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1. Proof of the minimax lower bound (Theorem 4.1 of [4])

This section contains the proof of our minimax lower bound (Theorem 4.1 of [4]). We will pay a specific
attention to the influence of the separation distance ∆ = ‖f − g‖ on the misclassification rate. We directly
start with the proof in Section 1.1 below. We will use several key technical ingredients gathered in Section 1.2.

1.1. Proof of Theorem 4.1 of [4]

Our lower bound strategy, in particular the way we reduce the classification problem to an estimation prob-
lem, is inspired from [11]. In the finite-dimensional setting, another type of reduction was carried out by [9]
and [1].

First case: ∆ < R1/(2s+1) n−s/(2s+1). Note that{
(f, g) ∈ Hs(R)×Hs(R) : ‖f − g‖ > ∆

}
⊇
{

(f, g) ∈ Hs(R)×Hs(R) : ‖f − g‖ > R1/(2s+1) n−s/(2s+1)
}
.

Therefore, taking the supremum over all such functions, we directly obtain a lower bound on the minimax
excess risk by applying the lower bound

(
ce−2∆2

/∆
)
R2/(2s+1)n−2s/(2s+1) of the second case below with

∆ = R1/(2s+1) n−s/(2s+1). This yields the desired lower bound of ce−2R2/(2s+1)

R1/(2s+1)n−s/(2s+1).

Second case: ∆ > R1/(2s+1) n−s/(2s+1). We proceed in three main steps.

Step 1: reduction to a finite-dimensional L1-estimation problem, and some notation.
Finite-dimensional construction. Let Φ̂ be any classifier built from the sample (Xi, Yi)16i6n. As is usual
when deriving nonparametric lower bounds, we restrict the supremum over all f, g ∈ Hs(R) to a well-chosen
finite-dimensional subset. More precisely, in what follows, we restrict our attention to functions f : [0, 1]→ R
and g : [0, 1]→ R of the form:

∀t ∈ R, f(t) = fθ(t) :=

d∑
j=1

θjϕj(t) , θ ∈ Θ , and g(t) = 0 ,

for some d ∈ N∗ and some parameter set Θ ⊆
{
θ ∈ Rd : θ1 = ∆ and

∑d
j=2 θ

2
j j

2s 6 R2 −∆2
}

to be made
more precise in Step 2 below. Note that 〈fθ, ϕj〉 = θj , so that the notation θj is consistent with that of
Section 3.1 of [4].
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Some notation. The notation we choose for this proof differs slightly from that of the rest of the paper. We
write Pθ for the joint distribution of the training and test samples

(
(Xi, Yi)16i6n, (X,Y )

)
when the true

parameter is θ, and denote by Eθ the corresponding expectation. We also denote by Qθ the distribution of
the process (Z(t))06t61 defined by dZ(t) = fθ(t)dt+ dW (t). We define the L1-norm of h by

‖h‖L1(Q0) :=

∫
|h(x)|dQ0(x) = E

[
|h(W )|

]
.

Finally, for X = (X(t))06t61 solution of (1.1) in [4], we set

X̃j := 〈ϕj , X〉 =

∫ 1

0

ϕj(t)dX(t) .

Note that when X is a standard Brownian motion on [0, 1], then (X̃j)j>1, are independent standard Gaussian
random variables (since (ϕj)j>1 is an orthonormal basis).

Reduction to an L1-estimation problem. Note that g = 0 ∈ Hs(R) and {fθ : θ ∈ Θ} ⊆ Hs(R) (see the
definition in (3.12) of [4]), and that ‖fθ − 0‖ = ‖θ‖ > ∆ for all θ ∈ Θ (we use the notation ‖.‖ both in
L2([0, 1]) and in Rd). Therefore,

sup
f,g∈Hs(R)
‖f−g‖>∆

{
Rf,g(Φ̂)− inf

Φ
Rf,g(Φ)

}
> sup
θ∈Θ

{
Rfθ,0(Φ̂)− inf

Φ
Rfθ,0(Φ)

}
= sup
θ∈Θ

Eθ
[∣∣2ηθ(X)− 1

∣∣1Φ̂(X)6=Φθ(X)

]
, (1.1)

where ηθ(x) = Pθ(Y = 1|X = x) denotes the regression function corresponding to the statistical model (1.1)
in [4] with f = fθ and g = 0, and where Φθ(x) = 1ηθ(x)>1/2 is the associated Bayes classifier.

But, for all θ ∈ Θ and any δ ∈ (0, 1/4) (to be chosen later), we have

Eθ
[∣∣2ηθ(X)− 1

∣∣1Φ̂(X)6=Φθ(X)

]
> δ Pθ

({
|2ηθ(X)− 1| > δ

}
∩
{

Φ̂(X) 6= Φθ(X)
})

> δ
(
Pθ
(
Φ̂(X) 6= Φθ(X)

)
− Pθ

(
|2ηθ(X)− 1| < δ

))
> δ

(
Pθ
(
Φ̂(X) 6= Φθ(X)

)
− 5δ

∆

)
, (1.2)

where the last inequality follows from Proposition 1 of [4]. Next, we use a conditional argument to handle
the probability above given the training sample (Xi, Yi)16i6n: the process X = (X(t))06t61 defined in (1.1)
of [4] is independent from the training sample and has distribution (Q0 + Qθ)/2 under Pθ (recall that Qθ
denotes the distribution of the process (Zt)06t61 defined by dZ(t) = fθ(t)dt + dW (t)). Therefore, for all
θ ∈ Θ,

Pθ
(

Φ̂(X) 6= Φθ(X)
)

= Eθ
{
Pθ
(

Φ̂(X) 6= Φθ(X)
∣∣∣ (Xi, Yi)16i6n

)}
= Eθ

{∫
1Φ̂(x)6=Φθ(x)

dQ0(x) + dQθ(x)

2

}
>

1

2
Eθ
[∥∥Φ̂− Φθ

∥∥
L1(Q0)

]
, (1.3)

where the last inequality follows from the fact that 1Φ̂(x)6=Φθ(x) =
∣∣Φ̂(x)−Φθ(x)

∣∣ for all continuous functions

x : [0, 1]→ R. Putting (1.1), (1.2), and (1.3) together, we finally get

sup
f,g∈Hs(R)
‖f−g‖>∆

{
Rf,g(Φ̂)− inf

Φ
Rf,g(Φ)

