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We consider the binary supervised classification problem with the Gaussian functional model introduced
in (Math. Methods Statist. 22 (2013) 213–225). Taking advantage of the Gaussian structure, we design a
natural plug-in classifier and derive a family of upper bounds on its worst-case excess risk over Sobolev
spaces. These bounds are parametrized by a separation distance quantifying the difficulty of the problem,
and are proved to be optimal (up to logarithmic factors) through matching minimax lower bounds. Using
the recent works of (In Advances in Neural Information Processing Systems (2014) 3437–3445 Curran
Associates) and (Ann. Statist. 44 (2016) 982–1009), we also derive a logarithmic lower bound showing that
the popular k-nearest neighbors classifier is far from optimality in this specific functional setting.

Keywords: functional data; supervised classification

1. Introduction

Motivation. The binary supervised classification problem is perhaps one of the most common
tasks in statistics and machine learning. Even so, this problem still fosters new theoretical and
applied questions because of the large variety of the data encountered so far. We refer the reader
to [16] and [7] and to the references therein for a comprehensive introduction to binary supervised
classification. This problem unfolds as follows. The learner has access to n independent copies
(X1, Y1), . . . , (Xn,Yn) of a pair (X,Y ), where X lies in a measurable space H and Y ∈ {0,1}.
The goal of the learner is to predict the label Y after observing the new input X, with the help of
the sample Sn := (Xi, Yi)1≤i≤n to learn the unknown joint distribution PX,Y of the pair (X,Y ).

In some standard situations, X lies in the simplest possible Hilbert space: H = R
d , which

corresponds to the finite-dimensional binary classification problem. This setting has been exten-
sively studied so far. Popular classification procedures that are now theoretically well understood
include the ERM method [2,29], the k-nearest neighbors algorithm [4,12,18,19], support vector
machines [35], or random forests [5], just to name a few.

Functional framework. However there are situations where the inputs Xi and X are better mod-
elled as functions; the set H is then infinite-dimensional. Practical examples can be found, for ex-
ample, in stochastic population dynamics [25], in signal processing [13], or in finance [24]. This
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binary supervised functional classification problem has been at the core of several investigations.
We mention, among others, [15,22,32] or [3]. This problem was also tackled with nonparamet-
ric procedures such as kernel methods or the k-nearest neighbours algorithm. For example, [14]
studied the nearest neighbour rule in any metric space, while [23] analyzed the performances of
the k-nearest neighbours algorithm in terms of a metric covering measure. Such metric entropy
arguments were also used in [11], or with kernel methods in [1]. In [32], the authors develop an
infinite-dimensional adaptation of the Support Vector Machine method to handle classification
of functional signals.

1.1. Our functional model

In the present work, we focus on one of the most elementary diffusion classification models:
we suppose that the input X = (X(t))t∈[0,1] is a continuous trajectory, solution to the stochastic
differential equation

∀t ∈ [0,1], dX(t) = Yf (t) dt + (1 − Y)g(t) dt + dW(t), (1.1)

where (W(t))0≤t≤1 is a standard Brownian motion, Y is a Bernoulli B(1/2) random variable
independent from (W(t))0≤t≤1, and were f,g ∈ L

2([0,1]). In particular, in the sample Sn, tra-
jectories Xi labeled with Yi = 1 correspond to observations of the signal f , while trajectories Xi

labeled with Yi = 0 correspond to g.
The white noise model has played a key role in statistical theoretical developments; see, for

example, the seminal contributions of [20] in nonparametric estimation and of [27] in adaptive
nonparametric estimation. In our supervised classification setting, the goal is not to estimate f

and g but to predict the value of Y given an observed continuous trajectory (X(t))0≤t≤1. Of
course, we assume that both functions f and g are unknown so that the joint distribution PX,Y

of the pair ((X(t))t∈[0,1], Y ) is unknown. Without any assumption on f and g, there is no hope
to solve this problem in general. However, learning the functions f and g (and thus PX,Y ) from
the sample Sn becomes statistically feasible when f and g are smooth enough.

The functional model considered in this paper is very close to the one studied by [9]. Actually
our setting is less general since [9] considered more general diffusions driven by state-dependent
drift terms t �−→ f (t,X(t)) and t �−→ g(t,X(t)). We focus on a simpler model, but derive
refined risk bounds (with a different approach) that generalize the worst-case bounds of [9], as
indicated below.

1.2. Link with the Gaussian sequence space model

Equation (1.1) is a condensed writing of a functional classification model that may be made
more explicit with the help of an Hilbert basis. Recall that the Gaussian sequence space model is a
statistical setting where we observe an infinite random sequence Z = (Zj )j≥1 with Zj = aj +εj ,
for i.i.d. N (0,1) random variables εj and coefficients aj that are typically square-summable.
Next, we explain how to reduce our model (1.1) to a set of two instances of the Gaussian sequence
space model.
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In the following, we introduce the functional space L
2([0,1]) as the set of square Lebesgue-

integrable functions f on [0,1], with L
2-norm ‖f ‖ = (

∫ 1
0 f 2(t) dt)1/2 and inner product

〈f,g〉 = ∫ 1
0 f (t)g(t) dt . With a slight abuse of notation, when X is a solution of (1.1) and

ϕ ∈ L
2([0,1]), we set:

〈ϕ,X〉 =
∫ 1

0
ϕ(t) dX(t)

= Y

∫ 1

0
ϕ(t)f (t) dt + (1 − Y)

∫ 1

0
ϕ(t)g(t) dt +

∫ 1

0
ϕ(t) dW(t).

The above almost sure equality implies that the conditional distribution of 〈ϕ,X〉 given Y is
Gaussian with expectation 〈ϕ,f 〉1{Y=1} + 〈ϕ,g〉1{Y=0} and variance ‖ϕ‖2. Therefore, for any
ϕ ∈ L

2([0,1]), the distribution of 〈ϕ,X〉 is a mixture of two Gaussian distributions:

1

2
N

(〈ϕ,f 〉,‖ϕ‖2)+ 1

2
N

(〈ϕ,g〉,‖ϕ‖2).
We now consider (ϕj )j∈N∗ a given orthonormal basis of L2([0,1]). In the sequel, the coeffi-

cients (cj (h))j≥1 of any function h ∈ L
2([0,1]) w.r.t. the basis (ϕj )j≥1 are defined as

cj (h) := 〈ϕj ,h〉 =
∫ 1

0
h(s)ϕj (s) ds, j ≥ 1,

and its L2-projection onto Span(ϕj ,1 ≤ j ≤ d) is given by

�d(h) =
d∑

j=1

cj (h)ϕj . (1.2)

In particular, we will pay a specific attention to the coefficients of f and g involved in (1.1),

∀j ≥ 1, θj := cj (f ) and μj := cj (g), (1.3)

and to their d-dimensional projections fd := �d(f ) = ∑d
j=1 θjϕj and gd := �d(g) =∑d

j=1 μjϕj .
An important feature of the white noise model is that the coefficients (〈ϕj ,W 〉)j≥1 associated

with different frequencies of the standard Brownian motion are independent. This is because they
are jointly Gaussian, with a diagonal infinite covariance matrix:

∀j �= j ′, E
[〈ϕj ,W 〉〈ϕj ′ ,W 〉] =

∫ 1

0
ϕj (t)ϕj ′(t) dt = 0.

The above remarks imply together with (1.3) that

∀j ≥ 1, L
(〈ϕj ,X〉|Y = 1

) =N (θj ,1) and L
(〈ϕj ,X〉|Y = 0

) =N (μj ,1), (1.4)
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and that the coefficients (〈ϕj ,X〉)j≥1 are conditionally independent given Y .
Therefore, the observation of a trajectory X = (X(t))t∈[0,1] given by (1.1) can be equivalently

rewritten as the observation of one among two instances of the Gaussian sequence space model
(with coefficients θj of μj ), depending on the value of Y .

Remark 1.1 (Functional Linear Discriminant Analysis). Our setting and algorithm can be
seen as an infinite-dimensional variant of Linear Discriminant Analysis (LDA). In LDA the goal
is to predict the label of a random vector drawn from the mixture of two multivariate Gaus-
sian distributions with the same covariance matrix. The Bayes classifier (known in this case as
Fisher’s linear discriminant rule) involves a linear function of the observed vector. In our func-
tional setting, the above paragraphs indicate that the observed trajectory X is a mixture of two
infinite-dimensional Gaussian distributions with the identity matrix as covariance matrix. The
Bayes classifier also involves a linear function of the observed trajectory X, and so does our
classifier (see (2.4) and Section 3.1 below). In fact, our classifier may be seen as a linear discrim-
inant analysis method coupled with a projection step on a suitably chosen finite-dimensional
space.

Several earlier works already studied functional analogues of Linear or Quadractic Discrim-
inant Analysis. For instance, [6] studied how bad Fisher’s rule behaves in high dimension, but
also proved risk upper bounds in infinite dimension when the two signals f and g belong to a
Sobolev-like compact set and are well separated (with a possibly unknown covariance matrix).
[22] proposed a functional Quadratic Discriminant Analysis method with an additional estima-
tion of the covariance of the processes. [15] obtains universal consistency (convergence to the
Bayes risk in probability) of some centroid-method classification when the number of observa-
tions goes to +∞ without any rate of convergence. In this paper we prove a family of excess risk
bounds interpolating those of [9] and [6] by providing a sharp description of the role played by
the distance � = ‖f − g‖, as well as matching lower bounds (up to log factors).

We refer the reader to Remark 3.2 for a more detailed comparison of our results with earlier
works. Finally, we would also like to mention the general survey of [36] (see in particular Sec-
tion 4.2), which gives some references not only on Fisher LDA but also on methods inspired by
logistic regression with functional entries and by functional principal component analysis.

1.3. Main contributions and outline of the paper

We introduce some notation and definitions in order to present our contributions below. In our
setting, a classifier � is a measurable function, possibly depending on the sample Sn, that maps
each new input X = (X(t))t∈[0,1] to a label in {0,1}. The risk associated with each classifier �

depends on f and g and is defined by:

Rf,g(�) := P
(
�(X) �= Y

)
,

where the expectation is taken with respect to all sources of randomness (i.e., both the sample Sn

and the pair (X,Y )). The goal of the learner is to construct a classifier �̂ based on the sample Sn

that mimics the Bayes classifier

�� = arg min
�

Rf,g(�), (1.5)
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where the infimum is taken over all possible classifiers (the oracle �� is impractical since f and
g and thus PX,Y are unknown). We measure the quality of �̂ through its worst-case excess risk

sup
(f,g)∈E

{
Rf,g(�̂) − inf

�
Rf,g(�)

}
(1.6)

over some set E of pairs of functions. In the sequel, we focus on Sobolev classes Hs(R) (see
(3.9)) and consider subsets E ⊆Hs(R)2 parametrized by a separation lower bound � on ‖f −g‖.

