to the cell position i and according to the symbol q representing the head of M
over the cell i. Each of these disjoint paths, after reading a #, check that the next ‘configuration’ is
not consistent with the previously seen data and the transition function δ: there is some error in the

31

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

�

�

�

c

C0

C1

Cn+1

...

Wn+1

0,1,Q . . . 0,1,Q0,1,Q

0,1,Q

0,1,Q

. . .

. . .

0,1,Q

0,1,Q

#

#

0

1

0,1

0,1

(if i 6= n + 1)

Ci

0,1,Q . . . 0,1,Q0,1,Q 0,1,Q . . .0,1,Q #0,1,Q

ci
0 ci

1 ci
i

Cx
i

x
ci,x
0 ci,x

1 ci,x
i

#

#

#

C0
0

C1
0

C1
1

C0
1

C0
n+1

C1
n+1

fWn+1

#

...

Figure 10: Elocal accepts words that include two consecutive configurations where the tape changes
in a position that did not have the head of M over it. W̃n+1 is like Wn+1, but with an
empty set of final states. Ci and Cxi have lengths of n+2, reading configurations of n+1
characters.

combination of the current symbol on the i-th position of the cell, the current position of the head,
or the current state in Q of the machine.

�

�

�

�
...

Einit

Ehead(1)

Ehead(n)

Elocal

Figure 11: The automaton A2
n,M .

Finally, as mentioned before, the automaton A2
n,M is assembled with these automata, as shown

in Figure 11. We remark that Einit, Elocal and all the Ehead(i) are DAGs when the arrows reading #

32

BISIMULATIONS ON DATA GRAPHS

bA1

3

bA1

3

bA2

3

bA1

3

bA1

3

1

1

A #

bA1

u 1 2u0 s

v 1 2v0 t

G1 G2

3

A #

Figure 12: A graphical representation of the data graphs (G1, u) and (G2, u′). The automata Â1 and
Â2 are defined as in Item 2 of Lemma 26. Lightface arrows have all the same empty label
disjoint from A ∪ {#}. Bold arrows between boxes represent that there is a transition
arrow from every state of the first box into every state of the second one. Bold arrows
between a state and a box represent that there is a transition arrow from such state into
every state of the box. All nodes represented in the grey region have data value 3.

are reversed in direction. Therefore, applying that reversion of #-arrows to A2
n,M also results in a

DAG, as we wanted.

We now finish the proof of Theorem 25. To do this, it suffices to prove the following lemma.

Lemma 27. Given two NFAs A1 and A2 (without λ-transitions), whose underlying graphs are
quasi-DAGs over an alphabet A t {#}, and such that all their states can reach a final state, we
have that

L(A1) ⊆ L(A1) ⇐⇒ G1, u →l G2, u′,
where (G1, u) and (G2, u′) are defined as in Figure 12.

Note that the conditions of being free of λ-transitions and that all the states can reach a final
state do not restrict the generality of this result; for any NFA A, we can construct a NFA A′ such
that it satisfies those two conditions, with L(A) = L(A′), and such that the underlying graph of A′
is a quasi-DAG if the one of A is a quasi-DAG.

Proof of Lemma 27. First, assume that G1, u →l G2, u′. Let us consider an arbitrary word w ∈
L(A1). In particular, w is of the form

w1# · · ·#wm,

where each non-empty wi is of the form

ci,1 . . . ci,ni

33

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

with ci,j ∈ A. We take a corresponding path expression

α = ↓↓c1,1 · · · ↓c1,n1
↑# · · · ↑#↓cm,1

· · · ↓cm,ni
↓.

Since G1, u →l G2, u′, and ϕ := 〈ε = α〉 is satisfied in G1, u, then ϕ is also satisfied in G2, u′
by Theorem 7. However, the only way for that formula to be satisfied at u′ is for the path α to go
solely through Â2, as the labels of the arrows do not allow the opportunity to go to the leftmost or
rightmost copies of Â1, and the path cannot enter the innermost copies of Â1 or it would similarly
be unable to leave that region and end in a node with data value 1. Therefore, we conclude that
w ∈ L(A2). Hence, L(A1) ⊆ L(A2).

For the converse implication, let us assume thatL(A1) ⊆ L(A2). We define a simulationZ from
G1, u to G2, u′ as follows. The relationZ over G1×G2 consists of the pairs (u, u′), (u, s), (v, v′), (v, t),
as well as every pair (z, z′) so that z is a node of Â1 in G1 and z′ is either (a) the corresponding
node in any of the four copies of Â1 in G2, or (b) any node from the sole copy of Â2 in G2.

