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Abstract The rheological properties of granular mat-
ter submitted to torsional shear are investigated nu-
merically by means of Discrete Element Method. The
shear cell is made of a cylinder filled by grains which are
sheared by a bumpy bottom and submitted to a vertical
pressure which is applied at the top. Regimes differing
by their strain localization features are observed. They
originate from the competition between dissipation at
the sidewalls and dissipation in the bulk of the system.
The effects of the (i) the applied pressure (ii) sidewall
friction and (iii) angular velocity are investigated. A
model, based on the purely local µ(I)-rheology and a
minimum energy principle is able to capture the effect
of the two former quantities but unable to account the
effect of the latter. Although, an ad-hoc modification
of the model allows to reproduce all the numerical re-
sults, our results point out the need for an alternative
rheology.

1 Introduction

The rheology of granular materials is relevant to many
industrials applications (grain transport and storage)
and to natural events (avalanches, mud-slides. . . ). Sev-
eral geometries have been used to probe the rheology
of granular systems (inclined plane, shear cell, confined
gravity-driven flows. . . )but, the full description of 3D
flows remains challenging.

In this work we present discrete element simula-
tions of a wall-bounded three dimensional dense gran-
ular flow. The flow configuration studied in this paper,
which can be referred as torsional shear flow, is a rather
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classical one in rheometry, which was rarely used for
studying granular materials. It consists in a cylindrical
geometry filled by the studied system, where the bot-
tom wall rotates and the upper and cylindrical wall are
fixed. In this work the flow is at fixed normal stress, i.e.
the upper wall is free to move vertically under the ac-
tion of the imposed normal force and the reaction of the
particles contained in the cylinder. This configuration
is interesting because simple velocity profiles were ob-
tained for viscous and viscoelastic fluids, and therefore
it is tempting to consider it as a granular rheometer. On
the other hand, secondary flows were already observed
for newtonian fluids in this geometry, and it is therefore
interesting to see if they can develop also for granular
flows. As it will be clear in the following, this config-
uration displays shear localization. Shear localization
is a fundamental property of granular systems. Exam-
ples of configurations displaying such a phenomenon are
the vertical chute flow [1–3], the cylindrical Couette cell
[4], and the different types of split-bottom shear cells
[5–9]. Such configurations are an important benchmark
for granular flow modeling, and are therefore precious
for evaluating the performance of the different rheolo-
gies proposed in the Literature. A large body of work
in the last decade has been devoted to the so-called
µ(I) rheology [4, 10]. While this rheology seems to work
well (and should be probably better referred to) as an
empirical, macroscopic scaling law, its colinear exten-
sion to 3D [11] was shown to have some drawbacks for
complex flows, particularly when approaching the qua-
sistatic regime of flow [12, 13, 6]. These problems seem
to be related to the local nature of the µ(I) rheology
and motivated research on nonlocal models of granular
flows such as fluidity-based models [14–17] and models
inspired by kinetic theories [18–20]. The main objec-
tive of this work is therefore to characterize the granu-



2 Riccardo Artoni, Patrick Richard

lar flow in such a configuration and to discuss a simple
modeling. So, a particular focus will be given on the
kinematics of the flow and on the flow regimes as a
function of the main system parameters.
The outline of this paper is the following. We begin
this article with a brief description of the flow configu-
ration and of the numerical methods used (section 2).
We then report in section 3 the velocity profiles ob-
tained under several conditions. Section 4 is devoted to
the exploitation of the data and investigate how they
can be modeled. Finally we present our conclusions.

2 Flow configuration and simulation method

Fz

Ω

Fig. 1 Sketch of the torsional flow configuration. Grains fill a
cylindrical vessel with smooth but frictional sidewalls. The bot-
tom and upper walls are made bumpy by gluing grains on their
surfaces. A vertical force Fz is applied to the latter wall which
is free to move vertically according to the applied forces. On the
contrary, the former wall only rotates at an angular velocity Ω.

Numerical simulations are performed using the non
smooth contact dynamics method [21], as implemented
in the LMGC90 open source framework [22].

As already introduced, the torsional shear flow con-
figuration (sketched in Fig. 1) is a cylinder (radius R =

12d, variable height H) filled with a granular mate-
rial, where the bottom boundary is rotating, while a
normal force is applied by the top wall. The top and
bottom walls are bumpy, while the cylindrical wall is
smooth but frictional. Gravity acts on the system along
z. The top wall cannot move on the x- and y- direc-
tions but is free to move in the z-direction, simply ac-
cording to the balance between its weight, the exter-
nally applied force and the force exerted by the grains.
Simulations were performed with N = 10 000 slightly
polydisperse spheres (uniform number distribution in
the range 0.9d− 1.1d) interacting through perfectly in-
elastic collisions and Coulomb friction (µp = 0.5). Each

bumpy wall was composed of 100 spheres with the same
properties of the particles. The coefficient of restitution
has nearly no influence on dense granular flows due to
the presence of enduring contacts [23]. Consequently,
we chose perfectly inelastic grains to maximize dissipa-
tion and thus save computation time. Interactions of
particles with the flat walls were also perfectly inelastic
and frictional (with a coefficient of friction µpw).

