Joffroy Beauquier
email: beauquier@lri.fr

Janna Burman
email: burman@lri.fr

Fabien Dufoulon
email: dufoulon@lri.fr

Shay Kutten
email: kutten@ie.technion.ac.il

Fast Beeping Protocols for Deterministic MIS and (∆ + 1)-Coloring in Sparse Graphs (Extended Version)

The beeping model is an extremely restrictive broadcast communication model that relies only on carrier sensing. We consider two problems in this model: (∆+1)-vertex coloring and maximal independent set (MIS), for a network of unknown size n and unknown maximum degree ∆. Solving these problems allows to overcome communication interferences, and to break symmetry, a core component of many distributed protocols. The presented results apply to general graphs, but are efficient in graphs with low edge density (sparse graphs), such as bounded degree graphs, planar graphs and graphs of bounded arboricity. We present O(∆ 2 log n + ∆ 3) time deterministic uniform MIS and coloring protocols, which are asymptotically time optimal for bounded degree graphs. Furthermore, we devise O(a 2 log 2 n+a 3 log n) time MIS and coloring protocols, as well as O(a 2 ∆ 2 log 2 n + a 3 ∆ 3 log n) time 2-hop MIS and 2-hop coloring protocols, where a is the arboricity of the communication graph. Building upon the 2-hop coloring protocols, we show how the strong CONGEST model can be simulated and by using this simulation we obtain an O(a)-coloring protocol. No results about coloring with less than ∆ + 1 colors were known up to now in the beeping model.

I. INTRODUCTION

The discrete beeping model was introduced by Cornejo and Kuhn [START_REF] Cornejo | Deploying wireless networks with beeps[END_REF] to provide a convenient formal framework for studying radio networks having severe restrictions on communication capabilities, yet where widely applicable protocols can be designed and analytically proven in an efficient manner. Since protocol executions in distributed computing are frequently hard to grasp (even with simulations or experiments), having formal models is crucial for both practical and theoretical reasons. In the discrete beeping model, time is divided into synchronous rounds, and in each round, a node can either listen or transmit a unary signal (beep) to all its neighbors. The possibility to directly transmit a beep to a node is defined by a static communication graph, and nodes have absolutely no knowledge of this graph. A beeping node receives no feedback, while a silent one can only detect that either at least one of its neighbors beeped or that all of them were silent. A listening node does not receive the identifiers of its beeping neighbors, as a beep is merely a detectable burst of energy. Protocols can use the synchronous nature of the rounds to transmit information through beeps, but doing so impacts the time complexity in a ‡ This work has been supported by the Israeli-French Maimonide research project grant and by an Israeli Ministry of Science and Technology grant. quantifiable manner. This work studies how this difficulty can be overcome.

Applications of this model range from radio networks with reduced network stacks [START_REF] Cornejo | Deploying wireless networks with beeps[END_REF], such as energy-limited sensor networks, which can provide improved speed, low cost and less transmission errors, to biological networks [START_REF] Navlakha | Distributed information processing in biological and computational systems[END_REF], where the beeping model allows to study the efficiency of natural protocols. Indeed, most biological systems communicate in a primitive manner. Fireflies communicate through flashes of light [START_REF] Guerraoui | Byzantine fireflies[END_REF] and cells through the diffusion of specific chemical markers [START_REF] Afek | Beeping a maximal independent set[END_REF].

Different applications will result in different communication graphs. Graphs with low edge density are said to be sparse. The maximum degree and the arboricity of a graph are measures of its edge density, where low values indicate sparse graphs. Contrarily to graphs with low maximum degree, low arboricity graphs can be seen as graphs which are "globally" sparse but may be "locally" dense. Many real-world networks are sparse [START_REF] Eppstein | Listing all maximal cliques in large sparse real-world graphs[END_REF]. In particular, graphs embedded in some surface, for example the plane, have low arboricity.

The distributed vertex coloring and maximal independent set (MIS) problems are fundamental building blocks in protocol design. The coloring problem consists in assigning colors to nodes such that no two neighboring nodes (sharing an edge in the communication graph) have the same color. The MIS problem consists in choosing a set of nodes in the communication graph such that no two nodes in the set are neighbors, and such that any node not in the set has a neighbor in that set. Solving these problems is important for dealing with the interferences inherent to the beeping model. More specifically, a coloring can be used to allocate resources that cannot be shared by neighboring nodes. Nodes in an MIS can act as cluster heads in order to coordinate actions, and participate in a network backbone construction.

Serving as important primitives for protocol design in the beeping model, MIS and coloring problems have received a lot of attention (see Sect. I-B). Efficient probabilistic solutions were proposed for general graphs. However, the more difficult deterministic case, useful whenever random behavior is inappropriate or deterministic guarantees are required, has received much less attention. In this work, we are interested in designing deterministic protocols having efficient time complexity.

A. Preliminaries

Let [k] be the set {1, . . . , k}. For any two integers a, b (∈ Z) and any positive integer k (∈ N >0), let a ≡ b mod k denote the congruence relationship between a and b such that a mod k = b mod k. The operator is used for the string concatenation. For any positive integer k, l(k) is the length of the binary representation of k, i.e., l(k) = 1 + log 2 k . For any function f : N >0 → N >0 and any positive integer k, f i (k), where i ∈ [l(k)], denotes the ith most significant bit of f (k)'s binary representation.

The communication network is represented by a simple connected undirected graph G = (V, E), where V is the node set and E the edge set. The network size |V | is also denoted by n, the diameter by D and the maximum degree by ∆. For a node v ∈ V , the neighbors of v are N (v) = {u ∈ V s.t. (u, v) ∈ E} and its degree is deg(v) = |N (v)|. Nodes have unique identifiers (ids). This property is essential in order to break symmetry in deterministic protocols. The identifier of a node u ∈ V , id(u), is an integer from [N] where N = n c with a constant c > 1. N is an upper bound on the total number of nodes in G. The length of id(u) is denoted by l(u). Then, the maximum length over all ids in G is l max = max u∈V l(u). We have l max = O(log N) = O(log n). The distance between two nodes u and v in G is dist(u, v). The square graph of G is the graph G 2 = (V, E s), where

E s = {(u, v) | u, v ∈ V, dist(u, v) ≤ 2}. G[R] denotes the subgraph of G induced by R ⊂ V . Its edges (E G [R]
) are the edges of G connecting two vertices in R. The arboricity of G, denoted by a(G) or just a, is the minimum number of disjoint forests into which the edge set E can be partitioned. Equivalently, Nash-Williams [START_REF] Nash-Williams | Decomposition of finite graphs into forests[END_REF] proved that arboricity is also a measure of density, i.e., a = max

R⊆V,|R|≥2 |E G [R]| |R|-1 .

B. Related Work

In [START_REF] Casteigts | Design Patterns in Beeping Algorithms: Examples, Emulation, and Analysis[END_REF], round complexity lower bounds are given for the MIS and (∆ + 1)-coloring problems. These bounds are Ω(log n) and Ω(∆ + log n) respectively. They were obtained assuming randomized algorithms, and thus apply to both deterministic and randomized ones. In the latter case, the solution or the running time is guaranteed with high probability (w.h.p.). Moreover, these bounds apply to a stronger variant of the beeping model (with collision detection). In this variant, listening nodes can distinguish between a single beep and the superposition of multiple beeps (a collision).

In [START_REF] Cornejo | Deploying wireless networks with beeps[END_REF], the authors present the first coloring protocol for the beeping model. It outputs a correct coloring after O(∆ + log n) rounds w.h.p. Following this paper, randomized MIS and coloring protocols were designed for the beeping model with collision detection, in a series of papers ([START_REF] Afek | Beeping a maximal independent set[END_REF], [START_REF] Scott | Feedback from nature: An optimal distributed algorithm for maximal independent set selection[END_REF], [START_REF] Casteigts | Design Patterns in Beeping Algorithms[END_REF]). These protocols achieve optimal round complexity, but assume collision detection. Moreover, the resulting colorings often employ more than ∆ + 1 colors. These protocols can be translated to the weaker beeping model (with no collision detection) with an Ω(log n) multiplicative factor.