In Section 2, we first state preliminary results about the margin behavior that will prove crucial
in our analysis. We then make three types of contributions:

• In Section 3, we design a classifier �̂dn based on a thresholding rule. It can be seen as
a generalization of Linear Discriminant Analysis to the Gaussian sequence space model
under smoothness assumptions. We derive an excess risk bound that generalizes both the
worst-case results of [9] and the fast rates of [6], Theorem 2, when the distance ‖f − g‖ is
large. In particular we show that there is a continuum between all these rates, as a function
of ‖f −g‖. The acceleration is a consequence of the nice properties of the margin (see also,
e.g., [2] and [18]).

Theorem (A). The classifier �̂dn defined in (3.4) with dn ≈ n
1

2s+1 has an excess risk roughly
bounded by (omitting logarithmic factors and constant factors depending only on s and R):
for n ≥ NR,s large enough,

sup
f,g∈Hs (R)
‖f −g‖≥�

{
Rf,g(�̂dn) − inf

�
Rf,g(�)

}
�

⎧⎨⎩n− s
2s+1 if � � n− s

2s+1

1

�
n− 2s

2s+1 if � � n− s
2s+1

• In Section 4.1, we derive a matching minimax lower bound (up to logarithmic factors) show-
ing that the above worst-case bound cannot be improved by any classifier.

Theorem (B). For any number n ≥ NR,s of observations, any classifier �̂ must satisfy
(omitting again logarithmic factors and constant factors depending only on s and R):

sup
f,g∈Hs (R)
‖f −g‖≥�

{
Rf,g(�̂) − inf

�
Rf,g(�)

}
�

⎧⎨⎩n− s
2s+1 if � � n− s

2s+1

1

�
n− 2s

2s+1 if � � n− s
2s+1

• Finally, in Section 4.2, we show that the well-known k-nearest neighbors rule tuned in a
classical and optimal way (see, e.g., [18,33]) is far from optimality in our specific functional
setting.

Theorem (D). For any threshold (dimension) d̂ ∈ N
∗ based on a sample-splitting policy,

and for the optimal choice k
opt
n (d̂) = �n4/(4+d̂)�, the d̂-dimensional k

opt
n (d̂)-nearest neigh-
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bors classifier �NN suffers a logarithmic excess risk in the worst case:

sup
f,g∈Hs (r)

{
Rf,g(�NN) − inf

�
Rf,g(�)

}
� log(n)−2s .

Most proofs are postponed to Appendix 4.2.3 (for the upper bounds) and to the supplementary
material [17] (for the lower bounds).

Other useful notation (main body and supplementary material). We denote the joint distribu-
tion of the pair ((X(t))t∈[0,1], Y ) by PX,Y , and write P⊗n = P ⊗n

X,Y for the joint distribution of
the sample (Xi, Yi)1≤i≤n. For notational convenience, the measure P will alternatively stand for
P = PX,Y ⊗P⊗n (we integrate over both the sample Sn and the pair (X,Y )) or for any other mea-
sure made clear by the context. The distribution of (X(t))t∈[0,1] will be denoted by PX , while the
distribution of (X(t))t∈[0,1] conditionally on the event {Y = 1} (resp. {Y = 0}) will be written as
Pf (resp. Pg).

Finally, we write B(p) for the Bernoulli distribution of parameter p ∈ [0,1], as well as
B(n,p) for the binomial distribution with parameters n ∈ N

∗ and p ∈ [0,1]. We also set
x ∧ y = min{x, y} for all x, y ∈ R.

2. Preliminary results

2.1. Bayes classifier

We start by deriving an explicit expression for the optimal classifier �� introduced in (1.5). This
optimal classifier is known as the Bayes classifier of the classification problem (see, e.g., [16,
19]).

Let P0 denote the Wiener measure on the set of continuous functions on [0,1]. It is easy to
check that the law of X|Y is absolutely continuous with respect to P0 (see, e.g., [21]). Indeed,
for any continuous trajectory X, the Girsanov formula implies that the density of Pf (i.e., of
X|{Y = 1}) with respect to the reference measure P0 is given by

qf (X) := dPf

dP0
(X) = exp

(∫ 1

0
f (s) dX(s) − 1

2
‖f ‖2

)
. (2.1)

Similarly, the density of Pg (i.e., of X|{Y = 0}) with respect to P0 is

qg(X) := dPg

dP0
(X) = exp

(∫ 1

0
g(s) dX(s) − 1

2
‖g‖2

)
. (2.2)

In the sequel, we refer to qf and qg as the likelihood ratios of the models Pf and Pg versus P0.
Now, using the Bayes formula, we can easily see that the regression function η associated with
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(1.1) is given by

η(X) := E[Y |X] = P(Y = 1|X)

=
dPf

dP0
(X)

dPf

dP0
(X) + dPg

dP0
(X)

= exp(
∫ 1

0 (f (s) − g(s)) dX(s) − 1
2‖f ‖2 + 1

2‖g‖2)

1 + exp(
∫ 1

0 (f (s) − g(s)) dX(s) − 1
2‖f ‖2 + 1

2‖g‖2)
. (2.3)

As an example, if we assume that we observe dX(t) = f (t) dt with X(0) = 0, then η(X) =
exp( 1

2 ‖f −g‖2)

1+exp( 1
2 ‖f −g‖2)

, which is larger than or equal to 1/2 and gets closer to 1 when ‖f −g‖ increases.

Roughly speaking, this means in that example that the distribution Pf is more likely than the
distribution Pg , which is consistent with the definition of the model given by (1.1).

The Bayes classifier �� of the classification problem is then given by

��(X) := 1{η(X)≥ 1
2 } = 1{∫ 1

0 (f (s)−g(s)) dX(s)≥ 1
2 ‖f ‖2− 1

2 ‖g‖2}. (2.4)

It is well known that the Bayes classifier �� corresponds to the optimal classifier of the consid-
ered binary classification problem (see, e.g., [16]) in the sense that it satisfies (1.5). In particular,
for any other classifier �, the excess risk of classification is given by

Rf,g(�) −Rf,g

(
��

) = E
[∣∣2η(X) − 1

∣∣1{�(X) �=��(X)}
]
. (2.5)

We refer for instance to [4] for the proof of (2.5). In our statistical setting, the functions f and g

are unknown so that it is impossible to compute the oracle Bayes classifier (2.4). However, we can
construct an approximation of it using the sample (Xi, Yi)1≤i≤n. In Section 3, we design a plug-
in estimator combined with a projection step, and analyze its excess risk under a smoothness
assumption on f and g. The next result on the margin (Proposition 1 below) will be a key
ingredient of our analysis.

Remark 2.1. In this paper, we concentrate our attention on the model (1.1) in the specific situa-
tion where Y ∼ B(1/2). However we might have investigated the case where Y ∼ B(p) for some
p ∈ ]0,1[. In such a situation, the regression function has the following expression:

η(X) = p exp(
∫ 1

0 (f (s) − g(s)) dX(s) − 1
2‖f ‖2 + 1

2‖g‖2)

p exp(
∫ 1

0 (f (s) − g(s)) dX(s) − 1
2‖f ‖2 + 1

2‖g‖2) + 1 − p
.

All the results displayed below as, e.g., margin, rates of convergence and so on, can be gener-
alized to this setting in a similar way. This generalization requires a huge amount of technical
notation and does not change the spirit of the presented results, unless p is allowed to converge
toward 0 or 1 as n → +∞. This last setting is far beyond the scope of this paper.
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2.2. Control of the margin in the functional model

As was shown in earlier works on binary supervised classification (see, e.g., [29] or [2]), the
probability mass of the region where the regression function η is close to 1/2 plays an important
role in the convergence rates. The behaviour of the function η is classically described by a so-
called margin assumption: there exist α ≥ 0 and ε0,C > 0 such that, for all 0 < ε ≤ ε0,

PX

(∣∣∣∣η(X) − 1

2

∣∣∣∣ ≤ ε

)
≤ Cεα. (2.6)

We will show in Proposition 1 which parameters α, ε0,C > 0 are associated with Model (1.1).
The role of (2.6) is easy to understand: classifying a trajectory X for which η(X) is close to 1/2
is necessarily a challenging problem because the events {Y = 1} and {Y = 0} are almost equally
likely. This not only makes the optimal (Bayes) classifier 1{η(X)≥1/2} error-prone, but it also
makes the task of mimicking the Bayes classifier difficult. Indeed, any slightly bad approximation
of η when η(X) � 1/2 can easily lead to a prediction different from 1{η(X)≥1/2}. A large value
of the margin parameter α indicates that most trajectories X are such that η(X) is far from 1/2:
this makes in a sense the classification problem easier.

Our first contribution, detailed in Proposition 1 below, entails that the margin parameter as-
sociated with Model (1.1) crucially depends on the distance between the functions f and g of
interest. The proof is postponed to Appendix A.2.

Proposition 1. Let X be distributed according to Model (1.1), and set � := ‖f − g‖. Then, for
all 0 < ε ≤ 1/8, we have

PX

(∣∣∣∣η(X) − 1

2

∣∣∣∣ ≤ ε

)
≤ 1 ∧ 10ε

�
.

In particular, if the distance ‖f − g‖ is bounded from below by a positive constant, then (2.6)
is satisfied with a margin parameter α = 1. If, instead, ‖f − g‖ is allowed to be arbitrarily small,
then nothing can be guaranteed about the margin parameter (except the obvious value α = 0 that
always works).

3. Upper bounds on the excess risk

In this section, we construct a classifier with nearly optimal excess risk. We detail its construction
in Section 3.1 and analyze its approximation and estimation errors in Sections 3.2 and 3.3. Our
main result, Theorem 3.1, is stated in Section 3.4. Nearly matching lower bounds will be provided
in Section 4.

3.1. A classifier in a finite-dimensional setting

Our classifier—defined in Section 3.1.2 below—involves a projection step with coefficients θj

and μj introduced in Section 1.2 that are estimated in Section 3.1.1.
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3.1.1. Estimation of (θj )1≤j≤d and (μj )1≤j≤d

In order to estimate the θj and μj , we split the sample (Xi)1≤i≤n into two subsamples
(X0

i )1≤i≤N0 and (X1
i )1≤i≤N1 corresponding to either Yi = 0 or Yi = 1, where

N0 :=
n∑

i=1

1{Yi=0} and N1 :=
n∑

i=1

1{Yi=1}. (3.1)

The sizes N0 and N1 are random variables; they satisfy N0 +N1 = n and both have a binomial
distribution B(n,1/2). In particular, the two subsamples have (with high probability) approxi-
mately the same sizes.

Note from (1.1) that the two subsamples (X0
i )1≤i≤N0 and (X1

i )1≤i≤N1 correspond to obser-
vations of the functions g and f respectively. Following our comments from Section 1.2, it is
natural to define the random coefficients (X0

i,j )1≤i≤N0
1≤j≤d

and (X1
i,j )1≤i≤N1

1≤j≤d

by

{
X0

i,j := 〈
ϕj ,X

0
i

〉
, i = 1, . . . ,N0,

X1
i,j := 〈

ϕj ,X
1
i

〉
, i = 1, . . . ,N1,

j ∈ {1, . . . , d}, (3.2)

where the dimension d ∈N
∗ will be determined later (as a function of n).