We performed several simulations varying the an-
gular velocity of the bottom bumpy wall Ω, the force
applied to the upper bumpy wall Fz, and the particle
wall friction coefficient µpw. The first two parameters
can be made dimensionless for example by considering
a particle Froude number Ω̃ = ΩR/

√
gd and the ratio

between the total force mass exterted by the top wall
and the weight of the grains, F̃ = Mg+Fz

Nmg where m is
the average particle mass, andM = 100m is the mass of
the top wall. In particular, the investigated ranges cor-
respond to µpw = 0−0.3, Ω̃ = 0.12−2.4, F̃ = 0.2−100.
We did not perform every possible permutation of the
three variables but we chose some representative sets of
the couple (Ω̃, F̃ ) and varied the wall friction coefficient
for each set. Table 1 resumes the sets chosen. In order to
understand to which flow regime our simulations belong
to, it is useful to introduce a dimensionless number, the
inertial number, defined as I = γ̇d/

√
p/ρ [4, 10], where

γ̇ is the shear rate and p is a pressure, while ρ is parti-
cle density. However in our simulations the shear rate is
an increasing function of the radial coordinate, so will
be the inertial number. Shear localization and the pres-
ence of stress profiles will also induce z variation of I. In
order to compare simulation sets we therefore define a
characteristic inertial number Ic by considering the av-
erage shear rate at r = R, ΩR/H, and the theoretical
pressure at mid-height, (F̃ + 1/2)Nmg/(πR2). Ic may
give a coarse estimate of the expected maximum value
of I for each set. From Table 1 we can conclude that
our simulations lie in a range of inertial number from
0 (for r = 0) to 10−1, which corresponds to the qua-
sistatic and dense regimes of flow. Set 6 in Table 1 was
explicitely chosen because, if the behavior of the system
was described by this characteristic inertial number, de-
creasing the rotational velocity by one order of magni-
tude should be the same as increasing the pressure by
two orders of magnitude (i.e. set 1 would behave like
set 6).

In the contact dynamics method the choice of the
time step is not related to the elasticity of the parti-
cles but to the other characteristic times of the system.
Three characteristic times may be defined: the charac-
teristic time related to gravity,

√
d/g, the characteristic

time related to particle velocities, d/V , and the charac-
teristic time related to pressure, d√

p/ρp
where ρp = 6m

πd3
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Set Ω̃ F̃ Ic
1 0.12 0.2 2 10−3

2 0.24 0.2 4 10−3

3 1.2 0.2 2 10−2

4 2.4 0.2 4 10−2

5 1.2 8 6 10−3

6 1.2 100 2 10−3

Table 1 Sets of Ω̃ and F̃ used in the simulations. For each set
the wall friction coefficient was varied in the range µpw = 0−0.3.
The last column displays an estimate of the global inertial number
for each set.

is the particle density. The time step must be choosen
smaller than such characteristic times. For estimating
the extremal values of the characteristic times we con-
sidered the maximum expected velocity of the particles
(ΩR) and the pressure at the bottom wall ( (F̃+1)Nmg

πR2 ).
Given that our simulations were performed in the dense
regime of flow, the characteristic time related to pres-
sure is the controlling one and spans in the range 2 10−2−
2 10−1. The time step was therefore chosen as ∆t =

2 10−4 for all the simulations. Each simulation was per-
formed in parallel (OpenMP) on 4 cores (2.7Ghz) for
approximately 30 days. The time needed for reaching a
stationary state (determined by the kinetic energy evo-
lution) was nearly independent on system parameters,
and we found Tss ≈ 10

√
d/g. The convergence rate was

lower when increasing pressure and when decreasing the
velocity, given that the relative number of long lasting
contacts was higher in those cases.

Averaging method. An averaging technique is needed
to obtain estimates of continuum-like variables such
as velocity, solid fraction, stresses from their discrete
counterparts. Several frameworks have been proposed
in the literature [24–28]; recent works have highlighted
the effect of the coarse-graining length [29] and the sub-
tleties behind the calculation of kinetic terms [28]. In
this work, we report results on azimuthal velocity pro-
files. In order to compute such profiles, several snap-
shots of particle positions and velocities were extracted
from the simulations at different times. Due to the ax-
ial symmetry of the flow geometry, averages were com-
puted with respect to a grid in the (r,z)-plane; for each
grid point the average velocity was computed by the
space-time weighted average [25, 28] :

v(x, t) =

∫∞
−∞

∑
p wpmpvpdt

′∫∞
−∞

∑
p wpmpdt′

, (1)

where mp and vp are respectively the mass and ve-
locity of particle p, and wp = w(xpx, t

′− t) is a weight-
ing function. As for the latter, due to the existence of a
stationary state, the time average was performed as a
simple average of the space-weighted averages; for space

averaging, on the other hand, a Heaviside step function
around the grid point with diameter equal to one parti-
cle diameter was chosen. This corresponds to perform-
ing averages on toroidal volumes. A similar averaging
procedure was already discussed by Luding [30]. When
dealing with such a complex averaging domain, it is
important to remember that the mass is not evenly dis-
tributed in the radial dimension: therefore the average
velocity has to be referred not to center of the torus but
to its gyration radius.