By definition, (u, u′) ∈ Z. Let x1Zx2. We want to prove that the conditions of (Zig=) are
satisfied for the pair (x1, x2). We can divide this proof into three main cases, depending on the
region where x1 lies:

• The case where x1 = u: If x2 = s, then we can simply mirror everything from G1 in some
copy of Â1 plus the nodes s and t, so we only consider the case x2 = u′. Assume we have
two concrete paths starting from u, and ending in nodes y and z, respectively. We analyse the
different possibilities for y and z (ignoring symmetric cases); our separation into subcases
automatically indicates if the data values of these ending nodes are equal or not:

– If y = z = u, then on G2 we can simulate the paths of G1 as follows. If at any moment
the original paths pass through Â1, then on G2 we go to the corresponding node in any
inner copy of Â1 and from then on we simply mirror the paths (if at some point a path
in G1 goes to v, we mimic it in G2 by going to t).

– Similarly if y = u and z ∈ Â1, or if both y and z belong to Â1.

– If y ∈ Â1 and z = v, we can proceed in the same way as before, as only data inequality
(and not the particular data values) is important, so we can match v with t. Analogously
for y = z = v.

– The remaining subcase is that where y = u and z = v. Note that here the pair of paths
cannot be mirrored using the previous idea. However, if the paths do not use ↑a with
a ∈ A nor ↓#, then we can mirror them in Â2 using the hypothesis thatL(A1) ⊆ L(A2).
Analogously, if any of the paths ever uses an arrow ↑a with a ∈ A, or a ↓#, then we can
mirror the initial part of that path in Â2 (using the hypothesis that L(A1) ⊆ L(A2) and
that the set of final states of A1 is reachable from any of its states), and then continue
the mirroring in one of the external copies of Â1 (which are directly connected to v′,
unlike the inner copies).

• The case where x1 = v: This case is analogous to the previous one. We only have to remark,
for the case where x2 = v′, y = v, z = u, that if any path has any arrow ↓a with a ∈ A or an
arrow ↑#, then we can mirror the path from that point forward by going into an inner copy of
Â1. Otherwise, the paths correspond to words in A1, and we can use the hypothesis.

34

BISIMULATIONS ON DATA GRAPHS

• The case where x1 is a node in the copy of Â1: If x2 lies in some copy of Â1, then (Zig=) is
trivially satisfied. Otherwise, if x2 lies in the copy of Â2, the strategy to simulate the paths of
G1 is simply to go towards s or t or towards the appropriate copy Â1, depending on how the
paths begin; as any of those copies can access nodes s and t (which have the same data value
but different data value from the nodes in the central regions), we are done.

This concludes the proof of Lemma 27.

This concludes the proof of Theorem 25.

An analogous of Theorem 25 also holds for bisimilarity, but proving this is not such a straight-
forward extension as was the case for Theorem 9 or Proposition 20.

Theorem 28. XPATHl=-BISIMILARITY for data DAGs is PSPACE-hard.

Proof. First of all, we can easily prove that quasi-DAG equivalence also is PSPACE-complete:

Lemma 29. The equivalence problem for NFAs is PSPACE-complete, even if the input consists of
two automata A1 and A2 whose underlying graphs are quasi-DAGs.

Proof. That this problem is in PSPACE follows immediately from Lemma 26. On the other hand,
the completeness follows from that same lemma by reducing from the problem of containment to
the one of equivalence using that, given two quasi-DAGsA1 andA2, we have that L(A1) ⊆ L(A2)
iff L(A1 t A2) ≡ L(A2). Note that if A1 and A2 are quasi-DAGs, then so is A1 t A2 via the
standard construction.

To prove the PSPACE-hardness of the problem of XPathl=-bisimilarity for data DAGs, we first
define some useful terms. A root of a DAG is a node that has no incoming edges, the height of a
DAG is the maximum downward distance between a root and a node, and the level i of a DAG is
the set of nodes whose maximum distance to some root is i.