We provide a more formal definition of the above quantities in Appendix A.1. As can be seen
from (A.2) and Remark A.1 therein, conditionally on (Y1, . . . , Yn), the random coefficients X0

i,j ,

1 ≤ i ≤ N0, are i.i.d. N (μj ,1), while the coefficients X1
i,j , 1 ≤ i ≤ N1, are i.i.d. N (θj ,1). It is

therefore natural to estimate the coefficients μj and θj for every j ∈ {1, . . . , d} by

μ̂j = 1{N0>0}
1

N0

N0∑
i=1

X0
i,j and θ̂j = 1{N1>0}

1

N1

N1∑
i=1

X1
i,j . (3.3)

Note that we arbitrarily impose the value 0 for μ̂j when N0 = 0 or for θ̂j when N1 = 0. This
convention has a negligible impact, since with high probability N0 and N1 are both positive.

3.1.2. A simple classifier

We now build a simple classifier using the estimators μ̂j and θ̂j defined in (3.3). After observing
a new trajectory X = (X(t))0≤t≤1, we construct the vector Xd ∈R

d defined by

Xd := (〈ϕ1,X〉, . . . , 〈ϕd,X〉).
Then, we assign the label 1 to the trajectory X if Xd is closer to θ̂ := (θ̂1, . . . , θ̂d ) than to
μ̂ := (μ̂1, . . . , μ̂d), and the label 0 otherwise. More formally, our classifier �̂d is defined for
all trajectories X by

�̂d(X) =
{

1 if ‖Xd − θ̂‖d ≤ ‖Xd − μ̂‖d,

0 if ‖Xd − θ̂‖d > ‖Xd − μ̂‖d,
(3.4)
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where ‖x‖d =
√∑d

j=1 x2
j denotes the Euclidean norm in R

d ; we also write 〈x, y〉d = ∑d
j=1 xjyj

for the associated inner product.

Plug-in classifier. It shall be noticed that �̂d is a plug-in classifier in a truncated space. Starting
from (2.3) for the regression function η, we consider the ’truncated’ regression function ηd by
replacing f and g with their projections �d(f ) = ∑d

j=1 θjϕj and �d(g) = ∑d
j=1 μjϕj , that is,

ηd(X) := exp(
∫ 1

0 (�d(f )(s) − �d(g)(s)) dX(s) − 1
2‖�d(f )‖2 + 1

2‖�d(g)‖2)

1 + exp(
∫ 1

0 (�d(f )(s) − �d(g)(s)) dX(s) − 1
2‖�d(f )‖2 + 1

2‖�d(g)‖2)

= exp(〈θd − μd ,Xd〉d − 1
2‖θd‖2

d + 1
2‖μd‖2

d)

1 + exp(〈θd − μd ,Xd〉d − 1
2‖θd‖2

d + 1
2‖μd‖2

d)
, (3.5)

where θd := (θj )1≤j≤d , and μd := (μj )1≤j≤d . We also define the associated oracle classifier

��
d(X) := 1{ηd(X)≥ 1

2 } = 1{∫ 1
0 (�d(f )(s)−�d(g)(s)) dX(s)≥ 1

2 ‖�d(f )‖2− 1
2 ‖�d(g)‖2}. (3.6)

As shown in Remark 3.1, ηd and ��
d correspond to the regression function and the Bayes clas-

sifier where the learner has only access to the projected input Xd ∈ R
d , rather than the whole

trajectory X.
Now, following classical arguments, we are ready to reinterpret �̂d as a plug-in classifier. Note

that

‖Xd − θ̂‖d ≤ ‖Xd − μ̂‖d ⇐⇒ exp( 1
2 {‖Xd − μ̂‖2

d − ‖Xd − θ̂‖2
d})

1 + exp( 1
2 {‖Xd − μ̂‖2

d − ‖Xd − θ̂‖2
d}) ≥ 1

2

⇐⇒ η̂d (X) ≥ 1

2
,

where the estimated regression function η̂d is defined by

η̂d (X) := exp(〈θ̂ − μ̂,Xd〉d − 1
2‖θ̂‖2

d + 1
2‖μ̂‖2

d)

1 + exp(〈θ̂ − μ̂,Xd〉d − 1
2‖θ̂‖2

d + 1
2‖μ̂‖2

d)
. (3.7)

In other words, we can write �̂d(X) = 1{̂ηd(X)≥1/2} with η̂d the truncated estimation introduced
in (3.5).

Proof strategy. In the next sections, we upper bound the excess risk of �̂d . We use the following
classical decomposition (all quantities below are defined in Section 1 and Equations (3.4) and
(3.6)):

Rf,g(�̂d) −Rf,g

(
��

) =Rf,g(�̂d) −Rf,g

(
��

d

)︸ ︷︷ ︸
estimation error

+Rf,g

(
��

d

)−Rf,g

(
��

)︸ ︷︷ ︸
approximation error

.
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The first term of the right-hand side (estimation error) measures how close �̂d is to the oracle ��
d

in the truncated space; we analyse it in Section 3.3 below. The second term (approximation error)
quantifies the statistical loss induced by the d-dimensional projection; we study it in Section 3.2.

3.2. Approximation error

We first upper bound the approximation error Rf,g(�
�
d) −Rf,g(�

�), where the two oracle clas-
sifiers ��

d and �� are defined by (3.6) and (2.4) respectively. Comparing the definitions of η and
ηd in (2.3) and (3.5), we can expect that, for d large enough, �d(f ) ≈ f and �d(g) ≈ g, so that
ηd(X) ≈ η(X) and therefore Rf,g(�

�
d) ≈Rf,g(�

�).
Lemma 1 below quantifies this approximation. The proof is postponed to Appendix A.3. We

recall that, for notational convenience, we write fd = �d(f ) and gd = �d(g).

Lemma 1. Let X be distributed according to Model (1.1), and recall that � := ‖f − g‖. Let
0 < ε ≤ 1/8 and d ∈N

� such that

max
(‖f − fd‖2,‖g − gd‖2) ≤ ε2

512 ln(1/ε2)
. (3.8)

Then, the two oracle classifiers ��
d and �� defined by (3.6) and (2.4) satisfy

Rf,g

(
��

d

)−Rf,g

(
��

) ≤ 12ε2 + 2ε

(
1 ∧ 10ε

�

)
.

We stress that the distance � between f and g has a strong influence on the approximation
error. In particular, if � is bounded from below independently from n, then the approximation
error is at most of the order of ε2, while it can only be controlled by ε if � � ε. This key role of
� is a consequence of the margin behavior analyzed in Proposition 1 (Section 2.2) and will also
appear in the estimation error.

A smoothness assumption. When d ∈ N
∗ is fixed, we can minimize the bound of Lemma 1 in

ε. Unsurprisingly the resulting bound involves the distances ‖f − fd‖ and ‖g − gd‖ of f and
g to their projections fd and gd . In the sequel, we assume that the functions f and g belong to
L

2([0,1]) and are smooth in the sense that their (Fourier) coefficients w.r.t. the basis (ϕj )j≥1 de-
cay sufficiently fast. More precisely, we assume that, for some parameters s,R > 0, the functions
f and g belong to the set

Hs(R) :=
{

h ∈ L
2([0,1]) :

+∞∑
j=1

cj (h)2j2s ≤ R2

}
. (3.9)

The set Hs(R) corresponds to a class of smooth functions with smoothness parameter s: when
s = 0, we simply obtain the L

2([0,1])-ball of radius R. For larger s, for example s = 1, we
obtain a smaller Sobolev space of functions such that f ′ ∈ L

2([0,1]) with ‖f ′‖2 ≤ R.



1808 S. Gadat, S. Gerchinovitz and C. Marteau

Under the above assumption on the tail of the spectrum of f and g, the loss of accuracy
induced by the projection step is easy to quantify. Indeed, for all f ∈Hs(R) we have

‖f − fd‖2 =
+∞∑

j=d+1

cj (f )2 ≤ d−2s
+∞∑

j=d+1

cj (f )2j2s ≤ R2d−2s ,

so that, omitting logarithmic factors, ε can be chosen of the order of Rd−s in the statement of
Lemma 1.

3.3. Estimation error

We now upper bound the estimation error Rf,g(�̂d) − Rf,g(�
�
d) of our classifier �̂d . To that

end, we first reinterpret ηd and ��
d ; this will be useful to rewrite the estimation error as an excess

risk (as in (2.5)) in the truncated space. The next remark follows from direct calculations.

Remark 3.1. Denote by Xd := (〈ϕj ,X〉)1≤j≤d , θd = (θj )1≤j≤d , and μd = (μj )1≤j≤d the ver-
sions of X, θ , and μ in the truncated space. Then,

ηd(X) =
1
2qfd

(X)

1
2qfd

(X) + 1
2qgd

(X)
and qfd

(X) = e
1
2 ‖Xd‖2

e− 1
2 ‖Xd−θd‖2

.

Since the conditional distribution of Xd is N (θd, Id) given Y = 1 and N (μd , Id) given Y = 0,
this entails that ηd(X) = P(Y = 1|Xd) almost surely.

In other words, ηd is the regression function of the restricted classification problem where the
learner has only access to the projected trajectory Xd ∈ R

d , instead of the whole trajectory X.
The function �∗

d = 1{ηd≥1/2} is the associated Bayes classifier.

We are now ready to compare the risk of our classifier �̂d to that of the d-dimensional oracle
��

d . The proof of the next lemma is postponed to Appendix A.4. (The value of 4608 could most
probably be improved.) We recall that fd = �d(f ) and gd = �d(g).

Lemma 2. We consider Model (1.1). Let d ∈ N
∗ and set �d := ‖fd − gd‖. Let 0 < ε ≤ 1/8 and

n ≥ 27 such that (
�d + 2

√
d log(n)

n

)√
d log(n)

n
≤ ε

48
. (3.10)

Then, the classifiers �̂d and ��
d defined by (3.4) and (3.6) satisfy

Rf,g(�̂d) −Rf,g

(
��

d

) ≤ 2ε

(
1 ∧ 10ε

�d

)
+ 6 exp

(
− nε2

4608d logn

)
+ 13

n
.

In the same vein as for the approximation error, the estimation error bound above strongly
depends on the distance between the two functions fd and gd of interest. This is again a conse-
quence of the margin behavior analyzed in Proposition 1 (Section 2.2).
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More precisely, when ε is chosen at least of the order of
√

d/n log(n) (in order to kill the
exponential term), the estimation error bound above is roughly of the order of min{ε, ε2/�d}.
In particular, if �d is bounded from below, then the estimation error is at most of the order
of ε2 ≈ d log2(n)/n. On the other hand, if no lower bound is available for �d , then the only
estimation error bound we get is a slower rate of the order of ε ≈ √

d/n log(n).

3.4. Convergence rate under a smoothness assumption

We now state the main result of this paper. We upper bound the excess risk Rf,g(�̂d)−Rf,g(�
�)

of our classifier when f and g belong to subsets of the Sobolev ball Hs(R) defined in (3.9). These
subsets are parametrized by a separation distance �: a larger value of � makes the classification
problem easier, as reflected by the non-increasing bound below.