3 Results

In the following we will focus on the kinematics dis-
played by the torsional shear cell, and in particular we
attempt a characterization of the shear localization fea-
tures of this flow configuration. A full characterisation
of the system in terms of the other variables (stresses,
fluctuating energy balance, wall fields) will be given
elsewhere. It has to be noted that an analysis of wall
friction and wall slip in a similar geometry has recently
appeared [31].

Autosimilarity of the profiles. Figure 2 displays velocity
profiles along z for different values of the distance from
the axis of symmetry r, for the reference case µpw = 0.3,
Ω̃ = 1.2, F̃ = 0.2. As expected, due to the torsional mo-
tion, the azimuthal velocity of the grains depends on r.
However, when rescaled by the azimuthal velocity of
the bottom wall for the same r, which is Ωr, velocity
profiles nearly collapse on the same curve, which corre-
sponds to a localization near the bottom wall, and an
exponential decay. From the bottom inset of Figure 2
we can see that the velocity profile, when rescaled by
Ωr, indeed displays a small dependence on r, due to the
fact that the cylindrical wall slightly slows down the
particles. In particular, the shear band width slightly
decreases with r near the cylindrical wall. This effect is
however quite small and decreases when decreasing wall
friction (not shown). We can therefore conclude that ve-
locity profiles are nearly autosimilar with respect to r
and can be written as vθ(z) = Ωrf(z), where f(z) is a
similarity function.

Effect of wall friction Figure 3 shows the effect of the
wall friction coefficient (between flowing particles and
the cylindrical wall) on the flow profiles, for Ω̃ = 1.2,
F̃ = 0.2. For the sake of simplicity, due to the nearly au-
tosimilarity of the profiles, the profiles displayed in the
Figure correspond to the average of the rescaled veloc-
ity profiles, vθ/Ωr. As said above, profiles display shear
localization with an exponential decay. However, the lo-
calization pattern depends strongly on wall friction. For
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Fig. 2 Azimuthal velocity profiles for different r values, for the
reference case µpw = 0.3, Ω̃ = 1.2, F̃ = 0.2. Insets: (top) lin-log
plot displaying exponential profiles, (bottom) normalized velocity
profiles. Velocity profiles are exponential and autosimilar.

zero to low values of the wall friction coefficient, shear
is localized near the top wall, while for strong friction
shear is localized near the bottom wall. For intermedi-
ate values of the wall friction coefficient, a more uniform
velocity profile prevails. It can be shown that the ve-
locity profile is a combination of exponentials, of the
form

vθ = Ωr
αz/d−H/d − βH/d−z/d
αz0/d−H/d − βH/d−z0/d , (2)

where α and β are dimensionless parameters. Note
that 0 < α, β < 1; z0 is needed for fitting because
the velocity profile may equal Ωr sligthly above the
bottom wall position. z0 is of order of half a particle
diameter. The change in the localization pattern with
wall friction was already discussed in a similar geometry
[31], and remains an interesting aspect which needs to
be explained.

Effect of confining pressure Figure 4 shows the effect
of the normal force applied to the top wall on the flow
profiles, for Ω̃ = 1.2, and three different values of the
wall friction coefficient. As the wall friction coefficient,
confinement pressure has a strong effect on velocity pro-
files: for negligible wall friction, increasing the normal
force widens the top localized shear band. We can imag-
ine that for very large confinement pressures and no
wall friction the velocity profiles will become linear.
On the other hand, for larger values of the wall fric-
tion coefficient, increasing the normal force induces a
strengthening of the bottom localization pattern with
a decrease in the shear band width. Similarly, Singh
et al [6] reported a decrease in the shear band width
when increasing gravity in a split bottom cell.
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Fig. 3 Average normalized azimuthal velocity profiles as a func-
tion of wall friction, for Ω̃ = 1.2, F̃ = 0.2, and different values of
the wall friction coefficient: µpw = 0, 0.1, 0.13, 0.15, 0.2, 0.3.
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Fig. 4 Average normalized azimuthal velocity profiles as a func-
tion of applied pressure, for Ω̃ = 1.2, and three different values of
the wall friction coefficient, and three different values of the force
applied to the top wall : F̃ = 0.2 (solid lines), F̃ = 8 (dashed
lines), F̃ = 100 (dot-dashed lines).

