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Abstract

We prove that the Bruno-Rüssmann condition is optimal for the analytic preser-
vation of a quasi-periodic invariant curve for an analytic twist map. The proof is
based on Yoccoz’s corresponding result for analytic circle diffeomorphisms and the
uniqueness of invariant curves with a given irrational rotation number. We also prove
a similar result for analytic Tonelli Hamiltonian flow with n = 2 degrees of freedom;
for n ≥ 3 we only obtain a weaker result which recovers and slightly improves a
theorem of Bessi.

1 Introduction

Given n ≥ 2, a vector ω ∈ Rn satisfies the Bruno-Rüssmann condition, and we will write
ω ∈ BR, if

∫

+∞

1

ln(Ψω(Q))

Q2
dQ < +∞ (BR)

where
Ψω(Q) = max

{

|k · ω|−1 | k ∈ Z
n, 0 < |k| ≤ Q

}

.

The expression in (BR) is just one of the many equivalent ways of defining this Bruno-
Rüssmann condition. Bruno ([Bru71], [Bru72], [Bru89]) and Rüssmann ([Rüs80], [Rüs89],
[Rüs94], [Rüs01]) have proved that ω ∈ BR is a sufficient condition for several analytic
small divisors problems: among others, for the linearization of a holomorphic germ at a
non-resonant fixed point, for the linearization of a torus diffeomorphism isotopic to the
identity (respectively a torus vector field) close to a non-resonant translation (respectively
close to a non-resonant constant vector field) and for the preservation of a non-resonant
quasi-periodic invariant torus in a non-degenerate Hamiltonian system close to integrable.
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For n = 2, ω = (1, α) ∈ BR if and only if α satisfies the following Bruno condition,
that we shall write α ∈ B:

∑

n∈N

log qn+1

qn
< +∞ (B)

where qn is the denominator of the nth-convergent of α. It is a deep result of Yoccoz
([Yoc88], [Yoc95]) that if α /∈ B, then the quadratic polynomial

Pλ(z) = λz + z2, λ = e2πiα

is not analytically linearizable. Other examples of non-Bruno non-linearizable germs were
later given by Geyer ([Gey01]). Using this, Yoccoz was able to prove that if α /∈ B,
there exist, arbitrarily close to the rotation α, analytic circle diffeomorphisms which are
topologically but not analytically conjugate to α and thus in the continuous case, if ω /∈ BR,
there exist, arbitrarily close to the constant vector field ω, analytic vector fields on T

2

which are topologically but not analytically conjugate to ω (see Theorems 2 and 4 below
for more precise statements). The condition α ∈ B (or equivalently ω ∈ BR) is also known
to be optimal in other problems in C2, for vector fields close to a non-resonant singular
point ([PM97]) and for the complex area-preserving map known as the semi-standard map
([Mar90]).

Unfortunately, to the best of our knowledge, the Bruno-Rüssmann condition is not
known to be optimal for low-dimensional Hamiltonian problems such as the analytic preser-
vation of invariant curves for twist maps. Here it is important to point out that unlike the
other problems we mentioned which deal only with the existence of an analytic conjugacy
to the linear model, in the Hamiltonian case the conclusions of KAM-like theorems are
two-fold: it gives the existence of an analytic invariant curve together with the existence
of an analytic conjugacy of the restricted dynamics on the curve to the linear model. The
best known result for twist maps is due to Forni ([For94])1. To describe his result, let us
first remark that α ∈ B obviously implies that α ∈ R in the sense that

lim
n→+∞

log qn+1

qn
= 0 (R)

but clearly the converse is not true. The condition that α ∈ R is in fact the necessary
and sufficient condition for the linearized problem (the so-called cohomological equation)
to have a solution in the analytic topology ([Rüs75]). Using results of Mather ([Mat86],
[Mat88]) and Herman ([Her83]), Forni proved that if an integrable twist map has an in-
variant curve with rotation number α /∈ R, then there exists arbitrarily small analytic
perturbation for which there are no (necessarily Lipschitz) invariant curves with rotation