}
>
δ

2

(
sup
θ∈Θ

Eθ
[∥∥Φ̂− Φθ

∥∥
L1(Q0)

]
− 10δ

∆

)
. (1.4)
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Step 2: a key combinatorial and geometrical argument In order to further bound (1.4) from below,
we now specialize Θ to the set given by Lemma 1 in Appendix 1.2, whose proof combines Varshamov-Gilbert’s
lemma with simple but key geometrical arguments in dimension two. More precisely, we use Lemma 1 in

Appendix 1.2 with ε = c/
√
n and d =

⌊(
(R2 −∆2)n

)1/(2s+1)⌋
, for some absolute constant c ∈ (0, 1] to be

determined later. Two remarks are in order:

• We have d >
(
(R2 −∆2)n

)1/(2s+1)−1 > 32 log(2)+1 by the assumption n > (32 log(2)+2)2s+1/(3R2/4) >
(32 log(2) + 2)2s+1/(R2−∆2) since ∆ 6 R/2. In particular the condition d > 7 in Lemma 1 holds true.

• The condition ∆ >
√
d ε of Lemma 1 holds since by assumption on ∆, we have

∆ > R1/(2s+1) n−s/(2s+1) =
√

(R2 n)1/(2s+1)/n >
√
d/n >

√
d ε ,

by definition of d and ε.

We can thus apply Lemma 1 and find a subset Θ ⊆ {∆}×{−ε, ε}d−1 ⊆ Rd of cardinality |Θ| > e(d−1)/8 > 2
such that, for all θ 6= θ′ ∈ Θ, ∥∥Φθ − Φθ′

∥∥
L1(Q0)

>

√
d− 1 ε

4π∆
e−∆2

. (1.5)

Note that our construction of Θ meets our earlier requirement: for all θ ∈ Θ, we have
∑d
j=2 θ

2
j j

2s 6 (d −
1)ε2 d2s 6 d2s+1ε2 6 R2 − ∆2 by definition of d 6

(
(R2 − ∆2)n

)1/(2s+1)
and ε 6 1/

√
n. Therefore,

Θ ⊆
{
θ ∈ Rd : θ1 = ∆ and

∑d
j=2 θ

2
j j

2s 6 R2 −∆2
}

as assumed at the beginning of this proof.

Step 3: Reduction to a testing problem with finitely-many hypotheses We now use a classical
tool in nonparametric statistics since we reduce the problem to a multiple-hypotheses testing problem. More
precisely, using (1.4) and setting

θ̂ ∈ arg min
θ∈Θ

∥∥Φ̂− Φθ
∥∥
L1(Q0)

,

we can see that

sup
f,g∈Hs(R)
‖f−g‖>∆

{
Rf,g(Φ̂)− inf

Φ
Rf,g(Φ)

}
>
δ

2

(
sup
θ∈Θ

Eθ
[
1{θ̂ 6=θ}

∥∥Φ̂− Φθ
∥∥
L1(Qµ)

]
− 10δ

∆

)

>
δ

2

(√
d− 1 ε

8π∆
e−∆2

sup
θ∈Θ

Pθ
(
θ̂ 6= θ

)
− 10δ

∆

)
, (1.6)

where in the last inequality we used the fact that, on the event {θ̂ 6= θ}, we necessarily have

∥∥Φ̂− Φθ
∥∥
L1(Q0)

>

√
d− 1 ε

8π∆
e−∆2

by a combination of Inequality (1.5), the definition of θ̂, and the triangle inequality.

We now lower bound the worst-case testing error supθ∈Θ Pθ
(
θ̂ 6= θ

)
. Since θ̂ only depends on the training

sample (Xi, Yi)16i6n, whose distribution we denote by Pθ, we can write Pθ
(
θ̂ 6= θ

)
= Pθ

(
θ̂ 6= θ

)
. We can

thus use Fano’s inequality (cf. Lemma 6 in Appendix 1.2.3) with the events Aθ =
{
θ̂ = θ

}
, the distributions

Pθ, θ ∈ Θ, and the reference distribution Q = Pθ0 , where θ0 := (∆, 0, . . . , 0) ∈ Rd. We obtain:

inf
θ∈Θ

Pθ
(
θ̂ = θ

)
6

1

|Θ|
∑
θ∈Θ

Pθ
(
θ̂ = θ

)
6

1

|Θ|
∑
θ∈Θ

KL
(
Pθ, Pθ0

)
+ log 2

log |Θ|
. (1.7)
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Using the chain rule for the Kullback-Leibler divergence, and following similar computations as in Section 2
of [4] (application of Girsanov’s formula), we can see that, for all θ ∈ Θ,

KL
(
Pθ, Pθ0

)
= n

(
KL
(
B(1/2),B(1/2)

)
+

KL(Qθ, Qθ0) + KL(Q0, Q0)

2

)
=
n‖θ − θ0‖2

4
=
n(d− 1)ε2

4
,

where we used the fact that θ ∈ Θ ⊆ {∆} × {−ε, ε}d−1 and θ0 := (∆, 0, . . . , 0). Combining (1.7) with the
Kullback-Leibler upper bound above, and recalling that |Θ| > e(d−1)/8, we get

inf
θ∈Θ

Pθ
(
θ̂ = θ

)
6
n(d− 1)ε2/4 + log 2

(d− 1)/8
6 2c2 +

1

4
,

where the last inequality follows from ε = c/
√
n and d > 32 log(2) + 1. As a consequence, choosing c :=

1/(2
√

2),

sup
θ∈Θ

Pθ
(
θ̂ 6= θ

)
> 1− 2c2 − 1

4
=

1

2
.

Plugging the last lower bound into (1.6), we finally get

sup
f,g∈Hs(R)
‖f−g‖>∆

{
Rf,g(Φ̂)− inf

Φ
Rf,g(Φ)

}
>

5δ

∆

(√
d− 1 ε

160π
e−∆2

− δ
)

=
(d− 1) ε2

20480π2∆
e−2∆2

with the particular choice of δ =
√
d− 1 ε e−∆2

/(320π). We conclude the proof by substituting the values of

ε = c/
√
n and d − 1 =

⌊(
(R2 −∆2)n

)1/(2s+1)⌋ − 1 > (6/8)
(
(R2 −∆2)n

)1/(2s+1)
(since bxc − 1 > 6x/8 for

all x > 7) and by using the fact that R2 −∆2 > 3R2/4 (since ∆ 6 R/2). Note also that, by the assumption
n > R1/s, we have δ < 1/4 as required in the analysis. This concludes the proof of Theorem 4.1 of [4].