Theorem 3.1. There exist an absolute constant c > 0 and a constant Ns,R ≥ 86 depending only
on s and R such that the following holds true. For all s,R > 0 and all n ≥ Ns,R , the classifier

�̂dn defined by (3.4) with dn = �(R2n)
1

2s+1 � satisfies

sup
f,g∈Hs (R)
‖f −g‖≥�

{
Rf,g(�̂dn) − inf

�
Rf,g(�)

}

≤
⎧⎨⎩cR

1
2s+1 n− s

2s+1 log(n) if � < R
1

2s+1 n− s
2s+1 log(n)

c

�
R

2
2s+1 n− 2s

2s+1 log2(n) if � ≥ R
1

2s+1 n− s
2s+1 log(n)

The proof is postponed to Appendix A.5 and combines Lemmas 1 and 2 from the previous
sections.

Note that the two bounds of the right-hand side coincide when � = R1/(2s+1)n−s/(2s+1) log(n).
Therefore, there is a continuous transition from a slow rate (when � is small) to a fast rate (when
� is large). This leads to the following remark.

Remark 3.2 (Novelty of the bound).

• Taking � = 0, we recover the worst-case bound of [9], Corollary 4.4, (where u = 1/s) up
to logarithmic factors. As shown by Theorem 4.1 below, this slow rate is unimprovable for
a small distance ‖f − g‖.

• In the much easier regime when ‖f − g‖ is bounded from below, we recover the faster rate
of [6], Theorem 2. This improved rate is a consequence of the margin behavior (see, e.g.,
[2,18]), but not of the choice of dn that is oblivious to ‖f − g‖. Our bound shows there is a
continuum between these slow and fast rates, as a function of ‖f − g‖.

• Continuous transitions from slow rates to faster rates were already derived in the past. For
instance, for any supervised classification problem where the margin |2η(X) − 1| ≥ h is
almost surely bounded from below, [30], Corollary 3, showed that the excess risk w.r.t. a
class of VC-dimension V varies continuously from

√
V/n to V/(nh) (omitting log factors)

as a function of the margin parameter h. In a completely different setting, [31], Theorem 5,
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analyzed the minimax excess risk for nonparametric regression with well-specified and mis-
specified models. They showed a continuous transition from slow to faster rates when the
distance of the regression function to the statistical model decreases to zero.

• To conclude the discussion, we mention other related works on binary classification with
either high-dimensional or functional data (see also Remark 1.1 in the introduction). For
instance, [28] studied the minimax rate of classification when X is drawn from a mixture of
two high-dimensional Gaussian distributions N (μ0, σ

2Ip) and N (μ1, σ
2Ip) when p � n

and the vector μ1 −μ0 is sparse, with nearly matching lower bounds. Later [10] generalized
these results to an unknown general covariance matrix � with bounded spectrum. (Earlier
works include, e.g., that of [34].) In the infinite-dimensional setting we can also mention
the work of [15], who proved a somewhat weak consistency result of the proposed classi-
fier without any convergence rate in terms of n or � (among others). Finally, [3] showed
universal consistency of the kNN functional classifier with the help of some Besicovich
condition (see our Proposition 3 and our supplementary material [17]) without any rate of
convergence, while they derived sub-optimal rate n−1/6 with a plug-in rule in the Gaussian
model. In our contribution, we provide detailed upper bounds with nearly matching lower
bounds, thus characterizing the minimax rate of convergence as a function of the sample
size n, the smoothness s, and the separation distance �.

Note also that, though the choice of the parameter dn does not depend on �, it still depends
on the (possibly unknown) smoothness parameter s. Though designing an adaptive classifier is
beyond the scope of this paper, it might be addressed via the Lepski method (see, e.g., [27]) after
adapting it to the classification setting.

4. Lower bounds on the excess risk

In this section, we derive two types of excess risk lower bounds.
The first one decays polynomially with n and applies to any classifier. This minimax lower

bound indicates that, up to logarithmic factors, the excess risk of Theorem 3.1 cannot be im-
proved in the worst case. This result is derived via standard nonparametric statistical tools (e.g.,
Fano’s inequality) and is stated in Section 4.1.

Our second lower bound is of a different nature: it decays logarithmically with n and only
applies to the nonparametric k-nearest neighbors algorithm evaluated on projected trajectories
Xi,d ∈ R

d and Xd ∈ R
d , where Xi,d = (〈ϕj ,X〉)1≤j≤d for all i ∈ {1, . . . , n}. We allow d to

be chosen adaptively via a sample-splitting strategy, and we consider k tuned (optimally) as a
function of d . Our logarithmic lower bound indicates that this popular algorithm is not fit for our
particular model; see Section 4.2 below.

4.1. A general minimax lower bound

We provide a lower bound showing that the excess risk bound of Theorem 3.1 is minimax optimal
up to logarithmic factors. The proof is postponed to the supplementary material [17].



Functional supervised classification 1811

Theorem 4.1. Consider the statistical model (1.1) and the set Hs(R) defined in (3.9), where
s,R > 0 and where (ϕj )j≤1 is any Hilbert basis of L2([0,1]). Then, every classifier �̂ satisfies,
for any number n ≥ max{R1/s, (32 log(2)+2)2s+1/(3R2/4)} of i.i.d. observations (Xi, Yi)1≤i≤n

from (1.1) and all � ∈ (0,R/2],

sup
f,g∈Hs (R)
‖f −g‖≥�

{
Rf,g(�̂) − inf

�
Rf,g(�)

}

≥
⎧⎨⎩ce−2R2/(2s+1)

R1/(2s+1)n−s/(2s+1) if � < R1/(2s+1)n−s/(2s+1)

ce−2�2

�
R2/(2s+1)n−2s/(2s+1) if � ≥ R1/(2s+1)n−s/(2s+1)

for some absolute constant c > 0.

We note two minor differences between the upper and lower bounds: Theorem 3.1 involves
extra logarithmic factors, while Theorem 4.1 involves an extra term of e−2�2

. Fortunately both
terms have a minor influence (note that e−2�2 ≥ e−8R2

since f,g ∈ Hs(R)). We leave the ques-
tion of identifying the exact rate for future work.1

If we omit logarithmic factors and constant factors depending only on s and R, Theorems 3.1
and 4.1 together imply that, for n ≥ Ns,R large enough:

• when � � R1/(2s+1)n−s/(2s+1), the optimal worst-case excess risk is of the order of
n−s/(2s+1);

• when � � R1/(2s+1)n−s/(2s+1), the optimal worst-case excess risk is of the order of
n−2s/(2s+1)/�.

4.2. Lower bound for the k-NN classifier

In this section, we focus on the k-nearest neighbor (kNN) classifier. This classification rule has
been intensively studied over the past fifty years. In particular, this method provides interesting
theoretical and practical properties. It is quite easy to handle and implement. Indeed, given a
sample S = {(X1, Y1), . . . , (Xn,Yn)}, a number of neighbors k, a norm ‖.‖ and a new incoming
observation, the kNN classifier is defined as

�n,k(X) = 1{ 1
k

∑k
j=1 Y(j)(X)>1/2}, (4.1)

where the Y(j) correspond to the label of the X(j) re-arranged according to the ordering

‖X(1) − X‖ ≤ · · · ≤ ‖X(n) − X‖.
We refer the reader, see, for example, to [16,19] or [4] for more details.

1Possible solutions include: slightly improving Proposition 1 via a tighter Gaussian concentration bound (to gain a factor

of nearly e−�2/8), and optimizing the constant appearing in the exponential term of Lemma 4 of [17].
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We are interested below in the performances of the classifier �n,k in this functional setting.
For this purpose, we will use the recent contribution of [12] that provides a lower bound of
the misclassification rate of the kNN classifier in a very general framework. This lower bound
is expressed as the measure of an uncertain set around η � 1/2. We emphasize that we want
to understand if a truncation strategy associated to a non parametric supervised classification
approach is suitable for this kind of problem.

4.2.1. Finite-dimensional case

Smoothness parameter β . We shall consider first a finite d-dimensional case for our Gaussian
translation model. In that case, Remark 3.1 in Section 3.3 reveals that the truncation approach
problem we are studying is, without loss of generality, equivalent to a supervised classification in
R

d where conditionally on the event {Y = 0} (resp. {Y = 1}), Xd is a standard Gaussian variable
(resp. a Gaussian random variable with mean m and variance 1). If γd refers to the Gaussian
density:

∀x ∈R
d γd(x) := (2π)−d/2e−‖x‖2/2,

then in that case, the Bayes classifier in R
d is:

��
d(x) = 1{ηd (x)≥1/2} with ηd(x) = γd(x)

γd(x) + γd(x − m)
∀x ∈ R

d,

In the following, to simplify the notations, we will drop the subscript d in all these terms and
will write γ , η instead of γd , ηd . Following [12], the rate of convergence of the kNN depends on
a smoothness parameter β involved in the next inequality:

∀x ∈R
d

∣∣η(B(x, r)
)− η(x)

∣∣ ≤ Lμ
(
B(x, r)

)β (4.2)

where η(B(x, r)) refers to the mean value of η on B(x, r) w.r.t. the distribution of the design
X given by μ = 1

2γ (·) + 1
2γ (· − m). Therefore, our first task is to determine the value of β in

our Gaussian translation model. We begin with a simple proposition that entails that the value of
β corresponding to our Gaussian translation model in R

d is 2/d . The proof of Proposition 2 is
postponed to the supplement [17].

Proposition 2. Assume that ‖x‖ ≤ R for some R ∈ R
+. Then an explicit constant LR exists such

that

∀r ≤ 1

R

∣∣η(B(x, r)
)− η(x)

∣∣ ≤ LRμ
(
B(x, r)

)2/d
.

An important point given in the previous proposition is that when we are considering design
points x such that ‖x‖ ≤ R/2 and ‖m‖ ≤ R/2, we then have

∀r ≤ 1 ∀x ∈ B(0,R/2)
∣∣η(B(x, r)

)− η(x)
∣∣ ≤ 60πedR2eR2/dμ

(
B(x, r)

)2/d
,
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so that the constant LR involved in the statement of Proposition 2 can be chosen as:

LR = 60πedR2eR2/d (4.3)

According to inequality (4.2) and thanks to Proposition 2, the smoothness of the Gaussian
translation model is given by:

βd = 2/d.

Now, we slightly modify the approach of [12] to obtain a lower bound on the excess risk that
involves the margin of the classification problem. As pointed above, in the Gaussian translation
model, when the two classes are well separated (meaning that the center of the two classes are
separated with a distance independent on n), the margin parameter is equal to 1 (see Theorem 1).

Optimal calibration of the kNN. Before giving our first result on the rate of convergence of
the kNN classifier, we remind first some important facts regarding the choice of the number of
neighbors k for the kNN classifier. The ability of the kNN to produce a universally consistent
classification rule highly depends on the choice of the bandwidth parameter kn. In particular,
this bandwidth parameter must satisfy kn −→ +∞ and kn/n −→ 0 as n −→ +∞ to produce
an asymptotically vanishing variance and bias (see, e.g., [16] for details). However, to obtain an
optimal rate of convergence, kn has to be chosen to produce a nice trade-off between the bias and
the variance of the excess risk. It is shown in [12] that, when the marginal law of X is compactly
supported, the optimal calibration k

opt
n is:

1√
k

opt
n (d)

= c

(
k

opt
n (d)

n

)βd

⇔ k
opt
n (d) ∼ n

4
4+d (4.4)

where c refers to any non negative constant and βd = 2/d refers to the smoothness parameter
of the model involved in Inequality (4.2). On the other hand, it is shown in [18] that (almost)
optimal rates of convergence can be obtained in the non-compact case, choosing for instance,

kn ∼ n
2

2+d+τ , (4.5)

for some positive τ . The following results provides a lower bound on the convergence rate with
a number of neighbor k contained in a range of values.