1Unfortunately, at several places in the literature (for instance [Gen15] and other references by the
same author) it is stated that α ∈ B is optimal for the existence of an analytic invariant circle for the
standard map in the perturbative regime which depends analytically in the small parameter; we would
like to point out that this statement is incorrectly deduced from results of Marmi ([Mar90]) and Davie
([Dav94]) and thus the optimality of α ∈ B for the standard map is still an open question (see [MM00]
where this observation is also made).
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number α. Observe that this strongly violates the conclusion of the KAM theorem, as the
latter would give an analytic invariant curve on which the dynamic is analytically lineariz-
able. For Tonelli Hamiltonian flows with n ≥ 2 degrees of freedom, a result analogous to
Forni’s has been obtained by Bessi ([Bes00]). To state it, observe that a generalization of
the condition α ∈ R is (keeping the same notation) ω ∈ R where

lim
Q→+∞

ln(Ψω(Q))

Q
= 0 (R)

and that again this is the necessary and sufficient condition to solve the cohomological
equation in the analytic topology. Bessi proved that if ω /∈ R, then there exists arbitrarily
small perturbation of the integrable Hamiltonian H0(I) =

1

2
(I21 + · · ·+ I2n) in the analytic

topology for which there is no invariant C1 Lagrangian graph on which the dynamic is C1

conjugated to the linear flow of frequency ω.
The purpose of this note is to prove that the condition α ∈ B is optimal for the analytic

KAM theorem for twist maps, in the sense that if α /∈ B, then there exist arbitrarily small
perturbations of an arbitrary integrable twist map for which there are no analytic invariant
curves on which the dynamic is analytically conjugated to α. We refer to Theorem A for a
more precise statement. One has to observe that this result does not improve Forni’s result,
as in our example, the perturbed map will have an analytic invariant curve on which the
dynamic is topologically conjugated to α, yet there will be no analytic conjugacy and this
is sufficient to guarantee that the conclusions of the KAM theorem do not hold. One can
considered Forni’s result as a “destruction” of invariant circle with rotation number α /∈ R,
while our result can be considered as a “destruction” of the dynamic on the invariant circle
with rotation number α /∈ B. For perturbations of Tonelli Hamiltonians, we will obtain in
Theorem B a similar result showing the optimality of ω ∈ BR for n = 2 while for n ≥ 3, we
will only obtain in Theorem C a result similar to Bessi showing that ω ∈ R is necessary:
for n ≥ 3, it is unlikely that ω ∈ R is sufficient and one should not expect ω ∈ BR to
be necessary either2. Even though we will use action-minimizing properties of invariant
quasi-periodic curves and tori in an indirect way, our method of proof is very different
from those of Forni and Bessi. For Theorem A, we will use Yoccoz’s result showing the
necessity of α ∈ B for the analytic linearization of circle diffeomorphims, and the well-
known fact that an invariant curve for a twist map with a given irrational rotation number
is unique. Under some more assumptions, this uniqueness property has been shown to
be true for Tonelli Hamiltonians in any number of degrees of freedom by Fathi, Giualiani
and Sorrentino ([FGS09]). Using this and a continuous version of Yoccoz’s result, we will
obtain Theorem B for the case n = 2 and for n ≥ 3, we will make use of a result of Fayad
([Fay02]) on reparametrized linear flows to obtain Theorem C.

2Yoccoz, private communication.
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2 The case of a twist map

It will be more convenient for us to represent exact area-preserving map of the annulus
T × R, where T = R/Z, by a “Hamiltonian” generating function defined on the universal
cover R2 of T×R (unlike [For94] where a “Lagrangian” generating function is used). Given
a smooth function h : R2 → R, the map

f̄ = f̄h : R2 → R
2

defined by

f̄(θ, I) = (Θ, I) ⇐⇒
{

I = I − ∂θh(θ, I),
Θ = θ + ∂Ih(θ, I)

projects to an exact area-preserving map

f : T× R → T× R.