1.2. A key combinatorial and geometrical lemma

In this section, we provide a key combinatorial and geometrical lemma to derive the minimax lower bound
of Theorem 4.1 of [4]. Indeed, the next result guarantees the existence of a parameter set Θ ⊂ Rd such
that—when ε is chosen small enough—it is statistically hard to estimate the true value of the parameter
θ ∈ Θ, while all Bayes classifiers Φθ and Φθ′ , θ 6= θ′ ∈ Θ, are sufficiently far from one another, thus leading
to a large classification excess risk.

Lemma 1. Let d > 7, ε > 0, and ∆ >
√
d ε. There exists a subset Θ ⊆ {∆} × {−ε, ε}d−1 ⊆ Rd of

cardinality |Θ| > e(d−1)/8 > 2 such that, for all θ 6= θ′ ∈ Θ,

∥∥Φθ − Φθ′
∥∥
L1(Q0)

>

√
d− 1 ε

4π∆
e−∆2

, (1.8)

where Q0 denotes the distribution of a standard Brownian motion W = (W (t))06t61 on [0, 1], and where
‖h‖L1(Q0) := E

[
|h(W )|

]
.

The proof is provided in Section 1.2.2 below. We first state three intermediary results.

1.2.1. Intermediary results

The following lemma shows that, for the d-dimensional construction of Section 1.1 (Step 1), the Bayes

classifier Φθ only depends on the d random variables X̃j :=
∫ 1

0
ϕj(t)dX(t), 1 6 j 6 d, and takes the

form of a simple linear classifier in Rd. We recall that (ϕj)j>1 is any Hilbert basis of L2([0, 1]) and that

fθ =
∑d
j=1 θjϕj .
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Lemma 2. Consider the statistical construction of Section 1.1 (Step 1). Let W = (W (t))06t61 be a standard

Brownian motion and define W̃j :=
∫ 1

0
ϕj(t)dW (t) as well as W̃ :=

(
W̃j

)
16j6d

∈ Rd. Then, the Bayes

classifier Φθ = 1{η
θ
>1/2} satisfies

Φθ(W ) =

{
0 if ‖W̃ − θ‖ > ‖W̃‖
1 if ‖W̃ − θ‖ 6 ‖W̃‖

almost surely.

Proof. The result follows directly from the calculations of Section 2.1 of [4] (application of Girsanov’s
formula). Indeed, using (2.3) of [4] and the fact that g = 0 and ‖fθ‖ = ‖θ‖, we obtain

ηθ(W ) > 1/2 ⇐⇒
∫ 1

0

fθ(t)dW (t) >
‖fθ‖2

2

⇐⇒ θ̃ · W̃ >
‖θ‖2

2

⇐⇒ ‖W̃ − θ‖2 6 ‖W̃‖2 ,

which concludes the proof.

The above lemma shows that the Bayes classifier Φθ corresponds to a linear classifier in Rd (after projecting
onto (ϕj)16j6d). The next lemma provides a lower bound on the angle between the hyperplanes associated
with two linear classifiers Φθ and Φθ′ , for θ 6= θ′ ∈ Θ. This result will be crucial in our proof of the lower
bound of Lemma 1.

We recall that the (undirected) internal angle between two non-zero vectors θ, θ′ ∈ Rd is given by

∠(θ, θ′) := arccos

(
〈θ, θ′〉
‖θ‖ ‖θ′‖

)
∈ [0, π] ;

this angle is in particular well defined for all θ, θ′ ∈ Θ (since 0 /∈ Θ by construction).

Lemma 3. Let d > 7, ε > 0, and ∆ >
√
d ε. Let Γ ⊆ {−1, 1}d−1 be a set provided by Varshamov-Gilbert’s

lemma in dimension m = d− 1 (see, e.g., Lemma 5 in Appendix 1.2.3), and define

Θ :=
{

∆
}
×
(
εΓ
)

=
{

(∆, εu1, εu2, . . . , εud−1) : (u1, . . . , ud−1) ∈ Γ
}
⊂ Rd . (1.9)

Then, for all θ 6= θ′ ∈ Θ, the internal angle ∠(θ, θ′) between the vectors θ and θ′ is bounded by

√
d− 1 ε

2∆
6 ∠(θ, θ′) 6

π

2
.

Proof. Let θ 6= θ′ ∈ Θ. By (1.9) we can write θ = (∆, εu1, . . . , εud−1) and θ′ = (∆, εu′1, . . . , εu
′
d−1) with

u 6= u′ ∈ Γ. We also set m = d− 1. We have

cos
(
∠(θ, θ′)

)
=
〈θ, θ′〉
‖θ‖ ‖θ′‖

=
∆2 + ε2

∑m
j=1 uju

′
j√

∆2 +mε2
√

∆2 +mε2
=

∆2 + ε2
∑m
j=1 uju

′
j

∆2 +mε2
. (1.10)

Note that uju
′
j ∈ {−1, 1} so that ∆2 + ε2

∑m
j=1 uju

′
j > ∆2 −mε2 > 0 because we assumed that ∆ >

√
d ε.

Therefore, cos
(
∠(θ, θ′)

)
> 0, which in turn entails that ∠(θ, θ′) 6 π/2 since ∠(θ, θ′) ∈ [0, π] by definition.

We now prove the lower bound on ∠(θ, θ′). By construction of Γ (Lemma 5 in Appendix 1.2.3), we have
uju
′
j ∈ {−1, 1} and

∑m
j=1 1{uj 6=u′j} > m/4, so that

∑m
j=1 uju

′
j 6 −m/4 + 3m/4 = m/2. Substituting this

upper bound in (1.10) yields

cos
(
∠(θ, θ′)

)
6

∆2 +mε2/2

∆2 +mε2
= 1− mε2/2

∆2 +mε2
.
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Using the former result cos
(
∠(θ, θ′)

)
> 0 and the last inequality above, we obtain

sin2
(
∠(θ, θ′)

)
= 1− cos2

(
∠(θ, θ′)

)
> 1− cos

(
∠(θ, θ′)

)
>

mε2/2

∆2 +mε2
>
mε2

4∆2
,

where we again used m = d− 1 6 d and our assumption on ∆:
√
mε 6

√
d ε 6 ∆. We conclude the proof by

noting that ∠(θ, θ′) > sin
(
∠(θ, θ′)

)
=
√

sin2
(
∠(θ, θ′)

)
since ∠(θ, θ′) ∈ [0, π]:

∠(θ, θ′) >

√
mε

2∆
=

√
d− 1ε

2∆
.

