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Abstract

This paper presents a thorough analysis of 1-dimensional Schrödinger operators
whose potential is a linear combination of the Coulomb term 1/r and the centrifugal
term 1/r2. We allow both coupling constants to be complex. Using natural boundary
conditions at 0, a two parameter holomorphic family of closed operators on L2(R+)
is introduced. We call them the Whittaker operators, since in the mathematical
literature their eigenvalue equation is called the Whittaker equation. Spectral and
scattering theory for Whittaker operators is studied. Whittaker operators appear in
quantum mechanics as the radial part of the Schrödinger operator with a Coulomb
potential.
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1 Introduction

Consider the differential expression

Lβ,α := −∂2
z +

(
α− 1

4

) 1

z2
− β

z
, (1.1)

where the parameters β, α are arbitrary complex numbers. This expression can be under-
stood as an operator acting on functions holomorphic outside of 0, or acting on compactly
supported smooth functions on ]0,∞[, or acting on distributions on ]0,∞[. We call (1.1)
the formal Whittaker operator.

In this paper we are interested not so much in the formal operator Lβ,α but in some
of its realizations as closed operators on L2(R+), with R+ :=]0,∞[. To describe these
closed operators it is natural to write α = m2. Then, for any m ∈ C with Re(m) > −1
we introduce an operator Hβ,m which is defined as the closed operator that equals Lβ,m2

on the domain of functions that behave as x
1
2

+m
(
1 − β

1+2mx
)

near zero, see (3.5) for
a precise definition. With this definition we obtain a two-parameter family of closed
operators in L2(R+)

C× {m ∈ C | Re(m) > −1} 3 (β,m) 7→ Hβ,m ,

which is holomorphic except for a singularity at (β,m) = (0,−1
2). For Re(m) > 1 the

operator Hβ,m is simply the closure of Lβ,m2 restricted to C∞c (R+). This is not the case
when −1 < Re(m) < 1, with this closure strictly contained in Hβ,m. In fact, in this
strip both Hβ,m and Hβ,−m are extensions of Lβ,m2 , and they are distinct if m 6= 0 and
m 6= ±1

2 . On the other hand the vertical line Re(m) = −1 cannot be passed because on

the left of this line the singularity x
1
2

+m is not square integrable near 0.
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The goal of our paper is to study the properties of the family of operators Hβ,m. We
do not restrict ourselves to real parameters, when Hβ,m are self-adjoint, but we consider
general complex parameters. In particular we would like to determine which properties
survive in the non-self-adjoint setting and which do not. Our paper is in many ways
parallel to [2] and especially to [5], where the special case β = 0 is studied. These
papers showed that the theory for complex potentials can be very similar to the theory
of real potentials, where Schrödinger operators are self-adjoint. This includes functional
calculus, spectral and scattering theory.

However, the present paper is not just a boring extension of [2]—new interesting phe-
nomena appear. First of all, the operators Hβ,m usually have a sequence of eigenvalues
accumulating at zero, while for β = 0 these eigenvalues are absent. Depending on the
value of the parameters, these eigenvalues disappear into the nonphysical sheet of the
complex plane and become resonances. In the Appendix we give a few pictures of the
spectrum of Hβ,m, which illustrate the dependence of eigenvalues and resonances on the
parameters.

Another phenomenon, which we found quite unexpected, is the presence of a non-
removable singularity of the holomorphic function (β,m) 7→ Hβ,m at (β,m) = (0,−1

2).
This singularity is closely related to the behavior of the potential at the origin. It is quite
curious: it is invisible when we consider just the variable m. In fact, as proven already
in [2], the map m 7→ Hm = H0,m is holomorphic around m = −1

2 , and H0,− 1
2

is the

Laplacian on the half-line with the Neumann boundary condition. It is also holomorphic
around m = 1

2 , and H0, 1
2

is the Laplacian on the half-line with the Dirichlet boundary

condition. Thus one has

H0,− 1
2
6= H0, 1

2
. (1.2)

If we introduce the Coulomb potential, then whenever β 6= 0

Hβ,− 1
2

= Hβ, 1
2
. (1.3)

The function (β,m) 7→ Hβ,m is holomorphic around (0, 1
2), in particular,

lim
β→0

(1l +Hβ, 1
2
)−1 = (1l +H0, 1

2
)−1. (1.4)

But (1.3) implies that

lim
β→0

(1l +Hβ,− 1
2
)−1 = (1l +H0, 1

2
)−1.

Thus β 7→ (1l + Hβ,− 1
2
)−1 is not even continuous near β = 0. This singularity is closely

related to a rather irregular behavior of eigenvalues of Hβ,m, see Proposition 3.9.
As proven in [2, 5], the operators H0,m are rather well-behaved, also in the case of

complex m. The limiting absorption principle holds, namely the boundary values of the
resolvent exist between the usual weighted spaces, and scattering theory works the usual
way. In particular, the Møller operators (also called wave operators) exist. They are
closely related to the Hankel transformation, which diagonalizes H0,m, or equivalently
which intertwines them with a multiplication operator.

Most differences between H0,m and Hβ,m for β 6= 0 are caused by the long-range
character to the Coulomb potential. In this context, it becomes critical whether β is
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real or not. As is well-known, for real β, we still have limiting absorption principle with
the usual weighted spaces. The usual Møller operators do not exist, but modified Møller
operators do. They can be expressed in terms of an isometric operator, which we call
the Hankel-Whittaker transformation.

These properties mostly do not survive when β becomes non-real. In the limiting
absorption principle we need to change the usual weighted spaces, see Theorem 3.12.
The Hankel-Whittaker transform is no longer bounded, and to our understanding there
is no sensible scattering theory.

Some remnants of scattering theory remain for complex m but real non-zero β: we
show that in this case the intrinsic scattering operator is well defined, bounded and
invertible unless Re(m) = −1

2 .
It is usually stressed that constructions of long-range scattering theory are to some

degree arbitrary [4]. More precisely, one says that modified Møller operators and the
scattering operator have an arbitrary momentum dependent phase factor. However, in
the context of Whittaker operators there are distinguished choices for the Møller opera-
tors and for the scattering operator. These choices appear more or less naturally when
one wants to write down formulas for these operators in terms of special functions. So
one can argue that they were known before in the literature. However, to our knowledge
this observation has not been formulated explicitly.

Let us sum up the properties of operators Hβ,m in various parameter regions.

1. If β = 0 and −1 < m <∞, then Hβ,m is self-adjoint and the usual Møller operators
exist.

2. If β = 0 and −1 < Re(m) < ∞ with Im(m) 6= 0, then Hβ,m is not self-adjoint, it
is however similar to self-adjoint; the usual Møller operators exist [2, 5].

3. If β 6= 0 with Im(β) = 0 and if −1 < m < ∞, then Hβ,m is self-adjoint, and the
modified Møller operators exist.

4. If β 6= 0 with Im(β) = 0 and if −1 < Re(m) < ∞ with Im(m) 6= 0, then Hβ,m

is not self-adjoint; maybe some kind of long-range scattering theory holds; what
we know for sure is the boundedness and invertibility of the intrinsic scattering
operator unless Re(m) = −1

2 .

5. If Im(β) 6= 0 and −1 < Re(m) <∞ with Im(m) 6= 0, then Hβ,m is not self-adjoint;
it seems that no reasonable scattering theory applies.

The operator Hβ,m is one of the most important exactly solvable differential opera-
tors. Its eigenvalue equation for the eigenvalue (energy) −1

4(
− ∂2

z +
(
m2 − 1

4

) 1

z2
− β

z
+

1

4

)
v = 0 (1.5)

is known in mathematical literature as the Whittaker equation. In fact, Whittaker pub-
lished in 1903 a paper [21] where he expressed solutions to (1.5) in terms of confluent
functions. This is the reason why we call Hβ,m the Whittaker operator.

The best known application of Whittaker operators concerns the Hydrogen Hamilto-
nian, that is, the Schrödinger operator with a Coulomb potential in dimension 3. More

4



generally, in any dimension the radial part of the Schrödinger operator with Coulomb
potential reduces to the Whittaker operator. We sketch this reduction in Section 1.1.
A brief introduction to the subject can also be found in many textbooks on quantum
mechanics, and we refer for example [13, Sec. 135] or [9] for a recent approach. The
literature on the subject is vast and we list only a few classical papers relevant for our
manuscript, namely [6, 7, 10, 11, 12, 14, 15, 17, 16, 18, 20, 22]. However, in all these
references only real coupling constants are considered.

Let us finally describe the content of this paper. Section 2 is devoted to special
functions that we need in our paper. These functions are essentially eigenfunctions of
the formal Whittaker operator (1.1) corresponding to the eigenvalues −1

4 , 1
4 and 0. All

of them can be expressed in terms of confluent and Bessel functions. Note that we use
slightly different conventions from those in most of the literature. We follow our previous
publication [5], where we advocated the use of Bessel functions for dimension 1, denoted
Im, Km, Jm and H±m. Here we mimic this approach and introduce systematically the
functions Iβ,m, Kβ,m, Jβ,m and H±β,m, which are particularly convenient in the context of
the Whittaker operator. Note that Iβ,m, Kβ,m essentially coincide with the usual Whit-
taker functions, and Jβ,m and H±β,m are obtained by analytic continuation to imaginary
arguments. In particular, we present the asymptotic behavior of these functions near 0
and near infinity for any parameters β and m in C.

Note that the theory of special functions related to the Whittaker equation is beau-
tiful, rich and useful. We try to present it in a concise and systematic way, which some
readers should appreciate. However, the readers who are more interested in operator-
theoretic aspects of our paper can skip most of the material of Section 2 and go straight
to the next section which constitutes the core of our paper.

In Section 3 we define the closed operators Hβ,m for any m,β ∈ C with Re(m) > −1,
and investigate their properties. A discussion about the complex eigenvalues of these
operators is provided, as well as a description of a limiting absorption principle on suitable
spaces. At this point, the distinction between Im(β) = 0 and Im(β) 6= 0 will appear.
In the final part of the paper, we introduce Hankel-Whittaker transformations which
diagonalize our operators, and provide some information about the scattering theory.
Some open questions are formulated in the last subsection.

1.1 The Coulomb problem in d dimensions

Let us briefly describe the manifestation of the Whittaker operator in quantum me-
chanics. We consider the space L2(Rd) and the Schrödinger operator with the Coulomb
potential in dimension d :

−∆− β

r
, (1.6)

where r denotes the radial coordinate. In spherical coordinates the expression (1.6) reads

−∂2
r −

d− 1

r
∂r −

1

r2
∆Sd−1 −

β

r
, (1.7)

where ∆Sd−1 is the Laplace–Beltrami operator on the sphere Sd−1. Eigenvectors of
−∆Sd−1 are the spherical harmonics and the corresponding eigenvalues are `(`+ d− 2),
with ` = 0, 1, 2, . . . for d ≥ 2, ` = 0, 1 for d = 1. Thus on the spherical harmonics of
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order ` the expression (1.7) becomes

− ∂2
r −

d− 1

r
∂r +

`(`+ d− 2)

r2
− β

r

= −∂2
r −

d− 1

r
∂r +

m2 −
(
d
2 − 1

)2
r2

− β

r
,

where m := `+ d
2 − 1. By letting m take an arbitrary complex value and by considering

d = 1, we obtain the Whittaker operator

−∂2
r +

(
m2 − 1

4

) 1

r2
− β

r
. (1.8)

For β = 0 the Whittaker operator simplifies to the Bessel operator, see for example
[2, 5]. As for the Bessel operators, the Whittaker operators for distinct dimensions are
related by a simple similarity transformation, namely

− ∂2
r −

d− 1

r
∂r +

(
m2 −

(d
2
− 1
)2) 1

r2
− β

r

= r−
d
2

+ 1
2

(
− ∂2

r +
(
m2 − 1

4

) 1

r2
− β

r

)
r
d
2
− 1

2 .

(1.9)

It is then a matter of taste to decide which dimension should be treated as the standard
one. From the physical point of view d = 3 is the most important, from the mathematical
point of view one can hesitate between d = 2 and d = 1. We choose d = 1, following the
tradition going back to Whittaker [21], and consistently with [5].