Now, to obtain the hardness for Theorem 28, we observe that it is sufficient to prove the fol-
lowing. Given two NFAs A1 and A2 over alphabet At {#} whose underlying graphs are #-quasi-
DAGs, and such that the heights of Â1 and of Â2 are equal (where Âi is the automaton that reverses
the #-transitions of Ai), and both Â1 and of Â2 have no unreachable states or states that cannot
reach a final state, we can construct data DAGs D1 and D2 such that

L(A1) ≡ L(A2) ⇐⇒ D1, u1↔l D2, u2,

for specific nodes u1 ∈ D1 and u2 ∈ D2 to be defined below. That proving this is sufficient for our
purposes easily follows Lemma 29 and the fact that the quasi-DAGs A1

n,M tA2
n,M and A2

n,M have
the same height (as Â1

n,M t Â2
n,M have both height n, and so does Â2

n,M).
Now, we proceed to the construction of D1, u1 and D2, u2 by applying two transformations to

the NFAs A1 and A2:

• The transformation Td(B). It standardizes some properties relating their initial and final
states. Given d > 0 and an automaton B with an underlying DAG, we define the DAG-
automaton Td(B) as in Figure 13, adding new states and changing the initial state and set of
final states. Observe that for any B and a large enough d, Td(B) has only one state in level 0
(the new initial state) and the new final state is the only state at its level. Furthermore, note
that L(Td(B)) = edL(B)ed.

35

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

q0

q1
f

q3
f

e

e

ee

e

q2
f

e

B

q̃0

q̃f

1

2

3

4

6

1

2

3

4

5

0

0

Figure 13: In gray, a DAG-automaton B over a given alphabet Σ of height 4 (transition letters not
shown) with initial state q0 in level 1, and final states q1f , q2f in level 2, and q3f in level
3. We add 4 new nodes and 6 new transitions with label e /∈ Σ to obtain a new DAG-
automaton T2(B) of height 6, whose initial state is q̃0 in level 0 and the only final state
is q̃f is in level 6. Observe that L(T2(B)) = eeL(B)ee.

• The transformation Θ(B). Given an automaton B with an underlying DAG, with initial node
in level 0 and a unique final state in its last level, Θ converts B into a data DAG Θ(B) with a
distinguished node as shown in Figure 14.

We then define D1, u1 := Θ(Td(Â1)) and D2, u2 := Θ(Td(Â2)), where d is the height of Â1

and Â2.
To prove that D1, u1↔l D2, u2 implies L(A1) ≡ L(A2), we proceed as in the proof of Theo-

rem 25. We only prove that L(A1) ⊆ L(A2), as the other inclusion is symmetrically obtained; to
see this, we take u1 and u2, which must be related via some two-way bisimulation by hypothesis.
Let ω ∈ L(A1), and ω̃ = edωed (where e is the fresh symbol that appears in the construction of
Td(Â1)) and let α be the corresponding path expression in the vein of what was done in the proof
of Theorem 25. By (Zig=), there must be a a path satisfying α in D2 starting in u2 and ending in a
node with value 1. By construction, this implies that the path goes solely through Td(Â2); from this
we derive that ω ∈ L(A2), as we wanted.

On the other hand, to prove that L(A1) ≡ L(A2) implies D1, u1↔l D2, u2, we construct a a
two-way bisimulation Z betweenD1 andD2. The definition of Z is given in Figure 15. In particular,
Z relates a node x1 in D1 with a node x2 in D2 if and only if x1 is at the same level as x2 (recall
that D1 and D2 have the same height).

We must prove that the Z so defined is indeed a two-way bisimulation. To do this, we generally
proceed in the same fashion as in the proof of Theorem 25. We do not give an exhaustive case-by-
case proof, as the strategies to find adequate witnesses for (Zig=) and (Zag=) are analogous to those

36

BISIMULATIONS ON DATA GRAPHS

transitive

transitive

transitive

transitive

#

#A

A

1 2

u v

1 2
r s

w

4

t
4

B

3

Pd Pd Pd Pd

5

5
q

z

transitive
transitive

transitive
transitive

represents

represents

C

C

C

C

B

B

Pd

Pd

B Pd

B Pd

(a) (b)

Figure 14: (a) The transformation Θ from a “normalized” NFA B with an underlying DAG into a
data DAG Θ(B). The NFA B has its initial node in level 0 and a unique final state in
its last level. The lines between the uppermost nodes and the initial state of B, as well
as the lines between the sole final state of B and the lowermost nodes, are edges with a
single new label, which we will refer to as an ‘idle’ label to avoid notation clutter. The
dotted lines represent the levels of B, and d represents the height of B (in the diagram
d = 5). Pd consists of d nodes connected linearly and transitively via edges with all
labels in A t {#}. The edges between the nodes in the copies of Pd and B go to all
nodes of a certain level, as indicated in (b). All nodes in gray areas have data value 3.
The distinguished node in the data DAG is u.