Schneider and Wattenhofer [START_REF] Schneider | What is the use of collision detection (in wireless networks)?[END_REF] solve deterministic MIS in radio networks with collision detection. Although the term "beeping model" does not appear in [START_REF] Schneider | What is the use of collision detection (in wireless networks)?[END_REF], the presented protocol straightforwardly works in this model. It is time optimal for growth-bounded graphs (GBG). These are graphs where, for any given node v and integer r, the number of nodes in any independent set (see definition in Sect. I-D) within distance r of v is bounded by f (r), which is polynomial in r. However, this property does not cover all bounded degree graphs, trees, planar graphs, or more generally, sparse graphs. The round complexities of different MIS and coloring protocols are compared below (see respectively Figure 1 and2). The only deterministic protocols are those in [START_REF] Schneider | What is the use of collision detection (in wireless networks)?[END_REF] and in the present paper. Some protocols require K, an upper bound on ∆. O(log 2 n) w.h.p. anonymous nodes [START_REF] Schneider | What is the use of collision detection (in wireless networks)?[END_REF] O(log n) GBG, deterministic Here O(∆

2 log n + ∆ 3) deterministic Fig. 2: Coloring protocols Ref Time Comments [9] O(∆ log n + log 2 n) (w.h.p.) ∆ + log n colors [9] O(K log 2 n) (w.h.p.) K + 1 colors [1] O(∆ + log n) (w.h.p.) O(K) colors Here O(∆ 2 log n + ∆ 3), deterministic ∆ + 1 colors

C. Protocol-related Definitions

In the beeping model, an execution proceeds in synchronous rounds (there are synchronized local clocks and all nodes start at the same time: synchronous start). In each round, nodes synchronously execute the following steps: 1) Send: Each node beeps (instruction BEEP in protocols) or listens (LIST EN in protocols). Beeps are transmitted to all neighbors of the beeping node. 2) Receive: If a node beeped in the previous step, then it learns no information from its neighbors. Otherwise, it knows whether or not at least one of its neighbors beeped during the previous step of the same round. 3) Process: Each node performs local computations. One of the most common message passing models is the CONGEST model of edge bandwidth B [START_REF] Peleg | Distributed Computing: A Locality-Sensitive Approach, ser. Monographs on Discrete Mathematics and Applications[END_REF]. It is stronger than the beeping model, as nodes communicate by sending messages of maximum length B (commonly O(log n)) in a round. Different messages can be sent to different neighbors and nodes receive the full content of all incoming messages.

We adopt the classical definitions. The state of a node is the vector of the values of its variables. A variable var of a node v is explicitly associated to v using a subscript var v . A configuration is a vector of the states of all nodes. An execution proceeds in rounds and is defined by the sequence of the configurations at the end of each round, starting from an initial configuration. If the same configuration (resp. state of a node) is repeated indefinitely at the end of each round, we say that this configuration (resp. the state) is terminal. When such a configuration is reached, it is said that the system/protocol has terminated, or that termination has occurred. A problem is given as a first order predicate over configurations. A protocol is said to solve a problem if each execution terminates, and each terminal configuration satisfies the predicate of the problem specification. The round complexity (time complexity) of a protocol is the number of rounds needed to reach a terminal configuration in the worst case. A protocol is said to be uniform in a parameter p if it does not depend on the value of p. It is said to be locally termination detecting, or simply locally terminating, if for any given node v, v detects if it has reached a terminal state.

In the beeping model, protocols must specify what is done in each round. Due to the nature of the communication model, each action is performed on a sequence of consecutive rounds. For instance, a node may have to wait for a round of silence, or beep only every k rounds. At the code level, this type of action is expressed by a loop. As it will appear later, in some complex protocols, such loops are nested. For the sake of clarity, we will name the sequence of rounds in the innermost loop the L 1 -phase, the sequence of loops in the loop just above, the L 2 -phase, and so on. We extend previous definitions concerning protocols to L iphases, in particular uniformity and termination. We consider terminal L i -phase states (states that no longer change in this L iphase), locally terminating L i -phases (any given node v detects when it has reached a terminal L i -phase state) and uniform L i -phases (when the range of the loop index is unknown). The problem of detecting when a given L i -phase has ended (terminated) for all nodes raises the question of synchronizing the start of the following L i -phase. We solve this problem by using L i -synchronization points, represented by i in the code. Upon reaching an L isynchronization point (after having reached a terminal L i -phase state), any given node v waits for all of its neighbors to reach a terminal L i -phase state before executing the following L iphase, if there is any. L i -synchronization points require locally terminating L i -phases, so that any given node v can detect when all of its neighbors have reached the synchronization point. The method for detecting that was first introduced in Förster et al. [START_REF] Förster | Deterministic leader election in multi-hop beeping networks[END_REF], with the "Balanced Execution Technique" (BET). However, BET only guarantees L 1 -synchronization points. In appendix A, we extend BET to guarantee L i -synchronization points for any i ≥ 1. The extension, referred to as EBET, is crucial in the design of complex uniform protocols in the beeping model.

We call a protocol a competition protocol when nodes are "eliminated" round after round until the "surviving" nodes form an independent set (possibly empty). In this paper, we only consider competition protocols where the elimination process is deterministic and depends on identifier comparison.

D. Problem Specifications

The predicates (over configurations) defining the problems considered in the paper can be naturally obtained from the definitions given below. A set I ⊆ V of vertices is said to be an independent set if for any u, v in I, u and v are not neighbors in G. An independent set I is maximal (MIS) if any vertex in V \ I has a neighbor in I. A 2-hop MIS of G is an MIS of its square graph G 2 . A set J ⊆ V of vertices is said to be a (t, s)-ruling set [START_REF] Awerbuch | Network decomposition and locality in distributed computation[END_REF], if for any two vertices u, v ∈ J, dist(u, v) ≥ t, and for any vertex v ∈ V \J, there exists a vertex u ∈ J such that dist(u, v) ≤ s. With this definition, an MIS is a (2, 1)-ruling set. A forest is said to be a (t, s)-ruling forest if the roots are a (t, s)-ruling set and the trees are of depth at most s.

A c-coloring col is a function from V into a set of colors [c] such that ∀(u, v) ∈ E col(u) = col(v).
Notice that in a c-coloring, nodes with the same color constitute an independent set. It is thus possible to construct an MIS from them. A 2-hop coloring of G is a coloring of its square graph G 2 . Any given function colorD is a d-defective c-coloring [START_REF] Barenboim | Distributed Graph Coloring: Fundamentals and Recent Developments[END_REF] if ∀v ∈ V , colorD(v) ∈ [c] and v has at most d neighbors colored with colorD(v). We say that colorD has a defect of d. An edge where both endpoints have different colors is said to be a non defective edge, otherwise it is said to be a defective edge. With this definition, a (proper) coloring is a 0-defective coloring.

E. Contributions

The first contribution of this paper is a tool for analyzing competition protocols: the labeled "deterministic" competition graphs (Sect. II). Using such graphs in protocol analysis is inspired by [START_REF] Hoffman | On a game in directed graphs[END_REF]. Here we adapt this technique to the case of deterministic competition protocols. This general tool may be useful also in future studies of MIS and coloring.

The second and main contribution of the paper is a series of uniform MIS and coloring protocols. First, we present O(∆ 2 log n+∆ 3) deterministic uniform protocols for MIS and (∆ + 1)-coloring, where ∆ is the unknown maximum degree (Sect. III). These protocols are time optimal for bounded degree graphs. They also scale well to graphs with polylogarithmic ∆. Indeed, in these graphs, the time complexity is polylogarithmic in regards to n, which is very efficient. Then, we extend the previous protocols with time complexity dependent on ∆, to protocols with time complexity dependent on the arboricity a (Sect. IV). We get O(a 2 log 2 n + a 3 log n) time MIS and (∆ + 1)-coloring uniform protocols. This results in efficient polylogarithmic time complexity for the large family of graphs where a = O(log c n). Finally, we extend the previous protocols into O(a 2 ∆ 2 log 2 n + a 3 ∆ 3 log n) time 2-hop coloring and 2-hop MIS uniform protocols (Sect. V). Given a 2-hop coloring, we prove that the CONGEST model can be simulated with some multiplicative overhead (Sect. VI). Using this simulation and the algorithm proposed in [START_REF] Barenboim | Deterministic distributed vertex coloring in polylogarithmic time[END_REF] for the CONGEST model, we get an O((a 2 ∆ 2 + a µ ∆ 4) • log 2 n + a 3 ∆ 3 log n) time O(a)-coloring protocol in the beeping model, for any given positive constant µ < 1. To the best of our knowledge, this is the first coloring protocol using less than ∆ + 1 colors in the beeping model.

II. RULING SET PROTOCOL AND COMPETITION GRAPHS

Ruling sets serve as building blocks to construct complex protocols. They have been used to compute MIS [START_REF] Awerbuch | Network decomposition and locality in distributed computation[END_REF] and colorings [START_REF] Schneider | Distributed coloring depending on the chromatic number or the neighborhood growth[END_REF], [START_REF] Schneider | Symmetry breaking depending on the chromatic number or the neighborhood growth[END_REF]. In these papers, the ruling sets are used to decompose the network, and nodes in the ruling set (the "local leaders") take care of solving the problem for the nodes within a certain distance. In the beeping model, doing so is more difficult. We show in the next section, how ruling sets can still be used to design an efficient coloring protocol.