The Coulomb problem in the physical dimension d = 3 has a considerable practical
importance. Therefore, there is a lot of literature devoted to the equation(

∂2
r − `(`+ 1)

1

r2
− 2η

r
+ 1
)
v = 0,

called the Coulomb wave equation, see [1, Chap. 14], which is directly obtained from the
physical problem. For this equation, ` is a non-negative integer and η is a real param-
eter. Solutions of this equation are often denoted by F`(η, r), G`(η, r) and H±` (η, z) :=
G`(η, r)± iF`(η, r) and are called Coulomb wave functions. Alternatively, the equation(

∂2
r − `(`+ 1)

1

r2
+

2

r
+ ε
)
v = 0

has been considered for ε ∈ R, and its solution are often denoted by f(ε, `; r), h(ε, `; r),
and also s(ε, `; r) and c(ε, `; r). Properties of these functions have been studied for
example in [12, 18, 20] and compiled in [19].

Our aim is to consider the Whittaker operator in its mathematically most natural
form, including complex values of parameters, which do not have an obvious physical
meaning. This explains some differences of our set-up and conventions compared with
those used in the above literature.

1.2 Notation

We shall use the notations R+ for ]0,∞[, N for {0, 1, 2, . . . }, while N× := {1, 2, 3, . . . }.
For α ∈ C, ᾱ means the complex conjugate. C∞c (R+) denotes the set of smooth functions
on R+ with compact support.
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For an operator A we denote by D(A) its domain and by σp(A) the set of its eigenval-
ues (its point spectrum). We also use the notation σ(A) for its spectrum, σess(A) for its
essential spectrum and σd(A) for its discrete spectrum. If z is an isolated point of σ(A),
then 1l{z}(A) denotes the Riesz projection of A onto z. Similarly, if A is self-adjoint and
Ξ is a Borel subset of σ(A), then 1lΞ(A) denotes the spectral projection of A onto Ξ.

The following holomorphic functions are understood as their principal branches, that
is, their domain is C\] −∞, 0] and on ]0,∞[ they coincide with their usual definitions
from real analysis: ln(z),

√
z, zλ. We set arg(z) := Im

(
ln(z)

)
. The extensions of these

functions to ]−∞, 0] or to ]−∞, 0[ are from the upper half-plane.

Acknowledgement. The authors thank M. Karczmarczyk for his contributions at
an early stage of this project. They are also grateful to D. Siemssen, who helped them
to make pictures with Mathematica.

2 Bessel and Whittaker functions

An important role in our paper is played by various kinds of Whittaker functions, closely
related to confluent hypergeometric functions. We will also use several varieties of Bessel
functions. In this section we fix the notation concerning these special functions and
describe their basic properties.

This section plays an auxiliary role in our paper, since almost all its result can be
found in the literature. The readers interested mainly in our operator-theoretic results
can only briefly skim this section, and then go to the next one, which constitutes the
main part of our paper.

We start by recalling the definition of Bessel functions for dimension 1, which we
prefer to use instead of the usual Bessel functions. Their main properties have been
discussed in [5], therefore there is no need to repeat them here. We then introduce the
Whittaker functions Iβ,m, Kβ,m, Jβ,m and H±β,m. These functions are solutions of the
hyperbolic-type and trigonometric-type Whittaker equation, as explained below. In our
notation and presentation, as much as possible, we stress the analogy of Whittaker func-
tions and Bessel functions. The section ends with a description of zero-energy solutions
of the Whittaker operator.

2.1 Hyperbolic and trigonometric Whittaker equation

A simple argument using complex scaling shows that the eigenvalue problem with non-
zero energies for the Whittaker operator (1.8) can be derived from the following equation,
which is known in the literature as the Whittaker equation(

− ∂2
z +

(
m2 − 1

4

) 1

z2
− β

z
+

1

4

)
v = 0. (2.1)

It is convenient to consider in parallel to (2.1) the additional equation(
− ∂2

z +
(
m2 − 1

4

) 1

z2
− β

z
− 1

4

)
v = 0. (2.2)

We call it the trigonometric-type Whittaker equation. For consistency, the equation (2.1)
is sometimes referred to as the hyperbolic-type Whittaker equation. Note that one can
pass from (2.1) to (2.2) by replacing z with ±iz and β with ∓iβ.
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2.2 Bessel equations and functions

In the special case β = 0, by rescaling the independent variable in (2.1) and (2.2), we
obtain the modified (or hyperbolic-type) Bessel equation for dimension 1(

∂2
z −

(
m2 − 1

4

) 1

z2
− 1
)
v = 0, (2.3)

and the standard (or trigonometric-type) Bessel equation for dimension 1(
∂2
z −

(
m2 − 1

4

) 1

z2
+ 1
)
v = 0. (2.4)

As explained in (1.9) they are equivalent to the modified (or hyperbolic-type) Bessel
equation (

∂2
z +

1

z
∂z −

m2

z2
− 1
)
v = 0, (2.5)

respectively to the standard (or trigonometric-type) Bessel equation(
∂2
z +

1

z
∂z −

m2

z2
+ 1
)
v = 0, (2.6)

which are usually considered in the literature.
The distinguished solutions of (2.5) are

the modified Bessel function Im(z),

the MacDonald function Km(z),

and of (2.6) are

the Bessel function Jm(z),

the Hankel function of the 1st kind H+
m(z) = H(1)

n (z),

the Hankel function of the 2nd kind H−m(z) = H(2)
n (z),

the Neumann function Ym(z).

Following [5] we prefer functions which solve the two Bessel equations for dimension 1.
Namely, we shall use the following functions solving (2.3)

the modified (or hyperbolic) Bessel function for dim. 1 Im(z) :=

√
πz

2
Im(z),

the MacDonald function for dim. 1 Km(z) :=

√
2z

π
Km(z).

We will also use the following functions solving (2.4)

the (trigonometric) Bessel function for dim. 1 Jm(z) :=

√
πz

2
Jm(z),

the Hankel function of the 1st kind for dim. 1 H+
m(z) :=

√
πz

2
H+
m(z),

the Hankel function of the 2nd kind for dim. 1 H−m(z) :=

√
πz

2
H−m(z),

the Neumann function for dim. 1 Ym(z) :=

√
πz

2
Ym(z).

We refer the reader to the Appendix of [5] for the properties of these functions.
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2.3 The function Iβ,m
The hyperbolic-type Whittaker equation (2.1) can be reduced to the 1F1-equation, also
known as the confluent equation:(

z∂2
z + (c− z)∂z − a

)
v = 0. (2.7)

Indeed, one has

−z
1
2
∓me

z
2

(
− ∂2

z +
(
m2 − 1

4

) 1

z2
− β

z
+

1

4

)
z

1
2
±me−

z
2 = z∂2

z + (c− z)∂z − a

for the parameters c = 1±2m and a = 1
2 ±m−β. Here the sign ± has to be understood

as two possible choices.
One of the solutions of the confluent equation is Kummer’s confluent hypergeometric

function 1F1(a; c; ·) defined by

1F1(a; c; z) =

∞∑
k=0

(a)k
(c)k

zk

k!
, (2.8)

where (a)k := a(a+ 1) · · · (a+ k − 1) is the usual Pochhammer’s symbol. It is the only
solution of (2.7) behaving as 1 in the vicinity of z = 0.

It is often convenient to use the closely-related function 1F1(a; c; ·) defined by

1F1(a; c; z) =
∞∑
k=0

(a)k
Γ(c+ k)

zk

k!
=

1F1(a; c; z)

Γ(c)
. (2.9)

We prefer the normalization (2.9), and in the sequel the following function Iβ,m will be
treated as one of the standard solutions of the hyperbolic-type Whittaker equation (2.1):

Iβ,m(z) := z
1
2

+me∓
z
2 1F1

(1

2
+m∓ β; 1 + 2m; ±z

)
= z

1
2

+me∓
z
2

∞∑
k=0

(
1
2 +m∓ β

)
k

Γ(1 + 2m+ k)

(±z)k

k!
. (2.10)

Note that the sign independence comes from the 1st Kummer’s identity

1F1(a; c; z) = ez1F1(c− a; c; −z).

In the special case β = 0, the function I0,m essentially coincides with the modified
Bessel function. More precisely, one has

I0,m(z) =

√
πz

Γ
(

1
2 +m

)Im(z
2

)
=

2

Γ
(

1
2 +m

)Im(z
2

)
. (2.11)

For −1
2 −m± β := n ∈ N, the series of (2.8) is finite and we get

I±( 1
2

+m+n),m(z) =
n!z

1
2

+me∓
z
2

Γ(1 + 2m+ n)
L(2m)
n (±z),
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where

L(2m)
n (z) =

z−2mez

n!

dn

dzn
(
e−zz2m+n

)
(2.12)

are the Laguerre polynomials (or generalized Laguerre polynomial).
Finally, from equation (2.9) one can deduce the asymptotic behaviour around 0:

Iβ,m(z) =
z

1
2

+m

Γ(1 + 2m)

(
1− β

1 + 2m
z +O(z2)

)
, (2.13)

while from the asymptotic properties of the 1F1-function one obtains for | arg(z)| < π
2

and large |z|
Iβ,m(z) =

1

Γ(1
2 +m− β)

z−β e
z
2
(
1 +O(z−1)

)
. (2.14)

2.4 The function Kβ,m
The hyperbolic-type Whittaker equation (2.1) has also a solution with a simple behavior
at ∞. However, its analysis is somewhat more difficult than that of solutions with a
simple behavior at z = 0, because z =∞ is an irregular singular point. The most conve-
nient way to look for solutions with a simple behavior at ∞ is to reduce the Whittaker
equation to the 2F0 equation(

w2∂2
w + (−1 + (1 + a+ b)w)∂w + ab

)
v = 0.

Indeed by setting w = −z−1 we obtain

− z2−βe
z
2

(
− ∂2

z +
(
m2 − 1

4

) 1

z2
− β

z
+

1

4

)
zβe−

z
2

= w2∂2
w + (−1 + (1 + a+ b)w)∂w + ab

for the parameters a = 1
2 +m− β and b = 1

2 −m− β.
The 2F0 equation has a distinguished solution

2F0(a, b;−; z) := lim
c→∞ 2F1(a, b; c; cz),

where we take the limit over | arg(c)− π| < π− ε with ε > 0, and the above definition is
valid for z ∈ C \ [0,+∞[. Obviously one has

2F0(a, b;−; z) = 2F0(b, a;−; z). (2.15)

The function extends to an analytic function on the universal cover of C \ {0} with a
branch point of an infinite order at 0, and the following asymptotic expansion holds:

2F0(a, b;−; z) ∼
∞∑
n=0

(a)n(b)n
n!

zn, | arg(z)| < π − ε.

In the literature the 2F0 function is seldom used. Instead one uses Tricomi’s function

U(a, c, z) := z−a2F0(a; a− c+ 1;−;−z−1)

=
Γ(1− c)

Γ(1 + a− c)1F1(a; c; z) +
Γ(c− 1)

Γ(a)
z1−c

1F1(1 + a− c; 2− c; z).

10



Tricomi’s function is one of solutions of the confluent equation (2.7).
We then define

Kβ,m(z) := zβe−
z
2 2F0

(1

2
+m− β, 1

2
−m− β;−;−z−1

)
= z

1
2

+me−
z
2U
(1

2
+m− β; 1 + 2m; z

)
,

which is thus a solution of the hyperbolic-type Whittaker equation (2.1). The symmetry
relation (2.15) implies that

Kβ,m(z) = Kβ,−m(z). (2.16)

The following connection formulas hold for 2m /∈ Z :

Kβ,m(z) = − π

sin(2πm)

( Iβ,m(z)

Γ(1
2 −m− β)

−
Iβ,−m(z)

Γ(1
2 +m− β)

)
, (2.17)

Iβ,m(z) =
Γ(1

2 −m+ β)

2π

(
eiπmK−β,m(eiπz) + e−iπmK−β,m(e−iπz)

)
.