Effect of angular velocity Figure 4 shows the effect of
the rotating velocity of the bottom wall on the flow pro-
files, for F̃ = 0.2, and three different values of the wall
friction coefficient. Surprisingly, in the range of veloci-
ties considered here, the driving speed has little effect
on the shape of velocity profiles. This is a feature com-
mon to other granular flows, such as for example the
vertical chute flow [2, 3, 1], where the shape of the veloc-
ity profile does not depend on flowrate. Koval et al [32]
reported numerical simulations for a 2d annular Cou-
ette cell displaying constant shear band width in the
quasistatic limit and increasing shear band width when
approaching the inertial regime. Given the nature of our
configuration and the range of I studied, nearly all the
flow is in the quasistatic regime, so this is probably the
reason for the independence of the velocity profiles on
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the angular velocity. On the other hand, Jop [9] solved
the µ(I) rheology for the split bottom cell with free
surface and found that the theory predicted an increas-
ing shear band width. This has not been tested against
data to our knowledge, so it is difficult to judge about
a possible contradiction, especially considering that our
geometry is different in many aspects from Jop’s one.
There’s definitely a strong need for investigation on the
effect of velocity on shear bands in many flow config-
urations, in view of the fact that shear bands are an
important benchmark for granular flow theories.
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Fig. 5 Average normalized azimuthal velocity profiles as a func-
tion of angular velocity of the bottom wall, for F̃ = 0.2, and
three different values of the wall friction coefficient.

It is useful at this point to resume the main results
obtained from the simulations. For the range of param-
eters considered, we have found:

– nearly autosimilar and rate independent azimuthal
velocity profiles: vθ/Ωr = f(z) seems to depend
only slightly on r and Ω.

– for low friction and low pressure, velocity profiles
display a plug flow with shear localization near the
top wall

– for high friction, velocity profiles display shear local-
ization near the bottom wall, with the development
of a creep zone far from the shear band.

– for negligible friction and high pressure we seem to
tend to a fully sheared situation.

A tentative sketch of the regimes of our system as a
function of F̃ and µpw is given in Figure 6. A more
complete parametrical study has to be performed in
order to explore the limits of such a regime map, and
to characterize the transition zones in detail. In the
following we will try to see if a modeling framework
based on simple rheological considerations and a least
effort principle can predict the behaviors listed above.

μw

F

bottom 

localization
top 

localization

fully 

sheared

~

Fig. 6 Hypothetical flow regime map as can be drawn from
present results.

4 Modeling

In the previous section we discussed numerical results
concerning the torsional shear flow of granular materi-
als, with a particular focus on the effect of wall friction,
confining pressure and driving velocity. Results are in-
teresting and provide a valuable benchmark for granu-
lar flow models. A simple approach would be to solve
the momentum balance equations with the µ(I) rheol-
ogy [33, 9]. Here we prefer here to adopt a more robust
model, employing some of the information coming from
the µ(I) rheology, but in the form of a minimum en-
ergy principle. This is also motivated by the fact that,
as shown recently in a similar geometry [31], bound-
ary conditions for the velocity field and wall stresses
can be tricky for the smooth wall. It should be pointed
out here that our aim is to derive a model capable to
reproduce qualitatively our numerical results and thus
identify the physical mechanisms which explain the dif-
ferent observed regimes.

The rate of work transferred to the system by the ro-
tating bottom wall can be divided in two contributions:
(1) the power needed to shear the material in the bulk,
and (2) the power needed to let the material slip at the
cylinder wall. The first term, which corresponds to the
so-called “stress power” in fluid mechanics, is given, per
unit volume, by Pbulk = σijeij , which is the contracted
product of the stress tensor σij and the rate of defor-
mation tensor eij = 0.5(vi,j + vj,i). We briefly recall
that using the classical decomposition σij = −pδij+τij
where δij is the Kronecker delta, p = 1/3σii the pres-
sure, τij the deviatoric stress tensor, the stress power
becomes Pbulk = τijeij−pekk, and that the second term
disappears for isochoric motion. If, for the purpose of
deriving a minimum energy principle, we assume co-
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linearity of the stress-rate of strain relationship, the
stress power is simply given by Pbulk = |τ | |γ̇|, where
|τ | =

√
0.5(τijτij) is the norm of the deviatoric stress

tensor, and |γ̇| =
√
2(eijeij) is the shear rate as defined

by Bird [34]. Let’s assume a simple scaling for stresses
in granular flow, i.e. the µ(I) scaling [4, 10]. This scal-
ing law states that the shear stress is proportional to
the pressure via a dimensionless quantity µ, which is a
function of the already discussed inertial number I:

‖τ‖
p

= µ(I) = µ0 + bI, (3)

where µ0 and b are material constants. Introduc-
ing such an expression, we obtain that the local, bulk
stress power per unit volume is Pbulk = µ(I)p |γ̇|. Note
that this scaling is purely local: it correlates the stress
at a given position to the shear rate at the same po-
sition. Consequently, it cannot capture the cooperative
effects that prevail to describe the behavior of gran-
ular materials in quasi-static flowing zones for which
the bulk stress/strain-rate behavior appears to vary
with the macroscopic geometry. As regards the sec-
ond contribution to the total power, it is straightfor-
ward to see that the rate of work required to main-
tain steady slip at the cylindrical wall per unit sur-
face is given by Pwall = µwσrrvslip, where µw is a
wall friction coefficient and vslip is the local slip ve-
locity. If, for the sake of simplicity, we hypothesize zero
normal stress difference, all the three normal stresses
are equal, i.e. σrr = σθθ = σzz = p, this term be-
comes Pwall = µwpvslip. Under the assumptions de-
tailed above, the total power transferred to the system
is therefore given by the sum of the two terms respec-
tively integrated on the volume and the wall surface,
that is

