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SUMMARY 

Although classically associated with urban environments in invertebrates, melanism in 

terrestrial snakes is more often linked to occupancy of cool climates [1, 2, 3]. Thermal 

advantages to melanism do not apply in aquatic snakes [4], but although turtle-headed 

seasnakes (Emydocephalus annulatus) are banded or blotched across a wide geographic range 

[5] (Figures 1A and 1B), most individuals are melanic in polluted inshore bays of the Pacific 

island of New Caledonia [4] (Figure 1C). Why has melanism evolved in these urban sites? 

Because trace elements bind to melanin, darker feathers enhance a bird’s ability to shed 

pollutants [6]. Reptiles in polluted habitats also accumulate trace elements, that are expelled 

when the skin is sloughed [7–11]. Might melanism enable snakes to rid themselves of harmful 

pollutants? We measured trace elements in sloughed skins of seasnakes from urban-industrial 

versus other areas, and in dark versus light skin. For the latter comparison we used data from 

laticaudine seasnakes (sea kraits Laticauda spp.), in which each individual is dark-and-light 

banded (Figure 2), facilitating comparisons between dark and light skin. As predicted, 

concentrations of trace elements were higher in snakes from urban-industrial areas, and higher 

in darker than paler skin (even within the same slough). The rate of excretion of trace 

elements is further enhanced by higher frequencies of sloughing in melanic than banded 

individuals, even within the same population, because of higher rates of algal settlement on 

darker skin. Thus, melanism of seasnakes in polluted sites may facilitate excretion of trace 

elements via sloughing. 

 

RESULTS 

We surveyed color morphs of turtle-headed seasnakes across their geographic range, using a 

combination of field observations and examination of museum specimens (Table S1). 

Melanism was common in E. annulatus from urban-industrial sites within New Caledonia, 
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and in a remote Barrier Reef atoll used as a bombing range in Australia (association between 

% melanism with the categories of urban-industrial, non-industrial, and river-mouth: F(2,20) 

= 27.61, p < 0.001; post-hoc Tukey tests show that urban-industrial > non-industrial or river-

mouth), whereas most snakes from less heavily polluted sites were banded or blotched (Figure 

1 and Table S1).  

Mean concentrations of the 13 trace elements in sloughed skins analyzed ranged from 

0.14 µg.g-1 for Cd to 1385 µg.g-1 for Fe, with a maximum concentration of 6195 µg.g-1 of Fe 

(Figure 3, Figure S1, Tables S2 and S3). There was no significant difference in trace-element 

concentrations between E. annulatus vs. the laticaudine species (MANOVA, F(1,13) = 4.74, p 

= 0.35). For all 11 trace elements, mean concentrations were significantly higher in urban-

industrial sites than in non-industrial sites (Figure 3, Figure S1, Tables S2; for statistical 

results see caption to Table S3). Concentrations of five trace elements (Co, Mn, Ni, Pb, Zn) 

were significantly higher in darker bands than in lighter bands (statistical results in caption to 

Table S3).  

Our mark-recapture data from a color-polymorphic population in New Caledonia [4] 

show that the proportions of snakes that exhibited heavy algal fouling and sloughing at the 

time of capture were higher in melanic snakes than in banded snakes (logistic regression, 

algae 2 = 20.86, df = 1, p < 0.0001; sloughing 2 = 9.12, df = 1, p < 0.003), but with similar 

seasonal patterns of sloughing in both color morphs.  

 

DISCUSSION 

In the seasnake Emydocephlaus annulatus, melanism is more frequent in urban-industrial sites 

than in less-polluted locations. Melanic snakes slough more often than banded conspecifics, 

and sloughing eliminates more trace elements from darker skin than from lighter skin. In 
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combination, these results suggest that industrial melanism enhances a seasnake’s ability to 

dispose of trace elements. 

Concentrations of trace elements in these sloughs were higher than most previous records 

for marine reptiles [12, 13], including seasnakes [14, 15] and fishes (including the eels 

consumed by sea kraits [16]) and higher than can cause health problems in mammals and 

birds [17]. Seasnakes in the Noumea Lagoon are exposed to pollutants via run-off from 

terrestrial systems [16, 18]. New Caledonia’s rich mineral deposits create high levels of trace-

element contamination, further increased by mining activities [16]. High trace-element 

concentrations in sloughs of sea kraits from close to a river-mouth (but far from urban-

industrial activity) suggest that melanism may benefit seasnakes in many areas. The primary 

uptake of trace elements presumably comes via ingestion of prey, with predatory snakes 

accumulating trace elements through time (i.e. bioaccumulation [15, 19]). These snakes also 

might take up trace elements directly from the water [20], given their high ratio of surface 

area to volume, and significant rates of gas exchange across the skin [21, 22]. However, 

radiotracer studies on other aquatic species suggest that feeding is the primary pathway for 

uptake of trace elements in invertebrates [23], fish [24], seabirds [25], and cetaceans [26]. 