Recall that the Wronskian of two functions f, g is defined as

W (f, g;x) := f(x)g′(x)− f ′(x)g(x). (2.18)

The Wronskian of Iβ,m and Kβ,m can be easily computed, and one finds

W (Iβ,m,Kβ,m;x) = − 1

Γ(1
2 +m− β)

. (2.19)

For the special cases, the relation of the function K0,m with the usual Macdonald
function Km or with the Macdonald function Km for dimension 1 reads

K0,m(z) =

√
z

π
Km

(z
2

)
= Km

(z
2

)
. (2.20)

Also for β − 1
2 −m =: n ∈ N we obtain

K 1
2

+m+n,±m(z) = (−1)nn! z
1
2

+me−
z
2L(2m)

n (z),

where L
(2m)
n are the Laguerre polynomials introduced in (2.12). Note that for these values

of β the functions Iβ,m and Kβ,m are essentially the same, except for a z-independent
factor. However, for β = −

(
1
2 + m + n

)
the function Kβ,m has a more complicated

representation, see [3].
Finally, for 2m 6∈ Z the behaviour of Kβ,m around zero can be derived from that of

Iβ,m together with the relation (2.17), while for 2m ∈ Z the l’Hôpital’s rule has to be
used, see the next subsection. For simplicity, we provide the asymptotic behavior only
for Re(m) > 0, since similar results for Re(m) 6 0 can be obtained by taking (2.16) into
account. Thus one has:

Kβ,m(z) =



− z
1
2 ln(z)

Γ(1−β) +O
(
|z|

1
2
)

for m = 0,

z
1
2

(
Γ(−2m)

Γ( 1
2
−m−β)

zm + Γ(2m)

Γ( 1
2

+m−β)
z−m

)
+O

(
|z|

3
2
)

for Re(m) = 0, m 6= 0,

Γ(2m)

Γ( 1
2

+m−β)
z

1
2
−m +O

(
|z|

1
2

+Re(m)) for Re(m) ∈]0, 1
2 ], m 6= 1

2 ,

1
Γ(1−β) +O

(
z ln(z)

)
for m = 1

2 ,
Γ(2m)

Γ( 1
2

+m−β)
z

1
2
−m +O

(
|z|

3
2
−Re(m)) for Re(m) > 1

2 .

(2.21)
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For the behaviour for large z, if ε > 0 and |arg(z)| < π − ε then one has

Kβ,m(z) = zβ e−
z
2
(
1 +O(z−1)

)
. (2.22)

Remark 2.1. In the literature one can find various conventions for solutions of the
Whittaker equation. In part of the literature Mβ,m := Γ(1 + 2m) Iβ,m is called the
Whittaker function of the first kind. Kβ,m is called the Whittaker function of the second
kind and denoted by Wβ,m. In [3], our functions Iβ,m and Kβ,m correspond to the
functions Mκ,µ/2 and Wκ,µ/2 with κ = β and µ/2 = m.

With our notation we try to be parallel to the notation for the modified Bessel equa-
tion. In fact, for β = 0 our functions Iβ,m and Kβ,m are closely related to the modified
Bessel function Im and the Macdonald function Km, and this will also hold for Jβ,m and
H±β,m with the Bessel function Jm and the Hankel functions H±m.

2.5 Degenerate case

In this section we consider the hyperbolic Whittaker equation in the special case m = ±p
2

for any p ∈ N. It is sometimes called the degenerate case, because the two solutions Iβ,m
and Iβ,−m in this case are proportional to one another and do not span the solution
space. Therefore, we are forced to use the function Kβ,m to obtain all solutions.

Let us fix p ∈ N. We have the identity

Iβ,− p
2
(z) =

(
− β − p− 1

2

)
p
Iβ, p

2
(z), (2.23)

or equivalently,
Iβ,− p

2
(z)

Γ
(1+p

2 − β
) =

Iβ, p
2
(z)

Γ
(1−p

2 − β
) .

Indeed, the confluent function 1F1(a; c; z) is divergent for c → −p, however, the diver-
gence is of the same order as the divergence of Γ(c) for c→ −p. Then, by a straightfor-
ward calculation we obtain from (2.9) the equality

1F1(a; −p+ 1; z) = (a)p z
p

1F1(a+ p; 1 + p; z),

which implies (2.23). Note that (2.23) also implies that

Iβ,− p
2
(z) = 0, for β ∈

{1− p
2

,
3− p

2
, . . . ,

p− 1

2

}
. (2.24)

Let us now compare the symmetry (2.23) with similar properties of the modified
Bessel functions for dimension 1. For such functions we have I−m(z) = Im(z), for any
m ∈ Z, which is consistent with (2.23). But for m ∈ Z + 1

2 , I−m is not proportional
to Im, which at the first sight contradicts (2.23). However, I0,m(z) = 2

Γ( 1
2

+m)
Im
(
z
2

)
vanishes for m ∈ {. . . ,−3

2 ,−
1
2}, and this makes it consistent with (2.24).

The function Kβ,m is quite complicated in the degenerate case. In order to describe
it, let us introduce the digamma function

ψ(z) = ∂z ln
(
Γ(z)

)
=

Γ′(z)

Γ(z)
.
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Let us also set for k ∈ N

Hk(z) :=
1

z
+

1

z + 1
+ · · ·+ 1

z + k − 1
,

Hk := Hk(1) = 1 +
1

2
+ · · · 1

k
.

Obviously, this means that H0(z) = H0 = 0. We have ψ(1) = −γ, ψ(1
2) = −γ − 2 ln(2).

Besides, one has ψ(z + k) = ψ(z) +Hk(z) and ψ(1 + k) = −γ +Hk, and for k ∈ N

∂z
1

Γ(z)

∣∣∣
z=−k

≡ −ψ(z)

Γ(z)

∣∣∣
z=−k

= (−1)kk! .

The following statement can be proven by l’Hôpital’s rule.

Theorem 2.2. For p ∈ N, we have

Kβ, p
2
(z) =

(−1)p+1

2

(
2 ln(z) + 2γ − ψ

(1−p
2 − β

)
− ψ

(1+p
2 − β

)) Iβ, p
2
(z)

Γ
(1−p

2 − β
)

+
(−1)p+1

2
e−

z
2

1

Γ
(1−p

2 − β
) ∞∑
k=0

(1+p
2 − β

)
k
z

1+p
2

+k

(p+ k)!k!

×
(
Hk

(1+p
2 − β

)
− 2Hk+p +Hp+k

(1−p
2 − β

)
− 2ψ(1 + k)

)
+ e−

z
2

p−1∑
j=0

(1−p
2 − β

)
j
(−1)j(p− j − 1)!

j!Γ
(1+p

2 − β
) z

1−p
2

+j .

For p = 0 the above formula simplifies:

Kβ,0(z) =
(
ψ
(

1
2 − β

)
− ln(z)

) Iβ,0(z)

Γ
(

1
2 − β

)
− e−

z
2

Γ
(

1
2 − β

) ∞∑
k=0

(1
2 − β)k z

1
2

+k

(k!)2

(
Hk(

1
2 − β)− 2ψ(1 + k)

)
.

2.6 The function Jβ,m
In this and the next subsections, we consider the trigonometric-type Whittaker equation
and its solutions.

The function Jβ,m is defined by the formula

Jβ,m(z) = e∓iπ
2

( 1
2

+m)I∓iβ,m

(
e±iπ

2 z
)
. (2.25)

It is a solution of the trigonometric-type Whittaker equation (2.2) which behaves as
z
1
2+m

Γ(1+2m) for z near 0. More precisely, one infers from (2.13) that for z near 0

Jβ,m(z) =
z

1
2

+m

Γ(1 + 2m)

(
1− β

1 + 2m
z +O(z2)

)
. (2.26)

It satisfies
Jβ,m(z) = Jβ,m(z).
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By starting again from the asymptotics of the 1F1-function provided for example in [1,
Eq. 13.5.1] one can also obtain the asymptotic expansion near infinity. However, note
that we consider a real variable x and only x → ∞ since for a complex variable z the
asymptotic behaviour highly depends on the argument of z. One thus gets for x ∈ R+

with x large:

Jβ,m(x) =
eiπ

2
( 1
2

+m+iβ)

Γ(1
2 +m− iβ)

e−ix
2 x−iβ

(
1 + i

(1

2
+m+ iβ

)(1

2
−m+ iβ

)
x−1 +O

(
x−2

))
+

e−iπ
2

( 1
2

+m−iβ)

Γ(1
2 +m+ iβ)

eix
2 xiβ

(
1− i

(1

2
+m− iβ

)(1

2
−m− iβ

)
x−1 +O

(
x−2

))
. (2.27)

In the special case β = 0 one has

J0,m(z) =

√
πz

Γ
(

1
2 +m

)Jm (z
2

)
=

2

Γ
(

1
2 +m

)Jm (z
2

)
. (2.28)

2.7 The functions H±β,m
Let us define the functions H±β,m by the formula

H±β,m(z) = e∓iπ
2 ( 1

2
+m)K±iβ,m(e∓iπ

2 z). (2.29)

Note that here the sign ± means that we have two functions: one for the sign + and one
for the sign −. The functions H±β,m are solutions of the trigonometric-type Whittaker
equation (2.2).

One can observe that the property H±β,−m(z) = e±iπmH±β,m(z) holds. For these
functions one has the following connection formulas:

H±β,m(z) =
±iπ

sin(2πm)

( e∓iπmJβ,m(z)

Γ
(

1
2 −m∓ iβ

) − Jβ,−m(z)

Γ
(

1
2 +m∓ iβ

)),
Jβ,m(z) = e−πβ

( H+
β,m(z)

Γ
(

1
2 +m+ iβ

) +
H−β,m(z)

Γ
(

1
2 +m− iβ

)). (2.30)

The behaviour of H±β,m depends qualitatively on m, and can be deduced from the
asymptotic behaviour of the function Kβ,m provided in (2.21) :

H±β,m(z) =



±i
z
1
2

(
ln(e∓iπ2 z)

)
Γ(1∓iβ) +O

(
|z|1/2

)
if m = 0,

∓iz
1
2

(
e∓iπmΓ(−2m)zm

Γ( 1
2
−m∓iβ)

+ Γ(2m)z−m

Γ( 1
2

+m∓iβ)

)
+O

(
|z|

3
2
)

if Re(m) = 0, m 6= 0,

∓i Γ(2m)

Γ( 1
2

+m∓iβ)
z

1
2
−m +O

(
|z|

1
2

+Re(m)) if Re(m) ∈]0, 1
2 ], m 6= 1

2 ,

∓i 1
Γ(1∓iβ) +O

(
z ln(e∓iπ

2 z)
)

if m = 1
2 ,

∓i Γ(2m)

Γ( 1
2

+m∓iβ)
z

1
2
−m +O

(
|z|

3
2
−Re(m)) if Re(m) > 1

2 .

(2.31)
For the behaviour around ∞, we have for | arg(z)∓ π

2 | < π

H±β,m(z) = e∓iπ
2 ( 1

2
+m)e

πβ
2 z±iβ e±i z

2
(
1 +O(z−1)

)
, (2.32)
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2.8 Zero-energy eigenfunctions of the Whittaker operator

Bessel functions, which we recalled in Section 2.2, play two roles in the present paper.
Firstly and as already explained, they are solutions of (2.3) and (2.4) in the special case
of the Whittaker operator corresponding to β = 0. Secondly, after a small modification
they are annihilated by the general Whittaker operator. More precisely, for β 6= 0 let us
define the following two functions on R+ :

jβ,m(x) := x1/4J2m

(
2
√
βx
)
,

yβ,m(x) := x1/4Y2m

(
2
√
βx
)
.

(2.33)

Then, the equation (
− ∂2

x +
(
m2 − 1

4

) 1

x2
− β

x

)
v = 0,

is solved by the functions jβ,m and yβ,m. Indeed, this is easily observed by the following
direct computation:[(

− ∂2
x +

(
m2 − 1

4

) 1

x2
− β

x

)
jβ,m

]
(x)

= −βx−3/4
(
J ′′2m

(
2
√
βx
)
−
(
m2 − 1

16

) 1

βx
J2m

(
2
√
βx
)

+ J2m

(
2
√
βx
))

= −βx−3/4
(
J ′′2m −

(
(2m)2 − 1

4

) 1

(2
√
βx)2

J2m + J2m

)(
2
√
βx
)

and the big parenthesis vanishes. The same argument holds for J2m replaced by Y2m,
and therefore for yβ,m instead of jβ,m. These two functions are linearly independent.
Indeed, a short computation yields

W (jβ,m, yβ,m;x) =
√
β,

where the Wronskian has been introduced in (2.18).
We will need the asymptotics of these functions near zero. Note that yβ,m has the

same type of asymptotics as yβ,−m, which follows from the relations Ym(z) = 1
2i

(
H+
m(z)−

H−m(z)
)

together with H±−m(z) = e±iπmH±m(z). Therefore, in the case of yβ,m we give
only the asymptotics for Re(m) > 0:

jβ,m(x) =

√
πβ

1
4

+m

Γ(1 + 2m)
x

1
2

+m
(

1− β

1 + 2m
x+O

(
x2
))
, if − 2m 6∈ N×, (2.34)

jβ,m(x) = (−1)2m

√
πβ

1
4
−m

Γ(1− 2m)
x

1
2
−m
(

1− β

1− 2m
x+O

(
x2
))
, if − 2m ∈ N×,

yβ,m(x) =



Cβ,0

(
x1/2 ln(x) +O

(
x1/2

))
if m = 0,

Cβ,m

(
x

1
2
−m +O

(
x

1
2

+Re(m)
))

if Re(m) ∈ [0, 1
2 ] and 2m 6= 0, 1,

Cβ, 1
2

(
1 +O

(
x ln(x)

))
if m = 1

2 ,

Cβ,m

(
x

1
2
−m +O

(
x

3
2
−Re(m)

))
if Re(m) > 1

2 ,

(2.35)

where Cβ,m are non-zero constants for β 6= 0.
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The above analysis does not include the case β = 0, that is the equation(
− ∂2

x +
(
m2 − 1

4

) 1

x2

)
v = 0.