37

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

u1 u2

D1 D2

Z

Z

Z

Figure 15: The data DAGs D1 and D2 have the same height. The relation Z connects each node at
level i in D1 with each node at level i in D2. Z is a bisimulation between D1, u1 and
D2, u2.

previously used. Instead, we highlight the salient points of the construction of D1 and D2, giving an
idea of the main properties that are needed for the proof:

• From every one of the upper nodes {u1, v1, w1, z1} or {u2, v2, w2, z2}, it is possible to de-
scend via an idle edge to the uppermost node of the central portion of the corresponding
data DAG (namely, the portion with Td(Â1) or Td(Â2), respectively). In particular, we can
always start from one of the upper nodes, navigate ‘inside Td(Âi)’ (using the hypothesis
L(A1) ≡ L(A2) to mimic ‘words’ from one automaton with the other), and end up in a node
with the same data value as the starting one. This point is important to verify that all upper
nodes are bisimilar.

• Analogously, there is an edge from the lowest node of the central portion towards all lower
nodes. This is used to verify that all the lower nodes are bisimilar with ri.

• From any of the upper nodes, we can always descend via two paths ending in different data
values and having the following forms: they begin and end with idle-labeled edges, and in
the middle they have edges with labels in A t {#}, in number at most that of the height of
Td(Âi). This is another key point for proving the bisimilarity of all upper nodes.

• Analogously for pair of paths beginning in a lower node, ‘ascending’ to end in two nodes of
different data values.

This concludes the proof of Theorem 28.

8. Conclusions

As we have seen, while in general computing (bi)simulations on data graphs is PSPACE-complete,
better bounds can be obtained by either restricting the topology of the graph, or by relaxing the

38

BISIMULATIONS ON DATA GRAPHS

conditions for bisimulation. Further, several upper bounds continue to hold when inverses are added,
save for the ones when the underlying graph is a data DAG. The following table summarizes our
results:

Model Problem
Logic

XPath= XPathl=

Graph
(bi)simulation PSPACE-c PSPACE-c
p-(bi)simulation CO-NP CO-NP
c-(bi)simulation PTIME-c PTIME

DAG (bi)simulation CO-NP-c PSPACE-c
Tree (bi)simulation PTIME PTIME

In the future we would like to consider XPath with reflexive-transitive axes. Instead of having
↓a, we then have ↓∗A denoting pairs of nodes that can be reached through paths with labels from a
set A. Although having both ↓a and ↓∗A does not change the indistinguishability (nor bisimulation)
relation, having only ↓∗A in the absence of ↓a gives rise to a different bisimulation relation, somewhat
akin to ML-bisimulation over transitive frames (Dawar & Otto, 2009).

Acknowledgements

This work was partially supported by the Laboratoire International Associé “INFINIS”, by grants
ANPCyT-PICT-2013-2011 and UBACyT 20020150100002BA, and STIC AmSud 2015 Founda-
tions of Graph Structured Data. Barceló is funded by Millennium Nucleus Center for Semantic
Web Research under Grant NC120004 and Fondecyt grant 1170109.

References

Abriola, S., Barceló, P., Figueira, D., & Figueira, S. (2016). Bisimulations on data graphs. In Princi-
ples of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International
Conference, KR, pp. 309–318.

Abriola, S., Descotte, M. E., & Figueira, S. (2014). Definability for downward and vertical XPath
on data trees. In 21th Workshop on Logic, Language, Information and Computation, Vol.
6642 of Lecture Notes in Computer Science, pp. 20–34.

Abriola, S., Descotte, M. E., & Figueira, S. (2017a). Model theory of XPath on data trees. Part II:
Binary bisimulation and definability. Information and Computation, To appear.

Abriola, S., Figueira, D., & Figueira, S. (2017b). Logics of repeating values on data trees and
branching counter systems. In International Conference on Foundations of Software Science
and Computational Structures, Lecture Notes in Computer Science. Springer.

Angles, R., & Gutiérrez, C. (2008). Survey of graph database models. ACM Comput. Surv., 40(1).