Importantly, concentrations of trace elements were higher in darker than in lighter bands 

within the same slough (Tables S2 and S3). As in birds, then, melanin-rich areas of a snake’s 

outer surface accumulate trace elements, and hence, sloughing reduces the trace-element load 

faster in melanic snakes than in paler conspecifics. That effect is amplified by the higher 

sloughing frequency of melanic Emydocephalus (Figure 1A), presumably because algal 

spores settle onto dark substrates, enhancing rates of algal fouling [27].  

The melanic morph appears to be a derived trait in E. annulatus, but the number of 

independent evolutionary increases in the frequency of melanism is unclear. A single origin 

may have been involved, as in peppered moths [28], but occasional melanism is 
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geographically widespread in E. annulatus (Table S1). The only sites where melanism in E. 

annulatus was common, but which were not urban-industrial sites, were Saumarez Reef, an 

isolated reef that is used as a bombing range, and Ashmore Reef (Table S1), a site where 

seasnake populations have plummeted in recent years, possibly due to pollution from fishing 

boats [29]. Future work should measure concentrations of trace elements at these reefs, to 

quantify the correlation between melanism and pollutant levels more robustly, and compare 

trace-element concentrations to snake coloration in populations of E. annulatus where the 

banded morph occurs at a high frequency. 

What alternative hypotheses could explain the high frequency of melanism in seasnakes 

from urban-industrial habitats? Melanin plays diverse and important physiological roles; for 

example, enhanced immune function in melanin-rich individuals might be advantageous in 

polluted sites where the animals are subject to chemical stresses [2, 6], or melanism might 

protect snakes from high UV levels in clear shallow water [30]. Ecological advantages to 

melanism (such as local color-matching to the habitat, to avoid visual predation) or 

reproductive advantages (mate choice) seem less likely: there are no clear differences in 

habitat use between banded and melanic snakes in our study populations, and a snake’s color 

appears to play little role in mate recognition [31]. 

In summary, melanism has evolved under diverse selective advantages. Intriguingly, the 

seasnakes we studied in the IndoPacific exhibit the same correlation as seen in insects and 

pigeons in European cities: melanism is more common in urban-industrial environments. 

However, the selective advantages underlying that common pattern may involve antipredator 

camouflage and physiological benefits in insects, versus trace-element excretion in pigeons 

and seasnakes.  
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Figure 1. Geographic Variation in Coloration in Turtle-headed Seasnakes. See also 

Table S1 

(A) Emydocephalus annulatus (melanic specimen sloughing). 

(B) Melanic and banded E. annulatus from a peri-urban population near Noumea. 

(C) Frequencies of melanism in snakes from urban-industrial sites vs. other areas. 
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Figure 2. Amphibious Sea Krait and a Sloughed Skin 

(A) A sea krait (Laticauda saintgironsi). Photo credit, Xavier Bonnet. 

(B) A sloughed skin from a sea krait, showing dark-and-light rings. Photo credit, Claire 

Goiran. 
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Figure 3. Concentrations of Trace Elements (in µg.g-1 dry weight) in Sloughed Skins of 

Sea Kraits (Laticauda spp.) from the Great Lagoon of New Caledonia. See also Figure S1 

and Tables S2 and S3 

Some sites were close to urban-industrial areas, some were non-industrial, and one site was 

near the mouth of a major river that carried significant volumes of sediment. The panels show 

data (mean ± SE) for levels of trace elements in light and dark-colored rings of sloughs from 

sea kraits from each type of site: 

(A) Arsenic. 

(B) Cobalt. 

(C) Manganese. 

(D) Nickel. 

(E) Selenium. 

(F) Zinc.  
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STAR   METHODS 

Detailed methods are provided in the online version of this paper and include the following: 

 METHOD DETAILS 

o Experimental design 

o Study species 

o Survey of snake coloration 

o Collection and analysis of sloughed skins 

o Rate of sloughing 

o Analysis of trace elements 

 STATISTICAL ANALYSES 

 

METHOD DETAILS 

Experimental design 

In this paper, we describe the case of a seasnake species in which melanism is more frequent 

in peri-urban populations than in those from less disturbed areas; and identify a possible 

selective advantage. We hypothesized that melanism might enhance the viability of peri-urban 

snakes by enhancing their ability to eliminate trace-element pollutants, and thus, tested three 

predictions from the above hypothesis: 

(1) melanism will be more common in peri-urban populations of E. annulatus than in 

conspecifics from less disturbed areas; 

(2) sloughed skins of seasnakes from peri-urban areas will contain higher levels of trace 

elements than those of conspecifics from less disturbed areas; and 

(3) concentrations of trace elements will be higher in dark skin than in pale skin. Because 

most individuals in our study populations are melanic, we tested this third prediction using 

data from sympatric laticaudine seasnakes that are dark-and-light banded and occur in both 
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non-polluted and industrialized areas. That situation facilitates comparison of trace-element 

levels in dark versus light skin (from the same snake) and from areas with differing levels of 

pollution; and (because laticaudines slough on land) to obtain our samples from terrestrial 

situations where trace-element concentrations in sloughs are not rapidly leached out, as may 

occur in water. 