Such a map is an exact area-preserving twist map, or for short twist map in the sequel, if
it satisfies the following two conditions:

(a1) for all (θ, I) ∈ R2, ∂IΘ(θ, I) > 0;

(a2) for all θ ∈ R, |Θ| → +∞ as |I| → +∞ uniformly in θ.

Given such a twist map f , an invariant curve T for f will be an essential topological circle
such that f(T ) = T ; necessarily, T is a Lipschitz Lagrangian graph. Since f preserves ori-
entation, the restriction f|T has a well-defined rotation number. The following uniqueness
result is well-known (see [KH95] for instance).

Proposition 1. Let T0 and T1 be two invariant curves for a twist map such that f|T0
and

f|T1
have the same irrational rotation number. Then T0 = T1.

Now let us explain the local setting in which the KAM theorem applies. Consider a
smooth function h0 : (−1, 1) → R which satisfies the following conditions:

(b1) h′′
0(I) 6= 0 for all I ∈ (−1, 1);

(b2) h′
0(0) = α .

Then the exact area-preserving map f0 generated by h0 is integrable, and the dynamic
restricted to the invariant curve T0 = T × {0} is the rotation by α. To state the KAM
theorem of Bruno and Rüssmann, we need to define norms for real-analytic functions. Let
h : R× (−1, 1) → R be a real-analytic function and suppose it admits a holomorphic and
bounded extension (still denoted by h) to the domain

Ts ×D = {z = (z1, z2) ∈ C
2 | |Im z1| < s, |z2| < 1}
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for some s > 0. In such a case, we simply define

|h|s = sup
z∈Ts×D

|h(z)|.

Assume that h0 satisfies condition (b1) and (b2) with α ∈ B, then the KAM theorem states
that for any s > 0, there exists ε > 0 such that for any h1 satisfying |h1 − h0|s ≤ ε, the
exact area-preserving map f1 generated by h1 has an analytic invariant curve T1 such that
f1|T1

is analytically conjugate to the rotation α (and moreover, T1 analytically converges
to T0 as ε goes to zero).

The following result shows that the condition that α ∈ B cannot be weakened.

Theorem A. Assume that h0 satisfies condition (b1) and (b2) with α /∈ B. Then for all
ε > 0 sufficiently small and all s > 0, there exists h1 such that |h1−h0|s ≤ ε and the exact
area-preserving map f1 generated by h1 has no analytic invariant curve T1 such that f1|T1

is analytically conjugate to the rotation α.

The restriction on ε only comes from the condition (a1) and is thus independent of
the choice of s. The proof of Theorem A will follow easily from the following theorem of
Yoccoz.

Theorem 2 (Yoccoz). Assume α /∈ B. Then for all ε > 0 and all s > 0, there exists an
orientation-preserving analytic circle diffeomorphism with a lift of the form

u(θ) = θ + α + v(θ), |v|s ≤ ε

which is topologically but not analytically conjugate to the rotation α.

Proof of Theorem A. Let us fix s > 0 and ε > 0, and consider the function v : R → R

given by Theorem 2 which extends to Ts and satisfy |v|s ≤ ε. We set

h1(θ, I) = h0(I) + v(θ)I

so that obviously
|h1 − h0|s ≤ |v|s ≤ ε.

Let f0 and f1 be the maps generated by respectively h0 and h1. Obviously, the condition
(b1) implies that condition (a1) is satisfied by f0 but only for all (θ, I) ∈ R× (−1, 1) and
assuming ε sufficiently small, the same remains true for f1. Now using a bump function,
the map f1, initially defined on T × (−1, 1), can be extend to a smooth twist map from
T× R to itself in such a way that both (a1) and (a2) holds true.