Ptot = Pbulk + Pwall
=

∫
µ(I)p |γ̇| dV +

∫
µwpvslipdS. (4)

We will close our model by making the assumption
that the system selects the velocity profile which re-
quires the least total power [35, 7]. The relevance of a
least effort principle can be measured by the following
reasoning. Due to the presence of gravity, stresses are
expected to increase with depth, and therefore Pbulk is
higher when shear is localized at the bottom. On the
other hand, Pwall is higher if shear is localized near the
top wall, because the plug flow zone contributes largely
to the power needed to let particles slide at the wall,
given that nearly all the particles at the wall slip with
a large velocity. Changing the system parameters may
change the relative balance of the two terms and there-
fore the shear localization pattern.

Let’s try to develop the terms in Eq. 4. Numerical
data showed that velocity profiles were nearly autosim-
ilar. It is easy to show that, if vθ(r) is linear, the rate
of deformation tensor has only one non negligible com-
ponent, eθz = ezθ. The shear rate therefore reduces
to |γ̇| = ∂zvθ = Ωr |f ′(z)|, where f(z) = vθ/(Ωr) is
the similarity function defined in Section 3. We assume
that the pressure profile is a hydrostatic one: p(z) =

pH −ρg(z−H), where pH = (Mg+Fy)/S = F̃Nmg/S

is the pressure applied by the top wall.
Considering that F̃ = pHS

Nmg , and defining the dimen-
sionless total power as P ′ = Ptot/(πR3HρgΩ), it can
be shown that the latter is given by:

P ′ = 2µw
H

R
Φ1 +

2

3
µ0Φ2 +

1

2
bΩ̃

(
d

H

)3/2

Φ3, (5)

where Φ1,Φ2 and Φ3 are three dimensionless func-
tions which are given by:

Φ1 =
1

H

∫ H

0

(F̃ + 1− z

H
)f(z)dz, (6)

Φ2 =

∫ H

0

(F̃ + 1− z

H
) |f ′(z)| dz, (7)

Φ3 = H

∫ H

0

√
F̃ + 1− z

H
|f ′(z)|2 dz. (8)

In the expression given above, one can respectively
identify three terms: the wall friction, the static (yield
stress), and the dynamic contribution. It is easy to see
that the dimensionless power depends on 3 dimension-
less material parameters, µ0, µw and b, on 3 system-
dependent dimensionless numbers: F̃ ,H/R, Ω̃ (d/H)

3/2,
and on the shape of the velocity profile given by the di-
mensionless similarity function. For the fitting proposed
above for f(z), this means that P ′ depends on α and
β. The least effort principle corresponds then to the as-
sumption that the system selects the shear band width
and the localization pattern (i.e. the values of α and
β) that require the least effort. Given its nature of cor-
recting parameter, the parameter z0 can be neglected
in this optimization procedure. In practice, having as-
sumed a value for the parameters of the µ(I) scaling,
we numerically computed the integrals Φ1, Φ2 and Φ3

and determined the values of α and β which minimized
the power. In the following we assume µ0 = 0.42 and
b = 2. which are compatible with the literature about
the µ(I) scaling.

Effect of wall friction. Figure 7 displays profiles of the
normalized azimuthal velocity profile (i.e. the similar-
ity function f(z)) obtained with the optimization pro-
cedure for Ω̃ = 1.2, F̃ = 0.2, and the same values of the
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wall friction coefficient as in Figure 3. It is clear that the
model is effective in predicting the effect of wall friction
on the velocity profiles, with a prevalence of top local-
ization for low friction and of bottom localization for
high friction, passing through a more uniform velocity
profile for intermediate friction.

0 5 10 15 20

z/dp

0.0

0.2

0.4

0.6

0.8

1.0

v
/Ω

r[
−
]

µw

Fig. 7 Average normalized azimuthal velocity profiles as pre-
dicted by the minimum energy technique as a function of wall
friction, for Ω̃ = 1.2, F̃ = 0.2, and different values of the wall
friction coefficient: µw = 0, 0.1, 0.13, 0.15, 0.2, 0.3.

Effect of confining pressure. Figure 8, when compared
to Fig. 4 shows how also the effect of pressure is well
captured by the model: increasing pressure has the ef-
fect of decreasing the shear band width for sufficiently
high friction, while it increases the shear band width
for negligible friction, tending towards a fully sheared
situation. Such a tendency is justified by the fact that
for low friction Pwall is negligible and only Pbulk de-
termines the shear localization pattern. If the confining
pressure is very large, there is nearly no pressure pro-
file along z, and therefore no reason for shear localiza-
tion.Therefore the basic ideas behind the µ(I) scaling,
coupled with a minimum energy principle, are able to
account for the dependence of shear localization on wall
friction and confining pressure.

