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Abstract

In this paper we study a class of combined regular and singular stochastic control problems
that can be expressed as constrained BSDEs. In the Markovian case, this reduces to a char-
acterization through a PDE with gradient constraint. But the BSDE formulation makes it
possible to move beyond Markovian models and consider path-dependent problems. We also
provide an approximation of the original control problem with standard BSDEs that yield a
characterization of approximately optimal values and controls.

Keywords: singular stochastic control, constraint backward stochastic differential equation,
minimal supersolution.

Mathematics Subject Classification. 93E20

1 Introduction

We consider a class of continuous-time stochastic control problems involving two different controls:
a regular control affecting the state variable in an absolutely continuous way, and a singular
control resulting in a cumulative impact of finite variation. For standard stochastic control in
continuous time, we refer to the textbooks [13, 22, 14, 27, 26]. Singular stochastic control goes
back to [2, 3] and has subsequently been studied by e.g. [4, 16, 17, 19, 18, 20, 9, 1, 23, 11, 21, 15].
For a typical Markovian singular stochastic control problems, it can be deduced from dynamic
programming arguments that the optimal value is given by a viscosity solution of a PDE with
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gradient constraint. On the other hand, it has been shown that PDEs with gradient constraints
are related to BSDEs with Z-constraints; see, e.g. [8, 25].

In this paper we directly show that a wide variety of combined regular and singular stochastic
control problems can be represented as Z-constrained BSDEs1. This has the advantage that it
allows to study path-dependent problems. More precisely, we consider optimization problems of
the form

sup
α,β

E

[
∫ T

0
f(t,Xα,β, αt)dt+

∫ T

0
g(t,Xα,β , αt)dβt + h(Xα,β)

]

(1.1)

for a d-dimensional controlled process with dynamics

dX
α,β
t = µ(t,Xα,β , αt)dt+ ν(t,Xα,β , αt)dβt + σ(t,Xα,β)dWt, X0 = x ∈ R

d, (1.2)

where (Wt) is an n-dimensional Brownian motion, (αt) is a predictable process taking values
in a compact subset A ⊆ R

k (the regular control) and (βt) is an l-dimensional process with
nondecreasing components (the singular control). The coefficients µ, ν, σ and the functions f, g, h
are all allowed to depend in a non-anticipative way on the paths of Xα,β.

Our main representation result is that the optimal value of (1.1) is given by the initial value
of the minimal supersolution of a BSDE

Yt = h(X) +

∫ T

t

p(s,X,Zs)ds −

∫ T

t

ZsdWs (1.3)

subject to a constraint of the form q(t,X,Zt) ∈ R
l
−, where (Xt) is the unique strong solution of

an SDE
dXt = η(t,X)dt + σ(t,X)dWt, X0 = x,

with the same σ-coefficient as (1.2).
In addition, we show that the original problem (1.1) can be approximated with a sequence of

standard BSDEs

Y
j
t = h(X) +

∫ T

t

pj(s,X,Zj
s )ds −

∫ T

t

Zj
sdWs. (1.4)

While the minimal supersolution of the constrained BSDE (1.3) gives the optimal value of the
control problem (1.1), the BSDEs (1.4) can be used to characterize nearly optimal values as well
as approximately optimal controls.

Due to the constraint q, it might happen that the minimal supersolution of (1.3) jumps at
the final time T . In our last result, we show how this jump can be removed by replacing h with
the smallest majorant ĥ of h that is consistent with q – the so-called face-lift of h.

The rest of the paper is structured as follows. In Section 2, we introduce the notation and
our main results. All proofs are given in Section 3.