 

Study species 

The turtle-headed seasnake (Emydocephalus annulatus) is a small hydrophiine with a wide 

distribution in the IndoPacific. Most individuals are brightly banded, but some are melanic [5] 

(Figure 1). A snake retains its color pattern throughout life (R. Shine, unpubl. data). In 

contrast to this entirely aquatic species, brightly-banded sea kraits (Laticauda saintgironsi and 

L. laticaudata) forage in the ocean but return to land to slough [32]. Rings of color are clearly 

evident in their shed skins (Figure 2B). 

 

Survey of snake coloration 

We scored colors of E. annulatus in 15 populations (1,456 specimens) across the species’ 

range (Table S1). Although some locations are close together, philopatry of snakes reduces 

gene flow [33]. The snakes were collected over a long period of time, but no significant 

temporal shifts in morph frequency were apparent in any sites. 

 

Collection and analysis of sloughed skins 

In 2015 and 2016, we collected recently-sloughed skins while processing E. annulatus during 

mark-recapture studies [34], and from terrestrial sites where L. saintgironsi and L. laticaudata 

aggregate [32]. Sampling locations for Laticauda spp. included urban-industrial zones (Baie 

des Citrons n = 1, Kuendu n = 10) and non-industrial locations (Mato Islet n = 6, Signal Islet 
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n = 8), including close to the mouth of a large river (Bourail n = 6). We did not distinguish 

between sloughs of the two laticaudines. For E. annulatus, all sloughs were manually 

removed from shedding snakes, so that the skin was not exposed to water (urban-industrial: 

Anse Vata n = 1 snake, Baie des Citrons n = 14; non-industrial: Isle des Pins n = 1). 

 

Rate of sloughing 

During long-term fieldwork (2004–2017) in inshore bays beside Noumea [27] (2,377 total 

captures), we scored whether or not recently-captured E. annulatus were covered by algae or 

were sloughing).  

 

Analysis of trace elements 

In order to remove dirt and adsorbed trace elements, sloughs were rinsed with distilled water, 

dried, cut into pieces, cleaned twice in 2:1 chloroform:methanol solution in an ultrasound bath 

for 2 min, rinsed in ethanol between and after the cleanings and dried at 48°C for 24 h. Then 

they were ground with an agate mortar and pestle and sent to a laboratory where they were 

analyzed for elements [35]. Briefly, aliquots of 50 to 150 mg were digested with a mixture of 

hydrochloric and nitric acids in a microwave. As, Cr, Cu, Fe, Mn, Ni, Se and Zn were 

analyzed by inductively coupled plasma optical emission spectrometry on a Varian Vista-Pro 

ICP-OES (Varian Inc., Palo Alto, CA, USA), and Ag, Cd, Co, Pb and V were analyzed by 

inductively coupled plasma mass spectrometry on an ICP-MS Series II (ThermoFisher 

Scientific, Waltham, MA, USA). The analytical performances for each trace element and 

method were checked using two certified reference materials (CRM): dogfish liver NRCC-

DOLT-4 and lobster hepatopancreas NRCC-TORT-3. Quality control showed recoveries 

ranging from 69 to 108% according to the element. Trace-element concentrations are 

presented in micrograms per grams on a dry weight basis (µg.g-1 dw). 



 

 

17 

 

STATISTICAL ANALYSES 

To quantify the impact of skin color on trace element concentrations, we took samples of both 

the black rings and the light rings from each banded slough. Using JMP Pro v11 we compared 

mean concentrations of each trace element in the two taxa (E. annulatus vs. Laticauda spp.) 

using Multivariate Analysis of Variance (MANOVA), with species as the factor and 

concentrations of trace elements (ln-transformed to attain normality of distributions) as the 

dependent variables. To examine specific trace elements more closely within the sample of 

Laticauda, we used ANOVA on each trace element, with water quality (urban-industrial vs. 

non-industrial vs. river-mouth) and skin color (light vs. dark rings) as factors, plus their 

interaction, and with snake ID# included as a random factor to account for the fact that both 

light and dark rings were analyzed from each slough.  

 

SUPPLEMENTAL INFORMATION 

Supplemental Information includes one figure and three tables, and can be found with this 

article online. 

 