For completeness, let us mention that a linearly independent basis of solutions of this
equation is given by

x
1
2

+m and x
1
2
−m if m 6= 0,

x
1
2 and x

1
2 ln(x) if m = 0.

(2.36)

3 The Whittaker operator

In this section we define and study the Whittaker operators Hβ,m, which form a holo-
morphic family of closed operators on the Hilbert space L2(R+). This section is the main
part of our paper.

3.1 Preliminaries

Our basic Hilbert space L2(R+) is endowed with the scalar product

(h1|h2) =

∫ ∞
0

h1(x)h2(x)dx.

The bilinear form defined by

〈h1|h2〉 =

∫ ∞
0

h1(x)h2(x)dx

will also be useful.
For an operator A we denote by A∗ its Hermitian conjugate. We will however often

prefer to use the transpose of A, denoted by A#, rather than A∗. If A is bounded, then
A∗ and A# are defined by the relations

(h1|Ah2) = (A∗h1|h2), (3.1)

〈h1|Ah2〉 = 〈A#h1|h2〉. (3.2)

The definitions of A∗ has the well-known generalization to the unbounded case. The
definition of A# in the unbounded case is analogous.

3.2 Maximal and minimal operators

For any α, β ∈ C we consider the differential expression

Lβ,α := −∂2
x +

(
α− 1

4

) 1

x2
− β

x

acting on distributions on R+. We denote by Lmax
β,α and Lmin

β,α the corresponding maximal

and minimal operators associated with it in L2(R+), see [2, Sec. 4 & App. A] for the
details. We also recall from this reference that the domain D(Lmax

β,α ) is given by

D(Lmax
β,α ) =

{
f ∈ L2(R+) | Lβ,αf ∈ L2(R+)

}
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while D(Lmin
β,α ) is the closure of the restriction of Lβ,α to C∞c (R+). The operators Lmin

β,α

and Lmax
β,α are closed and one observes that(

Lmin
β,α

)∗
= Lmax

β̄,ᾱ and
(
Lmin
β,α

)#
= Lmax

β,α .

In order to compare the domains D(Lmin
β,α ) and D(Lmax

β,α ) a preliminary result is nec-

essary. We say that f ∈ D(Lmin
β,α ) around 0, (or, by an abuse of notation, f(x) ∈ D(Lmin

β,α )

around 0) if there exists ζ ∈ C∞c
(
[0,∞[

)
with ζ = 1 around 0 such that fζ ∈ D(Lmin

β,α ).

Let us note that we will often write α = m2, where m ∈ C. We also recall that the
functions jβ,m and yβ,m have been introduced in (2.33) and (2.36).

Proposition 3.1. (i) If f ∈ D(Lmax
β,α ), then f and f ′ are continuous functions on R+,

and converge to 0 at infinity,

(ii) If f ∈ D(Lmin
β,α ), then near 0 one has:

(a) If α = 0 then f(x) = o
(
x

3
2 | ln(x)|

)
and f ′(x) = o

(
x

1
2 | ln(x)|

)
,

(b) If α 6= 0 then f(x) = o
(
x

3
2

)
and f ′(x) = o

(
x

1
2

)
.

(iii) If |Re(m)| < 1 and f ∈ D(Lmax
β,m2), then there exist a, b ∈ C such that:

f(x)− ajβ,m − byβ,m ∈ D(Lmin
β,m2) around 0,

(iv) If |Re(m)| > 1, then D(Lmin
β,m2) = D(Lmax

β,m2).

(v) If |Re(m)| < 1, then D(Lmin
β,m2) is a subspace of D(Lmax

β,m2) of codimension 2.

Proof. Since the above statements have already been proved for β = 0 in [2] we consider
only the case β 6= 0.

From the asymptotics at zero given in (2.34) one can observe that jβ,m belongs to
L2 near 0 whenever Re(m) > −1. By (2.35), the function yβ,m also belongs to L2 near
0 but only for |Re(m)| < 1. For other values of parameters, these functions are not L2

near 0.
The proof of (i) and (iii) consists now in a simple application of standard results on

second order differential operators as presented for example in the Appendix of [2]. More
precisely, (i) is a direct consequence of Proposition A.2 of this reference, while (iii) is an
application of its Proposition A.5. Statement (v) is a direct consequence of (iii).

For the statement (ii), let us write α = m2. First we consider the case |Re(m)| < 1.

For any function g which is L2 near 0, let us set ‖g‖x :=
( ∫ x

0 |g(y)|2 dy
)1/2

for x ∈ R+

small enough. It is then proved in Proposition A.7 of [2] that if f ∈ D(Lmin
β,m2) then one

has

f(x) = o(1)
(
|jβ,m(x)|‖yβ,m‖x + |yβ,m(x)|‖jβ,m‖x

)
, (3.3)

f ′(x) = o(1)
(
|jβ,m′(x)|‖yβ,m‖x + |yβ,m′(x)|‖jβ,m‖x

)
. (3.4)

By computing these expressions in each case one gets that if m = 0, then ‖jβ,m‖x = O(x)
and ‖yβ,m‖x = O

(
x| ln(x)|

)
, while if Re(m) > 0 and m 6= 0 then ‖jβ,m‖x = O

(
x1+Re(m)

)
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and ‖yβ,m‖x = O
(
x1−Re(m)

)
. Based on these estimates and on the asymptotic expansions

of jβ,m, yβ,m near 0 one directly infers from (3.3) the estimate on f for any f ∈ D(Lmin
β,m2).

For the estimate on f ′, it is necessary to compute jβ,m
′, yβ,m

′, and the only surprise
comes from the special case m = 1

2 . By using (3.4) and the estimate on ‖jβ,m‖x, ‖yβ,m‖x
obtained above, one deduces the behavior of f ′ for any f ∈ D(Lmin

β,m2).

The case |Re(m)| > 1 of the statement (ii) follows by an obvious modification of the
proof of Prop. 4.11 of [2].

The proof of statement (iv) is deferred to Subsection 3.4.

3.3 The holomorphic family of Whittaker operators

Recall from (2.34) that if −2m 6∈ N×, then jβ,m(x) = Cm,βx
1
2

+m
(
1 − β

1+2mx + O(x2)
)
,

which belongs to L2 near 0 if Re(m) > −1. This motivates the following definition:
For m,β ∈ C with Re(m) > −1, except for the case m = −1

2 , we define the closed
operator Hβ,m as the restriction of Lmax

β,m2 to the domain

D(Hβ,m) =
{
f ∈ D(Lmax

β,m2) | for some c ∈ C,

f(x)− cx
1
2

+m
(

1− β

1 + 2m
x
)
∈ D(Lmin

β,m2) around 0
}
. (3.5)

In the exceptional case excluded above we set

Hβ,− 1
2

:= Hβ, 1
2
, β 6= 0. (3.6)

Let us stress that (3.6) does not extend to β = 0. In fact, H0,− 1
2
6= H0, 1

2
, as we know

from [2, 5]: H0,− 1
2

is the Neumann Laplacian on R+, and H0, 1
2

is the Dirichlet Laplacian

on R+. More information about the singularity at (β,m) = (0,−1
2) will be provided in

Proposition 3.9.
The following statements can be proved directly:

Theorem 3.2. (i) For any m ∈ C with Re(m) > −1 and any β ∈ C one has(
Hβ,m

)∗
= Hβ̄,m̄,

(
Hβ,m

)#
= Hβ,m,

(ii) For any real m > −1 and for any real β ∈ R the operator Hβ,m is self-adjoint,

(iii) For Re(m) > 1,
Lmin
β,m2 = Hβ,m = Lmax

β,m2 .

(iv) For −1 < Re(m) < 1,
Lmin
β,m2 ( Hβ,m ( Lmax

β,m2 ,

and the inclusions of the corresponding domains are of codimension 1.

Proof. Recall from [2, Prop. A.2] that for any f ∈ D(Lmax
β,m2) and g ∈ D(Lmax

β̄,m̄2), the

functions f, f ′, g, g′ are continuous on R+. In addition, the Wronskian of f̄ and g, as
introduced in (2.18), possesses a limit at zero, and we have the equality

(Lmax
β,m2f |g)− (f |Lmax

β̄,m̄2g) = −W (f̄ , g; 0).

18



In particular, if f ∈ D(Hβ,m) one infers that

(Hβ,mf |g) = (f |Lmax
β̄,m̄2g)−W (f̄ , g; 0).

Thus, g ∈ D
(
(Hβ,m)∗

)
if and only if W (f̄ , g; 0) = 0, and then (Hβ,m)∗g = Lmax

β̄,m̄2g. By

taking into account the explicit description of D(Hβ,m), straightforward computations
show that W (f̄ , g; 0) = 0 if and only if g ∈ D(Hβ̄,m̄). One then deduces that (Hβ,m)∗ =
Hβ̄,m̄. Note that the property for the transpose of Hβ,m can be proved similarly, which
finishes the proof of (i).

The statement (ii) is a straightforward consequence of the statement (i). The state-
ments (iii) and (iv) are consequences of Proposition 3.1.

Remark 3.3. In the spirit of [5] one could consider more general boundary conditions,
and thus other realizations of the Whittaker operator. However, in this paper we stick
to the most natural boundary conditions introduced above. This approach corresponds to
the one of the original paper [2], where β = 0.

3.4 The resolvent

From now on, we consider fixed m,β ∈ C with Re(m) > −1. In order to study the
resolvent of the operator Hβ,m, let us introduce the set σβ,m ⊂ C which will be related
later on to the spectrum of Hβ,m :

σβ,m :=
{
k ∈ C | Re(k) > 0 and

β

2k
−m− 1

2
6∈ N

}
.

Let us consider k ∈ σβ,m. By a scaling argument together with the material of Section
2 one easily observes that the two functions

x 7→ K β
2k
,m

(2kx) and x 7→ I β
2k
,m

(2kx) (3.7)

are linearly independent solutions of the equation (Lβ,m2 + k2)v = 0. From (2.22) one
infers that the first function is always in L2 near infinity, but it belongs to L2 near zero
only for |Re(m)| < 1. On the other hand, the second function belongs to L2 around 0
for any m with Re(m) > −1 but it does not belong to L2 near infinity.

If in addition m 6= −1
2 , then one has

Iβ,m(x) ∼ x
1
2

+m

Γ(1 + 2m)

(
1− β

(1 + 2m)
x
)
.

Therefore, it follows that

I β
2k
,m

(2kx) ∼ (2kx)
1
2

+m

Γ(1 + 2m)

(
1− β

(1 + 2m)
x
)
, (3.8)

which means that (3.8) belongs to the domain of Hβ,m around 0. Based on these obser-
vations and on the standard theory of Green’s function, we expect that the inverse of
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the operator Hβ,m + k2 for suitable k is given by the operator Rβ,m(−k2) whose kernel
is given for x, y ∈ R+ by

Rβ,m(−k2;x, y)

:= 1
2kΓ

(
1
2 +m− β

2k

)I β2k ,m(2kx)K β
2k
,m

(2ky) for 0 < x < y,

I β
2k
,m

(2ky)K β
2k
,m

(2kx) for 0 < y < x.
(3.9)

We still need to check the exceptional case m = −1
2 . By (2.23) and (2.16), we have

Iβ,− 1
2
(x) = −βIβ, 1

2
(x), Kβ,− 1

2
(x) = Kβ, 1

2
(x).