Now for all (θ, I) ∈ R× (−1, 1), the lift f̄1 is defined by

f̄1(θ, I) = (Θ, I)

where
{

I = I − ∂θh1(θ, I) = I − v′(θ)I,
Θ = θ + ∂Ih1(θ, I) = θ + h′

0(I) + v(θ).
(1)
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Since u(θ) = θ + α + v(θ) is the lift of an orientation-preserving diffeomorphism of the
circle, we have

u′(θ) = 1 + v′(θ) > 0

and thus (1) can be written again as

{

I = (u′(θ))−1I,

Θ = θ + h′
0 ((u

′(θ))−1I) + v(θ).
(2)

From (2) it is now clear that T0 = T× {0} is invariant by f1, and since h′(0) = α by (b2),
the restriction f1|T0

is nothing but the dynamic induced by u given by Theorem 2, hence
it is topologically but not analytically conjugate to the rotation α.

To conclude, we argue by contradiction and assume the existence of an analytic invariant
curve T1 such that f1|T1

is analytically conjugate to the rotation α. Since both T0 and T1 are
invariant by the twist map f1 and have the same irrational rotation number α, it follows
from Proposition 1 that T0 = T1 but then f1|T0

= f1|T1
is analytically conjugate to the

rotation α, which is absurd.

3 The case of a Hamiltonian flow

By a suspension argument (see for instance [KP94] or [TZ10] for the analytic case), The-
orem A gives a result for Hamiltonian systems with n = 1, 5 degrees of freedom with a
convex (non-degenerate) integrable part, and thus also for Hamiltonian systems with n = 2
degrees of freedom with a quasi-convex (iso-energetically non-degenerate) integrable part.

For Hamiltonian systems with n ≥ 2 degrees of freedom and a convex integrable part,
to use the argument in the proof of Theorem A one first needs to have an analog of
Proposition 1, and fortunately, such a result was proved in [FGS09]. The setting is the one
of Tonelli Hamiltonians, which is a natural generalization of exact area-preserving twist
maps. For more details on Tonelli Hamiltonians and what we will describe next, we refer
to [Sor15].

Let H : Tn × Rn → R be a smooth Hamiltonian, then it is said to be Tonelli if it
satisfies the following two conditions

(A1) for all (θ, I) ∈ Tn × Rn, ∇2
IH(θ, I) is a (uniformly) positive definite quadratic form;

(A2) for all θ ∈ Tn, one has

lim
|I|→+∞

H(θ, I)

|I| = +∞.

In this context, the role of invariant curves is played by Lipschitz Lagrangian graphs, so
let T be such a graph, and assume it is invariant be the flow of a Tonelli Hamiltonian H .
Given a measure supported on T and invariant by the Hamiltonian flow, one can define a
rotation vector (or a Schwartzman asymptotic cycle) as an element of H1(T

n,R) ≃ Rn and
by considering all invariant measures, one can define a rotation set for the Hamiltonian
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flow restricted to T . We will say that T is Schwartzman strictly ergodic with rotation
vector ω ∈ Rn if its rotation set reduces to ω and there exists at least one measure with
full support in T . Simple examples (the one we will actually use later) are when the
restricted flow on T is either topologically conjugate to the linear flow of frequency ω or
obtained form the latter by a smooth reparametrization. The main result of [FGS09] gives
the following statement.

Theorem 3 (Fathi-Giuliani-Sorrentino). Let T0 and T1 be two Lipschitz Lagrangian graphs
invariant by the flow of a Tonelli Hamiltonian and which are Schwartzman strictly ergodic
with the same rotation vector ω ∈ Rn. Then T0 = T1.

As before, we now come back to a local setting in which the KAM theorem applies.
Consider a smooth Hamiltonian function H0 : B → R, where B = (−1, 1)n ⊆ R

n is a unit
ball and assume it satisfies the following conditions:

(B1) ∇2H0(I) is a positive definite quadratic form for all I ∈ B;

(B2) ∇H0(0) = ω .