Our third and last lemma in this subsection provides a lower bound on the Gaussian measure of a double
cone in dimension 2. We say that C ⊂ R2 is an open double cone with apex z ∈ R2 if it is of the form

C =
{
z + au+ bv : (a, b) ∈ R?2+ ∪ R?2−

}
for some linearly independent vectors u, v ∈ R2. It is clear that there is not a one-to-one correspondence
between (u, v) and C (several pairs (u, v) correspond to the same C). However, the value of the internal angle
∠(u, v) := arccos

(
〈u, v〉/(‖u‖ ‖v‖)

)
∈ (0, π) between u and v is the same for all pairs (u, v) that correspond

to C. We thus call ∠(u, v) the angle of the open double cone C.

Lemma 4. Let C ⊂ R2 be an open double cone with apex z ∈ R2 and angle A ∈ (0, π). Then, the measure
of C with respect to the standard Gaussian distribution γ2 = N (0, I2×2) on R2 is lower bounded by

γ2(C) > A
2π

e−‖z‖
2

.

We emphasize that rather intuitively, the above lower bound is proportional to the angle A and decreases
exponentially fast with ‖z‖2. (The constant of 1 appearing in the exponential could certainly be optimized,
but this one is sufficient for our purposes.)

Proof. We carry out a change of variables by a translation around z: writing C − z =
{
x− z : x ∈ C

}
and

using the inequality ‖z + u‖2 6 2‖z‖2 + 2‖u‖2, we get

γ2(C) =
1

2π

∫
C
e−‖x‖

2/2 dx =
1

2π

∫
C−z

e−‖z+u‖
2/2 du >

e−‖z‖
2

2π

∫
C−z

e−‖u‖
2

du

=
e−‖z‖

2

2π
2

∫ A
0

(∫ +∞

0

re−r
2

dr

)
dα =

e−‖z‖
2

2π
A ,

where the second line is obtained by parameterizing C − z with polar coordinates and by noting that C − z
is an open double cone of angle A pointed at the origin. This concludes the proof.

1.2.2. Proof of Lemma 1

We now prove Lemma 1 using the intermediary results of the previous subsection. We use the same notation
as in Section 1.1. Let Γ ⊆ {−1, 1}d−1 be a set provided by Varshamov-Gilbert’s lemma in dimension m = d−1
(cf. Lemma 5 in Appendix 1.2.3). Next we show that the set

Θ :=
{

∆
}
×
(
εΓ
)

=
{

(∆, εu1, εu2, . . . , εud−1) : (u1, . . . , ud−1) ∈ Γ
}
⊂ Rd
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satisfies the statement of Lemma 1. We can already see that its cardinality is |Θ| = |Γ| > em/8 > e(d−1)/8.
It remains to prove that, for all θ 6= θ′ ∈ Θ,

∥∥Φθ − Φθ′
∥∥
L1(Q0)

>

√
d− 1 ε

4π∆
e−∆2

, (1.11)

where Q0 denotes the distribution of a standard Brownian motion W = (W (t))06t61 on [0, 1], and where
‖h‖L1(Q0) := E

[
|h(W )|

]
.

Proof of (1.11). Let θ 6= θ′ ∈ Θ. LetW = (W (t))06t61 be a standard Brownian motion on some probability
space (Ω,F ,P). Noting that

∣∣Φθ(W )− Φθ′(W )
∣∣ = 1Φθ(W )6=Φθ′ (W ) a.s., we have∥∥Φθ − Φθ′

∥∥
L1(Q0)

= P
(
Φθ(W ) 6= Φθ′(W )

)
= P

({
‖W̃ − θ‖ 6 ‖W̃‖ < ‖W̃ − θ′‖

}
∪
{
‖W̃ − θ′‖ 6 ‖W̃‖ < ‖W̃ − θ‖

})
> P

({
‖W̃ − θ‖ < ‖W̃‖ < ‖W̃ − θ′‖

}
∪
{
‖W̃ − θ′‖ < ‖W̃‖ < ‖W̃ − θ‖

}︸ ︷︷ ︸
=:A

)
,

where the line before last follows from Lemma 2, and where we recall that W̃ :=
(
W̃j

)
16j6d

∈ Rd with

W̃j :=
∫ 1

0
ϕj(t)dW (t). In order to bound P(A) from below, we project (orthogonally) all points in Rd

onto the unique plane P that contains 0 and the non-colinear vectors θ and θ′ (note from Lemma 3 that
0 < ∠(θ, θ′) 6 π/2 < π). As shown in Figure 1, we define z ∈ P as the intersection between the perpendicular
bisectors D and D′ of the segments [0, θ] and [0, θ′] on the plane P. Writing r−π/2 for the rotation of angle

−π/2 on the plane P, we also consider the unit vectors u = r−π/2
(
θ/‖θ‖

)
and v = r−π/2

(
θ′/‖θ′‖

)
that

support the lines D and D′ respectively.

yθ θ′L L

0

θ
2

θ′

2

z

π/2π/2 C

D

D′

u

v

Figure 1. The main objects of interest on the plane P.

Writing W̃P for the orthogonal projection of W̃ ∈ Rd onto P, we can see that

P(A) = P
(
W̃P ∈ C

)
with C :=

{
z + au+ bv : (a, b) ∈ R∗2+ ∪ R∗2−

}
.