Areces, C., Koller, A., & Striegnitz, K. (2008). Referring expressions as formulas of description
logic. In Proc. of the 5th INLG, Salt Fork, OH, USA.

Areces, C., Figueira, S., & Gorı́n, D. (2011). Using logic in the generation of referring expressions.
In Logical Aspects of Computational Linguistics, pp. 17–32. Springer.

39

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

Balcázar, J., Gabarro, J., & Santha, M. (1992). Deciding bisimilarity is P-complete. Formal aspects
of computing, 4(1), 638–648.

Barceló, P. (2013). Querying graph databases. In PODS, pp. 175–188.

Belardinelli, F., Lomuscio, A., & Patrizi, F. (2014). Verification of agent-based artifact systems. J.
Artif. Intell. Res. (JAIR), 51, 333–376.

Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Cambridge University Press.

Bojańczyk, M., Muscholl, A., Schwentick, T., & Segoufin, L. (2009). Two-variable logic on data
trees and XML reasoning. J. ACM, 56(3).

Calvanese, D., De Giacomo, G., Lenzerini, M., & Vardi, M. Y. (2000). Containment of conjunctive
regular path queries with inverse. In KR, pp. 176–185.

Clarke, E. M., Grumberg, O., & Peled, D. (2001). Model checking. MIT Press.

Dalmau, V., Kolaitis, P. G., & Vardi, M. Y. (2002). Constraint satisfaction, bounded treewidth, and
finite-variable logics. In CP, pp. 310–326.

David, C., Gheerbrant, A., Libkin, L., & Martens, W. (2013). Containment of pattern-based queries
over data trees. In ICDT, pp. 201–212. ACM.

Dawar, A., & Otto, M. (2009). Modal characterisation theorems over special classes of frames.
Annals of Pure and Applied Logic, 161(1), 1–42.

Dechter, R. (1992). From local to global consistency. Artif. Intell., 55(1), 87–108.

Dechter, R. (2003). Constraint processing. Elsevier Morgan Kaufmann.

Demri, S., D’Souza, D., & Gascon, R. (2007). Decidable temporal logic with repeating values. In
Symposium on Logical Foundations of Computer Science, Vol. 4514 of LNCS, pp. 180–194.
Springer.

Demri, S., Figueira, D., & Praveen, M. (2016). Reasoning about data repetitions with counter
systems. Log. Methods Comput. Sci., 12(3).

Demri, S., & Lazić, R. (2009). LTL with the freeze quantifier and register automata. ACM Trans.
Comput. Log., 10(3).

Demri, S., Lazić, R., & Nowak, D. (2005). On the freeze quantifier in constraint LTL: Decidability
and complexity. In International Symposium on Temporal Representation and Reasoning, pp.
113–121. IEEE Press.

Fan, W., Li, J., Wang, X., & Wu, Y. (2012). Query preserving graph compression. In SIGMOD, pp.
157–168.

Figueira, D. (2010). Reasoning on Words and Trees with Data. PhD thesis, Laboratoire Spécification
et Vérification, ENS Cachan, France.

Figueira, D. (2012). Decidability of downward XPath. ACM Trans. Comput. Log., 13(4).

Figueira, D. (2013). On XPath with transitive axes and data tests. In PODS, pp. 249–260. ACM.

Figueira, D., Figueira, S., & Areces, C. (2014). Basic model theory of xpath on data trees. In ICDT,
pp. 50–60.

Figueira, D., Figueira, S., & Areces, C. (2015). Model theory of XPath on data trees. Part I: Bisim-
ulation and characterization. Journal of Artificial Intelligence Research, 53, 271–314.

40

BISIMULATIONS ON DATA GRAPHS

Figueira, S., & Gorı́n, D. (2010). On the size of shortest modal descriptions.. In Advances in Modal
Logic, Vol. 8, pp. 114–132.

Fischer, M. J., & Ladner, R. E. (1979). Propositional dynamic logic of regular programs. J. Comput.
Syst. Sci., 18(2), 194–211.

Getoor, L., & Diehl, C. P. (2005). Link mining: a survey. ACM SIGKDD Explorations Newsletter,
7(2), 3–12.

Givan, R., Dean, T. L., & Greig, M. (2003). Equivalence notions and model minimization in markov
decision processes. Artif. Intell., 147(1-2), 163–223.

Hariri, B. B., Calvanese, D., De Giacomo, G., Deutsch, A., & Montali, M. (2013a). Verification of
relational data-centric dynamic systems with external services. In PODS, pp. 163–174.