Let us observe that for the KAM theorem, condition (B1) is not needed as the weaker
assumption that ∇2H0(I) is a non-degenerate quadratic form is sufficient. If H0 satisfies
(B1) and (B2), its vector field XH0 is integrable and its restriction to the invariant torus
T0 = Tn × {0} is given by the constant vector field ω.

Let H : Tn × B → R be a real-analytic function and suppose it admits a holomorphic
and bounded extension to the domain

T
n
s ×D = {z = (z1, . . . , z2n) ∈ C

n/Zn × C
n | max

1≤i≤n
|Im zi| < s, max

1≤i≤n
|zn+i| < 1}

for some s > 0, so that we can define

|H|s = sup
z∈Tn

s
×D

|H(z)|.

Here’s a formulation of the KAM theorem for Tonelli Hamiltonians. Assume H0 satisfies
condition (B1) and (B2) with ω ∈ BR, then for any s > 0, there exists ε > 0 such that for
any H1 with |H1−H0|s ≤ ε, the Hamiltonian flow of H1 has an analytic Lagrangian invari-
ant torus T1 which is a graph and such that the restriction XH1

|T1
is analytically conjugate

to the vector field ω (and moreover, T1 analytically converges to T0 as ε goes to zero).
For n = 2, we can prove that the condition that ω ∈ BR cannot be weakened.

Theorem B. Let n = 2, and assume that H0 satisfies condition (B1) and (B2) with
α /∈ BR. Then for all ε > 0 sufficiently small and all s > 0, there exists H1 such that
|H1−H0|s ≤ ε and the Hamiltonian flow of H1 has no analytic Lagrangian invariant graph
T1 such that XH1

|T1
is analytically conjugate to the vector field ω.

To prove Theorem B, we will need the follwoing continuous version of Theorem 2.

7



Theorem 4 (Yoccoz). Assume ω /∈ BR. Then for all ε > 0 and all s > 0, there exists an
analytic vector field on T2 of the form

U(θ) = ω + V (θ), |V |s ≤ ε

which is topologically but not analytically conjugate to vector field ω.

Proof of Theorem B. The proof is just a continuous version of the proof of Theorem A.
Fixing s > 0 and ε > 0, we define

H1(θ, I) = H0(I) + V (θ) · I

where V is given by Theorem 4 (for the value ε/
√
2 instead of ε). Clearly

|H1 −H0|s ≤
√
2|V |s ≤ ε.

Observe that the condition (B1) and a smallness assumption on ε allow again to extend
H1 to a smooth function defined on T2 × R2 which satisfies both (A1) and (A2).

It is clear from the Hamiltonian’s equation that T0 = T2 × {0} is invariant by the flow
of H1, and since ∇H0(0) = ω by (B2), the restriction XH1

|T0
is nothing but the vector field U

given by Theorem 4, hence it is topologically but not analytically conjugate to the vector
field ω.

To conclude, we argue by contradiction and assume the existence of an analytic La-
grangian invariant graph T1 such that XH1

|T1
is analytically conjugate to the vector field ω.

As T0 and T1 are invariant by the Hamiltonian flow of H1 which is Tonelli and are both
Schwartzman strictly ergodic with the same rotation vector ω, it follows from Theorem 3
that T0 = T1. But then XH1

|T0
= XH1

|T1
is analytically conjugate to the vector field ω, which

is absurd.

Theorem 4 is not known (and unlikely to be true) for n ≥ 3, yet the following result
was proved by Fayad in [Fay02].

Theorem 5 (Fayad). Let n ≥ 2 and assume ω /∈ R. Then for all s > 0 sufficiently small
and all ε > 0, there exists an analytic vector field on Tn of the form

U(θ) = ω + ϕ(θ)ω, |ϕ|s ≤ ε,

∫

Tn

ϕ(θ)dθ = 0,

which is not topologically conjugate to vector field ω.