In this section, we introduce a competition protocol (RulingSet -Protocol 1 in Sect. II-B) computing a (2, 2 log N)-ruling set. This protocol can be considered as a variant of the ruling set algorithm from [START_REF] Awerbuch | Network decomposition and locality in distributed computation[END_REF]. That algorithm is heavily recursive, requiring concurrent communications, which are incompatible with the beeping model. Therefore, we adapt it and provide a non-recursive competition protocol with a similar behavior. To prove correctness (Sect. II-C), we use competition graphs, which are directed graphs that serve to model the behavior of competition protocols and help analyzing them. They were first used in [START_REF] Hoffman | On a game in directed graphs[END_REF], but in association with a non-deterministic elimination process. As we are interested in deterministic protocols, we use the nodes' identifiers to label the edges of a competition graph with α-encodings (Sect. II-A), and these values determine a deterministic elimination process. The resulting labeled competition graphs allow to compute the surviving nodes in a convenient way. [START_REF] Afek | Beeping a maximal independent set[END_REF] 1 0 0 1 1 1 0 0 0 binary The encoding starts with as many 1's as the length of the binary representation, followed by a 0.

α-encoding

Then, append binary representation from the second bit onwards Fig. 3: Description of α-encoding

A. α-encoding

We α-encode integers to design uniform competition protocols, as in Casteigts et al. [START_REF] Casteigts | Deterministic leader election in O(D + log n) time with messages of size O(1)[END_REF]. This encoding allows to compare integers (identifiers) bit by bit in a uniform manner. Indeed, when using α-encodings (of integers from [N]), such protocols do not need to know the binary integers' lengths (depending on log N) to compare them bit by bit. The αencoding of integer i is made up of two parts, as explained in Figure 3. Comparing two α-encodings α(i) and α(j) consists of first comparing the minimum number of bits necessary to encode the integers, and if it is the same, comparing the binary representations of i and j (the first bit is unnecessary, because it is 1 and the length is already known). Definition 1. Let i be a positive integer, bin its binary representation and l(i) the length of bin. Let bin -1 be the binary representation without the leading 1 and 1 l(i) a binary string of l(i) 1's. The α-encoding of i, denoted by α(i), is 1 l(i) 0 bin -1 (where denotes string concatenation).

α-encoding preserves the order between two integers. Lemma 1. For any i, j ∈ N >0 : i < j ⇔ α(i) ≺ α(j), where ≺ is the lexicographical order on α-encodings.

B. Uniform Competition Protocol for Computing a Ruling Set

Nodes use their unique identifiers for comparison and survivors of the elimination process constitute the output set. Each node v has a unique identifier id(v). The identifiers are encoded on at most l max bits, but l max is unknown to the nodes and thus the binary representations of the identifiers do not necessarily have the same length. Every node v computes the α-encoding α(id(v)) (or α(v) for short, by notation abuse) and outputs a boolean value survived v . We prove that the output is a (2, 2 log N)-ruling set (Theorem 2). The following lemma is straightforward.

Lemma 2. RulingSet has a round complexity of max v∈V l(α(v)) = O(log N).

C. Correctness Analysis of Protocol 1

The output set of RulingSet is analyzed through a game, which we refer to as the "elimination game". This game is enacted on an edge-labeled directed acyclic graph G dag , the labeled competition graph, constructed from the original communication graph G and the nodes' unique identifiers. This construction process is adapted here to the RulingSet protocol, but it applies to any competition protocol. G dag = (V, E dag , label), where E dag is the set of directed edges and label an edge labeling function. G dag is constructed from the α-encodings of the identifiers, encoded on a maximum of 2l max bits.

• Let (u, v) be an edge of G with α(u) α(v). Then, (u, v) is a directed edge in G dag , directed from u to v.

• Let (u, v) be an edge of G dag . For the smallest index i ∈ [2l max] such that α i (u) = 1 and α i (v) = 0, set label(u, v) to i: the edge (u, v) is labeled (with) i. For any edge e = (u, v) of G dag , u is called the origin and v the extremity of e. The following lemma is straightforward.

The elimination game is played by the nodes of G dag , round by round, in the following way: on round r, all surviving nodes with an outwards edge e labeled label(e) = r eliminate the extremities of these edges. The game finishes when no more node can be eliminated (thus after at most 2l max rounds). A node's survival is stored as a boolean in the survived variable. Definition 2. Let v be a vertex in G dag . Let e be an incoming edge. We say that e is acting if the origin of e is not eliminated before round label(e), and non acting otherwise. If e = (u, v) is an acting incoming edge, then u eliminates v at round label(e) if and only if v has not already been eliminated. We define the same notions for outgoing edges.

Definition 3. Let Π = (v 1 , . . . , v l) be a directed path in G dag . There is a unique label sequence S lab (Π) = (s 1 , . . . , s l-1) s.t. ∀r ∈ [l -1], e r = (v r , v r+1) and s r = label(e r).
Results similar to the following lemma and theorem are proven in [START_REF] Cole | Deterministic coin tossing with applications to optimal parallel list ranking[END_REF] for a more limited case. Lemmas 3 and 4 are straightforward.

Lemma 3. Let Π = (v 1 , . . . , v l) be a directed path in G dag . S lab (Π) has no consecutive equal labels: ∀r ∈ [l -1] s r = s r+1 .
Theorem 1. Let v be any node from G dag not surviving the elimination game. There exists a surviving node u such that dist(u, v) ≤ 2l max , where l max = O(log N) .

Proof. First, a path Π from a surviving node u to node v is constructed, then we prove that Π's length is at most 2l max . Π is constructed by induction. Node v did not survive, so there exists an acting incoming edge. The acting incoming edge (w, v) with the smallest label is added to Π. If w does not survive the elimination game, the previous actions are repeated and an acting incoming edge is added to Π. This is done until a surviving node is reached. Since at least one node survives the elimination game, Π's construction is well-defined and Π = (e l , . . . , e 1). Now, let us prove by contradiction that l ≤ 2l max . Suppose l > 2l max and focus on S lab (Π). Because the edge-labels are integers from [2l max] and consecutive labels are non equal by Lemma 3, there exists an extremum s r indexed by r ∈ {2, . . . , 2l max }. Thus there exists i ∈ {r -1, r} such that s i > s i+1 . However, both e i and e i+1 are acting incoming edges, by construction. Thus, the origin of e i is eliminated in round s i+1 , which contradicts the fact that e i is acting. Hence, we have a contradiction.

= {v ∈ V s.t. survived v = true} of RulingSet is a (2, 2 log N)-ruling set.

III. MIS AND VERTEX COLORING PROTOCOLS

Let us now present MIS and (∆ + 1)-coloring protocols with O(∆ 2 log N +∆ 3) round complexity, where ∆ is the maximum degree of the communication graph G. When ∆ = O(1), we obtain an asymptotically optimal O(log n) round complexity [START_REF] Schneider | What is the use of collision detection (in wireless networks)?[END_REF] . For polylogarithmic ∆, the protocol is still very efficient. Nodes know the maximum degree ∆ at first, but this assumption is dropped later on. Nodes know no polynomial upper bound N on their total number.

The protocols presented here are based on computing and refining defective colorings. Defective colorings were first used to solve the distributed coloring problem in [START_REF] Barenboim | Distributed (δ+1)-coloring in linear (in δ) time[END_REF] and [START_REF] Kuhn | Weak graph colorings: Distributed algorithms and applications[END_REF]. Here, we refine the defective coloring differently from the previous works. The exact method is explained below.

A. Non-uniform Protocols for MIS and (∆ + 1)-coloring

The (∆ + 1)-coloring protocol DegreeColoring (Protocol 2) refines the initial ∆-defective coloring until the coloring is proper. DegreeColoring can be seen as an L 4 -phase. It has ∆ L 3 -phases: in each of these phases, the defect is reduced by at least 1. Each L 3 -phase is made of ∆ + 1 coloring L 2 -phases, followed by an additional color reduction L 2 -phase. In each coloring L 2 -phase, nodes with a specific color compute a (2, 2 log N)-ruling forest on the subgraph induced by themselves, using RulingSet (Protocol 1) and Breadth First Searches (BFS) -ColorByBF S function (see below). During BFS, they recolor themselves with an even or odd available color depending on the parity of their depth in the ruling forest. Finally, all nodes communicate the changes in color and update their set of unavailable colors. The following color reduction L 2 -phase is made up of ∆ + 1 L 1 -phases. In each such L 1phase, the range of colors used by all nodes is reduced by 1 (if the range is greater than ∆ + 1). This is important because the color range affects the round complexity, and the color range can increase exponentially if it is not reduced in each L 3 -phase.