As a consequence we infer that

Rβ,− 1
2
(−k2;x, y) = Rβ, 1

2
(−k2;x, y), β 6= 0,

which is consistent with (3.6).

Remark 3.4. If β = 0, by taking the relations (2.11) and (2.20) into account one infers
that

R0,m(−k2;x, y) =
1

k

{
Im(kx)Km(ky) for 0 < x < y,

Im(ky)Km(kx) for 0 < y < x.

This expression corresponds to the starting point for the study of the resolvent in [2].

The next statement provides the precise link between the resolvent of Hβ,m and the
operator Rβ,m(−k2).

Theorem 3.5. Let m,β ∈ C with Re(m) > −1 and let k ∈ σβ,m. Then the operator
Rβ,m(−k2) defined by the kernel (3.9) belongs to B

(
L2(R+)

)
and equals (Hβ,m + k2)−1.

Moreover, the map (β,m) 7→ Hβ,m is a holomorphic family of closed operators except for
a singularity at (β,m) = (0,−1

2).

Let us emphasize that this statement already provides information about the spec-
trum σ(Hβ,m) of Hβ,m. Indeed, one infers that

σ(Hβ,m) ⊂
{
− k2 | Re(k) > 0 and k 6∈ σβ,m

}
= [0,∞[

⋃{
λN | N ∈ N, N +m+

1

2
6= 0, Re

( β

N +m+ 1
2

)
> 0
}
, (3.10)

where we have set

λN := − β2

4(N +m+ 1
2)2

. (3.11)

Later on, we shall see that the inclusion in (3.10) is in fact an equality. The proof of
Theorem 3.5 is based on a preliminary technical lemma.

Lemma 3.6. Let m,β ∈ C with Re(m) > −1 and let k ∈ σβ,m. Then for any x, y ∈ R+

one has:
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(i) If Re(m) > 0 with m 6= 0 then

|Rβ,m(−k2;x, y)|

6 C2
β
2k
,m

|Γ( 1
2

+m− β
2k

)|
2|k| e−|x−y|Re(k) min{1, 2x|k|)}

1
2 min{1, 2y|k|}

1
2

×

{
max{1, 2x|k|}−Re( β

2k
) max{1, 2y|k|}Re( β

2k
) for 0 < x < y,

max{1, 2y|k|}−Re( β
2k

) max{1, 2x|k|}Re( β
2k

) for 0 < y < x.
(3.12)

(ii) If Re(m) 6 0 with m 6= 0 then

|Rβ,m(−k2;x, y)|

6 C2
β
2k
,m

|Γ( 1
2

+m− β
2k

)|
2|k| e−|x−y|Re(k) min{1, 2x|k|}Re(m)+ 1

2 min{1, 2y|k|}Re(m)+ 1
2

×

{
max{1, 2x|k|}−Re( β

2k
) max{1, 2y|k|}Re( β

2k
) for 0 < x < y,

max{1, 2y|k|}−Re( β
2k

) max{1, 2x|k|}Re( β
2k

) for 0 < y < x.
(3.13)

(iii) If m = 0 then

|Rβ,0(−k2;x, y)|

6 C2
β
2k

|Γ( 1
2
− β

2k
)|

2|k| e−|x−y|Re(k) min{1, 2x|k|}
1
2 min{1, 2y|k|}

1
2

×
(
1 +

∣∣ ln(min{1, 2x|k|})
∣∣)(1 +

∣∣ ln(min{1, 2y|k|})
∣∣)

×

{
max{1, 2x|k|}−Re( β

2k
) max{1, 2y|k|}Re( β

2k
) for 0 < x < y,

max{1, 2y|k|}−Re( β
2k

) max{1, 2x|k|}Re( β
2k

) for 0 < y < x.
(3.14)

The constants C β
2k
,m

and C β
2k

are independent of x and y.

Proof. Observe first that for ε > 0 and | arg(z)| < π − ε one deduces from (2.21) and
(2.22) that

|K β
2k
,m

(z)| 6 C β
2k
,m

e−Re(z)/2 min{1, |z|}−|Re(m)|+ 1
2 max{1, |z|}Re( β

2k
)

for m 6= 0, while for m = 0

|K β
2k
,0

(z)| 6 C β
2k

e−Re(z)/2 min{1, |z|}
1
2
(
1 +

∣∣ ln(min{1, |z|})
∣∣)max{1, |z|}Re( β

2k
).

Similarly, from (2.13) and (2.14) one infers that

|I β
2k
,m

(z)| 6 C β
2k
,m

eRe(z)/2 min{1, |z|}Re(m)+ 1
2 max{1, |z|}−Re( β

2k
) for m 6= 0,

|I β
2k
,0

(z)| 6 C β
2k

eRe(z)/2 min{1, |z|}
1
2 max{1, |z|}−Re( β

2k
).

As a consequence of these estimates, if m 6= 0 one infers that for 0 < x < y

|Rβ,m(−k2;x, y)|

6 C2
β
2k
,m

∣∣Γ(1
2 +m− β

2k )
∣∣

2|k|
e(x−y)Re(k) min{1, 2x|k|}Re(m)+ 1

2

×min{1, 2y|k|}−|Re(m)|+ 1
2 max{1, 2x|k|}−Re( β

2k
) max{1, 2y|k|}Re( β

2k
)
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while for 0 < y < x one has

|Rβ,m(−k2;x, y)|

6 C2
β
2k
,m

∣∣Γ(1
2 +m− β

2k )
∣∣

2|k|
e(y−x)Re(k) min{1, 2y|k|}Re(m)+ 1

2

×min{1, 2x|k|}−|Re(m)|+ 1
2 max{1, 2y|k|}−Re( β

2k
) max{1, 2x|k|}Re( β

2k
).

Then, if Re(m) > 0 one observes that
∣∣kx
ky

∣∣ < 1 in the first case, and
∣∣ ky
kx

∣∣ < 1 in the second
case. This directly leads to the first part of the statement. Similarly, for Re(m) 6 0 one
has −|Re(m)| = Re(m), from which one infers the second part of the statement. The
special case m = 0 is straightforward.

Proof of Theorem 3.5. Observe first that for k ∈ σβ,m the Gamma factor in (3.9) is
harmless. Thus, in order to show that the kernel (3.9), with the Gamma factor removed,
defines a bounded operator for any k ∈ C with Re(k) > 0, it is sufficient to consider
separately the two regions

Ω :=
{

(x, y) ∈ R+ × R+ | x > (2|k|)−1, y > [(2|k|)−1
}

and R+×R+ \Ω. In the latter region, thanks to the previous lemma it is easily seen that
the kernel Rβ,m(−k2; ·, ·) belongs to L2, and thus defines a Hilbert–Schmidt operator. For
the kernel on Ω one can employ Schur’s test and observe that Rβ,m(−k2; ·, ·) belongs to

L∞
(
[|k|−1,∞[;L1([|k|−1,∞[)

)
for the two variables taken in arbitrary order. If Re

( β
2k

)
6

0, then this computation is easy and reduced to the one already performed in the proof
of [2, Lem. 4.4]. We shall consider only the case Re

( β
2k

)
> 0.

Thus, for Re
( β

2k

)
> 0 let us check that

sup
y>(2|k|)−1

∫ ∞
(2|k|)−1

∣∣Rβ,m(−k2;x, y)
∣∣dx <∞,

the other condition being obtained similarly.
For fixed y ∈

[
(2|k|)−1,∞

[
we divide the above integral into three parts, namely

x ∈
[
(2|k|)−1, (2|k|)−1+y

2

[
, x ∈

[ (2|k|)−1+y
2 , y

[
and x ∈ [y,∞[. For the first part it is

enough to observe that

∫ (2|k|)−1+y
2

(2|k|)−1

e−(y−x)Re(k)
( y
x

)Re( β
2k

)
dx

6 e−yRe(k)(2|k|y)Re( β
2k

)

∫ (2|k|)−1+y
2

(2|k|)−1

exRe(k) dx

= 1
Re(k)e−yRe(k)(2|k|y)Re( β

2k
)
(
e(
y+(2|k|)−1

2
)Re(k) − e(2|k|)−1Re(k)

)
. (3.15)
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For the second part one observes that∫ y

(2|k|)−1+y
2

e−(y−x)Re(k)
( y
x

)Re( β
2k

)
dx

6 e−yRe(k)2Re( β
2k

)

∫ y

(2|k|)−1+y
2

exRe(k) dx

= 2Re(
β
2k

)

Re(k) e−yRe(k)
(
eyRe(k) − e(

y+(2|k|)−1

2
)Re(k)

)
. (3.16)

For the third part one has (with y > (2|k|)−1)∫ ∞
y

e−(x−y)Re(k)
(
x
y

)Re( β
2k

)
dx

=

∫ ∞
0

e−zRe(k)
(
1 + z

y

)Re( β
2k

)
dz

6
∫ ∞

0
e−zRe(k)

(
1 + 2|k|z

)Re( β
2k

)
dz. (3.17)

Finally, it only remains to observe that the three expressions (3.15), (3.16) and (3.17) are
bounded for y > (2|k|)−1. As a consequence, one deduces that the kernel restricted to Ω
defines a bounded operator in L2(R+), and by summing up the information one deduces
the boundedness of Rβ,m(−k2). The equality of Rβ,m(−k2) with (Hβ,m + k2)−1 and the
mentioned holomorphic property follow from standard argument, see for example the
Appendix A and Proposition 2.3 in [2].

Proof of Proposition 3.1 (iv). We want to show that Re(m) > 1 implies Lmin
β,m2 = Lmax

β,m2 .
With the information provided in the previous statements, it can be done by copying
mutatis mutandis the proof of [2, Prop. 4.10].

3.5 Point spectrum and eigenprojections

In this section we provide more information on the point spectrum of Hβ,m and exhibit
an expression for the projection on the corresponding eigenfunctions.

Theorem 3.7. Let m,β ∈ C with Re(m) > −1. Then we have

σp(Hβ,m) = σd(Hβ,m)

=
{
λN | N ∈ N, N +m+

1

2
6= 0, Re

( β

N +m+ 1
2

)
> 0
}
, (3.18)

where λN were defined in (3.11). All eigenvalues are of multiplicity 1. The kernel of the
Riesz projection PN corresponding to λN is given for x, y ∈ R+ by

PN (x, y) =
N !

Γ(1 + 2m+N)

( β

N +m+ 1
2

)1+2m
exp

(
− β

2(N +m+ 1
2)

(x+ y)
)

× (xy)
1
2

+mL
(2m)
N

( β

N +m+ 1
2

x
)
L

(2m)
N

( β

N +m+ 1
2

y
)
, (3.19)

where L
(2m)
N is the Laguerre polynomial introduced in (2.12).
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For the following proof let us observe that we can consider β 6= 0 since the second
condition in (3.18) is never satisfied for β = 0. In addition, the case β = 0 has already
been considered in [2] and it was shown in this case that the operator H0,m had no point
spectrum.

Proof. Observe first that for any N ∈ N the three conditions Re(k) > 0, β
2k−m−

1
2− = N

and λN = −k2 are equivalent to (3.18). Now, this situation takes place exactly when
the two solutions of the equation Lβ,m2f = −k2f provided in (3.7) are not linearly
independent, see also (2.19). This means that modulo a multiplicative constant, for k =

β

2(N+m+ 1
2

)
the map x 7→ IN+m+ 1

2
,m

( β

N+m+ 1
2

x
)

and the map x 7→ KN+m+ 1
2
,m

( β

N+m+ 1
2

x
)

are equal. From the discussion following (3.7), one infers that these functions belong to
L2(R+) for any Re(m) > −1. It remains to show that these functions belong to D(Hβ,m).
For that purpose let us consider one of them and use (2.13) to get

IN+m+ 1
2
,m

( β

N +m+ 1
2

x
)

=

( β

N+m+ 1
2

x
) 1

2
+m

Γ(1 + 2m)

(
1−

N +m+ 1
2

1 + 2m

β

N +m+ 1
2

x+O
(
x2
))

=

( β

N+m+ 1
2

) 1
2

+m

Γ(1 + 2m)
x

1
2

+m
(

1− β

1 + 2m
x+O

(
x2
))
.

By comparing this expression with the description of D(Hβ,m) one directly deduces the
first statement of the theorem.

Let γ be a contour encircling an eigenvalue λN in the complex plane, with no other
eigenvalue inside γ and with no intersection with [0,∞[. The Riesz projection corre-
sponding to this eigenvalue is then given by

PN = − 1

2πi

∫
γ
Rβ,m(z)dz.