Proposition 3. For any k, d ∈ N, we denote by �k,n,d the kNN classifier based on the training
sample ((Xi,d , Yi))i=1,...,n. There exists a constant C1 such that for any d ∈N

Rf,g(�k,n,d ) −R
(
��

d

) ≥ C1

kn

when k ∈ Kn where

Kn =Kn(d) =
{
� ∈N s.t.

1√
�

≥ d

(
�

n

)2/d

and � ≤ n

}
.
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The proof of this result is given in supplementary material [17].

Remark 4.1. Proposition 3 is an important intermediary result to understand the behaviour of
kNN with functional data. We briefly comment on this result below.

• The set Kn contains all the integers from 1 to an integer equivalent to n4/(4+d)d−2d/(4+d).
In particular, the “optimal” standard calibration of kn given by Equation (4.4) is included in
the set Kn and Proposition 3 applies in particular for such a calibration.

• Proposition 3 entails that tuning the kNN classifier in an “optimal way” cannot produce
faster rates of convergence than n−4/(d+4), even with some additional informations on the
considered model (here the Gaussian distribution of the conditional distributions):

Rf,g(�k
opt
n (d),n,d

) −R
(
��

d

) ≥ C1n
− 4

d+4 .

These performances have to be compared to those obtained with our procedure that ex-
plicitly exploits the additional knowledge of Gaussian conditional distributions (see, e.g.,
Lemma 2).

• The last important point is that the lower bound in the statement of Proposition 3 appears
to be seriously damaged when d increases. This is a classical feature of the curse of dimen-
sionality. For us, it invalidates any approach that will jointly associate a truncation strategy
with a kNN plug-in classifier: we will be led to choose d large with n to avoid too much
loss of information but in the same time this will harms the statistical misclassification.

4.2.2. Lower bound of the misclassification rate with truncated strategies

As pointed by Proposition 3, the global behavior of the kNN classifier heavily depends on the
choice of the dimension d . In the same time, the size of d is important to obtain a truncated
Bayes classifier ��

d close to the Bayes classifier ��. To assess the performance of kNN, we
consider a sample splitting strategy S = S1 ∪S2 where (S1,S2) is a partition of S where the size
of both partitions is proportional to n. Then, S1 is used to choose a dimension d̂ , then we apply
an optimal kNN classifier method based on the samples of S2 on the truncated spaces with �d̂

with k
opt
n (d̂) chosen as in Equation (4.4). It is important to note that the sample splitting strategy

produces a choice d̂ independent on the samples in S2.
Theorem 4.2 below shows that for any sample splitting strategy, every choice of d̂ will lead

to bad performances of classification on model (1.1). The proof is postponed to supplementary
material [17].

Theorem 4.2. Consider the partition (S1,S2) of the sample S . Whatever the selection rule d̂

based on S1 for the dimension d , any kNN classifier �
k

opt
n ,n,d̂

based on the sample S2 has an
excess risk with a logarithmic decreasing order. More precisely

inf
d̂∈N

sup
f,g∈Hs (r)

max
k∈Kn(d̂)

Rf,g(�k,n,d̂ ) − Rn

(
��

)
� log(n)−2s ,

where the infimum over d̂ is taken over any tuning strategy for d based on the first sample.
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The main conclusion of this section and of Theorem 4.2 is that the kNN rule based on a
truncation strategy does not lead to satisfying rates of convergence, regardless the choice of the
dimension d̂ is. We stress that this result is only valid for a specific range for k. Although this
appears to cover classical tuning approach regarding the existing literature as, for example, those
mentioned in (4.4) and (4.5), obtaining a global lower bound (i.e., for any choice of k) remains
an open (and difficult) problem. Even though we suspect that such a logarithmic lower bound
also holds for some more general procedures (without sample splitting and with a more general
possible choice of kn), we do not have any proof of such a result.

4.2.3. Further comments

It should be kept in mind that the misclassification excess risk of the suitably truncated LDA
classifier �̂dn proposed in Equation (3.4) decreases at a polynomial rate, which is an important
encouragement for its use. We stress that the difference in terms of performances between our
classifier and the kNN classifier finds its origin in the finite dimensional case (Section 4.2.1).
Indeed, comparing Lemma 1 and Lemma 2 with Proposition 3 and the choice of k given in
Equation (4.4) indicates that the dependance w.r.t. the dimension d is completely different from
one method to another. This can be explained by the fact that, for any fixed d , our procedure takes
advantage of the Gaussian behavior of the data and is essentially parametric. On the other hand,
the kNN classifier is a non-parametric method: it is hence outperformed in Gaussian situations.
However, it appears to be more robust w.r.t. any misspecification of the model, which is an
important feature of non-parametric classifiers.

Appendix: Proof of the upper bounds

The goal of this section is to prove the polynomial upper bound of Theorem 3.1 together with
the intermediate results of Proposition 1 and Lemmas 1 and 2. We will pay a specific attention
to the acceleration (in terms of the number n of samples) obtained when the functions f and g

appearing in (1.1) are well separated.

A.1. Preliminary comments: More formal definition of the two subsamples

For the sake of rigor, we provide a more formal definition of the quantities introduced in Sec-
tion 3.1.1. The conditional independence property stated in Remark A.1 below will also be useful
to control the estimation error in the risk bounds.

Recall that we split the sample (Xi)1≤i≤n into two subsamples (X0
i )1≤i≤N0 and (X1

i )1≤i≤N1

corresponding to either Yi = 0 or Yi = 1. More formally, if τ 0
1 , τ 0

2 , . . . , τ 0
N0

refers to a numbering

of the points in class 0 and τ 1
1 , τ 1

2 , . . . , τ 1
N1

to a numbering of the points in class 1, we define the

two subsamples (X0
i )1≤i≤N0 and (X1

i )1≤i≤N1 (one of which can be empty) by{
X0

i := Xτ 0
i
, 1 ≤ i ≤ N0

X1
i := Xτ 1

i
, 1 ≤ i ≤ N1
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where

N0 :=
n∑

i=1

1{Yi=0} and N1 :=
n∑

i=1

1{Yi=1}. (A.1)

Formally, τ k
i is the index t ∈ {1, . . . , n} such that Yt = k for the i-th time, that is, for all k ∈ {0,1}

and i ∈ {1, . . . ,Nk},

τ k
i := min

{
t ∈ {1, . . . , n} :

t∑
t ′=1

1{Yt ′=k} ≥ i

}
.

The random coefficients (X0
i,j )1≤i≤N0

1≤j≤d

and (X1
i,j )1≤i≤N1

1≤j≤d

are then given by

{
X0

i,j := 〈
ϕj ,X

0
i

〉 = μj + ε0
i,j , i = 1, . . . ,N0,

X1
i,j := 〈

ϕj ,X
1
i

〉 = θj + ε1
i,j , i = 1, . . . ,N1,

j ∈ {1, . . . , d}, (A.2)

for some suitable dimension d ∈ N
∗. The above equalities involving μj or θj are obtained by

Section 1.2 and by setting

εk
i,j =

∫ 1

0
ϕj (t) dWτk

i
(t),

where the Wi denote i.i.d copies of the standard Brownian motion (W(t))0≤t≤1 associated with
the Xi . By independence of the random variables Y1,W1, . . . , Yn,Wn used to generate the sam-
ple (Xi, Yi)1≤i≤n according to (1.1), and by the comments made in Section 1.2, we have the
following conditional independence property for the εk

i,j .

Remark A.1. Conditionally on (Y1, . . . , Yn), the nd random variables (or any (Y1, . . . , Yn)-
measurable permutation of them)

ε0
1,1, . . . , ε

0
1,d , ε0

2,1, . . . , ε
0
2,d , . . . , ε0

N0,1, . . . , ε
0
N0,d

,

ε1
1,1, . . . , ε

1
1,d , ε1

2,1, . . . , ε
1
2,d , . . . , ε1

N1,1, . . . , ε
1
N1,d

are i.i.d. N (0,1). As a consequence, on the event {N0 > 0} ∩ {N1 > 0}, the random variables
N

−1/2
k

∑Nk

i=1 εk
i,j , 1 ≤ j ≤ d , k ∈ {0,1}, are i.i.d. N (0,1) conditionally on (Y1, . . . , Yn).

A.2. Proof of Proposition 1 (control of the margin)

We start by proving Proposition 1, that is, we analyze the margin behavior in Model (1.1). This
result is a key ingredient to derive our excess risk upper bounds.
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Proof of Proposition 1. We use the Girsanov Equations (2.1) and (2.2) that define the likelihood
ratio qf and qg . We therefore deduce that

PX

(∣∣∣∣η(X) − 1

2

∣∣∣∣ ≤ ε

)
= PX

( |qf (X) − qg(X)|
2(qf (X) + qg(X))

≤ ε

)
= PX

({ |qf (X) − qg(X)|
2(qf (X) + qg(X))

≤ ε

}
∩ {

qf (X) ≤ qg(X)
})

+ PX

({ |qf (X) − qg(X)|
2(qf (X) + qg(X))

≤ ε

}
∩ {

qf (X) > qg(X)
})

≤ PX

({ |qf (X) − qg(X)|
4qg(X)

≤ ε

}
∩ {

qf (X) ≤ qg(X)
})

+ PX

({ |qf (X) − qg(X)|
4qf (X)

≤ ε

}
∩ {

qf (X) > qg(X)
})

≤ PX

(∣∣∣∣qf (X)

qg(X)
− 1

∣∣∣∣ ≤ 4ε

)
+ PX

(∣∣∣∣ qg(X)

qf (X)
− 1

∣∣∣∣ ≤ 4ε

)
. (A.3)

The two terms of the last line are handled similarly, and we only deal with the first one. We note
that

qf (X)

qg(X)
= exp

(∫ 1

0
(f − g)(s) dX(s) − 1

2

[‖f ‖2 − ‖g‖2]).