Let (e1, e2) be any orthonormal basis of P. Decomposing any w ∈ P as w = w1e1 + w2e2 (and similarly
for u and v), we can see that

w ∈ C ⇐⇒ (w1, w2) ∈
{

(z1, z2) + a(u1, u2) + b(v1, v2) : (a, b) ∈ R∗2+ ∪ R∗2−
}

︸ ︷︷ ︸
=:C̃

.
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Therefore,

P(A) = P
((
W̃ 1
P , W̃

2
P
)
∈ C̃

)
= γ2

(
C̃
)
,

where γ2 = N (0, I2×2) denotes the standard Gaussian distribution on R2. The last equality holds true

because W = (W (t))06t61 is a standard Brownian motion so that the W̃j =
∫ 1

0
ϕj(t)dW (t), 1 6 j 6 d, are

independent N (0, 1) random variables (because the ϕj are orthonormal), so that
(
W̃ 1, W̃ 2

)
is a standard

two-dimensional Gaussian vector (because e1 and e2 are orthonormal).

Now, we note that the subset C̃ ⊂ R2 is an open double cone with apex (z1, z2). Since (e1, e2) is an

orthonormal basis of P, the angle of C̃ is equal to ∠(u, v) = ∠
(
r−π/2

(
θ/‖θ‖

)
, r−π/2

(
θ′/‖θ′‖

))
= ∠(θ, θ′).

Therefore, applying Lemma 4 and then Lemma 3,

P(A) >
∠(θ, θ′)

2π
e−(z2

1+z2
2) >

e−(z2
1+z2

2)
√
d− 1 ε

4π∆
. (1.12)

We conclude the proof by upper bounding z2
1 + z2

2 = ‖z‖2 as follows. First note from Figure 1 that

cos

(
∠(θ, θ′)

2

)
=
‖θ‖/2
‖z‖

so that ‖z‖ =
‖θ‖

2 cos
(

∠(θ, θ′)
2

) .
But, from the inequality 0 6 ∠(θ, θ′)/2 6 π/4 (see Lemma 3) we get that cos

(
∠(θ, θ′)/2

)
> 1/

√
2, so that

‖z‖ 6 ‖θ‖/
√

2, i.e.,

z2
1 + z2

2 6
‖θ‖2

2
=

∆2 + (d− 1)ε2

2
6 ∆2

by the assumption ∆ >
√
dε. Combining ‖z‖2 6 ∆2 with Equation (1.12) concludes the proof.

1.2.3. Two well-known lemmas

The next combinatorial result is known as Varshamov-Gilbert’s lemma. It provides a lower bound on the
packing entropy of the m-dimensional hypercube {−1, 1}m endowed with the Hamming metric, at scale m/4.
This result indicates that among the 2m corners of {−1, 1}m, exponentionally many of them are almost
opposite from one another. A proof can be found, e.g., in [10, Lemma 4.7].

Lemma 5 (Varshamov-Gilbert’s lemma). Let m > 1. There exists a subset Γ ⊆ {−1, 1}m of cardinality
|Γ| > em/8 such that

∀x 6= y ∈ Γ,

m∑
j=1

1{xj 6=yj} >
m

4
.

The next lemma is a well-known version of Fano’s inequality that follows, e.g., from [7, Chapter VII,
Lemma 1.1] or [3, Theorem 2.11.1] (see also Proposition 1 in the recent survey [6]).

We recall that the Kullback-Leibler divergence KL(P,Q) between two probability distributions P and Q
on the same measurable space (E,B) is defined by

KL(P,Q) :=


∫
E

ln

(
dP
dQ

)
dP if P is absolutely continuous with respect to Q;

+∞ otherwise.

Lemma 6 (Fano’s inequality). Let (E,B) be any measurable space and N > 2. Let (A1, . . . , AN ) be a
measurable partition of (E,B) and (P1, . . . ,PN ) a family of probability distributions on (E,B). Then,

1

N

N∑
i=1

Pi(Ai) 6
inf
Q

1

N

N∑
i=1

KL(Pi,Q) + log 2

logN
,

where the infimum is over all probability distributions Q on (E,B).
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2. Truncated nearest neighbor strategy (Theorem 4.2 of [4])

This appendix section gathers the proof of the lower bound of the nearest neighbor method used with
a sample-splitting thresholding strategy, i.e., half of the learning sample is used to choose a thresholding
dimension d̂n and then the nearest neighbor classifier is computed on the remaining part of the samples.
Therefore, d̂n is choosen independently from the second part of the samples.

2.1. Smoothness of thee Gaussian translation model

This paragraph is devoted to the computation of the smoothness index βd involved in the Gaussian translation
model in dimension d ∈ N? (see, e.g., Equation (4.2) of [4]). Below, γ will refer to the density of the d-
dimensional standard Gaussian random variable and we omit the dependency in d to alleviate the notations.

Proof of Proposition 2 of [4]. According to the definition of the smoothness parameter given in Equa-
tion (4.2) of [4], we compute the average value of η on a ball B(x, r) and compare it to η(x):

η(B(x, r))− η(x)

=
1

µ(B(x, r)

∫
B(x,r)

η(s)dµ(s)− γ(x)

γ(x) + γ(x−m)
,

=
2∫

B(x,r)
γ(s) + γ(s−m)ds

∫
B(x,r)

γ(s)

γ(s) + γ(s−m)

1

2
[γ(s) + γ(s−m)]ds− γ(x)

γ(x) + γ(x−m)
,

=
γ(B(x, r))

γ(B(x, r)) + γ(B(x−m, r))
− γ(x)

γ(x) + γ(x−m)
,

=
[γ(x) + γ(x−m)]γ(B(x, r))− γ(x)[γ(B(x, r)) + γ(B(x−m, r))]

[γ(x) + γ(x−m)][γ(B(x, r)) + γ(B(x−m, r))]
,

=
γ(x−m)γ(B(x, r))− γ(x)γ(B(x−m, r))

[γ(x) + γ(x−m)][γ(B(x, r)) + γ(B(x−m, r))]
. (2.1)

It is then necessary to compare γ(B(x, r)) with γ(x)λ(Br) where λ(Br) is the Lebesgue measure of the
centered ball of radius r in Rd. For this purpose, we can use the well known convexity inequality on Gaussian
measures of shifted balls:

exp(−‖x‖2/2)γ(B(0, r)) 6 γ(B(x, r)) 6 γ(B(0, r)). (2.2)