1Independently, Elie, Moreau and Possamäı have been working on a similar idea in [10]. But the exact class
of control problems studied in [10] is different. Moreover, they employ analytic methods, while we use purely
probabilistic arguments.
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2 Results

We consider a combined regular and singular stochastic control problem of the form

I := sup
(α,β)∈A

E

[
∫ T

0
f(t,Xα,β , αt)dt+

∫ T

0
g(t,Xα,β , αt)dβt + h(Xα,β)

]

(2.1)

for a constant time horizon T ∈ R+ and a d-dimensional controlled process evolving according to

dX
α,β
t = µ(t,Xα,β , αt)dt+ ν(t,Xα,β , αt)dβt + σ(t,Xα,β)dWt, X0 = x ∈ R

d, (2.2)

where (Wt) is an n-dimensional Brownian motion on a probability space (Ω,F ,P) with corre-
sponding augmented filtration F = (Ft). The set of controls A consists of pairs (α, β), where
(αt)0≤t≤T is an F-predictable process with values in a compact subset A ⊆ R

k (the regular con-
trol) and an l-dimensional F-adapted continuous process (βt) with nondecreasing components
such that β0 = 0 and βT ∈ L2(P) (the singular control). The coefficients µ, ν, σ and the perfor-
mance functions f, g, h can depend in a non-anticipative way on the paths of Xα,β . Depending on
their exact specification, there might exist an optimal control in A, or an optimal control might
require (βt) to jump and can only be approximated with controls in A.

Let us denote by Cd the space of all continuous functions from [0, T ] to R
d and set

‖x‖t := sup
0≤s≤t

|xs|, x ∈ Cd,

where |.| is the Euclidean norm on R
d. We make the following

Assumption 2.1

(i) σ : [0, T ]× Cd → R
d×n is a measurable function such that

∫ T

0
|σ(t, 0)|2dt < ∞ and |σ(t, x)− σ(t, y)| ≤ L‖x− y‖t for some constant L ∈ R+.

(ii) µ is of the form µ(t, x, a) = η(t, x)+σ(t, x)µ̃(t, x, a) for measurable functions η : [0, T ]×Cd →
R
d and µ̃ : [0, T ]× Cd ×A → R

n such that

∫ T

0
|η(t, 0)|2dt < ∞ and |η(t, x) − η(t, y)| ≤ L‖x− y‖t for some constant L ∈ R+,

µ̃(t, x, a) is bounded and continuous in a and

∫ T

0
sup
a∈A

|µ(t, 0, αt)|
2dt < ∞, sup

a∈A
|µ(t, x, a)− µ(t, y, a)| ≤ L‖x− y‖t for some L ∈ R+.
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(iii) ν is of the form ν(t, x, a) = σ(t, x)ν̃(t, x, a) for a measurable function ν̃ : [0, T ]×Cd ×A →
R
d×n such that ν̃(t, x, a) is bounded and continuous in a and

∫ T

0
sup
a∈A

|ν(t, 0, αt)|
2dt < ∞, sup

a∈A
|ν(t, x, a)− ν(t, y, a)| ≤ L‖x− y‖t for some L ∈ R+.

(iv) The functions f, g : [0, T ] × Cd × A → R are measurable; f(t, x, a) and g(t, x, a) are non-
anticipative in x and upper semicontinuous in (x, a); h : Cd → R is upper semicontinuous
in x; and the supremum in (1.1) is finite.

Under these assumptions, equation (2.2) has for every pair (α, β) ∈ A a unique strong solution

(Xα,β
t ), and the SDE

dXt = η(t,X)dt + σ(t,X)dWt (2.3)

has a unique strong solution (Xt); see e.g. Protter (2004).
For our main representation result, Theorem 2.2, we need the mappings p : [0, T ]×Cd×R

n → R

and q : [0, T ] ×Cd × R
n → R

l given by

p(t, x, z) := sup
a∈A

{f(t, x, a) + zµ̃(t, x, a)} and qi(t, x, z) := sup
a∈A







gi(t, x, a) +

n
∑

j=1

zj ν̃ji(t, x, a)







.

In this paper, a supersolution of the BSDE

Yt = h(X) +

∫ T

t

p(s,X,Zs)ds−

∫ T

t

ZsdWs with constraint q(t,X,Zt) ∈ R
l
−

consists of a triplet (Y,Z,K) ∈ S2 ×H2 ×K2 such that

Yt = h(X)+

∫ T

t

p(s,X,Zs)ds+(KT −Kt)−

∫ T

t

ZsdWs and q(t,X,Zt) ∈ R
l
− for all t, (2.4)

where

• S2 is the space of d-dimensional RCLL F-adapted processes (Yt) such that E sup0≤t≤T |Yt|
2 <

∞,

• H2 the space of Rd×n-valued F-predictable processes (Zt) such that E
∫ T

0 |Zt|
2dt < ∞, and

• K2 the set of processes (Kt) in S2 with nondecreasing components starting at 0.