Let us now present the functions used in a coloring L 2 -phase. There are two functions, ColorByBF S and BroadcastColors. ColorByBF S recolors each participating node. The resulting coloring can be defective. The input parameters are a boolean (inSet) indicating whether or not the node is part of the ruling set, i.e., serving as BFS roots, and a set of unavailable colors (U). The roots initiate parallel BFS. Other nodes compute their distance to the nearest root, which is given by the BFS, and recolor themselves with an available (not in U) newColor, according to the parity of this distance. The newColor values returned by ColorByBF S are in [2∆ + 2]. This is because the set of unavailable colors contains at most ∆ colors, and possibly all of the same parity. Therefore, ColorByBF S chooses the smallest available odd (resp. even) value amidst the first ∆+1 odd (resp. even) values. BroadcastColors communicates the colors chosen by the neighboring nodes. The function has four input parameters: the // An L3-phase starts with ∆ + 1 coloring L2-phases 8:

for coloring L2-phase p2 := 1 ; p2 ≤ ∆ + 1 ; p2++ do 9:

if color = p2 then inSet := RulingSet(id) 10:

1 L1-synchronization point 11:

if color = p2 then newColor := ColorByBF S(inSet, U) 12: color := newColor 16:

// Followed by one L2-phase, which contains ∆ + 1 color reduction L1-phases 17:

// Before the L2-phase, color ∈ [2∆ + 2] 18:

for color reduction L1-phase p1 := 1 ; p1 ≤ ∆ + 1 ; p1++ do 19:

color := ColorReduction(color, ∆, 2∆+3 -p1) 20: Given a (∆ + 1)-coloring, it is simple to compute an MIS in ∆ + 1 rounds. Nodes with the same color form an independent set. Adding iteratively (at each round) nodes from each such set to a common independent set results in an MIS. Thus, MIS can also be solved in O(∆ 2 log n + ∆ 3) rounds.

B. Uniform (∆ + 1)-coloring

Now, we wish to transform DegreeColoring into U nif DegreeColoring, which is uniform in both ∆ and n. The first step is to replace the functions used in DegreeColoring by uniform functions, and to synchronize them using synchronization points. Then, every non-uniform stopping condition of a loop appearing in DegreeColoring should be eliminated and replaced by a so called local termination component. This component is an L i-2 -phase executed at the end of each iteration (L i-1 -phase) of the loop (L i -phase). It serves to detect if the executing node has finished the ongoing loop. More formally, this component serves to detect whether the executing node has reached a terminal L iphase state, and makes the L i -phase locally-terminating.

First, let us present U nif BroadcastColors, a uniform version of BroadcastColors (since BroadcastColors requires ∆). U nif BroadcastColors is an L 2 -phase, made of consecutive L 1 -phases, each composed of 2 rounds. In the first round, the executing node v beeps if it has not yet communicated newColor v . Otherwise, it listens so it can detect if all of its neighbors have already communicated their newColor value, and if so, v terminates. In the second round, we have the round behavior of BroadcastColors. In such a way, we obtain a uniform function having the same behavior as BroadcastColors. Moreover, in this particular case, since all L 1 -phases contain exactly 2 rounds, it is also locally synchronized, even without using EBET, and therefore there is no need to indicate synchronization points explicitly. U nif ColorReduction has two input parameters: the node's color (color), given by a d-defective c-coloring, and a set of unavailable colors (U). It also has two output parameters: the node's new color color, given by a d-defective c -coloring (with c = min(c -1, ∆ + 1)), and a boolean sameColor indicating whether color changed. Every node v transmits its color value to its neighbors by beeping in the first round of the L 1 -phase indexed by color. Nodes with the highest color their neighborhood choose the smallest available color (colors previously transmitted by neighbors are forbidden). If that color is the node's current color, then sameColor is assigned to true. Other nodes do not change their color (and end with sameColor equal to false). Here again, there is no need to indicate synchronization points explicitly, since all L 1 -phases contain exactly 2 rounds.

ReduceColors is an L 4 -phase. It has two input parameters: the node's color (color), given by a d-defective c-coloring, and a set of unavailable colors (U). It has a single output: the node's new color (color), given by a d-defective (∆ + 1)-coloring. The main idea is to have the nodes with the highest color in their neighborhood change their color to the smallest available color (in [∆ + 1]). At some point, they can no longer improve their color (f inished is true). These nodes terminate, allowing the other nodes in their neighborhood to change their color value. Here, it is crucial to put L 2 -synchronization points after the U nif ColorReduction and U nif BroadcastColors calls, because these functions are uniform. Thus, different nodes can finish executing these functions at different times, i.e., not synchronously. As these functions are locally terminating, EBET can be used to ensure the synchronization points. Actually, also an L3-synchronization point 7: Return color Following this, let us describe the functions used for U nif DegreeColoring's local termination component. These functions are used to detect when the executing node's color is proper, i.e., no neighbor has the same color. Then, the executing node can exit the outermost loop and thus locally terminate the protocol (see lines 24 to 29). ColorCollision uses U nif ormCollisonBeep to detect whether there are same color neighbors amongst executing nodes. The function has two input parameters: an identifier (id) and the node's color (color). The output parameter is a boolean indicating whether the node detected a collision with a same color node (collision). In each L 2 -phase p2, nodes with color p2 check for a collision by using U nif CollisionBeep. If no neighboring node with the same color p2 exists, then no collision is detected by the executing nodes. U nif CollisionBeep detects whether there are any neighbors amongst the currently executing nodes (a collision). The input parameter is an identifier (id) and the output parameter is a boolean indicating whether the node detected a collision (collision). In each L 1 -phase, a node beeps in the first or the second round, depending on whether the p1 th most significant bit of α(id) is 0 or 1. If a beep is heard, then there is a collision. Two executing neighboring nodes always detect a collision because they have different identifiers. A node terminates if the phase index p1 is greater than the length of the α-encoding of its id.

Finally we describe U nif DegreeColoring. The main idea is the same as in DegreeColoring: we refine the initial ∆-defective coloring until the coloring is proper. The main differences are the local termination components. The L 4phase's (L // This L3 loop is an L4-phase 9:

for coloring L3-phase p3 := 1 ; p3++ do 10:

if color = p3 then inSet := RulingSet(id) 11:

1 12:
if color = p3 then newColor := ColorByBF S(inSet, U ∪ Ut)

IV. IMPROVEMENTS FOR GRAPHS WITH SMALL ARBORICITY

DegreeColoring is efficient for graphs with polylogarithmic maximum degree ∆. However, not all graphs have a low maximum degree, and in these graphs, Protocol 3 is less efficient. Using ideas from [START_REF] Goldberg | Parallel symmetry-breaking in sparse graphs[END_REF] and [START_REF] Barenboim | Sublogarithmic distributed mis algorithm for sparse graphs using nash-williams decomposition[END_REF], it is possible to design a (∆ + 1)-coloring protocol which is efficient on graphs with low arboricity a (more specifically, with polylogarithmic a). Notice that some important topologies like trees and planar graphs have an arboricity of 1 and 3 respectively, while their maximum degree can be arbitrarily large.

Theorem 5. MIS and (∆ + 1)-coloring can be solved with O(a 2 log 2 n + a 3 log n) round complexity in the beeping model, where a is the arboricity of the communication graph.

To support this theorem, we design two coloring protocols with the above round complexity: one is uniform in N but not in a, and the other is uniform in a but not in N . It is important to have a protocol uniform in a, since a may be harder to obtain than an upper bound on N . The following results from [START_REF] Barenboim | Sublogarithmic distributed mis algorithm for sparse graphs using nash-williams decomposition[END_REF] are used to obtain these protocols. Lemma 7. [START_REF] Barenboim | Sublogarithmic distributed mis algorithm for sparse graphs using nash-williams decomposition[END_REF] If G is of arboricity a, at least 2+ |V | nodes have a degree less than (2 +)a. Theorem 6. [START_REF] Barenboim | Sublogarithmic distributed mis algorithm for sparse graphs using nash-williams decomposition[END_REF] If G is of arboricity a, it can be decomposed into l = O(log n) sets of nodes H 1 , . . . , H l such that each set H i has maximum degree O(a) in the induced subgraph

G[∪ l k=i H k].
The LimitedDegreeColoring function is the main component of both protocols. It colors all participating low-degree nodes, if it is given an upper bound on the arboricity a. A node v is considered to be a low-degree node if it has deg(v) ≤ ∆ a , where ∆ a = (2 +) • a for a parameter > 0. Contrarily to DegreeColoring, it may happen that some nodes have no available colors in [∆ a + 1], due to their high degree, and end the function uncolored, represented by the color 0. We use LimitedColorReduction, a slightly modified version of ColorReduction. It is not presented here, but the only change is that color is set to 0 if [∆ + 1] \ U is an empty set. newColor := 0 5:

for L2-phase p2 := 1 ; p2 ≤ c + 1 ; p2++ do 6:

if color = p2 then inSet := RulingSet(id) 7:

1 L1-synchronization point 8:

if color = p2 then 9:

newColor := ColorByBF S(inSet, U) 10:

if color ∈ [2c + 2] then Return 0 Not a good color 11: Proof. The round complexity is straightforward. LimitedDegreeColoring outputs a (∆ a + 1)-coloring on the subgraph of nodes with non-zero colors because all colors are chosen from [2∆ a + 2], if available. and are then reduced to [∆ a + 1]. ColorCollision ensures that the coloring is valid. Now, let us prove by contradiction that for any given node u with deg(u) ≤ ∆ a , the output is a non-zero color. u outputs 0 due to LimitedColorReduction, ColorByBF S or ColorCollision. The first two cases are impossible because |U (u)| ≤ ∆ a . In the last case, ColorCollision is executed after ∆ a L 3 -phases. In each L 3 -phase, incident non-defective edges remain non-defective, and at least one incident defective edge becomes non-defective. Since after ∆ a L 3 -phases u has no defective edges, u has no neighbor v with color u = color v . color := LimitedDegreeColoring(id, ∆a) 6:

B. (∆ + 1)-coloring Uniform in a

In the second protocol (uniform in a), we compute an upper bound on a. This is done by estimating a iteratively. At each iteration (L 5 -phase) i, a is estimated to be 2 i and LimitedDegreeColoring is executed l = O(log N) times, given this estimation. After O(log a) iterations, the estimation is at least as large as the actual arboricity. When this happens, LimitedDegreeColoring executed O(log N) times provides a proper coloring (followed by the color range reduction) as in the first protocol. for L4-phase p4 := 1 ; p4 ≤ len ; p4++ do 7:

color := LimitedDegreeColoring(id, ∆p5) 8: if color = 0 then 10:

color To obtain protocols for 2-hop MIS and 2-hop coloring, we provide and use a general transformer, the SquareSim protocol (Protocol 6), allowing to "simulate G 2 over G". The idea is that nodes propagate beeps for an extra round (and therefore contact nodes at distance 2), so that they can simulate a protocol on the square of the communication graph, for a small time multiplicative overhead. SquareSim provides two primitives SquareSim(true) and SquareSim(f alse) to simulate in G, the BEEP and LIST EN instructions invoked on graph G 2 . Lemma 9. A protocol designed to be executed on G 2 can be simulated on G by replacing all BEEP instructions by calls to SquareSim(true) and LIST EN instructions by calls to SquareSim(f alse).

+=(∆p5 -2 -+ p5 -1) • len + (p4 -
The maximum degree of the square communication graph is ∆ 2 . By applying Lemma 9 to the previous protocols, we obtain Instead of the maximum degree of the square of the given graph, consider its arboricity. Using a result from [START_REF] Agnarsson | Coloring powers of planar graphs[END_REF], showing that a(G 2) ≤ 2 3 • a • ∆, we obtain Corollary 2, which provides a more efficient result for graphs with small arboricity.

Corollary 2. 2-hop MIS and 2-hop (∆ 2 + 1)-coloring are solved by the two protocols in Sect. IV with an O(a 2 ∆ 2 log 2 n+ a 3 ∆ 3 log n) round complexity. One of them is uniform in N but not in a, and the other is uniform in a but not in N .

VI. CONGEST MODEL SIMULATION AND O(a)-COLORING

By using a 2-hop coloring, nodes can simulate the transmission of messages through the edges of the communication graph, like in the CONGEST model with edge bandwidth B (commonly O(log N)). We want to make sure that for any given node v, a message can be sent or received along any edge without interference, and that the provenance and destination of the message can be deduced easily.

First, InitCongest (Protocol 7) is used at the beginning of the simulation to obtain all possible message provenance and destinations for any given node v (simulated by the colors from the 2-hop coloring). After which, the transmission of messages is done through SimCongest.

Our simulation algorithm SimCongest (Protocol 8) is made of two components. The first component is used to transmit a B bit message. If we have no interference, a node can transmit B bits during 2B rounds (in phases of two rounds, one round for transmitting bit 1 and another one for bit 0). The second component, and the core part of the simulation, deals with the interferences inherent to the beeping model. Here, a 2-hop c-coloring (for some constant c) is required so that messages can be associated to a pair of colors p = (colorP rovenance, colorDestination), according to their provenance and destination (c 2 possibilities). The simulation is composed of phases, each of c 2 invocations of the first component. In this way, transmitted bits never collide. The B bit messages are part of the input parameters of SimCongest. They are given through a hash table (mSend), with the message destinations (colors) as keys and the messages as values. The messages received are stored in a similar structure (mRec), where the message provenances are the keys. The following lemma is straightforward.

(∆ 2 + 1)- coloring in O(a 2 ∆ 2 log 2 n + a 3 ∆ 3 log n) rounds (Corollary 2).
Then the O(a)-coloring from [START_REF] Barenboim | Deterministic distributed vertex coloring in polylogarithmic time[END_REF] (with O(a µ log n) round complexity) is combined with the CONGEST simulation, using the (∆ 2 + 1)-coloring obtained before. By Lemma 10, the resulting simulation of the O(a)-coloring protocol has O(a µ ∆ 4 log 2 n) round complexity.

The final result is an O((a 2 ∆ 2 +a µ ∆ 4)•log 2 n+a 3 ∆ 3 log n) time O(a)-coloring protocol in the beeping model. Notice that now by using this coloring algorithm, together with the SquareSim protocol, to obtain a 2-hop O(a • ∆)-coloring (see Sect. V), we reduce the time multiplicative factor when simulating CONGEST algorithms. Consequently, one obtains a more efficient simulation.

APPENDIX A EBET

We remind that the "Balanced Execution Technique" (BET) from Förster et al. [START_REF] Förster | Deterministic leader election in multi-hop beeping networks[END_REF] guarantees L 1 -synchronization points. Now, we present an extension of BET, with which we guarantee L i -synchronization points for all i ≥ 1. The "Extended Balanced Execution Technique" (EBET) allows the design of complex uniform protocols in the beeping model.

A. Introducing EBET

Synchronization points are not a natural primitive in the beeping model: an L i -synchronization point forces nodes which have reached a terminal L i -phase state (ended the L i -phase) to wait for their neighboring nodes to end the L i -phase, before starting the next one. Some protocols are difficult to design in a uniform manner without the use of synchronization points. Therefore, we want to be able to design a protocol P using synchronization points, and then apply a "technique" on the formal description of P, so that the result is a protocol that can be run in the beeping model (not necessarily a formal description). The resulting protocol is called P sim . The technique we use for that is EBET.

EBET has two crucial components and a parameter k (∈ N >0), which controls the small multiplicative overhead of EBET. The first component is a Finite State Machine (FSM), used to stall nodes when they have ended an L i -phase (synchronization property), for all i ≤ k, so that other nodes can catch up (resulting in a resynchronization process for the start of the next L i -phase). The second is a balanced round counter rC, which is used so that nodes can reach some agreement on the clock value for the current L 1 -phase. By balanced counter, we mean that the rC values of two neighbors differ by at most 1 (balancing property). Thus two neighbors participating in the same L 1 -phase are in the same round, or in consecutive rounds. EBET's main addition is an extention to the FSM component. As a consequence, EBET provides L i -synchronization points, for all i ≤ k. For better clarity, we consider EBET with k = 2, but it is simple to extend the following techniques for any given positive integer k.

We assume that in P and P sim , all nodes start synchronously. By using synchronization points, P is easily described, coded and understood. Here we consider P to be a uniform loop of L 2 -phases (thus a uniform L 3 -phase). Whereas P sim is a uniform loop of L 1 -phases, and each of its L 1 -phase simulates a round of P. Since the L 1 -phases of P sim contain exactly 11 rounds (referred to as slots to differentiate from the rounds in P), P sim can be run in the beeping model. We refer to phases of P as original phases, and to phases of P sim as simulation phases. It is crucial that P sim outputs the same result as P, and proving this is the main focus of Sect. A-C.

In the first section, we describe the balanced counter technique (extending that of [START_REF] Förster | Deterministic leader election in multi-hop beeping networks[END_REF]), which allows EBET to maintain a balanced round counter, and to guarantee the synchronization property for all L i -phases. When abstracted to a higher level, the synchronization property results in the simulation of L i -synchronization points. In the second section, we describe how communication is adapted for EBET. Indeed, nodes do not have perfectly synchronized round counters, so we adapt the manner in which nodes communicate between themselves (having a balanced counter is crucial here), so as to simulate an execution with synchronized round counters.