By setting z = −k2 we get

PN = − 1

2πi

∫
γ
Rβ,m(−k2)d(−k2) =

1

2πi

∫
γ∗

2kRβ,m(−k2)dk (3.20)

for some appropriate curve γ∗. Now by looking at the expression for the resolvent
provided in (3.9), one observes that only the first factor is singular for 1

2 +m− β
2k = −N

and more precisely one gets for the residue of this term Res(Γ,−N) = (−1)N

N ! . By

substituting k = β

2(N+m+ 1
2

)
in the expression for the resolvent one thus gets

PN (x, y) =
(−1)N

N !


IN+m+ 1

2
,m

( β

N+m+ 1
2

x
)
KN+m+ 1

2
,m

( β

N+m+ 1
2

y
)

for 0 < x < y,

IN+m+ 1
2
,m

( β

N+m+ 1
2

y
)
KN+m+ 1

2
,m

( β

N+m+ 1
2

x
)

for 0 < y < x.
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Finally, by recalling that for β = N +m+ 1
2 the functions Iβ,m and Kβ,m have an easy

behaviour and are essentially the same, as mentioned in Sections 2.3 and 2.4, one directly
infers the explicit formula provided in (3.19).

It remains to show that there are no eigenvalues in [0,∞[. We will consider separately
0 and ]0,∞[. Firstly let us consider the functions x 7→ h±β,m(x) := x1/4H±2m

(
2
√
βx
)
.

By the arguments of Subsection 2.8, they satisfy Lβ,m2h±β,m = 0. By the asymptotic

expansions of these functions near 0 provided in [5, App. A.5] one easily infers that h±β,m
are L2 near 0 for |Re(m)| < 1 and not otherwise. Also, since for large z one has

H±m(z) = e±i(z− 1
2
πm− 1

4
π)
(
1 +O(|z|−1)

)
,

we deduce that

h±β,m(x) = x1/4e±i(2
√
βx−πm− 1

4
π)
(
1 +O(|z|−1/2)

)
,

which means that one (and only one) of these functions is in L2 near infinity if and
only

√
β has a non-zero imaginary part. However, since none of these functions has an

asymptotic behavior near 0 of the form x
1
2

+m
(
1 − β

1+2mx
)

+ o(x
3
2 ), one deduces that

none of them belongs to D(Hβ,m). Hence 0 is never an eigenvalue of Hβ,m.
Let us now consider the equation Lβ,m2v = µ2v for some µ > 0. Two linearly inde-

pendent solutions are provided by the functions x 7→ H±β
2µ
,m

(2µx) introduced in Section

2.7. By the asymptotic expansion around 0 provided in (2.31), one infers that these
functions are L2 near 0 if |Re(m)| < 1 and not otherwise. Then, from the asymptotic
expansion near ∞ provided in (2.32) one deduces that

H±β
2µ
,m

(2µx) = e∓iπ
2 ( 1

2
+m)e

πβ
4µ (2µx)

±i β
2µ e±iµx

(
1 +O(x−1)

)
.

Again, one infers that one (and only one) of these functions is in L2 near infinity if and
only β has a non-zero imaginary part. However, by taking the asymptotic expansion
near 0 provided in (2.31), one observes that none of these functions belongs to D(Hβ,m),
from which we deduce that µ2 is never an eigenvalue of Hβ,m.

Let us still describe more precisely the point spectrum σp

(
Hβ,m

)
when the operator

Hβ,m is self-adjoint, which means when β and m are real.

Corollary 3.8. (i) For m ∈ [−1/2,∞[ and β < 0 one has σp

(
Hβ,m

)
= ∅,

(ii) For m ∈]− 1/2,∞[ and β > 0 one has σp

(
Hβ,m

)
=
{
− β2

4(N+m+ 1
2

)2
| N ∈ N

}
,

(iii) For m ∈]− 1,−1/2[ and β < 0 one has σp

(
Hβ,m

)
=
{
− β2

4(m+ 1
2

)2

}
,

(iv) For m ∈]− 1,−1/2] and β > 0 one has σp

(
Hβ,m

)
=
{
− β2

4(N+m+ 1
2

)2
| N ∈ N×

}
.

The singularity of the holomorphic function (β,m) 7→ Hβ,m at (0,−1
2) may seem

surprising. The following proposition helps to explain why this singularity arises. It
indicates that the point spectrum has a rather wild behavior for parameters near this
singularity.
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Proposition 3.9. For every neighborhood V of (0,−1
2) in C × C and every z ∈ C we

can find (β,m) ∈ V such that z ∈ σ(Hβ,m).

Proof. Clearly, one has [0,∞[⊂ σ(Hβ,m). Moreover, if z 6∈ [0,∞[, ε > 0, βε := ε2
√
−z

and mε := −1
2 + ε, then one has z ∈ σ(Hβε,mε) as a consequence Theorem 3.7 for N = 0.

Clearly, (βε,mε)→ (0,−1
2) as ε→ 0.

Remark 3.10. Let us recall that when β = 0 one has σp

(
H0,m

)
= ∅ and σ(H0,m) =

[0,∞[ for any m with m > −1, as shown in [2]. In that respect, the result obtained in
(iii) sounds surprising, since for β < 0 it may seem that −β

x is a positive perturbation
of H0,m, but nevertheless Hβ,m has a negative eigenvalue! However, let us emphasize
that there is no contradiction since the domains of Hβ,m and H0,m are not the same: no
inference can be made.

Remark 3.11. For β and m as in the physical quantum-mechanical hydrogen atom,
the set {λN}N∈N coincides with the usual hydrogen atom point spectrum. Physicists
introduce non-negative integers ` := m− 1

2 and n := `+N+1 which are called respectively
the azimuthal quantum number and the main quantum number. Then by considering

0 6 ` 6 n− 1 these numbers give the n-fold degeneracy of the eigenvalue En = − β2

4n2 .

3.6 Dilation analyticity

The group of dilations is defined for any θ ∈ R by

Uθf(x) := e
θ
2 f(eθx), f ∈ L2(R+).

It is easily observed that UθD(Hβ,m) = D(Heθβ,m) and

UθHβ,mU
−1
θ = e−2θHeθβ,m. (3.21)

The equality (3.21) defines an analytic function

C 3 θ 7→ Hβ,m(θ) := e−2θHeθβ,m. (3.22)

As a consequence, the operator Hβ,m is an example of a dilation analytic Schrödinger
operator, where the domain of analyticity is the whole complex plane. In addition, there
is a periodicity in the imaginary direction: we have

Hβ,m(θ) = Hβ,m(θ + 2iπ).

An operator Hβ,m with a non-real β can always be transformed by dilation analyticity
into an operator with a real parameter. More precisely, if β = eiφ|β| is any complex
number, then we have

Hβ,m(−iφ) = e2iφH|β|,m,

Hβ,m(iπ − iφ) = e2iφH−|β|,m.

Note that these relations will be used in the Appendix for the explicit description of the
spectrum of Hβ,m.
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3.7 Boundary value of the resolvent and spectral density

Our next aim is to look at the boundary value of the resolvent of Hβ,m on the real
axis. For that purpose and for any s ∈ R we introduce the space 〈X〉sL2(R+), where X
denotes the operator of multiplication by the variable x in L2(R+) and 〈X〉 := (1+X2)1/2.
Clearly, for s > 0 the space 〈X〉−sL2(R+) is the domain 〈X〉s, which we endow with the
graph norm, while 〈X〉sL2(R+) can be identified with the anti-dual of 〈X〉−sL2(R+).

We say that (β,m) is an exceptional pair if there exists k > 0 such that ± iβ
2k−m−

1
2 ∈

N. The theorem that we state below has some restrictions when (β,m) is an exceptional
pair. We also set

Ωβ,m :=
{
k ∈ R+ | ± iβ

2k −m−
1
2 6∈ N

}
. (3.23)

Note that Ωβ,m = R+ if and only if (β,m) is not an exceptional pair.
Note that the Neumann Laplacian H0,− 1

2
corresponds to the only exceptional pair for

β = 0. The theorem below does not apply to this case, because the prefactor in (3.24)
is the meaningless Γ(0). Fortunately, the proof of the existence of boundary values of
H0,m described in [2, 5] works also in the case H0,− 1

2
.

The following statement is rather involved since any β ∈ C is considered. In the
special case Im(β) = 0 some simplifications take place.

Theorem 3.12. Let m,β ∈ C with Re(m) > −1. Let us fix k0 > 0 and consider any
k ∈]k0,∞[

⋂
Ωβ,m. Then, the boundary values of the resolvent

Rβ,m(k2 ± i0) := lim
ε↘0

Rβ,m(k2 ± iε)

exist in the sense of operators from 〈X〉−sL2(R+) to 〈X〉sL2(R+) for any s > 1
2 + |Im(β)|

2k0
,

uniformly in k on each compact subset of ]k0,∞[
⋂

Ωβ,m. For x, y ∈ R+ the kernel of
Rβ,m(k2 ± i0) is given by

Rβ,m(k2 ± i0;x, y)

=± i
2kΓ

(
1
2 +m∓ iβ

2k

)J β
2k
,m

(2kx)H±β
2k
,m

(2ky) for 0 < x < y,

J β
2k
,m

(2ky)H±β
2k
,m

(2kx) for 0 < y < x.
(3.24)

Before starting the proof, let us emphasize a few facts. First of all, the role played
by β. If Im(β) = 0, then the limiting absorption principle takes place in the usual
spaces, with the exponent s > 1

2 . On the other hand, if Im(β) 6= 0, an additional
weight is necessary for the limiting absorption principle. Observe also that if (β,m)
is not an exceptional pair, then Ωβ,m = R+. However, even in the exceptional case
the set of points excluded by (3.23) is quite small. Indeed, if (β,m) is an exceptional

pair different from (0,−1
2) then there exists k > 0 such that ±Re(β)

2k − Im(m) = 0 and

∓ Im(β)
2k − Re(m) − 1

2 ∈ N. Since the first equation uniquely defines k, we infer that at
most one value has to be avoided.

Proof. In this proof we assume that ± iβ
2k −m−

1
2 6∈ N. Thus, let us consider the operator

〈X〉−sRβ,m(k2 ± iε)〈X〉−s whose kernel is

〈x〉−sRβ,m(k2 ± iε;x, y)〈y〉−s, (3.25)
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see also (3.9). We show that the corresponding operator is Hilbert-Schmidt and converges
in the Hilbert-Schmidt norm to the operator whose kernel is provided by (3.24). For
that purpose, let us also set k∓ε :=

√
−k2 ∓ iε and observe that Re(k∓ε ) > 0 and that

lim
ε↘0

k∓ε = ∓ik. As a consequence, one has k∓ε = ∓ik +O(ε).

We consider first the slightly more complicated case when −1 < Re(m) 6 0 and
m 6= 0. By the estimate (3.13) the expression (3.25) is bounded for ε small enough by

Ck

∣∣Γ( 1
2

+m− β

2k∓ε
)
∣∣

2|k| min{1, 2x|k|}Re(m)+ 1
2 〈x〉−s

×min{1, 2y|k|}Re(m)+ 1
2 〈y〉−s


( 〈y〉
〈x〉
)Re( β

2k∓ε
)

for y > x,( 〈x〉
〈y〉
)Re( β

2k∓ε
)

for x > y.
(3.26)

for a constant Ck independent of x and y but which depends on k. We then observe that

lim
ε↘0

Re
( β

2k∓ε

)
= ∓ Im(β)

2k
.

Since ∓ Im(β)
2k 6 |Im(β)|

2k0
and by taking ε < ε0 sufficiently small, our assumption on s

implies that the expression (3.26) belongs to L2(R+ × R+).
On the other hand, starting with the expression (3.9) and by taking the equalities

(2.25) and (2.29) into account, one also observes that for fixed x and y, the expression
given in (3.25) converges as ε↘ 0 to

〈x〉−sRβ,m(k2 ± i0;x, y)〈y〉−s, (3.27)

with Rβ,m(k2 ± i0;x, y) defined in (3.24). We can apply the Lebesgue Dominated Con-
vergence Theorem and deduce that (3.25) converges in L2(R+ × R+) to (3.27). This
convergence is equivalent to

lim
ε↘0
〈X〉−sRβ,m(k2 ± iε)〈X〉−s = 〈X〉−sRβ,m(k2 ± i0)〈X〉−s

in the Hilbert-Schmidt norm. Note finally that the uniform convergence in k on each
compact subset of ]k0,∞[ can be checked directly on the above expressions.