In particular, we have (see [8]) when r −→ 0 that

γ(B(x, r)) ∼ exp(−‖x‖2/2)γ(B(0, r)),

but the r.h.s. of (2.2) is tight only for x close to 0. Expanding the denominator of (2.1), we obtain that

|η(B(x, r))− η(x)|

=
|γ(x−m)γ(B(x, r))− γ(x)γ(B(x−m, r))|

γ(x)γ(B(x, r)) + γ(x)γ(B(x−m, r)) + γ(x−m)γ(B(x, r)) + γ(x−m)γ(B(x−m, r))

6
|γ(x−m)γ(B(x, r))− γ(x)γ(B(x−m, r))|
γ(x)γ(B(x−m, r)) + γ(x−m)γ(B(x, r))

. (2.3)

Concerning the numerator, a simple change of variable leads to

γ(x−m)γ(B(x, r))− γ(x)γ(B(x−m, r))

= (2π)−d
∫
B(0,r)

{
e−‖x−m‖

2/2e−‖x−s‖
2/2 − e−‖x‖

2/2e−‖x−m−s‖
2/2
}
ds.
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For all x ∈ Rd and s ∈ B(0, r), the term inside the integral above may be written as

e−‖x−m‖
2/2e−‖x−s‖

2/2 − e−‖x‖
2/2e−‖x−m−s‖

2/2 = e−‖x−m‖
2/2−‖x‖2/2e−‖s‖

2/2
[
e〈x,s〉 − e〈x−m,s〉

]
.

We can use the following upper bound for any real value a:

|ea − 1− a| 6 a2e|a|

2
,

with a = 〈x, s〉 and a = 〈x−m, s〉 and deduce that

|e〈x,s〉 − e〈x−m,s〉 − 〈m, s〉| 6 s2

2

(
‖x−m‖2e|〈x−m,s〉| + ‖x‖2e|〈x,s〉|

)
.

Therefore, we obtain

|γ(x−m)γ(B(x, r))− γ(x)γ(B(x−m, r))|

6 γ(x)γ(x−m)

∫
B(0,r)

e−‖s‖
2/2〈m, s〉ds

+
r2

2
γ(x)γ(x−m)

[
‖x−m‖2

∫
B(0,r)

e−
‖s‖2

2 e|〈x−m,s〉|ds+ ‖x‖2
∫
B(0,r)

e−
‖s‖2

2 e|〈x,s〉|ds

]

=
r2

2
γ(x)γ(x−m)

[
‖x−m‖2

∫
B(0,r)

e−
‖s‖2

2 e|〈x−m,s〉|ds+ ‖x‖2
∫
B(0,r)

e−
‖s‖2

2 e|〈x,s〉|ds

]

6
r2

2
γ(x)γ(x−m)‖x−m‖2

(∫
B(0,r)

e−
‖s‖2

2 e〈x−m,s〉ds+

∫
B(0,r)

e−
‖s‖2

2 e−〈x−m,s〉ds

)

+
r2

2
γ(x)γ(x−m)‖x‖2

(∫
B(0,r)

e−
‖s‖2

2 e〈x,s〉ds+

∫
B(0,r)

e−
‖s‖2

2 e−〈x,s〉ds

)

=
r2

2

[
‖x−m‖2γ(x)[γ(B(x−m, r)) + γ(B(m− x, r))] + ‖x‖2γ(x−m)[γ(B(x, r)) + γ(B(−x, r))]

]
= r2

[
‖x−m‖2γ(x−m)γ(B(x, r)) + ‖x‖2γ(x)γ(B(x−m, r))

]
,

where the last line comes from the symmetry of the Gaussian distribution. Using this last inequality in
Inequality (2.3) yields:

|η(B(x, r))− η(x)| 6 r2
[
‖x−m‖2 + ‖x‖2

]
. (2.4)

Now, we should remark that

γ(B(0, r)) =

∫
B(0,r)

e−|u|
2/2

√
2π

d
du > e−r

2/2(2π)−d/2λ(B(0, r)) > e−r
2/2(2π)−d/2rd

πd/2

Γ(d/2 + 1)
,

where we used the direct computation of the Lebesgue volume of the unit ball in Rd

λ(B(0, 1)) =
πd/2

Γ(d/2 + 1)
.

Therefore, we obtain that

r2 6

(
γ(B(0, r))er

2/2(2π)d/2Γ(d/2 + 1)

πd/2

)2/d

= 2er
2/dΓ(d/2 + 1)2/dγ(B(0, r))2/d.
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Then, Equation (2.2) on the volume of shifted balls entails

∀x ∈ Rd ∀r > 0 r2 6 2er
2/dΓ(d/2 + 1)2/d

(
γ(B(x, r))e‖x‖

2/2 + γ(B(x−m, r))e‖x−m‖2/2

2

)2/d

6 2er
2/dΓ(d/2 + 1)2/d

[
γ(x)−1 + γ(x−m)−1

]2/d
µ(B(x, r))2/d.

Using the Stirling formula, we have

Γ(d/2 + 1) 6 2
√

2π(d/2 + 1)d/2+1/2e−d/2−1.

We then plug-in this upper bound in the previous inequality and we deduce that:

r2 6 2er
2/d d

2

(
2
√

2π(1 + 2/d)d/2+1/2e−d/2−1
)2/d [

γ(x)−1 + γ(x−m)−1
]2/d

µ(B(x, r))2/d

6 der
2/d
[
γ(x)−1 + γ(x−m)−1

]2/d
µ(B(x, r))2/d sup

d′>1

{(
2
√

2π(1 + 2/d′)d
′/2+1/2e−d

′/2−1
)2/d′

}
.

Some straightforward algebra yields:

sup
d′>1

{(
2
√

2π(1 + 2/d′)d
′/2+1/2e−d

′/2−1
)2/d′

}
6 72πe−3 6 12,

which entails that:

|η(B(x, r))− η(x)| 6 12der
2/d
[
‖x−m‖2 + ‖x‖2

] [
γ(x)−1 + γ(x−m)−1

]2/d
µ(B(x, r))2/d.

2.2. Analysis of the Nearest Neighbor classifier in finite dimension

Below, Φk,n refers to the k nearest neighbor classifier given a n sample Dn := (X1, Y1), . . . , (Xn, Yn) in Rd
with a Gaussian translation model.

Proof of Proposition 3 of [4]. We begin with a classical decomposition of the excess risk, we have:

Rf,g(Φk,n,d)−Rf,g(Φ?d) = E
[
|2ηd(X)− 1|1{Φk,n,d(X)6=Φ?d(X)}

]
.