Moreover, we call (Y,Z,K) a minimal supersolution of (2.4) if Yt ≤ Y ′
t , 0 ≤ t ≤ T , for any other

supersolution (Y ′, Z ′,K ′); see e.g. Peng (1999).
Our main result is the following:
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Theorem 2.2 The constrained BSDE (2.4) has a minimal supersolution (Y,Z,K), and Y0 = I.

The next result shows that problem (2.1) can be approximated by restricting the controls to
regular piecewise constant controls: for j ∈ N, denote by Aj the set of all pairs (α, β) ∈ A of the
form α =

∑m−1
i=0 ai1(ti,ti+1] and βt =

∫ t

0 bsds, where b =
∑m−1

i=0 bi1(ti,ti+1], the bi are Fti-measurable

with values in [0, j]l and 0 = t0 < t1 < t2 · · · < tm = T is a deterministic partition of [0, T ]. The
corresponding control problem is

Ij := sup
(α,β)∈Aj

E

[
∫ T

0
f(t,Xα,β, αt)dt+

∫ T

0
g(t,Xα,β , αt)dβt + h(Xα,β)

]

, (2.5)

and the following holds:

Proposition 2.3 One has Ij ↑ I for j → ∞.

Moreover, since (2.5) is a regular control problem, it admits a representation through a stan-
dard BSDE

Yt = h(X) +

∫ T

t

pj(s,X,Zs)ds−

∫ T

t

ZsdWs (2.6)

with a driver given by

pj(t, x, z) := sup
a∈A,b∈[0,j]m

{f(t, x, a) + zµ̃(t, x, a) + [g(t, x, a) + zν̃(t, x, a)]b} .

Compared to the constrained BSDE (2.4), which gives the optimal value of the control prob-
lem (2.1), the BSDE (2.6) provides a characterization of the optimal value of (2.5) as well as
corresponding optimal controls.

Theorem 2.4 For every j ∈ N, BSDE (2.6) has a unique solution (Y j , Zj) in S2×H2. Moreover,

Y
j
0 = Ij , and for any pair of progressively measurable functionals α̂ : [0, T ] × C → A, b̂ : [0, T ] ×

C → [0, j]l satisfying

f(t,X, α̂t(X))+Z
j
t µ̃(t,X, α̂t(X))+[g(t,X, α̂t(X))+Z

j
t ν̃(t,X, α̂t)]b̂t(X) = pj(t,X,Z

j
t ) dt× dP-a.e.,

αt = α̂t(X
α,β) and βt =

∫ t

0 b̂s(X
α,β)ds defines a pair in A such that

Ij = E

[
∫ T

0
f(t,Xα,β , αt)dt+

∫ T

0
g(t,Xα,β , αt)dβt + h(Xα,β)

]

.

Our last result concerns the continuity of the minimal supersolution of (2.4) at the final time
T . Due to the constraint q, Y might jump downwards at T . This can be avoided by modifying
h. Define the face-lift ĥ : C → R as follows

ĥ(x) := inf{h(x + ν(T, x)l1{T}) + g(T, x)l, l ∈ R
d
+}.

Then the following holds follwing an argument from [6].
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Proposition 2.5 The BSDE

Yt = ĥ(X) +

∫ T

t

p(s,X,Zs)ds−

∫ T

t

ZsdWs with constraint q(t,X,Zt) ∈ R
l
− (2.7)

admits a minimal supersolution (Ŷ , Ẑ, K̂), and one has ∆ŶT = 0 as well as (Ŷt, Ẑt, K̂t) =
(Yt, Zt,Kt) for t ∈ [0, T ), where (Y,Z,K) is the minimal supersolution of (2.4).

3 Proofs

We start with the

Proof of Proposition 2.3. It is straightforward to see that Ij is nondecreasing and Ij ≤ I. By
a density argument, we can prove that

lim
j

Ij = I.