Effect of rotating velocity. It is tempting to see if the
method predicts also the slight effect produced by the
driving speed on the velocity profiles seen in Fig. 5. It is
clear from Figure 9 that the model predicts a too strong
effect of the driving speed with respect to numerical
simulations.

One could conclude that the dynamic term in Eq.
5 could be ruled out, but in fact this term is needed in
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Fig. 8 Average normalized azimuthal velocity profiles as pre-
dicted by the minimum energy technique as a function of con-
fining pressure, for Ω̃ = 1.2, three different values of the wall
friction coefficient, and three different values of the force applied
to the top wall : F̃ = 0.2 (solid lines), F̃ = 8 (dashed lines),
F̃ = 100 (dot-dashed lines).
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Fig. 9 Average normalized azimuthal velocity profiles as pre-
dicted by the minimum energy technique as a function of angular
velocity of the bottom wall, for F̃ = 0.2, and three different values
of the wall friction coefficient: µw = 0 (solid lines), µw = 0.15
(dashed lines), µw = 0.3 (dot-dashed lines). Only the two ex-
treme value of the velocity used in the simulations are shown for
the sake of clarity.

order to predict a finite shear band width. An ad-hoc
expression is therefore proposed here:

P ′ = 2µw
H

R
Φ1 +

2

3
µ0Φ2 +

1

2
bΩ̃m

(
d

H

)3/2

Φ3, (9)

in which the velocity dependency is reduced through
an exponent m < 1. The result obtained from the op-
timization, with µ0 = 0.42, b = 2. and m = 0.05 is
shown in Figure 10. For this parameter set the effect of
the other system parameters is recovered too. The op-
timization leads to a value of the parameter m close to
zero because experimental data do not display an effect
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of the rotating velocity. However, the value cannot be
zero, otherwise the shear bands would vanish.
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Fig. 10 Average normalized azimuthal velocity profiles as pre-
dicted by the modified minimum energy technique as a function
of angular velocity of the bottom wall, for F̃ = 0.2, and three dif-
ferent values of the wall friction coefficient: µw = 0 (solid lines),
µw = 0.15 (dashed lines), µw = 0.3 (dot-dashed lines).

Unger et al [35] used a variational approach to model
the shear band formation in the split bottom cell. Their
model predicted shear bands of vanishing size. This is
probably related to the absence of the dynamic con-
tribution in their model. Due to the presence of the
dynamic term our model predicts a finite shear band
width. However an ad hoc correction is needed to limit
the effect of Ω on the results. The variational approach
coupled with the µ(I) scaling law is thus unable to cap-
ture the non-influence of the angular velocity of the bot-
tom wall on the velocity profiles. This can be supported
a posteriori by thinking at the combined effect of the
rotating velocity and pressure. If the behavior of the
system was described only by the characteristic inertial
number and the wall friction coefficient, as a simple di-
mensional analysis could suggest, then we would expect
that decreasing the rotational velocity by one order of
magnitude should be the same as increasing the pres-
sure by two orders of magnitude. But it is evident that
the rotating velocity has no effect, while results are very
sensitive to pressure, particularly for low wall friction.
This means that the global inertial number and the wall
friction coefficient are not sufficient for predicting the
behavior of the system. It would be therefore of inter-
est to see if recent modelings of non-locality in granular
flows [14–20] are able to capture the full behavior of our
system. This will be the subject of a future paper.

Regime maps. With the modified formula for the stress
power, Eq. 9, we then look at the combined effect of

some parameters. Figure 11 displays the combined ef-
fect of pressure and wall friction on the function:

∆

H
= 1− 2

H

∣∣∣∣∣
∫ H

0

(f(z)− 1 + z/H)dz

∣∣∣∣∣ , (10)

which measures the distance from a linear velocity
profile, and can provide an estimate of the shear band
rescaled by the cell height H if the flow is localized at
the top or at the bottom. This regime map displays the
already discussed behavior: for low values of both wall
friction and applied pressure, shear is localized at the
top, while when increasing pressure the range of wall
friction implying a bottom localization widens. From
the regime map we can speculate that, for very high
wall friction and pressure, the model will probably pre-
dict a vanishing shear band. This is unlikely, since in
granular flows shear bands usually span several parti-
cle diameters. In fact the model lacks information on
clustering phenomena, which set a lower bound for the
shear band width.
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Fig. 11 Map of shear band width (rescaled by the cell height
H) as a function of dimensionless pressure F̃ and wall friction
coefficient µw, for Ω̃ = 1.2. The bright zone corresponds to a
completely sheared material. The region at the left of the bright
zone corresponds to top localization, while the one at the right
corresponds to bottom localization.