Using the fact that Y ∼ B(1/2) and conditioning by Y = 1 and Y = 0, we can see that

PX

(∣∣∣∣qf (X)

qg(X)
− 1

∣∣∣∣ ≤ 4ε

)
= P

(∣∣e∫ 1
0 (f −g)(s)f (s) ds+∫ 1

0 (f −g)(s) dW(s)− 1
2 [‖f ‖2−‖g‖2] − 1

∣∣ ≤ 4ε
)
P(Y = 1)

+ P
(∣∣e∫ 1

0 (f −g)(s)g(s) ds+∫ 1
0 (f −g)(s) dW(s)− 1

2 [‖f ‖2−‖g‖2] − 1
∣∣ ≤ 4ε

)
P(Y = 0)

= 1

2
P
(∣∣e 1

2 ‖f −g‖2+∫ 1
0 (f −g)(s) dW(s) − 1

∣∣ ≤ 4ε
)

+ 1

2
P
(∣∣e− 1

2 ‖f −g‖2+∫ 1
0 (f −g)(s) dW(s) − 1

∣∣ ≤ 4ε
)

= 1

2
P
(∣∣e 1

2 �2+�ξ − 1
∣∣ ≤ 4ε

)+ 1

2
P
(∣∣e− 1

2 �2+�ξ − 1
∣∣ ≤ 4ε

)
, (A.4)

where � := ‖f − g‖ and ξ ∼N (0,1) because
∫ 1

0 [f (s) − g(s)]dW(s) ∼N (0,�2).
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Using the inequalities ln(1 + 4ε) ≤ 4ε and ln(1 − 4ε) ≥ −8ε when ε ≤ 1/8, the above proba-
bility can be upper bounded as

PX

(∣∣∣∣qf (X)

qg(X)
− 1

∣∣∣∣ ≤ 4ε

)
≤ 1

2
P

(
−8ε

�
− �

2
≤ ξ ≤ 4ε

�
− �

2

)
+ 1

2
P

(
−8ε

�
+ �

2
≤ ξ ≤ 4ε

�
+ �

2

)
,

≤ 5ε

�
,

where the last inequality follows from P(a ≤ ξ ≤ b) ≤ (b −a)/
√

2π and 12/
√

2π ≤ 5. Inverting
the roles of f and g, we get by symmetry of the problem that the second term of (A.3) is also
upper bounded by 5ε/�. This concludes the proof. �

Remark A.2. Following the same proof strategy, it is easy to check that the same result holds in
the truncated space, that is, replacing η with ηd and � with �d := ‖�d(f − g)‖. Namely, for all
d ∈N

∗ and all 0 < ε ≤ 1/8,

PX

(∣∣∣∣ηd(X) − 1

2

∣∣∣∣ ≤ ε

)
≤ 1 ∧ 10ε

�d

.

In particular, Equation (A.4) holds with qfd
(X)/qgd

(X) on the left-hand side and with �d on the

right-hand side because
∫ 1

0 �d(f − g)(s) dW(s) ∼N (0,�2
d).

A.3. Proof of Lemma 1 (control of the approximation error)

One key ingredient of the proof is to control the excess risk Rf,g(�
�
d) − Rf,g(�

�) in terms of
the closeness of fd and gd to f and g respectively. To do so, we set

δd := ‖f − fd‖ =
√

‖f ‖2 − ‖fd‖2 and δ̃d := ‖g − gd‖ =
√

‖g‖2 − ‖gd‖2.

Proof of Lemma 1. We start with the well-known formula on the excess risk of any classifier
(see, e.g., [19]):

Rf,g

(
��

d

)−Rf,g

(
��

) = E
[∣∣2η(X) − 1

∣∣1{��
d(X)�=��(X)}

]
.

Then, following a classical control of the excess risk (see, e.g., [18]),

Rf,g

(
��

d

)−Rf,g

(
��

)
= E

[∣∣2η(X) − 1
∣∣1{��

d(X)�=��(X)}[1{|η(X)−1/2|≤ε} + 1{|η(X)−1/2|>ε}]
]

≤ 2εP
(∣∣η(X) − 1/2

∣∣ ≤ ε
)︸ ︷︷ ︸

:=T1

+P
({

��
d(X) �= ��(X)

}∩ {∣∣η(X) − 1/2
∣∣ > ε

})︸ ︷︷ ︸
:=T2

. (A.5)
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Note that, up to the quantity 2ε, the term T1 corresponds to the margin behavior discussed in
Section 2.2 above. By Proposition 1 (note that 0 < ε ≤ 1/8), we have

T1 := 2εP
(∣∣η(X) − 1/2

∣∣ ≤ ε
) ≤ 2ε

(
1 ∧ 10ε

�

)
.

To control the second term T2, we note (classically) that ��(X) = 1{η(X)≥1/2} and ��
d(X) =

1{ηd(X)≥1/2} together imply that

T2 := P
({

��
d(X) �= ��(X)

}∩ {∣∣η(X) − 1/2
∣∣ > ε

}) ≤ P
(∣∣ηd(X) − η(X)

∣∣ > ε
)
.

Using Y ∼ B(1/2) and the conditional distribution of X|Y , we have

T2 ≤ 1

2
Pf

(∣∣ηd(X) − η(X)
∣∣ > ε

)︸ ︷︷ ︸
:=T2,1

+1

2
Pg

(∣∣ηd(X) − η(X)
∣∣ > ε

)︸ ︷︷ ︸
:=T2,2

.

For the sake of brevity, we only study T2,1 (the second term T2,2 can be upper bounded similarly
by symmetry of the problem and by inverting the roles of f and g). Recall from (2.1) that qf

denotes the likelihood ratio of the model Pf . Next, we decompose η − ηd using the four (a.s.
positive) likelihood ratios qf , qg , qfd

, and qgd
:

η − ηd = qf

qf + qg

− qfd

qfd
+ qgd

= qf − qfd

qf + qg

+ qfd

(
1

qf + qg

− 1

qfd
+ qgd

)
.

In order to upper bound T2,1, we use the triangle inequality three times in the decomposition
above, we note that∣∣∣∣ 1

qf + qg

− 1

qfd
+ qgd

∣∣∣∣ = ∣∣∣∣ qfd
− qf + qgd

− qg

(qf + qg)(qfd
+ qgd

)

∣∣∣∣ ≤ |qfd
− qf |

qf qfd

+ |qgd
− qg|

qgqfd

,

and we use the inclusion {Z1 + Z2 + Z3 > ε} ⊆ {Z1 > ε/2} ∪ {Z2 > ε/4} ∪ {Z3 > ε/4} valid or
any random variables Z1, Z2, Z3. We get:

T2,1

≤ Pf

(∣∣qfd
(X) − qf (X)

∣∣ >
ε

2

∣∣qf (X) + qg(X)
∣∣)

+ Pf

(
qfd

(X)
∣∣qf (X) − qfd

(X)
∣∣ > ε

4
qf (X)qfd

(X)

)
+ Pf

(
qfd

(X)
∣∣qg(X) − qgd

(X)
∣∣ > ε

4
qg(X)qfd

(X)

)
≤ Pf

(∣∣qfd
(X) − qf (X)

∣∣ >
ε

2
qf (X)

)
+ Pf

(∣∣qfd
(X) − qf (X)

∣∣ > ε

4
qf (X)

)
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+ Pf

(∣∣qgd
(X) − qg(X)

∣∣ > ε

4
qg(X)

)
≤ 2Pf

(∣∣qfd
(X) − qf (X)

∣∣ > ε

4
qf (X)

)
+ Pf

(∣∣qgd
(X) − qg(X)

∣∣ > ε

4
qg(X)

)
Taking the logarithm, we can see that:

Pf

(∣∣∣∣qfd
(X)

qf (X)
− 1

∣∣∣∣ > ε

4

)
= Pf

(
log

(
qfd

qf

)
< log(1 − ε/4)

)
+ Pf

(
log

(
qfd

qf

)
> log(1 + ε/4)

)
Using the inequalities log(1 + ε/4) ≥ ε/8 and log(1 − ε/4) ≤ −ε/4 (that hold at least for all
0 < ε ≤ 1) we obtain:

T2,1 ≤ 2Pf

(
log

qfd
(X)

qf (X)
> ε/8

)
︸ ︷︷ ︸

:=S1

+2Pf

(
log

qfd
(X)

qf (X)
< −ε

4

)
︸ ︷︷ ︸

:=S2

+ Pf

(
log

qgd
(X)

qg(X)
>

ε

8

)
︸ ︷︷ ︸

:=S3

+Pf

(
log

qgd
(X)

qg(X)
< −ε

4

)
︸ ︷︷ ︸

:=S4

. (A.6)

The Girsanov formula makes it possible to write log
qfd

(X)

qf (X)
= ∫ 1

0 (fd −f )(s) dX(s)− 1
2 [‖fd‖2 −

‖f ‖2]. We study S1 and remark that under Pf , dX(s) = f (s) ds + dW(s) for all s ∈ [0,1] so
that

S1 = Pf

(
log

qfd
(X)

qf (X)
>

ε

8

)

= P

(
〈fd − f,f 〉 +

∫ 1

0
(fd − f )(s) dW(s) − 1

2

[‖fd‖2 − ‖f ‖2] >
ε

8

)
= P

(∫ 1

0
(fd − f )(s) dW(s) >

1

2

[‖f ‖2 − ‖fd‖2]+ ε

8

)
≤ P

(
ξ >

ε

8

)
,

where ξ ∼N (0,‖fd − f ‖2) =N (0, δ2
d). But, by a classical (sub)Gaussian tail bound stated, for

example, in [8], p. 22, we get

S1 ≤ exp

(
− (ε/8)2

2δ2
d

)
= exp

(
− ε2

128δ2
d

)
. (A.7)
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Combining the last inequality with the assumption

δ2
d ≤ ε2

512 ln(1/ε2)
≤ ε2

128 ln(1/ε2)
,

we finally obtain S1 ≤ ε2.
The second term S2 introduced in (A.6) can be dealt similarly, except that we can no longer

neglect the positive term (‖f ‖2 − ‖fd‖2)/2 = δ2
d/2: considering again ξ ∼N (0, δ2

d), we have

S2 = Pf

(
log

qfd
(X)

qf (X)
< −ε

4

)
= P

(
ξ <

δ2
d

2
− ε

4

)
≤ P

(
ξ < −ε

8

)
≤ ε2,

where the last inequality follows from the same Gaussian concentration argument as in (A.7), and
where the inequality before last is because δ2

d/2 ≤ ε/8. Indeed, by the assumptions of Lemma 1,

ε ≥
√

512 ln
(
82
)

max{δd, δ̃d} ≥ 24 max
{
δ2
d , δ̃2

d

}
, (A.8)

where the second inequality follows from max{δd, δ̃d} ≤ ε/24 ≤ 1 (as a result of the first inequal-
ity and ε ≤ 1). Therefore, δ2

d/2 ≤ ε/48 ≤ ε/8 as claimed above.