For Re(m) > 0 with m 6= 0, the same proof holds with the estimate (3.12) instead of
(3.13). Finally for m = 0, the result can be obtained by using (3.14).

Based on the previous result, the corresponding spectral density can now be defined.

Proposition 3.13. Let m ∈ C with Re(m) > −1, let β ∈ C and let us fix k0 > 0. Then
for k ∈]k0,∞[

⋂
Ωβ,m the spectral density defined by

pβ,m(k2) := lim
ε↘0

1

2πi

(
Rβ,m(k2 + iε)−Rβ,m(k2 − iε)

)
=

1

2πi

(
Rβ,m(k2 + i0)−Rβ,m(k2 − i0)

)
exists in the sense of operators from 〈X〉−sL2(R+) to 〈X〉sL2(R+) for any s > 1

2 + |Im(β)|
2k0

.
The kernel of this operator is provided for x, y ∈ R+ by

pβ,m(k2;x, y) =
e
πβ
2k

4πk
Γ
(

1
2 +m+ iβ

2k

)
Γ
(

1
2 +m− iβ

2k

)
J β

2k
,m

(2kx)J β
2k
,m

(2ky). (3.28)
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Proof. The existence of the limit is provided by Theorem 3.12 while the explicit formula
(3.28) can be deduced from (3.24) together with (2.30).

Note that for β = 0 the expression obtained above reduces to

p0,m(k2;x, y) =
1

πk
Jm(kx)Jm(ky), (3.29)

by taking the relation (2.28) into account. This expression corresponds to the one ob-
tained in a less general context in [5, Prop. 4.4].

3.8 Reminder about the Hankel transform

As we mentioned before, to some extent this paper can be viewed as a continuation of
[2, 5]. These two papers were devoted to Schrödinger operators with the inverse square
potential. Among other things, certain natural transformations diagonalizing these op-
erators were introduced. They were called there (generalized) Hankel transformations.

In the present paper we would like to find natural transformations that diagonalize
Hβ,m. We will mimic as closely as possible our previous constructions. Therefore, we
devote this subsection to a summary of selected results of [2, 5].

Recall first that for any m ∈ C with Re(m) > −1 the operator Hm = H0,m can be

diagonalized using the Hankel transformation Fm = F#
m = F−1

m , which is a bounded
operator on L2(R+) such that

FmX
2 = HmFm.

For any m,m′ we also define the Møller operators corresponding to the pair
(
Hm, Hm′

)
by the time dependent formula

W±m,m′ := s− lim
t→∞

e±itHme∓itHm′ .

These operators can be expressed in terms of the Hankel transformation

W±m,m′ = e±iπ
2

(m−m′)FmFm′ .

It is also natural to introduce a pair of operators

F±m := e±iπ
2
mFm, (3.30)

which can be called the incoming/outgoing Hankel transformation. Then we can write

W±m,m′ = F±mF∓#
m′ .

Note that the definition (3.30) may look trivial, but we will see that in some situations
it is more natural to generalize F±m rather than Fm.

The operators Hm have very special properties. Therefore, some of the properties
of Hankel transformations are specific to this class of operators. A more general class
of 1-dimensional Schrödinger operators Hm,κ on the half-line has been considered in
[5]. They are generalizations of Hm by considering general boundary condition at zero.
Exceptional cases exist for this family, however for non-exceptional pairs (m,κ) one can
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generalize the construction of the incoming/outgoing Hankel transformations. In fact,
one can define a pair of bounded and left-invertible operators F±m,κ that diagonalize
Hm,κ. They satisfy

F∓#
m,κF

±
m,κ = 1l,

F±m,κF
∓#
m,κ = 1lR+(Hm,κ),

F±m,κX
2F∓#

m,κ = Hm,κ 1lR+(Hm,κ),

where 1lR+(Hm,κ) in the self-adjoint case is the projection on the continuous subspace
of Hm,κ, and in the general case it is its obvious generalization. We called F±m,κ the
outgoing/incoming generalized Hankel transformations. The operators F+

m,κ and F−m,κ
are linked by the relation

F+
m,κGm,κ = F−m,κ, (3.31)

where Gm,κ is a bounded and boundedly invertible operator commuting with X.
One can formulate scattering theory for an arbitrary pair of Hamiltonians Hm,κ,

Hm′,κ′ , as it is done in [5]. Alternatively, one can fix a reference Hamiltonian, which is
simpler, to which the more complicated interacting Hamiltonian Hβ,m will be compared.
Two choices of the reference Hamiltonian can be viewed as equally simple: the Dirichlet
Laplacian HD := H 1

2
and the Neumann Laplacian HN := H− 1

2
.

Recall from [5, Sec. 4.7] that the Hankel transformation for HD is the sine trans-

formation F 1
2

= FD = F−1
D = F#

D = F ∗D, while the Hankel transformation for HN is

the cosine transformation F− 1
2

= FN = F−1
N = F#

N = F ∗N. These transformations are

defined by

(FDf)(x) =

√
2

π

∫
sin(xk)f(k)dk,

(FNf)(x) =

√
2

π

∫
cos(xk)f(k)dk.

Following (3.30) and (3.31), we also introduce

F±D := e±iπ
4 FD, GD := eiπ

2 1l,

F±N := e∓iπ
4 FN, GN := e−iπ

2 1l.

For any non-exceptional β,m with m > −1 one can introduce its Møller operators
with respect to the Dirichlet and Neumann dynamics:

W±m,κ,D := s− lim
t→∞

e±itHm,κe∓itHD ,

W±m,κ,N := s− lim
t→∞

e±itHm,κe∓itHN .

The corresponding scattering operators are then defined by

Sm,κ;D = W−#
m,κ;DW

−
m,κ;D and Sm,κ;N := W−#

m,κ;NW
−
m,κ;N.

We can also express the Møller operators in terms of the generalized Hankel transforma-
tions

W±m,κ;D = F±m,κF
∓#
D and W±m,κ;N = F±m,κF

∓#
N .
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By conjugating with FD, resp. FN, the scattering operator can be brought to a diagonal
form, where up to an inessential factor it coincides with Gm,κ :

FDSm,κ;DFD = iGm,κ and FNSm,κ;NFN = −iGm,κ.

3.9 Hankel-Whittaker transformation

It is natural to ask whether the operators Hβ,m considered in this paper also possess
diagonalizing operators and a satisfactory scattering theory. There exists actually a
candidate for a generalization of incoming/outgoing Hankel transformations F±m . For
any β,m ∈ C with Re(m) > −1 let us define the kernel

F±β,m(x, k) :=
1√
2π

e±iπ
2
me

πβ
4k Γ
(

1
2 +m± iβ

2k

)
J β

2k
,m

(2xk), (3.32)

where x, k ∈ R+. This kernel can be used to define a linear transformation on any
f ∈ Cc(R+) : (

F±β,mf
)
(x) :=

∫ ∞
0

F±β,m(x, k)f(k)dk.

We call F±β,m the outgoing/incoming Hankel–Whittaker transformation.
We also introduce the function gβ,m : R+ → C by

gβ,m(k) := e−iπmΓ(1
2 +m− i β2k )

Γ(1
2 +m+ i β2k )

(3.33)

and the corresponding multiplication operator

Gβ,m := gβ,m(X),

which we can call the intrinsic scattering operator.
Let us collect the most obvious properties of F±β,m and Gβ,m. Recall that the set

Ωβ,m has been introduced in (3.23), and that if (β,m) is not an exceptional pair then
Ωβ,m = R+.

Theorem 3.14. Let m,β ∈ C with Re(m) > −1, let us also fix k0 > 0 and let s >
1
2 + |Im(β)|

2k0
.

(i) F±β,m maps Cc

(
]k0,∞[

⋂
Ωβ,m

)
into 〈X〉sL2(R+).

(ii) If h ∈ Cc

(
]k0,∞[

⋂
Ωβ,m

)
, then in the sense of quadratic forms on 〈X〉−sL2(R+)

we have ∫ ∞
0

h(k2)pβ,m(k2)dk2 = F∓β,mh(X2)F±#
β,m. (3.34)

(iii) The equalities F+
β,mGβ,m = F−β,m and F−β,mG

−1
β,m = F+

β,m hold.
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(iv) For fixed k ∈ Ωβ,m the following asymptotics hold as x→∞ :

F+
β,m(x, k) =

1√
2π

(
e−iπ

4 eikx(2kx)i β
2k
(
1 +O(x−1)

)
+ g−1

β,m(k)eiπ
4 e−ikx(2kx)−i β

2k
(
1 +O(x−1)

))
, (3.35)

F−β,m(x, k) =
1√
2π

(
eiπ

4 e−ikx(2kx)−i β
2k
(
1 +O(x−1)

)
+ gβ,m(k)e−iπ

4 eikx(2kx)i β
2k
(
1 +O(x−1)

))
. (3.36)

Proof. The proof of (i) reduces to showing that the map x 7→ 〈x〉−s supk∈K J β
2k
,m

(2kx)

is in L2(R+) for any k in a compact set K ⊂]k0,∞[
⋂

Ωβ,m. The L2-integrability near
0 follows from (2.26), while the L2-integrability near infinity follows from (2.27). Note

that the factor x±iβ, which becomes (2kx)±i β
2k after the required change of variables,

imposes the dependence on k0 for the lower limit of the index s. The proofs of (ii) and
(iii) consist in direct computations. Finally, (iv) can be obtained by taking again into
account the asymptotic expansion of Jβ,m provided in (2.27).

Note that (3.34) essentially says that F±β,m diagonalize the continuous part of Hβ,m,
since the l.h.s. of (3.34) can be interpreted as h(Hβ,m). In the self-adjoint case, this
would correspond to the absolutely continuous part of Hβ,m. Clearly, this condition
does not fix F±β,m completely. The additional condition for our choice of F±β,m comes
from scattering theory, which is expressed in the asymptotics (3.35) and (3.36). In that
framework the functions x 7→ F±β,m(x, k) can be viewed as outgoing/incoming distorted

waves (or generalized eigenfunctions) of Hβ,m associated with the eigenvalue k2. Note
that if we set β = 0, then (3.35) and (3.36) have the form of usual distorted waves in
the short-range case. On the other hand, the factors (kx)iβ are needed because of the
long-range part of the potential, while the factors e±iπ

4 are related to the Maslov index
and are needed to make our definitions consistent with the case β = 0 described in [5].

Let us now recall from [2, 5] that F±0,m are unitary for real m, and are bounded

for more general m. It is natural to ask about the boundedness of F±β,m in the general
framework introduced here, but they seem to be rather ill-behaved operators. Note that
the operators Gβ,m are better behaved, and their behavior is easier to study:

Proposition 3.15. (i) If m,β are real, then Gβ,m is unitary.

(ii) If β is real and Re(m) 6= −1
2 , then Gβ,m is bounded and boundedly invertible.

(iii) In all other cases Gβ,m is either unbounded or has an unbounded inverse.

Proof. For (i), it is sufficient to recall that Γ(z) = Γ(z). For (ii), by assuming that
Re(m) 6= −1

2 we make sure that neither the numerator nor the denominator of gβ,m
go through the value Γ(0). In addition, by using Stirling’s formula one observes that
gβ,m(k) remains bounded for k → 0 and for k → ∞. Finally, in the case (iii) either the
numerator or the denominator of gβ,m can have local singularities, and in addition either
gβ,m(k) or g−1

β,m(k) are unbounded for k → 0. This last result is again a consequence of
Stirling’s formula.
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We conjecture that F±β,m is unbounded in L2(R+) for all non-real β. If Im(β) = 0
but Im(m) 6= 0, we do not know. For real β and m, which correspond to self-adjoint
Hβ,m, the transformations F±β,m are bounded, as we discuss in the next subsections.

3.10 Hankel-Whittaker transformation for real parameters

Throughout this and the next subsection we assume that β,m ∈ R with m > −1. The
operators Hβ,m are then self-adjoint and their spectral and scattering theory is well
understood.

In the real case, the Hankel-Whittaker transformation satisfies

F±∗β,m = F∓#
β,m.

Because of this identity, we can avoid using the Hermitian conjugation in our formulas
in favor of transposition. We do this because we would like that our formulas are easy
to generalize to the non-self-adjoint case, where so far their meaning is to a large extent
unclear.