B. Extending the Balanced Counter Technique for EBET 1) Slot Behavior in the Balanced Counter Technique: The balanced counter technique is implemented in the following manner. Nodes have the following variables: state, rC, p 1 and p 2 . Theses variables are parametrized by a node v and if unclear, by a simulation L 1 -phase p, to indicate their value for v at the start of a simulation L 1 -phase p. The state variable can be any of the 5 states from Figure 5 (CT , R-N , R-W , R-N 2 and R-W 2). A node v has state(v, p) = CT , it is said to be participating (in phase p), because it is simulating a round of an original L 1 -phase in P. We define CT 2 = {CT, R-N, R-W }, a composite state, and similarly, a node v with state(v) ∈ CT 2 is simulating an original L 2 -phase in P (not necessarily a round).

COU N T start RESET -N OT IF Y RESET -W AIT COUNT2 RESET -N OT IF Y 2 RESET -W AIT 2 No neighbors in R-W or R-W2 No neighbors in COUNT No neighbors in R-N No neighbors in R-W or R-W2 No neighbors in COUNT2
No neighbors in R-N2

Each simulation L 1 -phase contains exactly 8 slots and is used to transmit a node's local clock value and its FSM state. Using this information, nodes know if they are ahead or behind of their neighbors, and act accordingly. The first three slots (indexed 0 to 2) are used to transmit the counter value (rC) modulo 3, and the other slots (indexed 3 to 7) are used to transmit the current FSM state of a node (state). For any given node v, the information is transmitted in the following manner during each simulation L 1 -phase:

• If state = CT , then v beeps in slots (rC mod 3) and 3,

• If state = R-N , then v beeps in slot 4, • If state = R-W , then v beeps in slots rC mod 3 and 5, • If state = R-N 2, then v beeps in slot 6, • If state = R-W 2,
then v beeps in slots rC mod 3 and 7. Node v listens in all slots it does not beep in. Now, we describe the state transitions of the FSM, and their guard conditions (also shown in Figure 5). These conditions are essential for the balanced counter and synchronization properties (Lemmas 13 and 14) in EBET. For any given node v, the allowed state transitions are:

1

) CT → R-N if no node u ∈ N (v) is in R-W or R-W 2, 2) R-N → R-W if no node u ∈ N (v) is in CT , 3) R-W → CT if no node u ∈ N (v) is in R-N , 4) CT → R-N 2 if no node u ∈ N (v) is in R-W or R-W 2, 5) R-N 2 → R-W 2 if no node u ∈ N (v) is in CT 2, 6) R-W 2 → CT if no node u ∈ N (v) is in R-N 2.
The state transitions of the FSM can be decomposed into two cycles. We denote the first cycle (transitions 1 → 2 → 3) as an L 1 -cycle, and the second cycle (transitions 4 → 5 → 6) as an L 2 -cycle. An L 1 -cycle is used to transition to the next original L 1 -phase (if there is one) of the current original L 2phase being simulated (from P), and essentially implements an L 1 -synchronization point. Similarly, an L 2 -cycle is used to transition to the next original L 2 -phase (if there is one) in P, and essentially implements an L 2 -synchronization point.

In terms of states, an L 1 -cycle goes CT → R-N → R-W → CT . R-N is used to indicate the executing node has finished the simulated original L 1 -phase. Nodes in that state do not interfere with their neighbors' simulations of that original L 1phase, as the balanced counter rC is not transmitted: no beeps in the first three slots. On the other hand, R-W is used to indicate the node is starting the next original L 1 -phase. Nodes in that state stall neighboring nodes participating in that next original L 1 -phase in two different ways. First, a rC value of 0 is transmitted, which stalls the increment function of these neighboring nodes (see following section, Sect. A-B2). As such, the neighboring rC values satisfy rC ≤ 1 (Lemma 12). Second, neighboring nodes are prevented from transitioning to R-N or R-N 2 until the node participates, i.e., transitions to CT (see the conditions of transitions 1 and 4). Since R-W interferes with participating nodes while R-N does not, the synchronization property relies heavily on the conditions of transition 2. That is, a node remains in R-N while its neighbors simulate additional rounds of the original L 1 -phase, and only transitions once all neighboring nodes have finished, i.e., transitioned to R-N .

In the same way, an L 2 -cycle goes CT → R-N 2 → R-W 2 → CT . The R-N 2 (resp., R-W 2) state acts similarly to the R-N (resp., R-W) state. Since R-W 2 interferes with participating nodes, as well as nodes going through a L 1cycle, while R-N 2 does not, the synchronization property relies heavily on the conditions of transition 5. That is, a node remains in R-N 2 while its neighbors simulate additional L 1phases of the original L 2 -phase (either participating or going through L 1 -cycles), and only transitions to the next L 2 -phase once all neighbors have finished, i.e., transitioned to R-N 2.

The synchronization property results from the following observations. Two neighboring nodes going through a L 1 -cycle (resp. L 2 -cycle) are always in two consecutive states of the L 1 -cycle (resp., L 2 -cycle), due to the transition conditions. In other words, they have gone through the same number of L 1 -cycles (resp., L 2 -cycles), unless a node participates and its neighbors is still in state R-W (resp., R-W 2). In which case, the participating node can neither increment its balanced counter (beyond 1), nor transition to any other state, and thus waits for its neighbor. Finally, consider two neighboring nodes, one going through a L 1 -cycle and the other through a L 2cycle. Then the second node's state is necessarily R-N 2, and it neither interferes with the first node, nor transitions before the first node enters a L 2 -cycle (i.e., enters the R-N 2 state).

2) Functions of the Balanced Counter Technique: The L 1 and L 2 -cycles, as well as the balanced counter rC, are managed by the following functions: reset, reset2 and increment. These functions can only be invoked by participating nodes and increment p1, p2 and rC while ensuring the synchronization and balancing properties. When node v increments p1 (resp., p2), that means that v has done a full L 1 -cycle (resp., L 2cycle). Consequently, p1 (resp., p2) counts the number of L 1 -synchronization points invoked in the current original L 2phase (resp., the number of L 2 -synchronization points invoked). The synchronization property, which states that p1 and p2 are the same for two neighboring participating nodes, means that they are simulating the same original L 1 -phase.

We define a boolean next(v, p), used in the following function, for any given simulation L 1 -phase p and node v. The boolean is true if and only if all neighboring nodes of v have equal or greater rC values. v learns its next value after the first three slots of p, since the boolean is true if and only if v detects no beeps in slot rC(v) -1 mod 3. If next(v, p) is true, then rC(v) is incremented at the end of phase p.

increment is used to increment rC without violating the balancing property. Node v calls increment in the very first phase of P sim (and whenever an original L 1 -phase starts), and calls increment again whenever the previous call finishes, until the original L 1 -phase is finished. During these calls, v simulates P since state(v) = CT . When increment is invoked by a node v, v waits for the first simulation L 1 -phase p in which next(v, p) is true. At the end of this phase, v increments rC.

reset is used to go through a full L 1 -cycle. When invoked by v, v goes through a full L 1 -cycle (transitions 1, 2 and 3). During the cycle, rC(v) is reset to 0 after transition 1 succeeds and p 1 (v) is incremented after transition 3 succeeds. Similarly, reset2 is used to go through a full L 2 -cycle (transitions 4, 5 and 6). During the cycle, rC(v) and p 1 (v) are reset to 0 after transition 4 succeeds and p 2 (v) is incremented after transition 6 succeeds. The reset (resp. reset2) function simulates a L 1synchronization point (resp. L 2 -synchronization point): it is invoked by a participating node v in the round after it reaches a L 1 -synchronization point (resp. L 2 -synchronization point), when simulating P. The details are in Sect. A-C.

3) Properties of the Balanced Counter Technique: First, we give a few lemmas (Lemmas 11 and 12), which are then used to prove both the balancing and synchronization properties (Lemmas 13 and 14).

Lemma 11. For any given simulation L 1 -phase p and node v, if state(v, p) = R-W 2, then for all u ∈ N (v) state(u, p) ∈ {R-N, R-W }.

Proof. Let us prove this lemma by induction on p. Trivially true for p = 0 because of the initialization conditions (state(v, 0) = R-W 2). For the induction step, by contradiction, let us consider a node u ∈ N (v), such that state(u, p) ∈ {R-N, R-W }. Since at most one transition can be enacted by a node per phase, we know state(v, p -1) ∈ {R-N 2, R-W 2} and state(u, p -1) ∈ CT 2. It is not possible that state(v, p-1) = R-N 2 because of the condition for transition 5. Now, consider state(v, p -1) = R-W 2. It is not possible that state(u, p -1) = CT because of the condition for transition 1, and it is not possible that state(u, p-1) ∈ {R-N, R-W } due to the induction hypothesis. As a result, for all u ∈ N (v) state(u, p) ∈ {R-N, R-W }.