The restriction on s is as follows: if ω /∈ R, then there exists s0 > 0 such that

lim sup
Q→+∞

ln(Ψω(Q))

Q
≥ s0

and one has to choose s < s0. We have to point out that Fayad’s result is in fact much more
general than the one we stated (it is not perturbative, valid for a Gδ dense set of functions

8



ϕ and the resulting vector field U is in fact weakly mixing) but we will only use the above
statement. Observe that since the flow of U is a reparametrization (with a function of unit
average) of the linear flow of frequency ω, it is Schwartzman strictly ergodic with rotation
vector ω.

Replacing Theorem 4 by Theorem 5 in the proof of Theorem B, one immediately arrives
at the following statement.

Theorem C. Let n ≥ 2, and assume thatH0 satisfies condition (B1) and (B2) with ω /∈ R.
Then for all ε > 0 sufficiently small and all s > 0 sufficiently small, there exists H1 such
that |H1−H0|s ≤ ε and the Hamiltonian flow of H1 has no Lipschitz Lagrangian invariant
graph T1 such that XH1

|T1
is topologically conjugate to the vector field ω.

As we already explained, this statement is similar to the main result of [Bes00]. Yet
Bessi’s result depends on the choice of H0(I) = 1

2
(I21 + · · · + I2n) while we can deal with

an arbitrary integrable Hamiltonian H0 which is convex in a neighborhood of the origin.
Also as it is stated, the main result of [Bes00] claims the non-existence of a C1 Lagrangian
invariant graph T1 such that XH1

|T1
is C1-conjugate to the vector field ω and thus our

conclusion is slightly stronger; yet it seems to us that what is really proved in [Bes00] is
the non-existence of a Lipschitz Lagrangian invariant graph T1 such that XH1

|T1
has all orbits

with the same rotation vector ω, in which case our conclusion could be slightly weaker.

4 Some questions

Let us conclude by some questions. It is clear from Forni’s result, Bessi’s result or The-
orem C that when ω /∈ R, invariant torus with a frequency ω are destroyed in a rather
strong sense. But in Theorem A and Theorem B this is not the case if ω /∈ BR as an
invariant analytic torus still exist on which the dynamic is topologically linearizable. So
one may ask the following question.

Question 1. Assume that ω ∈ R \ BR, is it possible to have the existence of a “regular”
invariant Lagrangian torus on which the conjugacy to the linear model is “less regular”?

We have used quotation marks since we have no idea of what can be expected, the
question is basically whether is it possible to prove anything non-trivial under the sole
assumption that ω ∈ R, which as we already explained, is the condition that guarantees
that the cohomological equation can be solved with an arbitrarily small loss of analyticity.
Of course, it may well be the case that when ω /∈ BR, the conclusions of Theorem A and
Theorem B can be strengthened to reach conclusions similar to Forni and Bessi’s results.

A second question concerns the assumptions (a1) and (A1). Clearly, (a1) is not a
restriction as it is the natural non-degeneracy assumption under which an invariant curve
with a prescribed frequency persists. But this is not the case for (A1) as we already pointed
out, so we may ask the following question.

Question 2. Is it possible to prove Theorem B and Theorem C replacing the condition
(A1) by the weaker condition that ∇2

IH0 is non-degenerate in a neighborhood of 0?

9



We expect the answer to be yes, at the expense of restricting the conclusion of non-
existence to a neighborhood of the unperturbed torus. The role of the condition (A1) is to
be able to obtain global uniqueness of invariant torus with a prescribed frequency; without
(A1) no such global uniqueness has to be expected yet in view of the statement of the
KAM theorem, only local uniqueness would be required. This local uniqueness is known
to hold true within the context of KAM theory (see [Sal04] for instance) but this is not
directly applicable to our context, yet we believe that with extra work this can be reached
even though we did not pursue this further.

Acknowledgements. This work was done while the author was in Cuba, in particular
in the very nice café “Tu té” in Santa Clara. The author have also benefited from partial
funding from the ANR project Beyond KAM.
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Astérisque. 231. Paris: Société Math. de France, 242 p., 1995.

12


	Introduction
	The case of a twist map
	The case of a Hamiltonian flow
	Some questions
	References