We now focus on S3: noting that log
qgd

(X)

qg(X)
= ∫ 1

0 (gd − g)(s) dX(s) − 1
2 [‖gd‖2 − ‖g‖2], we

get

S3 = Pf

(
log

qgd
(X)

qg(X)
>

ε

8

)

= P

(
〈gd − g,f 〉 +

∫ 1

0
(gd − g)(s) dW(s) − 1

2

[‖gd‖2 − ‖g‖2] >
ε

8

)
= P

(
〈gd − g,f − fd〉 +

∫ 1

0
(gd − g)(s) dW(s) − 1

2

[‖gd‖2 − ‖g‖2] >
ε

8

)
,

where we used the fact that gd − g and fd are orthogonal. Recall now that δd = ‖f − fd‖ and
δ̃d = ‖g − gd‖ = √‖g‖2 − ‖gd‖2. If ξ̃ ∼N (0, δ̃2

d), the last equality entails

S3 ≤ P

(̃
ξ >

ε

8
− δ̃2

d

2
− δ̃dδd

)
≤ P

(̃
ξ >

ε

8
− δ̃2

d

2
− δ̃2

d

2
− δ2

d

2

)
≤ P

(̃
ξ >

ε

16

)
≤ ε2,

where the second inequality follows from δ̃dδd ≤ (̃δd + δ2
d)/2, where the third inequality is be-

cause max{δ2
d, δ̃2

d} ≤ ε/24 (by (A.8)), and where the last inequality follows from the same Gaus-
sian tail bound as the one used in (A.7) and from the assumption δ̃2

d ≤ ε2/(512 ln(1/ε2)).
A similar analysis shows that the last term S4 introduced in (A.6) also satisfies S4 ≤ ε2. Putting

everything together, we finally get

T2,1 ≤ 6ε2.
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By symmetry of the problem and by inverting the roles of f and g, we can also see that T2,2 ≤
6ε2. Summing the bounds on T1, T2,1, and T2,2 concludes the proof. �

A.4. Proof of Lemma 2 (control of the estimation error)

Though we now focus on the estimation error, most of the proof follows similar arguments as
for Lemma 1 above: comparison of two regression functions, and Gaussian-type concentration
inequalities.

Proof of Lemma 2. Recall from Remark 3.1 (Section 3.3) that ηd and �∗
d = 1{ηd≥1/2} corre-

spond to the regression function and the Bayes classifier of the classification problem when the
learner has only access to the projected input Xd := (〈ϕj ,X〉)1≤j≤d . Since �̂d(X) only depends
on X through Xd , its excess risk can be rewritten as

Rf,g(�̂d) −Rf,g

(
��

d

) = E
[∣∣2ηd(X) − 1

∣∣1{�̂d (X)�=��
d(X)}

]
,

where the expectation is with respect to both the sample (Xi, Yi)1≤i≤n and the new input X.
Now, for all ε > 0, using a bound similar to (A.5), we get

Rf,g(�̂d) −Rf,g

(
��

d

) ≤ 2εPX

(∣∣ηd(X) − 1/2
∣∣ ≤ ε

)+ P
(∣∣̂ηd(X) − ηd(X)

∣∣ > ε
)
,

where the last inequality follows from the inclusion {�̂d(X) �= ��
d(X)} ∩ {|ηd(X)− 1/2| > ε} ⊆

{|̂ηd(X)−ηd(X)| > ε} (because �̂d(X) = 1{̂ηd (X)≥1/2} and �∗
d(X) = 1{ηd (X)≥1/2}). We can now

apply the adaptation of Proposition 1 to the truncated space (see Remark A.2) to get

Rf,g(�̂d) −Rf,g

(
��

d

) ≤ 2ε

(
1 ∧ 10ε

�d

)
+ P

(∣∣̂ηd(X) − ηd(X)
∣∣ > ε

)
. (A.9)

Using Y ∼ B(1/2) and the conditional distribution of X given Y , we have:

P
(∣∣̂ηd(X) − ηd(X)

∣∣ > ε
) = 1

2
Pf

(∣∣̂ηd(X) − ηd(X)
∣∣ > ε

)︸ ︷︷ ︸
:=T1

+1

2
Pg

(∣∣̂ηd(X) − ηd(X)
∣∣ > ε

)︸ ︷︷ ︸
:=T2

,

where, with a slight abuse of notation, the first probability Pf (·) is with respect to both the
sample (Xi, Yi)1≤i≤n drawn i.i.d. from (1.1) and a new independent input X drawn from Pf ;
and similarly for the second probability Pg(·).

We now focus on T1 until the end of the proof. (The control of T2 is exactly similar, by sym-
metry of the model and by inverting the roles of f and g.) Denote by γd(x) = (2π)−d/2e−‖x‖2/2

the density of the standard Gaussian distribution on R
d . By Remark 3.1 (Section 3.3), we have,

setting θd := (θ1, . . . , θd) and μd := (μ1, . . . ,μd),

ηd(X) = Fd(X)

Fd(X) + Gd(X)
, where Fd(x) = γd(x − θd) and Gd(x) = γd(x − μd).
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Similarly, by (3.7), the estimated regression function η̂d can be rewritten as

η̂d (X) = F̂d(X)

F̂d(X) + Ĝd(X)
, where F̂d(x) = γd(x − θ̂ ) and Ĝd(x) = γd(x − μ̂).

Using simple algebra, we get

T1 := Pf

(∣∣̂ηd(X) − ηd(X)
∣∣ > ε

)
= Pf

(∣∣∣∣ F̂d(X)

F̂d(X) + Ĝd(X)
− Fd(X)

Fd(X) + Gd(X)

∣∣∣∣ > ε

)
≤ Pf

(∣∣∣∣ F̂d(X) − Fd(X)

Fd(X) + Gd(X)
+ F̂d(X)

(
1

F̂d(X) + Ĝd(X)
− 1

Fd(X) + Gd(X)

)∣∣∣∣ > ε

)
≤ Pf

(∣∣∣∣ F̂d(X) − Fd(X)

Fd(X) + Gd(X)

∣∣∣∣ > ε

3

)
+ Pf

(∣∣∣∣F̂d(X)

(
1

F̂d(X) + Ĝd(X)
− 1

Fd(X) + Gd(X)

)∣∣∣∣ >
2ε

3

)
=: P(A1) + P(A2). (A.10)

Control of P(A1). First note that

P(A1) = Pf

(∣∣F̂d(X) − Fd(X)
∣∣ > ε

3

(
Fd(X) + Gd(X)

))
≤ Pf

(∣∣F̂d(X) − Fd(X)
∣∣ > ε

3
Fd(X)

)
= Pf

(∣∣F̂d(X)/Fd(X) − 1
∣∣ > ε

3

)
= Pf

(∣∣e〈Xd−(θ̂+θd )/2,θ̂−θd 〉 − 1
∣∣ > ε

3

)
. (A.11)

Since we have − log(1 − u) ≥ log(1 + u) ≥ u/2 for u ∈ (0,1), some straightforward computa-
tions yield:

P(A1) ≤ Pf

(∣∣∣∣〈Xd − θ̂ + θd

2
, θ̂ − θd

〉∣∣∣∣ > log

(
1 + ε

3

))
≤ Pf

(∣∣∣∣〈Xd − θ̂ + θd

2
, θ̂ − θd

〉∣∣∣∣ >
ε

6

)
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= Pf

(∣∣∣∣〈Xd − θd + θd − θ̂

2
, θ̂ − θd

〉∣∣∣∣ > ε

6

)
≤ Pf

(∣∣〈Xd − θd, θ̂ − θd〉∣∣ > ε

6
− ‖θ̂ − θd‖2

2

)
.

Now, note from (1.4), (A.2)–(3.3), and Remark A.1 (Section A.1) that, under P⊗n ⊗ Pf and on
the event {N1 > 0}, the random variables ξj := Xd,j − θd,j = 〈ϕj ,X〉 − θj , 1 ≤ j ≤ d , and

ζj := √
N1(θ̂j − θd,j ) = 1√

N1

N1∑
i=1

ε1
i,j , 1 ≤ j ≤ d,

are i.i.d. N (0,1) conditionally on (Y1, . . . , Yn). (On the event {N1 = 0}, we define the ζj so as
to coincide with other independent N (0,1) random variables ζ ′

j .) As a consequence, the random
variables ξ1, . . . , ξd , ζ1, . . . , ζd are i.i.d. N (0,1) (unconditionally).

Note also from Hoeffding’s lemma (see, e.g., [8]) and n/2 − √
n log(n)/2 ≥ n/4 (because

n ≥ 27) that

P

(
N1 <

n

4

)
≤ P

(
N1 <

n

2
−

√
n logn

2

)
≤ 1

n
. (A.12)

Therefore, writing ζ = (ζ1, . . . , ζn)
T , we deduce that

P(A1) ≤ Pf

(∣∣〈Xd − θd , θ̂ − θd〉∣∣ > ε

6
− ‖θ̂ − θd‖2

2
,N1 ≥ n

4

)
+ P

(
N1 <

n

4

)

≤ P

(∣∣∣∣∣
d∑

j=1

ξj ζj

∣∣∣∣∣ ≥
√

N1ε

6
− ‖ζ‖2

2
√

N1
,N1 ≥ n

4

)
+ 1

n

≤ P

(∣∣∣∣∣
d∑

j=1

ξj ζj

∣∣∣∣∣ ≥
√

nε

12
− ‖ζ‖2

√
n

)
+ 1

n

≤ P

(∣∣∣∣∣
d∑

j=1

ξj ζj

∣∣∣∣∣ ≥
√

nε

24

)
+ P

(
‖ζ‖2 >

nε

24

)
+ 1

n
. (A.13)

We control the first deviation probability above. First, recalling that the ξj and ζj are i.i.d.
N (0,1), and conditioning by (ξ1, . . . , ξd), we get

P

(∣∣∣∣∣
d∑

j=1

ξj ζj

∣∣∣∣∣ ≥
√

nε

24

)
≤ E

[
P

(∣∣∣∣∣
d∑

j=1

ξj ζj

∣∣∣∣∣ ≥
√

nε

24
|ξ1, . . . , ξd

)]

≤ 2E

[
exp

(
− nε2

1152
∑d

j=1 ξ2
j

)]
,
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where the last inequality is because, conditionally on (ξ1, . . . , ξd), the random variable Z =∑d
j=1 ξj ζj is Gaussian with zero mean and variance V = ∑d

j=1 ξ2
j and thus satisfies P(|Z| >

z|ξ1, . . . , ξd) ≤ 2e−z2/(2V ) for all z > 0. But, distinguishing whether
∑d

j=1 ξ2
j is below or above

4d logn, we obtain

P

(∣∣∣∣∣
d∑

j=1

ξj ζj

∣∣∣∣∣ ≥
√

nε

24

)
≤ 2 exp

(
− nε2

4608d logn

)
+ 2P

(
d∑

j=1

ξ2
j > 4d logn

)

≤ 2 exp

(
− nε2

4608d logn

)
+ 2

n
,

where we used the concentration inequality for the χ2 statistics of [26], Lemma 1,

∀x > 0, P

(
d∑

j=1

ξ2
j > d + 2

√
dx + 2x

)
≤ e−x (A.14)

for x = log(n), and where we noted (since 2ab ≤ a2 + b2 and logn ≥ 2 for n ≥ 27) that

d + 2
√

d logn + 2 logn ≤ 2d + 3 logn ≤ 4d logn. (A.15)

Plugging the above inequalities into (A.13), we finally obtain

P(A1) ≤ 2 exp

(
− nε2

4608d logn

)
+ P

(
‖ζ‖2 >

nε

24

)
+ 3

n
. (A.16)

Control of P(A2). We have:

P(A2) := Pf

(∣∣∣∣F̂d(X)

(
1

F̂d(X) + Ĝd(X)
− 1

Fd(X) + Gd(X)

)∣∣∣∣ > 2ε

3

)
= Pf

(∣∣∣∣F̂d(X)

(
Fd(X) − F̂d(X) + Gd(X) − Ĝd(X)

(F̂d(X) + Ĝd(X))(Fd(X) + Gd(X))