Theorem 3.16. F±β,m are isometries that diagonalize Hβ,m on the range of the spectral
projection of Hβ,m onto R+ :

F∓#
β,mF±β,m = 1l, (3.37)

F±β,mF∓#
β,m = 1lR+(Hβ,m), (3.38)

F±β,mX
2 = Hβ,mF±β,m. (3.39)

Proof. For any 0 < a < b, we can apply Stone’s formula

1l]a,b[(Hβ,m) = s− lim
ε↘0

1

2πi

∫ b

a
(Rβ,m(λ+ iε)−Rβ,m(λ− iε)

)
dλ. (3.40)

We can reinterpret (3.40) in the sense of a quadratic form on appropriate weighted spaces,
writing

1l]a,b[(Hβ,m) =

∫ b

a
pβ,m(k2)dk2. (3.41)

Now (3.38) and (3.39) follow from (3.41) and from the identity

pβ,m(k2;x, y) =
1

2k
F−β,m(x, k)F+

β,m(y, k). (3.42)

It remains to prove (3.37). To simplify notation, we will write F for F±β,m and H
for Hβ,m. By (3.41) and (3.42), for any interval I we have

F1lI(X
2)F ∗ = 1lI(H). (3.43)

By squaring (3.43) we obtain the equality

F1lI(X
2)F ∗F1lI(X

2)F ∗ = 1lI(H). (3.44)

By setting then P := F ∗F and by comparing (3.43) and (3.44) we infer that

P1lI(X
2)P1lI(X

2)P = P1lI(X
2)P. (3.45)
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Clearly, the r.h.s. of (3.45) is equal to P1lI(X
2)2P , and therefore

P1lI(X
2)(1l− P )1lI(X

2)P = 0.

Equivalently one has (
(1l− P )1lI(X

2)P
)∗

(1l− P )1lI(X
2)P = 0.

Consequently one gets (1l − P )1lI(X
2)P = 0 and P1lI(X

2)(1l − P ) = 0. By subtraction
we finally obtain

P1lI(X
2) = 1lI(X

2)P.

Thus P is a projection commuting with all spectral projections of X2 onto intervals. But
X2 has multiplicity 1. Therefore, there exists a Borel set Ξ ⊂ R+ such that

P = 1lΞ(X2) = F ∗F .

Suppose that R+\Ξ has a positive measure. Then we can find k0 ∈ R+ such that for
any ε > 0

Iε := [k0 − ε, k0 + ε] \ Ξ

has also a positive measure. Let fε be the characteristic function of Iε. Then one infers
that

‖fε‖ 6= 0 and Ffε = 0. (3.46)

From the explicit formula for F (x, k) we immediately see that for any k0 ∈ R+ we
can find x0 ∈ R+ such that F (x0, k0) 6= 0. We also know that F (x, k) is continuous
in both variables. Therefore, we can find ε > 0 such that for x ∈ [x0 − ε, x0 + ε] and
k ∈ [k0 − ε, k0 + ε] we have

|F (x, k)−F (x0, k0)| > 1

2
|F (x0, k0)|.

Now one has (
Ffε

)
(x) =

∫
Iε

F (x, k)dk,

and therefore, ∣∣(Ffε
)
(x)
∣∣ > 1

2
|Iε| |F (x0, k0)|, x ∈ [x0 − ε, x0 + ε],

where |Iε| denotes the Lebesgue measure of Iε. Hence Ffε 6= 0, which is a contradiction
with (3.46).

In the case of real m,β, we have |gβ,m(k)| = 1 for any k ∈ R+. Therefore, the whole
information about gβ,m(k) is contained in its argument. One half of the argument of
gβ,m(k) is called the phase shift

δβ,m(k) := −π
2
m+

1

i
log
(

Γ
(

1
2 +m− iβ

2k

))
.

We have the relations

gβ,m(k) = ei2δβ,m(k),

Gβ,m = ei2δβ,m(X).
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In the real case, one can avoid using the incoming/outgoing Hankel-Whittaker trans-
formations F±β,m, and instead introduce a single Fβ,m given by the kernel

Fβ,m(x, k) :=
1√
2π

e
πβ
4k

∣∣∣Γ(1
2 +m± iβ

2k

)∣∣∣J β
2k
,m

(2xk).

Note that
F±β,m = Fβ,me∓iδβ,m(X).

We can rewrite Theorem 3.16 in terms of the operator Fβ,m :

F#
β,mFβ,m = 1l,

Fβ,mF#
β,m = 1lR+(Hβ,m),

Fβ,mX
2 = Hβ,mFβ,m.

However, with Fβ,m one loses the analyticity, therefore we prefer to continue using F±β,m.

Remark 3.17. In the setting of the Coulomb problem, when m+ 1
2 = ` ∈ N and β ∈ R,

the expression

δ`(k) := arg
(

Γ
(
`+ 1− i

β

2k

))
is called the Coulomb phase shift. Note that an expression close to (3.33) was introduced
in [20, Eq. (2.3a)]. In the setting of the Coulomb potential in d = 3, an additional
function called the Gamow factor is often introduced, see for example [1, Eq. 14.1.7]. In
our framework this factor does not seem to play an important role.

3.11 Scattering theory for real parameters

Since the Coulomb potential is long-range, we do not have the standard short-range
scattering theory between arbitrary Hβ,m and Hβ′,m′ . However, if we fix β then the
scattering theory between Hβ,m and Hβ,m′ is short-range. One can argue that for β 6= 0
there is only one natural reference Hamiltonian, namely Hβ,S := Hβ,− 1

2
= Hβ, 1

2
. Here

we use se subscript S for standard. The situation of two equally justified reference
Hamiltonians H0,− 1

2
= HN and H0, 1

2
= HD seems to be specific for β = 0.

By the standard methods of time-dependent long-range scattering theory, as de-
scribed for example in [4], we can show the existence for any real β,m with m > −1 of
the Møller operators

W±β,m;β,S := s− lim
t→∞

e±itHβ,me∓itHβ,S1lR+(Hβ,S).

These operators can also be expressed in terms of the Hankel-Whittaker transform:

W±β,m;β,S = F±β,mF∓#
β,S = Fβ,me∓i(δβ,m(X)−δβ,S(X))F#

β,S.

In order to compare distinct β and β′ we need to use modified wave operators. There
exist various constructions, and we select a construction involving a time-independent
modifier that is similar in some sense to the celebrated Isozaki-Kitada construction. As
the reference Hamiltonian we use HD. The modifier is chosen to be F±β,SF∓#

D . Note
that the modifier does not depend on m. It depends on ±, and as mentioned above this
allows us to obtain expressions analytic in the parameters. With the results obtained so
far, one can easily prove the following statement:
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Theorem 3.18. If β,m ∈ R, m > −1, then there exist

W±β,m;D := s− lim
t→∞

e±itHβ,mF±β,SF∓#
D e∓itHD ,

and the following equalities hold:

W±β,m;D = F±β,mF∓#
D = Fβ,me∓i(δβ,m(X)−δD(X))F#

D . (3.47)

In addition, the scattering operator Sβ,m;D := W−#
β,m;DW

−
β,m;D satisfies

FDSβ,m;DFD = iGβ,m.

Let us now compare what we obtained with the literature. Recall from (3.32) that
the kernel of F±β,m(x, k) given by

F±β,m(x, k)

=
1√
2π

e±iπ
2
me

πβ
4k Γ
(

1
2 +m± iβ

2k

)
J β

2k
,m

(2xk) (3.48)

=
1√
2π

e±iπ
2
me

πβ
4k Γ
(

1
2 +m± iβ

2k

)
(2kx)

1
2

+me−ikx
1F1

(1

2
+m+ i

β

2k
; 1 + 2m; 2ikx

)
.

For the scattering operators, we obtain the multiplication operator

(
FDSβ,m;DFD

)
(k) = eiπ( 1

2
−m) Γ(1

2 +m− i β2k )

Γ(1
2 +m+ i β2k )

. (3.49)

Without any surprise, the expressions obtained in (3.48) and (3.49) coincide with
the ones available in the literature, as for example in [8, 14, 15, 16, 22]. Note that in
these references, only the cases m > 0 are considered, and most of the time only the case
m = `+ 1

2 with ` ∈ N.
Let us conclude by one feature of the scattering theory for Whittaker operators that

is worth pointing out. The common wisdom says that for long-range potentials modi-
fied Møller operators, and hence also modified scattering operator, are not canonically
defined, namely, they are defined only up to an arbitrary momentum dependent phase
factor. However, in the case of Whittaker operators there exists a choice that can be
viewed as canonical, namely the one provided in (3.47).

A Pictures of spectrum

In the appendix we provide a few pictures of the spectrum of the operators Hβ,m. We
concentrate on the case of non-zero β, since for β = 0 the spectrum is simply [0,∞[.
By a scaling argument, it is enough to consider |β| = 1. We restrict ourselves to m
with a non-zero imaginary part, since this situation corresponds to the most interesting
spectrum.

First we present a few examples of the spectrum for a fixed Im(m) and a fixed non-
zero real β. We set mi := Im(m) = −2.4 and β = 1, and we select 8 values of the real
part of m, namely

mr := Re(m) = −0.75, −0.5, −0.25, 0, 0.25, 0.5, 1, 2.
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The spectrum is marked with the blue color.
In all these pictures the point spectrum is located on the same trajectory,{

− |β|2

4
(
t+ iIm(m)

)2 | t ∈ R ∪ {∞}

}
,

which depends only on β and Im(m). This trajectory is marked with a thin gray line.
The point spectrum is a sequence of points on the lower half-plane converging to

0, moving clockwise as Re(m) increases. For Re(m) ∈] − 1, 1
2 ], one of the points of

the sequence is hidden on the non-physical sheet of the complex plane and is not an
eigenvalue. It is marked in red and called a resonance. When Re(m) crosses −1

2 , it
appears on the physical sheet and becomes an eigenvalue.

Note that for any −1 < mr 6 −1
2 , we have the identity

σ(H1,mr+imi) = σ(H1,mr+1+imi). (1.50)

Therefore, Fig. 1 and 2 have the same spectrum as Fig. 5 and 6. However on Fig. 1 and
2 we have in addition a resonance.
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Fig. 1. σ(H1,−0.75−2.4i)
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Fig. 2. σ(H1,−0.5−2.4i)
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Fig. 3. σ(H1,−0.25−2.4i)
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Fig. 4. σ(H1,0−2.4i)
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Fig. 5. σ(H1,0.25−2.4i)
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Fig. 6. σ(H1,0.5−2.4i)

38



-0.01 0.00 0.01 0.02 0.03 0.04 0.05
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

Fig. 7. σ(H1,1−2.4i)
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Fig. 8. σ(H1,2−2.4i)

Next we show the spectrum for fixed m and |β|. More precisely, we present

e−i2φσ
(
Hβ,−0.75+3.2i

)
, β = eiφ for φ =

n

8
π with n = 0, . . . , 15.

This is suggested by the dilation analyticity theory, see (3.22). With this choice the
point spectrum does not move. The continuous spectrum, on the other hand, rotates as
e−i2φ, like a giant hand of a clock. Eigenvalues hit by the continuous spectrum disappear
and become resonances. Then they reappear when the hand of the clock comes again.
The spectrum is again marked in blue and resonances in red. We have selected m such
that −1 < Re(m) < 1

2 on purpose. The spectrum is then more interesting because there
is a lonely resonance on the upper half-plane which appears as an eigenvalue for some
phases of β.

-0.01 0.00 0.01 0.02 0.03
-0.02

-0.01

0.00

0.01

0.02

Fig. 9. φ = 0
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Fig. 10. φ = 1
8π

39



-0.01 0.00 0.01 0.02 0.03
-0.02

-0.01

0.00

0.01

0.02

Fig. 11. φ = 1
4π
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Fig. 12. φ = 3
8π

-0.01 0.00 0.01 0.02 0.03
-0.02

-0.01

0.00

0.01

0.02

Fig. 13. φ = 1
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Fig. 14. φ = 5
8π
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Fig. 15. φ = 3
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Fig. 16. φ = 7
8π
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Fig. 17. φ = π
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Fig. 18. φ = 9
8π
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Fig. 19. φ = 5
4π
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Fig. 20. φ = 11
8 π
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Fig. 21. φ = 3
2π
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Fig. 22. φ = 13
8 π
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Fig. 23. φ = 7
4π
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Fig. 24. φ = 15
8 π
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