Lemma 11 is used to simplify the proof of Lemma 12. It also highlights the fact that nodes which have ended the current L 2phase are stalled in the R-N 2 state until all of their neighbors also end the L 2 -phase.

Lemma 12. For any given simulation L 1 -phase p and node v, if state(v, p) ∈ {R-W, R-W 2}, then for all u ∈ N (v) rC(u, p) ≤ 1.

Proof. Let us prove this lemma by induction on p. Trivially true for p = 0 because of the initialization conditions (state(v, 0) ∈ {R-W, R-W 2}). For the induction step, consider a given simulation L 1 -phase p and node v, where state(v, p) ∈ {R-W, R-W 2}. Since state(v, p) = CT , rC(v, p) = 0. Consider any given neighboring node u of v. If state(u, p) = CT , then rC(u, p) = 0. Now, consider state(u, p) = CT . Let us prove that rC(u, p) ≤ 1.

First, consider state(v, p) = R-W . Since at most one transition can be enacted by a node per phase, we know state

(v, p -1) ∈ {R-N, R-W } and state(u, p -1) ∈ {CT, R-W, R-W 2}. By Lemma 11, state(u, p -1) = R-W 2.
It is also not possible that state(v, p-1) = R-N . The condition for transition 2 renders state(u, p -1) = CT impossible, and state(u, p -1) = R-W is also impossible, because u is then unable to enact transition 3 at the same time that v enacts transition 2. Finally, the remaining possibilities are that state(v, p -1) = R-W and state(u, p -1) ∈ {CT, R-W }. For state(u, p -1) = R-W , since u enacts transition 3 at the end of phase p-1, rC(u, p) = 0. As for state(u, p-1) = CT , rC(u, p -1) ≤ 1 by induction hypothesis. Since v stalls u (state R-W and rC(v, p -1) = 0), u is unable to increment rC higher than 1 at the end of phase p -1 and rC(u, p) ≤ 1. Now, consider state(v, p) = R-W 2. Since at most one transition can be enacted by a node per phase, we know state

(v, p -1) ∈ {R-N 2, R-W 2} and state(u, p -1) ∈ {CT, R-W, R-W 2}. First, consider state(v, p -1) = R-N 2.
Since at the end of phase p -1, v enacts transition 5, we have state(u, p -1) ∈ CT 2. However, it is also impossible that state(u, p -1) = R-W 2, because then at the end of phase p -1, u and v enacts respectively transition 6 and 5. Now, let us consider state(v, p -1) = R-W 2. By Lemma 11, it is impossible that state(u, p -1) = R-W . If state(u, p -1) = R-W 2, then as u enacts transition 6 at the end of phase p -1, rC(u, p) = 0. Otherwise, if state(u, p -1) = CT , then by induction hypothesis, rC(u, p -1) ≤ 1. Since v stalls u, rC(u, p) ≤ 1.

Using Lemma 12, which states that nodes in R-W or in R-W 2 stall the balanced counters of neighboring participating nodes, we prove the balancing property (Lemma 13).

Lemma 13 (Balancing property). For any given simulation L 1 -phase p and two neighboring participating nodes u and v, |rC(v, p) -rC(u, p)| ≤ 1.

Proof. Let us prove that rC satisfies the balancing property by induction on p. For p = 0, the balancing property is given by the initialization conditions. For the induction step, consider a simulation L 1 -phase p > 0 and two neighboring nodes u and v. In the first case, u and v were participating in simulation L 1 -phase p -1. Then by the induction hypothesis for p -1, |rC(u, p -1) -rC(v, p -1)| ≤ 1. Since counters can only increase by one per simulation L 1 -phase, and increment stalls nodes which are ahead, the induction hypothesis holds. In the second case, at least one of the nodes was not participating in simulation L 1 -phase p -1. W.l.o.g, u was not participating. Due to the transition restrictions, u was in R-W or R-W 2 in p -1 (node u cannot transition from R-N to CT in a single phase). Thus, by Lemma 12, rC(v, p -1) ≤ 1. The same line of arguments as above shows that the induction hypothesis holds.

The balancing property highlights the fact that early nodes are stalled by neighboring nodes with smaller counters, and so on until the latest node. However this latest node is never stalled, and thus controls the increment rate of all balanced counters. Once this node catches up with the other nodes, all nodes increment their round counters synchronously. Thus, from the perspective of the latest node, the balanced counters are fully synchronized counters. Now, we prove the synchronization property (Lemma 14), which states that p 1 (resp., p 2) is an index for original L 1 -phases (resp., L 2 -phases). As a result, two neighboring participating nodes are simulating the same L 1 -phase (in the same L 2 -phase).

Lemma 14 (Synchronization property). For any given simulation L 1 -phase p and two neighboring nodes u and v, if state(u, p) = state(v, p) = CT then p 1 (v, p) = p 1 (u, p) and p 2 (v, p) = p 2 (u, p). It can also be said that u and v have invoked reset2 the same number of times, and have invoked reset the same number of times since they last invoked reset2.

Proof. Let us prove by induction on p, that for any given simulation L 1 -phase p and two neighboring nodes u and v:

1) if state(u, p) = R-W and state(v, p) = CT (or vice versa) then p 1 (v, p) = p 1 (u, p) + 1 and p 2 (v, p) = p 2 (u, p), 2) else if state(u, p) = R-W 2 and state(v, p) = CT (or vice versa) then p 1 (v, p) = p 1 (u, p) = 0 and p 2 (v, p) = p 2 (u, p) + 1, 3) else if state(u, p) = CT 2 and state(v, p) = R-N 2 (or vice versa) then p 1 (v, p) = 0 and p 2 (v, p) = p 2 (u, p), 4) otherwise, p 1 (v, p) = p 1 (u, p) and p 2 (v, p) = p 2 (u, p).
The synchronization property corresponds to the case when state(u, p) = state(v, p) = CT . Trivially true for p = 0 because of the initialization conditions. For the induction step, consider a simulation L 1 -phase p > 0 and two neighboring participating nodes u and v.

First, consider state(u, p) = R-W and state(v, p) = CT . By lemma 11, state(v, p -1) = R-W 2. Because it is not possible for both u and v to transition at the end of phase p -1 (see condition for transition 3), or for u to transition from R-N to R-W if v stays in CT (see condition for transition 2), state(u, p-1) = R-N . Thus, consider state(u, p-1) = R-W . We know state(v, p -1) = CT or state(v, p -1) = R-W . Thus, by induction hypothesis (items 1 and 3) for p -1, item 1 of the induction hypothesis holds. Now, consider state(u, p) = R-W 2 and state(v, p) = CT . Suppose by contradiction that state(u, p -1) = R-N 2. Because of the condition for transition 5, the only possibility is that state(v, p -1) = R-W 2. However, it is impossible for both u and v to transition at the end of phase p -1 (see condition for transition 6). Thus, consider state(u, p -1) = R-W 2. By lemma 11, state(v, p -1) = R-W . Thus, either state(v, p -1) = R-W 2, or state(v, p -1) = CT . And by induction hypothesis (items 2 and 3) for p -1, item 2 of the induction hypothesis holds.

Then, consider state(u, p) = CT 2 and state(v, p) = R-N 2. Since at most one transition can be enacted by a node per phase, we know state(u, p -1) ∈ CT 2 ∪ {R-W 2} and state(v, p -1) ∈ {CT, R-N 2}. First, consider state(v, p -1) = R-N 2. It is impossible that state(u, p -1) = R-W 2, because of the condition for transition 6. Then, state(u, p -1) ∈ CT 2 and we can rely on the induction hypothesis (item 3) for p -1. Now, consider state(v, p -1) = CT . Because of the condition for transition 4, it is impossible that state(u, p -1) = R-W 2. Thus, by induction hypothesis (items 1 and 4) for p -1 and the definition of reset2 (p1 is reset after transition 4 succeeds), item 3 of the induction hypothesis holds.

Finally, consider the other cases. Then either state(u, p) = state(v, p), or state(u, p) = state(v, p). Moreover, for p -1, then either state(u, p -1) = state(v, p -1) or state(u, p -1) = state(v, p -1). By using the induction hypothesis (all items), item 4 of the induction hypothesis holds.

Using the balancing and synchronization properties, we can simulate fully synchronized round counters (as in BET) with rC. Consequently, EBET simulates the rounds of an original L 1 -phase.