Consider a small ε, whose value will be fixed later on. For any δ > 0, we use the simple lower bound

Rf,g(Φk,n,d)−Rf,g(Φ?d) > E
[
|2ηd(X)− 1|1}δε<|η(X)−1/2|<ε}1{Φk,n,d(X) 6=Φ?d(X)}

]
,

> δεE
[
1{δε<|η(X)−1/2|<ε}1{Φk,n,d(X)6=Φ?d(X)}

]
,

> δεEX
[
1{δε<|η(X)−1/2|<ε}E⊗n

[
1{Φk,n(X)6=Φ?d(X)}

]]
,

> δεEX
[
1{δε<|η(X)−1/2|<ε}E⊗n

[
1{Φk,n(X)6=Φ?d(X)}

]
1{‖X‖6Rd}

]
,

where Rd := τ
√
d for some τ > 0. Proposition 2 of [4] gives βd = 2/d in our situation. From Proposition 2

of [4], the value of LR given in (4.3) of [4], and the choice of R = Rd, we know that a τ > 0 exists such that
LRd = d. It is important to notice that R is independent of n.

We now use Lemma 5, Lemma 17 and Lemma 18 of [2]: for any (βd, LR)-smooth distribution (see the
dependency on βd in Equation (4.2) of [4]), then a constant κ > 0 exists such that for any k and n:

P⊗n

Φk,n(X) 6= Φ?d(X)

∣∣∣∣∣∣ |η(X)− 1/2| 6 1√
k
− LRd

(
k +
√
k + 1

n

)βd  > κ.
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According to our choice of kn and Rd, we then have for any δ > 0:

ER(Φkn,n,d)−R(Φ?d) > κδεEX

1{δε<|η(X)−1/2|<ε}1
{|η(X)−1/2|< 1√

kn
−LR

(
kn+
√
kn+1

n

)β
}
1{‖X‖6Rd}


> κδεEX

[
1{δε<|η(X)−1/2|<ε}1

{|η(X)−1/2|<( knn )
2/d
[
2d−d

(
1+k

−1/2
n +k−1

n

)2/d
]
}
1{‖X‖6Rd}

]

> κδεEX
[
1{δε<|η(X)−1/2|<ε}1{|η(X)−1/2|< d

2 ( knn )
2/d}1{‖X‖6Rd}

]
, (2.5)

where we used that k 6 Kn. To obtain the best achievable lower bound in (2.5), ε has to be chosen as large
as possible. We are driven to the choice (ε depends on n and d):

εn =
1

2
d

(
kn
n

)2/d

.

Then one has for any value of δ smaller than 1:

Rf,g(Φk,n)−R(Φ?d) > cδεnEX
[
1{δεn<|η(X)−1/2|<εn}1{‖X‖6Rd}

]
,

> cδεnPX ({δεn < |η(X)− 1/2| < εn} ∩ {‖X‖ 6 Rd})

Again, we shall use the margin property of the Gaussian translation model: Theorem 2 shows that a δ exists
(independent on n) such that

µ

(
δt 6

∣∣∣∣η(X)− 1

2

∣∣∣∣ 6 t

)
> čδ t,

where č is a small enough positive constant. In the same time, there exists a constant Cτ such that

P(‖X‖ 6 τ
√
d) > Cτ .

The last bound of the excess risk above together with the previous inequality lead to a lower bound of the
order ε2

n: a constant C1 independent on n and d exists such that

ER(Φk,n,d)−R(Φ?d) > C1d
2

(
k

n

)4/d

>
C1

k

We stress that this lower bound is uniform for any k 6 Kn which leads to the desired result.

Finally, we emphasize that we can easily derive an upper bound associated with the statement of Propo-
sition 3 of [4]. A straightforward application of Theorem 4.3 of [5] in our setting yields a log(n)−2s upper
bound for the rate of convergence of the misclassification of the kNN.

2.3. Proof of Theorem 4.2 of [4]

2.3.1. Technical result

Below, we establish a complementary result with a lower bound on the probability involved in the margin
condition. This will make it possible to derive a lower bound of the nearest neighbour classifier.

Proposition 1. Let X distributed according to the model (1.1) of [4] and for any fixed ∆ = ‖f −g‖2, then:

∀ε < 1/4 P
(∣∣∣∣η(X)− 1

2

∣∣∣∣ 6 ε

)
> (2π)−1/2

[
ε

∆
e−(1+∆/2)2/2 ∧ e

−1/2

2

]
.
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Proof. To alleviate the notations, we skip the dependency on X and write η − 1/2 =
qf−qg

2(qf+qg) . We then

repeat the arguments used above:

P
(∣∣∣∣η − 1

2

∣∣∣∣ 6 ε

)
= P

(
|qf − qg|

2(qf + qg)
6 ε

)
= P

(
qf − qg

2(qf + qg)
6 ε , qf > qg

)
+ P

(
qg − qf

2(qf + qg)
6 ε , qf < qg

)
> P

(
qf − qg

2qf
6 ε , qf > qg

)
+ P

(
qg − qf

2qg
6 ε , qf < qg

)
= P

(
0 6 1− qg

qf
6 2ε

)
+ P

(
0 6 1− qf

qg
6 ε

)
= P

(
log(1− 2ε) 6 log

(
qg
qf

)
6 0

)
+ P

(
log(1− 2ε) 6 log

(
qf
qg

)
6 0

)
We compute a lower bound of the first bound (the second term being handled similarly. For ε < 1/4, it can
be checked that log(1− 2ε) < −ε. Therefore, we have

P
(

log(1− 2ε) 6 log

(
qg
qf

)
6 0

)
> P

(
−ε 6 log

(
qg
qf

)
6 0

)
Using again the conditional distribution ofX|Y and that Y is distributed according to a Bernoulli distribution
B(1/2), we have

P
(
−ε 6 log

(
qg
qf

)
6 0

)
=

1

2
P
(
−ε 6 ∆2

2
+ ∆ξ 6 0

)
+

1

2
P
(
−ε 6 −∆2

2
+ ∆ξ 6 0

)
,

where ∆ = ‖f − g‖2 and ξ is distributed according to N (0, 1). We can conclude that

P
(∣∣∣∣η − 1

2

∣∣∣∣ 6 ε

)
>

1

2

∫ −∆/2

− ε
∆−

∆
2

e−t
2/2

√
2π

dt+
1

2

∫ ∆/2

− ε
∆ + ∆

2

e−t
2/2

√
2π

dt.