Figure 12 shows the combined effect of pressure and
driving speed for two different values of wall friction. It
is clear that (thanks to the presence of the exponent m
in Eq. 9) the driving speed has a slight effect on the
shear band width particularly for large pressures. The
present numerical results do not allow to say whether
this effect is real or not. Both experiments and simu-
lations for a wider range of rotating velocities of the
bottom wall should be performed in order to better un-
derstand the effect of the driving speed.
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Fig. 12 Maps of shear band width (rescaled by the celll height
H) as a function of dimensionless pressure F̃ and dimensionless
rotating velocity Ω̃, for (top) µw = 0.05, (bottom) µw = 0.3.
For the top figure, the bright zone corresponds to a completely
sheared material. The region below the bright zone corresponds
to top localization, while the one above corresponds to bottom
localization. For the bottom figure, only bottom localization is
present.

Though effective in replicating the numerical simu-
lation results, the optimization technique is based on an
expression for the total stress power which was modi-
fied ad hoc in order to reduce the velocity dependence of
the profiles. A more sound theory is needed in order to
better take into account the effect of driving speed and
the formation of clusters; however the present approach
may be helpful for designing new zones of the parameter
space to be investigated and for conceiving experiments
on the same flow configuration. An example of this use
is Figure 13, in which we plot the combined effect of the
depth H and of the wall friction coefficient on the shear
band width, for F̃ = 0.2 and Ω̃ = 1.2. It is clear that
the model predicts a strong effect of cell height, with
top localization for low H and low friction, bottom lo-
calization for large H and strong friction, ad a more
uniformly sheared profile for intermediate values of the

product Hµw. This chart will help us in designing the
new simulations and the experiments to be performed
in order to study the effect of the cell height.
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Fig. 13 Map of shear band width (rescaled by the cell height H)
as a function of H/d and wall friction coefficient µw, for Ω̃ = 1.2
and R/d = 12. The bright zone corresponds to a completely
sheared material. The region at the left of the bright zone corre-
sponds to top localization, while the one at the right corresponds
to bottom localization.

5 Conclusions

Numerical simulations of the torsional shear flow of
granular materials was shown to display shear localiza-
tion. The existence of shear localization, described by
an exponential velocity profile, was already reported in
similar geometries. For example Orlando & Shen [36]
studied a rapid granular flow in an annular shear cell
in which the bottom plate is rotating. They found a
top localized shear flow for H ∼ 8 − 12d, and a more
uniform shear profile for H ∼ 4− 6d; by extrapolating
their data on shear stress and stress ratio we guess that
F̃ < 1. That is a low pressure which, as shown above
in our simulations, coupled with a low wall friction co-
efficient, could favour a top localization pattern. The
original feature of our results is that the localization
pattern and the depth of the shear zone are shown to
depend on system parameters, with a predominance of
bottom localization for sufficiently large values of wall
friction coefficient and applied pressure. This is impor-
tant in view of the application of a torsional shear cell
as well as an annular shear cell for rheological charac-
terization of granular flows. Recently, we reported [31]
on wall forces and on the localization pattern in a lin-
ear, periodic geometry which shares some similarities
with the configuration studied in the present work and
the one studied by Orlando & Shen [36]. Compared to
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that somewhat ideal configuration, the present study
deals with a flow which can be simply realized as an
experimental set-up and analysed by means of imaging
techniques and force measurements. Future contribu-
tions will deal with the analysis of such an experimen-
tal setup. In that perspective, the present work will be
useful also to determine the range of parameter space
to be investigated in order to study experimentally the
shear localization in a torsional shear flow.

Acknowledgements The numerical simulations were carried
out at the CCIPL (Centre de Calcul Intensif des Pays de la Loire)
under the project MTEEGD.

References

1. Artoni R, Santomaso A (2014) Effective wall slip in
chutes and channels: experiments and discrete ele-
ment simulations. Granular Matter 16(3):377–382

2. Nedderman R, Laohakul C (1980) The thickness of
the shear zone of flowing granular materials. Pow-
der Technology 25(1):91 – 100

3. Natarajan VVR, Hunt ML, Taylor ED (1995) Local
measurements of velocity fluctuations and diffusion
coefficients for a granular material flow. Journal of
Fluid Mechanics 304:1–25

4. GDR-MiDi (2004) On dense granular flows. Eur
Phys J E 14(4):341–365

5. Singh A, Magnanimo V, Saitoh K, Luding S (2014)
Effect of cohesion on shear banding in quasistatic
granular materials. Phys Rev E 90:022,202

6. Singh A, Magnanimo V, Saitoh K, Luding S (2015)
The role of gravity or pressure and contact stiff-
ness in granular rheology. New Journal of Physics
17(4):043,028

7. Moosavi R, Shaebani MR, Maleki M, Török J, Wolf
DE, Losert W (2013) Coexistence and transition
between shear zones in slow granular flows. Phys
Rev Lett 111:148,301