�

Next, we show that the approximate problems (2.5) admit a weak formulation. To do that,
we note that by Girsanov’s theorem, the process

W
α,β
t := Wt −

∫ t

0
[µ̃(s,X, αs) + ν̃(s,X, αs)bs] ds.

is for every pair (α, β) ∈ Aj, a Brownian motion under the measure P
α,β given by

dPα,β

dP
= E

(
∫ .

0
[µ̃(s,X, αs) + ν̃(s,X, αs)bs] dWs

)

.

Moreover, the following holds:

Lemma 3.1 For all (α, β) ∈ Aj , the augmented filtration generated by Wα,β equals F.

Proof. Denote the augmented filtration of Wα,β by F
α,β = (Fα,β

t ). Since X is a strong solution
of the SDE (2.3), it is F-adapted. So it follows from the definition of Wα,β that Fα,β is contained
in F.

On the other hand, one has α =
∑m−1

i=0 ai1(ti,ti+1] and b =
∑m−1

i=0 bi1(ti,ti+1] for ai and bi Fti-
measurable. In particular a0 and b0 are deterministic. So it follows from Assumption 2.1 that on
[0, t1], (Xt) is the unique strong solution of

dXt = µ(t,X, αt)dt+ ν(t,X, αt)btdt+ σ(t,X)dWα,β
t , X0 = x.
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Hence, (Xt)t∈[t0,t1] is (F
α,β
t )t∈[t0,t1]-adapted, from which it follows that

Wt = W
α,β
t +

∫ t

0
[µ̃(s,X, αs) + ν̃(s,X, αs)bs] ds, t ∈ [0, t1],

is (Fα,β
t )t∈[0,t1]-adapted. This shows that a1 and b1 are Fα,β

t1
-measurable. Now the lemma follows

by induction over i. �

Using Lemma 3.1, one can derive the following weak formulation of problem (2.5):

Lemma 3.2 One has

Ij = sup
(α,β)∈Aj

E
α,β

[
∫ T

0
f(t,X, αt)dt+

∫ T

0
g(t,X, αt)dβt + h(X)

]

, (3.1)

where E
α,β denotes the expectation under P

α,β.

Proof. For all (α, β) ∈ Aj , Xα,β is the unique strong solution of

dX
α,β
t = µ(t,Xα,β, αt)dt+ ν(s,Xα,β , αt)btdt+ σ(t,Xα,β)dWt, X0 = x,

and X the unique strong solution of

dXt = µ(t,X, αt)dt+ ν(s,X, αt)btdt+ σ(t,X)dWα,β
t , X0 = x.

Since a0 and b0 are deterministic, (αt, βt,Xt)t∈[0,t1] has the same distribution under the measure

P
α,β as (αt, βt,X

α,β
t )t∈[0,t1] under P. Moreover, a1 and b1 are functions of (Wt)t∈[0,t1]. So if one

defines ã1 and b̃1 to be the same functions of (Wα,β
t )t∈[0,t1], then (α̃t, β̃t,Xt)t∈[t1,t2] has the same

distribution under P
α̃,β̃ as (αt, βt,X

α,β
t )t∈[t1,t2] under P. Continuing like this, one sees that for

every pair (α, β) ∈ Aj, there exists a pair (α̃, β̃) ∈ Aj such that (α̃, β̃,X) has the same distribution

under Pα̃,β̃ as (α, β,Xα,β) under P. Conversely, it can be deduced from Lemma 3.1 with the same

argument that for every pair (α, β) ∈ Aj, there exists a pair (α̃, β̃) ∈ Aj such that (α̃, β̃,Xα̃,β̃)
has the same distribution under P as (α, β,X) under Pα,β. This proves the lemma. �

Now, we are ready to give the

Proof of Theorem 2.4

It follows from our assumptions that the BSDE (2.6) satisfies the standard conditions. So it has
a unique solution (Y j , Zj) in S2 ×H2; see e.g. ... For each pair (α, β) ∈ Aj, we set

Y
α,β
t := E

α,β

[
∫ T

t

f(s,X, αs)ds +

∫ T

t

g(t,X, αs)dβs + h(X) | Ft

]

.
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By Lemma 3.1 and the predictable representation theorem that there exists an R
n-valued F-

predictable process Zα,β such that

E
α,β

[
∫ T

0
f(s,X, αs)ds +

∫ T

0
g(t,X, αs)dβs + h(X) | Ft

]

= Y
α,β
0 +

∫ t

0
Zα,β
s dWα,β

s .