Then, we split our study into two cases:

• If ε 6 ∆, then ∀t ∈ [− ε
∆ −

∆
2 ,

∆
2 ] and e−t

2/2
√

2π
> e−(1+∆/2)2/2

√
2π

and in this case:

P
(∣∣∣∣η − 1

2

∣∣∣∣ 6 ε

)
>
e−(1+∆/2)2/2

√
2π

ε

∆

• If ε > ∆,

P
(∣∣∣∣η − 1

2

∣∣∣∣ 6 ε

)
>

1

2

∫ −∆/2

− ε
∆

e−t
2/2

√
2π

dt+
1

2

∫ 0

− ε
∆

e−t
2/2

√
2π

dt

>
∫ −∆/2

− ε
∆

e−t
2/2

√
2π

dt

> (2π)−1/2

[∫ 0

−1

e−t
2/2dt− ∆

2

]
>

e−1/2

2
√

2π
,

where the last bound comes from the fact that
∫ 0

−1
e−t

2/2dt > e−1/2 while ∆ < ε < 1/4 < e−1/2.

This ends the proof of the Proposition.
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A key consequence is the lower bound of the area of the crown δε 6 |η − 1/2| 6 ε for δ small enough.

Proposition 2. Let X given by (1.1) of [4] and for any fixed ∆ = ‖f − g‖2, if we set δ = e−(1+∆/2)2/2

2
√

2π
,

then:

∀ε 6 1

4
∧∆ P

(
δε 6

∣∣∣∣η(X)− 1

2

∣∣∣∣ 6 ε

)
> δ

ε

∆
.

Proof. For a given c > 0, we introduce δ = e−(1+∆/2)2/2

c
√

2π
and use the decomposition

P
(
δε 6

∣∣∣∣η(X)− 1

2

∣∣∣∣ 6 ε

)
= P

(∣∣∣∣η(X)− 1

2

∣∣∣∣ 6 ε

)
− P

(∣∣∣∣η(X)− 1

2

∣∣∣∣ 6 δε

)
> cδ

ε

∆
− P

(∣∣∣∣η(X)− 1

2

∣∣∣∣ 6 δε

)
,

where the last line comes from Proposition 1. Now, we use Proposition 1 in [4] to conclude that

P
(
δε 6

∣∣∣∣η(X)− 1

2

∣∣∣∣ 6 ε

)
> (c− 1)δ

ε

∆
.

We now choose c = 2 and obtain the desired result.

Remark 2.1. Proposition 2 states that when ∆ is small, the measure of the uncertainty area for the
classification (η ' 1/2) has an important mass although this measure decreases linearly with the inverse of
∆. This result is intuitive and translates the fact that for large values of ∆, the classification problem is easy
(the two classes are well separated) and there is a steep transition from {η > 1/2} to {η < 1/2}.

2.3.2. Logarithmic rate of Nearest Neighbor rule

This last paragraph is devoted to the proof of Theorem 4.2 in [4], which shows that a sample splitting
strategy used with the NN rule is not efficient with a logarithmic decrease of the misclassification rate.

Proof of Theorem 4.2 in [4]. Since the truncation is chosen once for all at the beginning of the classifi-
cation process with a sample-splitting strategy, our elementary starting point is given by:

Rf,g(Φ̂d̂kNN )−Rf,g(Φ?) > min
d∈N
Rf,g(Φ̂dkNN )−Rf,g(Φ?).

For any frequency threshold d ∈ N, we decompose the excess risk as:

Rf,g(Φk,n,d)−Rf,g(Φ?) = Rf,g(Φk,n,d)−Rf,g(Φ?d) +Rf,g(Φ?d)−Rf,g(Φ?), (2.6)

where Φ?d is the Bayes classification rule with the Gaussian d-dimensional model that involves the first d
frequencies. Proposition 3 of [4] shows that if ∆2 = ‖f − g‖22, then a constant c∆,1 exists such that:

Rf,g(Φk,n)−Rf,g(Φ?d) > c∆,1n
− 4
d+4 . (2.7)

We now focus on the second term of (2.6). Since Y is distributed according to a Bernoulli distribution B(1/2),
we have:

Rf,g(Φ?d)−Rf,g(Φ?) =
1

2
(Pf [Φ?d = 1]− Pf [Φ? = 1]) +

1

2
(Pg[Φ?d = 0]− Pg[Φ? = 0]) .

We compute the first term (the second term is handled similarly). Let f, g be fixed function belonging to
Hs(R) which will be made precise latter on. We define ∆2

d = ‖g − f‖2d,2 the L2 norm of g − f restricted to
the first d coefficients. If ξ is a standard Gaussian random variable, we have:

Pf [Φ?d(X) = 1] = Pf

[
〈X − f, g − f〉d >

‖g − f‖2d,2
2

]
= P

(
ξ∆d >

∆2
d

2

)
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In the meantime, the second probability can be computed as

Pf [Φ?(X) = 1] = Pf
[
〈X − f, g − f〉 > ‖g − f‖

2
2

2

]
= P

(
ξ∆ >

∆2

2

)
.

Hence, we deduce that

Pf [Φ?d(X) = 1]− Pf [Φ?(X) = 1] =

∫ ∆

∆d/2

γ(s)ds > γ(∆)
∆−∆d

2
= γ(∆)

∆2 −∆2
d

2(∆ + ∆d)
>

∆2 −∆2
d

4∆
γ(∆).

We can then find f and g such that ∆2 < 1 and ∆2−∆d ∼ d−2s because f and g shall belong to the Sobolev
space Hs(R). Hence, we deduce the following lower bound on the excess risk between the truncated Bayes
rule and the non parametric Bayes rule: a constant c∆,2 exists such that

Pf [Φ?d = 1]− Pf [Φ? = 1] > c∆,2 d
−2s. (2.8)

Gathering Equations (2.7) and (2.8), we deduce that

Rf,g(Φ̂k,n,d̂)−Rf,g(Φ
?) > c∆,3 min

d∈N?

[
d−2s + n−

4
4+d

]
.

We then optimize our lower bound with respect to d and we obtain the conclusion of the proof.
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