8. Fenistein D, van Hecke M (2003) Kinematics:
Wide shear zones in granular bulk flow. Nature
425(6955):256–256

9. Jop P (2008) Hydrodynamic modeling of granu-
lar flows in a modified couette cell. Phys Rev E
77:032,301

10. da Cruz F, Emam S, Prochnow M, Roux JN,
Chevoir Fmc (2005) Rheophysics of dense granular
materials: Discrete simulation of plane shear flows.
Phys Rev E 72:021,309

11. Jop P, Forterre Y, Pouliquen O (2006) A constitu-
tive law for dense granular flows. Nature 441:727–
730

12. Cortet PP, Bonamy D, Daviaud F, Dauchot O,
Dubrulle B, Renouf M (2009) Relevance of visco-
plastic theory in a multi-directional inhomoge-
neous granular flow. EPL (Europhysics Letters)
88(1):14,001

13. Brodu N, Richard P, Delannay R (2013) Shal-
low granular flows down flat frictional channels:
Steady flows and longitudinal vortices. Phys Rev
E 87:022,202

14. Kamrin K, Koval G (2012) Nonlocal constitutive
relation for steady granular flow. Phys Rev Lett
108:178,301

15. Henann DL, Kamrin K (2013) A predictive, size-
dependent continuum model for dense granular
flows. Proceedings of the National Academy of Sci-
ences 110(17):6730–6735

16. Kamrin K, Henann DL (2015) Nonlocal modeling
of granular flows down inclines. Soft Matter 11:179–
185

17. Henann DL, Kamrin K (2014) Continuummodeling
of secondary rheology in dense granular materials.
Phys Rev Lett 113:178,001

18. Jenkins J, Berzi D (2010) Dense inclined flows of
inelastic spheres: tests of an extension of kinetic
theory. Granular Matter 12:151–158

19. Jenkins J, Berzi D (2012) Kinetic theory ap-
plied to inclined flows. Granular Matter 14:79–84,
10.1007/s10035-011-0308-x

20. Artoni R, Santomaso A, Canu P (2011) Hysteresis
in a hydrodynamic model of dense granular flows.
Phys Rev E 83:051,304

21. Jean M (1999) The non-smooth contact dynamics
method. Computer Methods in Applied Mechanics
and Engineering 177(3–4):235 – 257

22. Renouf M, Dubois F, Alart P (2004) A parallel ver-
sion of the non smooth contact dynamics algorithm
applied to the simulation of granular media. Jour-
nal of Computational and Applied Mathematics
168(1–2):375 – 382, selected Papers from the Sec-
ond International Conference on Advanced Compu-
tational Methods in Engineering (ACOMEN 2002)

23. Dippel S, Wolf D (1999) Molecular dynamics simu-
lations of granular chute flow. Computer Physics
Communications 121-122:284 – 289, proceedings
of the Europhysics Conference on Computational
Physics CCP 1998

24. Glasser BJ, Goldhirsch I (2001) Scale dependence,
correlations, and fluctuations of stresses in rapid
granular flows. Physics of Fluids 13(2):407–420

25. Babic M (1997) Average balance equations for gran-
ular materials. International Journal of Engineering
Science 35(5):523 – 548



Torsional shear flow of granular materials 11

26. Zhu HP, Yu AB (2002) Averaging method of gran-
ular materials. Phys Rev E 66:021,302

27. Weinhart T, Thornton A, Luding S, Bokhove O
(2012) From discrete particles to continuum fields
near a boundary. Granular Matter 14:289–294

28. Artoni R, Richard P (2015) Average balance equa-
tions, scale dependence, and energy cascade for
granular materials. Phys Rev E 91:032,202

29. Weinhart T, Hartkamp R, Thornton AR, Luding
S (2013) Coarse-grained local and objective con-
tinuum description of three-dimensional granular
flows down an inclined surface. Physics of Fluids
25(7):070605

30. Luding S (2008) Constitutive relations for the shear
band evolution in granular matter under large
strain. Particuology 6(6):501 – 505, simulation and
Modeling of Particulate Systems

31. Artoni R, Richard P (2015) Effective wall friction
in wall-bounded 3d dense granular flows. Phys Rev
Lett 115:158,001

32. Koval G, Roux JN, Corfdir A, Chevoir Fmc (2009)
Annular shear of cohesionless granular materials:
From the inertial to quasistatic regime. Phys Rev
E 79:021,306

33. Staron L, Lagrée PY, Popinet S (2014) Continuum
simulation of the discharge of the granular silo. The
European Physical Journal E 37(1):1–12

34. Byron Bird R, Stewart WE, Lightfoot EN (2007)
Transport Phenomena, 2nd edn. Wiley, New-York

35. Unger T, Török J, Kertész J, Wolf DE (2004) Shear
band formation in granular media as a variational
problem. Phys Rev Lett 92:214,301

36. Orlando A, Shen H (2013) Using the annular shear
cell as a rheometer for rapidly sheared granular ma-
terials: a dem study. Granular Matter pp 1–12