Hariri, B. B., Calvanese, D., Montali, M., De Giacomo, G., De Masellis, R., & Felli, P. (2013b).
Description logic knowledge and action bases. J. Artif. Intell. Res. (JAIR), 46, 651–686.

Jurdziński, M., & Lazić, R. (2007). Alternation-free modal mu-calculus for data trees. In LICS, pp.
131–140. IEEE Press.

Jurdziński, M., & Lazić, R. (2011). Alternating automata on data trees and xpath satisfiability. ACM
Trans. Comput. Log., 12(3), 19.

Kara, A., Schwentick, T., & Zeume, T. (2010). Temporal logics on words with multiple data val-
ues. In IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science.

Kolaitis, P. G., & Vardi, M. Y. (2000). A game-theoretic approach to constraint satisfaction. In
AAAI, pp. 175–181.

Kozen, D. (1977). Lower bounds for natural proof systems. In FOCS, pp. 254–266.

Krahmer, E., van Erk, S., & Verleg, A. (2003). Graph-based generation of referring expressions.
Computational Linguistics, 29(1).

Krahmer, E., & Van Deemter, K. (2012). Computational generation of referring expressions: A
survey. Computational Linguistics, 38(1), 173–218.

Kupferman, O., & Vardi, M. Y. (1998). Verification of fair transition systems. Chicago J. Theor.
Comput. Sci., 1998.

Kurtonina, N., & de Rijke, M. (1999). Expressiveness of concept expressions in first-order descrip-
tion logics. Artif. Intell., 107(2), 303–333.

Libkin, L., Martens, W., & Vrgoč, D. (2013). Querying graph databases with XPath. In ICDT, pp.
129–140. ACM.

Libkin, L., Martens, W., & Vrgoc, D. (2016). Querying graphs with data. J. ACM, 63(2), 14.

Libkin, L., & Vrgoč, D. (2012). Regular path queries on graphs with data. In ICDT, pp. 74–85.

Luo, Y., Fletcher, G. H. L., Hidders, J., Bra, P. D., & Wu, Y. (2013a). Regularities and dynamics in
bisimulation reductions of big graphs. In GRADES 2013, p. 13.

Luo, Y., Fletcher, G. H. L., Hidders, J., Wu, Y., & Bra, P. D. (2013b). External memory k-
bisimulation reduction of big graphs. In 22nd ACM CIKM’13, pp. 919–928.

41

ABRIOLA, BARCELÓ, FIGUEIRA, & FIGUEIRA

Lutz, C. (2003). Description logics with concrete domains—a survey. In Advances in Modal Logics
Volume 4. King’s College Publications.

Lutz, C., Areces, C., Horrocks, I., & Sattler, U. (2005). Keys, nominals, and concrete domains. J.
Artif. Intell. Res. (JAIR), 23, 667–726.

Meyer, A. R., & Stockmeyer, L. J. (1972). The equivalence problem for regular expressions with
squaring requires exponential space. In SWAT (FOCS), pp. 125–129.

Milner, R. (1971). An algebraic definition of simulation between programs. In Proceedings of the
2nd International Joint Conference on Artificial Intelligence, pp. 481–489.

Milner, R. (1999). Communicating and mobile systems - the Pi-calculus. Cambridge University
Press.

Milo, T., & Suciu, D. (1999). Index structures for path expressions. In ICDT, pp. 277–295.

Murawski, A. S., Ramsay, S. J., & Tzevelekos, N. (2015). Bisimilarity in fresh-register automata.
In LICS, pp. 156–167. IEEE Press.

Park, D. M. R. (1981). Concurrency and automata on infinite sequences. In Theoretical Computer
Science, 5th GI-Conference, Karlsruhe, Germany, March 23-25, 1981, Proceedings, pp. 167–
183.

Robinson, I., Webber, J., & Eifrem, E. (2013). Graph Databases. O’Reilly Media, Inc.

Sangiorgi, D. (2009). On the origins of bisimulation and coinduction. ACM Trans. Program. Lang.
Syst., 31(4), 1–41.

Savitch, W. J. (1970). Relationships between nondeterministic and deterministic tape complexities.
J. Comput. Syst. Sci., 4(2), 177–192.

van Benthem, J. (1976). Modal Correspondence Theory. PhD thesis, Universiteit van Amsterdam.

42