Hence,

Y
α,β
t = h(X) +

∫ T

t

f(s,X, αs)ds +

∫ T

t

g(s,X, αs)dβs −

∫ T

t

Zα,β
s dWα,β

s

= h(X) +

∫ T

t

{

f(s,X, αs) + Zα,β
s µ̃(s,X, αs)

}

ds

+

∫ T

t

{

g(s,X, αs) + Zα,β
s ν̃(s,X, αs)

}

dβs −

∫ T

t

Zα,β
s dWs.

By a comparison result for BSDEs (see e.g. ...), one has Y j ≥ Y α,β. On the other hand, it
can be deduced from a measurable selection argument that there exist progressively measurable
functions

α̃ : [0, T ]× C × R
n → A and b̃ : [0, T ]× C ×R

n → [0, j]l

such that

f(t, x, α̃(t, x, z)) + zµ̃(t, x, α̃(t, x, z)) + [g(t, x, α̃(t, x, z)) + zν̃(t, x, α̃(t, x, z))]b̃(t, x, z) = pj(t, x, z).

αt = α̃(t,X,Zj) and βt =
∫ t

0 b̃(s,X,Z
j
s )ds defines a pair in A that can be approximated by a

sequence of pairs (αn, βn) ∈ Aj in L2. Then

E
αn,βn

[
∫ T

0
f(s,X, αn

s )ds +

∫ T

0
g(t,X, αn

s )dβ
n
s + h(X)

]

converges to

E
α,β

[
∫ T

0
f(s,X, αs)ds+

∫ T

0
g(t,X, αs)dβs + h(X)

]

,

and

Y
j
0 = h(X) +

∫ T

0
pj(s,X,Zj

s )ds−

∫ T

0
Zj
sdWs

= h(X) +

∫ T

0

{

f(s,X, αs) + Zj
s µ̃(s,X, αs)

}

ds

+

∫ T

0

{

g(s,X, αs) + Zj
s ν̃(s,X, αs)

}

bsds−

∫ T

0
Zj
sdWs

= h(X) +

∫ T

0
{f(s,X, αs) + g(s,X, αs)bs} ds−

∫ T

0
Zj
sdW

α,β
s

= E
α,β

[
∫ T

0
f(s,X, αs)ds+

∫ T

0
g(t,X, αs)dβs + h(X)

]

.
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This shows that Y j
0 = Ij .

Finally, if α̂ : [0, T ]×C → A and b̂ : [0, T ]×C → [0, j]l are progressively measurable functionals
such that

f(t,X, α̂t(X))+Z
j
t µ̃(t,X, α̂t(X))+[g(t,X, α̂t(X))+Z

j
t ν̃(t,X, α̂t)]b̂t(X) = pj(t,X,Z

j
t ) dt× dP-a.e.,

it follows as above that

Y
j
0 = E

α̂(X),β̂(X)

[
∫ T

0
f(s,X, α̂(X)s)ds +

∫ T

0
g(t,X, α̂(X)s)dβ̂(X)s + h(X)

]

.

Moreover, αt = α̂t(X
α,β) and βt =

∫ t

0 b̂s(X
α,β)ds defines a pair in A such that (α, β,Xα,β) has

the same distribution under P as (α̂(X), β̂(X),X) under Pα̂(X),β̂(X). As a consequence,

Ij = E

[
∫ T

0
f(t,Xα,β , αt)dt+

∫ T

0
g(t,Xα,β , αt)dβt + h(Xα,β)

]

,

and the proof is complete. �

Proof of Theorem 2.2

We know that Ij ↑ I and Ij = Y
j
0 , where (Y j , Zj) is the solution of (2.6). On the other hand,

it follows from Peng (1999) that Y j increases to Y , where (Y,Z) is the maximal subsolution of
(2.4). �
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