)∣∣∣∣ > 2ε

3

)
≤ Pf

(∣∣F̂d(X)
(
Fd(X) − F̂d(X)

)∣∣ > ε

3

(
Fd(X) + Gd(X)

)(
F̂d(X) + Ĝd(X)

))
+ Pf

(∣∣F̂d(X)
(
Gd(X) − Ĝd(X)

)∣∣ > ε

3

(
Fd(X) + Gd(X)

)(
F̂d(X) + Ĝd(X)

))
≤ Pf

(∣∣F̂d(X)
(
Fd(X) − F̂d(X)

)∣∣ > ε

3
Fd(X)F̂d(X)

)
+ Pf

(∣∣F̂d(X)
(
Gd(X) − Ĝd(X)

)∣∣ > ε

3
Gd(X)F̂d(X)

)
≤ Pf

(∣∣Fd(X) − F̂d(X)
∣∣ >

ε

3
Fd(X)

)
+ Pf

(∣∣Gd(X) − Ĝd(X)
∣∣ > ε

3
Gd(X)

)
.
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The first term has already been studied above (see (A.11) and the following inequalities) and thus
satisfies the same upper bound as P(A1) in (A.16). As for the second term, following the same
lines as those leading to (A.13), we can see that

Pf

(∣∣Gd(X) − Ĝd(X)
∣∣ >

ε

3
Gd(X)

)
≤ Pf

(∣∣∣∣〈Xd − μ̂ + μd

2
, μ̂ − μd

〉∣∣∣∣ > ε

6

)
≤ Pf

(∣∣〈Xd − θd, μ̂ − μd〉∣∣ >
ε

6
−

∣∣∣∣〈θd − μd + μd − μ̂

2
, μ̂ − μd

〉∣∣∣∣)
≤ Pf

(∣∣〈Xd − θd, μ̂ − μd〉∣∣ >
ε

6
−

(
‖θd − μd‖ + ‖μ̂ − μd‖

2

)
‖μ̂ − μd‖︸ ︷︷ ︸

≤4(�d+2
√

d log(n)
n

)

√
d log(n)

n
w.p. ≥ 1 − 2/n

)

≤ Pf

(∣∣〈Xd − θd, μ̂ − μd〉∣∣ >
ε

12

)
+ 2

n
,

where we used (A.12) and (A.14)–(A.15) again, and where the last inequality holds true when-
ever (

�d + 2

√
d log(n)

n

)√
d log(n)

n
≤ ε

48
. (A.17)

Mimicking what we did to derive (A.13), we then get

Pf

(∣∣Gd(X) − Ĝd(X)
∣∣ >

ε

3
Gd(X)

)
≤ P

(∣∣∣∣∣
d∑

j=1

ξj ζj

∣∣∣∣∣ ≥
√

nε

24

)
+ 1

n
+ 2

n

≤ 2 exp

(
− nε2

4608d logn

)
+ 5

n
.

Putting everything together, we can see that, provided (A.17) holds,

P(A2) ≤ 4 exp

(
− nε2

4608d logn

)
+ P

(
‖ζ‖2 >

nε

24

)
+ 8

n
.

Conclusion. Combining all results above, we get, under condition (A.17),

T1 = P(A1) + P(A2) ≤ 6 exp

(
− nε2

4608d logn

)
+ 2P

(
‖ζ‖2 >

nε

24

)
+ 11

n

so that (the upper bound on T2 is identical by symmetry of the problem):

P
(∣∣̂ηd(X) − ηd(X)

∣∣ > ε
) ≤ 6 exp

(
− nε2

4608d logn

)
+ 2P

(
‖ζ‖2 >

nε

24

)
+ 11

n
.
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To conclude the proof, we note that, if (A.17) holds true, then nε/24 ≥ 4d logn ≥ d +
2
√

d logn + 2 logn (by (A.15)), so that P(‖ζ‖2 > nε/24) ≤ 1/n by (A.14). �

A.5. Proof of Theorem 3.1 (excess risk of ̂�dn)

In all the sequel, we fix f,g ∈Hs(R) and show that

Rf,g(�̂dn) − inf
�
Rf,g(�)

≤
⎧⎨⎩cR

1
2s+1 n− s

2s+1 log(n) if � < R
1

2s+1 n− s
2s+1 log(n)

c

�
R

2
2s+1 n− 2s

2s+1 log2(n) if � ≥ R
1

2s+1 n− s
2s+1 log(n)

(A.18)

where � := ‖f −g‖. This immediately entails the inequality of the theorem (i.e., the one involv-
ing the supremum) since the right-hand side of (A.18) is non-increasing in �.

Recall that � = 1{η≥1/2} is the Bayes (optimal) classifier and that ��
dn

is the Bayes classifier in
the dn-dimensional truncated space (see Remark 3.1 in Section 3.3). We decompose the excess
risk into estimation and approximation errors and use Lemmas 2 and 1: for some values of ε1
and ε2 to be determined later,

Rf,g(�̂dn) − inf
�
Rf,g(�)

=Rf,g(�̂dn) −Rf,g

(
��

dn

)+Rf,g

(
��

dn

)−Rf,g

(
��

)
≤ 2ε1

(
1 ∧ 10ε1

�dn

)
+ 6 exp

(
− nε2

1

4608dn logn

)
+ 13

n
+ 12ε2

2 + 2ε2

(
1 ∧ 10ε2

�

)
≤ 2ε1

(
1 ∧ 10ε1

�dn

)
+ 19

n
+ 12ε2

2 + 2ε2

(
1 ∧ 10ε2

�

)
, (A.19)

where �dn := ‖fdn − gdn‖, and where we assumed that ε2
1 ≥ 4608dn log2(n)/n (to be checked

below).
In all the sequel the value of the constant Ns,R may change from line to line. Our first constraint

on Ns,R is that Ns,R ≥ 1/R2, so that dn := �(R2n)
1

2s+1 � ≥ 1 for all n ≥ Ns,R . The choice of

dn also guarantees the bias–variance tradeoff Rd−s
n ≈ √

dn/n ≈ R
1

2s+1 n− s
2s+1 . More precisely,

provided Ns,R is chosen large enough, we get for all n ≥ Ns,R that√
dn

n
≤ R

1
2s+1 n− s

2s+1 ≤ Rd−s
n ≤ 2R

1
2s+1 n− s

2s+1 . (A.20)

We now choose ε1 and ε2 so as to minimize (A.19), while meeting the assumptions of Lem-
mas 2 and 1.

• We choose

ε1 := 48

(
�dn + 2

√
dn log(n)

n
+√

2 log(n)

)√
dn log(n)

n
.
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This entails that 0 < ε1 ≤ 1/8 for all n ≥ Ns,R (provided Ns,R is chosen large enough), that
Assumption (3.10) of Lemma 2 holds true, and that the requirement ε2

1 ≥ 4608dn log2(n)/n

above is met.
• We choose

ε2 := 32Rd−s
n

√
log

1

32Rd−s
n

.

Choosing Ns,R large enough, we can guarantee for all n ≥ Ns,R that 0 < ε2 ≤ 1/8, as well
as log[1/(32Rd−s

n )] ≥ 1 so that ε2 ≥ 32Rd−s
n and therefore ε2 ≥ 32Rd−s

n

√
log(1/ε2), that

is,

R2d−2s
n ≤ ε2

2

512 log(1/ε2
2)

.

Now, note that ‖f − fdn‖2 ≤ R2d−2s
n for all f ∈ Hs(R) because

‖f − fdn‖2 =
+∞∑

k=dn+1

ck(f )2 ≤ d−2s
n

+∞∑
k=dn+1

ck(f )2k2s ≤ R2d−2s
n .

Combining the above inequalities implies that Assumption (3.8) of Lemma 1 is met.

Before plugging the values of ε1 and ε2 into (A.19), we compare �dn with �:

�dn := ‖fdn − gdn‖
≥ ‖f − g‖ − ‖f − fdn‖ − ‖g − gdn‖

≥ � − 2Rd−s
n ≥ �

10
(A.21)

whenever � ≥ (20/9)Rd−s
n . By (A.20) a sufficient condition is that � ≥ (40/9)R

1
2s+1 n− s

2s+1 or

even that � ≥ R
1

2s+1 n− s
2s+1 log(n) (provided Ns,R ≥ e40/9 ≈ 85.2). This is the threshold value

we use below, since it makes the right-hand side of (A.18) continuous in �.

Case 1: � < R
1

2s+1 n− s
2s+1 log(n). .

We substitute the values of ε1 and ε2 into (A.19) and discard the (relatively large) terms
10ε1/�dn and 10ε2/�. We obtain, noting that 12ε2

2 ≤ 12ε2/8 ≤ 2ε2:

Rf,g(�̂dn) − inf
�
Rf,g(�)

≤ 2ε1 + 19

n
+ 12ε2

2 + 2ε2

≤ 2ε1 + 4ε2 + 19

n
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≤ 96

(
�dn + 2

√
dn log(n)

n
+√

2 log(n)

)√
dn log(n)

n

+ 128Rd−s
n

√
log

1

32Rd−s
n

+ 19

n

≤ 96
(
2R + 2R

1
2s+1 n− s

2s+1
√

log(n) +√
2 log(n)

)
R

1
2s+1 n− s

2s+1
√

log(n)

+ 256R
1

2s+1 n− s
2s+1

√
log

n
s

2s+1

32R
1

2s+1

+ 19

n

≤ c1R
1

2s+1 n− s
2s+1 log(n), (A.22)

where the inequality before last follows from (A.20) and from �dn ≤ � ≤ ‖f ‖ + ‖g‖ ≤ 2R

(since f,g ∈ Hs(R)), and where (A.22) holds for all n ≥ Ns,R provided the absolute constant
c1 > 0 and the constant Ns,R are chosen large enough.

Case 2: � ≥ R
1

2s+1 n− s
2s+1 log(n). .

Following similar calculations, but using now the (relatively small) terms 10ε1/�dn and
10ε2/�, we can see from (A.19) and then (A.21) that, for some absolute constants c2, c3 > 0,

Rf,g(�̂dn) − inf
�
Rf,g(�)

≤ 20ε2
1

�dn

+ 19

n
+ 12ε2

2 + 20ε2
2

�

≤ 200ε2
1

�
+ 20ε2

2

�
+ 12ε2

2 + 19

n

≤ c2R
2

2s+1 n− 2s
2s+1

(
log2(n)

�
+ log(n)

�
+ log(n)

)
+ 19

n

≤ c3R
2

2s+1 n− 2s
2s+1 log2(n)

�
, (A.23)

where the last two inequalities hold true for all n ≥ Ns,R provided Ns,R is chosen large enough
(e.g., log2(n)/� ≥ log(n) when n ≥ e2R ≥ e�).

Conclusion. We derive (A.18) by combining (A.22) and (A.23) and by choosing c :=
max{c1, c3}. This concludes the proof of Theorem 3.1.
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Supplementary Material

Optimal functional supervised classification with separation condition (DOI: 10.3150/19-
BEJ1170SUPP; .pdf). In the supplemental article [17], we provide a proof of the minimax lower
bound (Theorem 4.1) and a discussion on the truncated nearest neighbor strategy (Theorem 4.2).
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