C. Balanced Executions in EBET

We extend the simulation L 1 -phases with 3 additional slots. Thus, a simulation L 1 -phase contains 11 slots. The 3 extra slots are dedicated to the simulation of a round r in P. That simulated round is either rC or rC -1, depending on the rC values of the neighboring nodes. We define a correct action, for any given participating node v and simulation L 1 -phase p of P sim . v's action when simulating round r in simulation L 1 -phase p is said to be correct if it is the same as v's action in round r of P. We prove that all actions (simulating rounds of P) done by nodes in P sim are correct. Thus, P sim and P have the same result.

1) Rules to ensure Balanced Execution: We give the following additional rules. They ensure, that for any given participating node v and simulation L 1 -phase p of P sim , v's actions in L 1 -phase p is correct.

• If next(v, p) = f alse, v simulates round rC(v, p) -1.

• Otherwise, v simulates round rC(v, p). A round r is simulated by v in the following way. If v's action for r is BEEP , then v beeps in slot r mod 3 + 8 of simulation L 1 -phase p, and otherwise it listens in that slot.

With the rules above, the following definitions are natural. For any given node v and for any simulated round r of P, we define p n (v, r) as the first simulation L 1 -phase p in which v simulates the next round (r + 1). We also define p f (v, r) as the first simulation L 1 -phase p in which v simulates round r. Now, consider end of phase rounds of P (rounds in which a node ends an L i -phase and thus reaches a L i -synchronization point). A participating node v detects whether it reaches a L i -synchronization point after round r of P in simulation L 1 -phase p n (v, r), since in that phase, v is already done with beeping or listening to beeps for round r (as even the slowest neighbors simulated r in the previous phase). Consequently, consider rF as the round after which v reaches a L i -synchronization point in P. v invokes reset or reset2 (depending on the synchronization point) in simulation L 1phase p n (v, rF), which ensures the simulation of P is correct.

2) Simulation Proofs: First, we give the following simple lemma. It states that when a node v is simulating round rC(v, p)-1 in a simulation L 1 -phase p, it has already simulated the round once, in a previous simulation phase. round is simulated again while v is waiting for the slower nodes (with smaller rC values), until next(v) is true, in which case all neighboring nodes have caught up.

Lemma 15. For any given phase p > 0 and participating node v, v has already simulated round rC(v) -1 at least once. Now, we prove a crucial lemma (Lemma 16). Basically, it states that for any simulation L 1 -phase p, all nodes have correctly simulated P for all rounds r < rC(v, p). Moreover, in the round in which a participating node v increments rC(v), rC(v) is simulated correctly, due to the fact that all neighbors have already acted once for rC(v) -1, and that all of these actions were correct. Using this lemma, obtaining Theorem 9 is straightforward. Proof. Let us prove this lemma by induction on the simulation L 1 -phase p. For p = 0, the induction hypothesis (IH) holds obviously.

For the induction step, consider a phase p > 0 and any given participating node v. First, from the IH in phase p -1, we get that all actions done by v previous to phase p -1 were correct, as well as the action v executed in p -1.

Next, let us prove part 1a and 1b of the IH. Consider any given phase p in which v or any of its neighbors simulates rC(v, p) -1 for the first time. In part 1 of the IH, next(v, p) = true thus p < p (Lemma 15). Let us prove (⇒) of parts 1a and 1b. Consider u ∈ N (v) s.t. u beeps (resp. listens) for rC(v, p) -1. We prove v detects u's beep (resp. u detects v's beep). The faster node of the pair (u and v) is stalled by the slower node. When the slower node first simulates rC(v, p) -1 in a phase p < p, the faster node w is still simulating rC(v, p) -1 because next(w, p) is false. Thus, in p , v detects u's beep (resp. u detects v's beep). By the IH, any beep heard is correct. (⇐) follows from the fact that beeps are transmitted to neighboring nodes only and because of the manner in which the last three slots are used (and non participating nodes do not use them). Since all previous actions done by v were correct and part 1a of the IH holds (for phase p), part 1c of the IH holds.

Finally, let us prove part 2 of the IH. Suppose next(v, p) = f alse. We know v's action for rC(v, p) -1 in phase p -1 is correct, by part 1a of the IH or part 2 of the IH (depending on next(v, p -1)). Since the action chosen by v for round rC(v, p) -1 does not change, part 2 of the IH holds.

Theorem 9. The outputs of P and P sim are identical.

Finally, let us prove that the round complexity of P sim , R sim , is close to R, the round complexity of P. Theorem 10 states that using EBET impacts the round complexity by a small multiplicative factor only. It should be noted though, that R is dependent on the L i -synchronization points. Indeed, P might be slowed by the synchronization points (due to the "global" resynchronization process). However, when each original L iphase's round complexity is bounded independently of a parameter (in particular, the diameter D), R is independent of that parameter, and R sim is also independent of that parameter.

Theorem 10. Let R sim be the round complexity of P sim and R be that of P. Then R sim = O(R).

Proof. First, there is a constant factor (here 11) between the number of rounds and the number of simulation L 1 -phases in P sim . Thus, we compare the number of simulation L 1 -phases in P sim and the number of rounds in P. Let L be any given original L 1 -phase of P. Let w be the node which takes the most rounds to end L, that quantity being r w . In P sim , for any given node, at most r w simulation L 1 -phases are used to simulate L. This holds for all original L 1 -phases, and starting the next L 1 -phase takes a constant number of simulation L 1 -phases. Moreover, P uses L i -synchronization points at the end of every original L i -phase, thus its round complexity R is the sum of the round complexities of all original L 1 -phases. Consequently, we have R sim = O(R).

Fig. 1

 1 Fig. 1: MIS protocols Ref Time Comments [8]O(log 2 n) w.h.p. anonymous nodes[START_REF] Schneider | What is the use of collision detection (in wireless networks)?[END_REF] O(log n) GBG, deterministic Here O(∆ 2 log n + ∆ 3) deterministic

Fig. 4 :

 4 Fig. 4: Example of G dag construction

Lemma 4 .Theorem 2 .

 42 Let I = {v ∈ V s.t. survived v = true} at the termination of RulingSet. Let S be the set of survivor nodes of an elimination game played on G dag . We have I = S. The output set I

 Now, let us present the ColorReduction function invoked in the color reduction L 2 -phase. Its input parameters are an integer value given by a d-defective c-coloring (color), the maximum degree ∆ and the maximum color c (in the coloring). Nodes broadcast colors from [∆ + 1] in ∆ + 1 rounds, after which, nodes with color = c change their color to the smallest available color in [∆ + 1]. The output is the node's new color (color), given by a d-defective c -coloring, with c = min(c -1, ∆ + 1). function ColorReduction(color, ∆, c): color 1: U := ∅ U stores unavailable colors 2: for round r := 1 ; r ≤ ∆ + 1 ; r++ do 3: if color = r then BEEP 4: else 5: LISTEN 6: if beep heard then U := U ∪ {r} 7: if color = c then color := min([∆ + 1] \ U) 8: Return color In DegreeColoring, we only require L 1 -synchronization points (for RulingSet and ColorByBF S), introduced in Sect. I-C. Both functions are uniform in N , and thus are not explicitly terminating (if executed alone). However, they are locally terminating. Therefore we can use BET to perform neighboring termination detection and make nodes start the next step of the protocol synchronously. On the other hand, as the time lengths of all L 2 , L 3 and L 4 -phases (and ColorReduction calls) are upper bounded by ∆ + 1, their termination is completely synchronized at all nodes and we do not need L 2 , L 3 and L 4 -synchronization points. Lemma 5. At the start (and end) of an L 3 -phase, color ∈ [∆ + 1]. Lemma 6. The defect of color is reduced by one per L 3 -phase. Proof. Let color be d-defective at the start of L 3 -phase p3. For any given node v, v has at most d defective edges. It is Protocol 2 DegreeColoring 1: IN: id: Identifier, ∆: Maximum degree OUT: color: Integer value 2: color := 1 3: // Each node removes at least one defective edge per L3-phase 4: for L3-phase p3 := 1 ; p3 ≤ ∆ ; p3++ do 5: U := ∅ Stores newColor values already chosen during this phase 6: newColor := 0 newColor ∈ [2∆ + 2] during L3-phase 7:

1 13 : 2

 1132 U := BroadcastColors(newColor, (color = p2), U, ∆) 14:This synchronization point is not needed (strictly explanatory) 15:

3

 3 After all color reduction L1-phases, color ∈ [∆ + 1] 22: Not needed, for clarity only 23: EndProtocol easy to see that non-defective edges remain non-defective. In a non-defective edge (v, u), let v be the node with the higher color w.l.o.g. During L 3 -phase p3, v stores a set of unavailable newColor values, including newColor u . As such, when v executes ColorByBF S, newColor v = newColor u . All endpoints of the defective edges of v, and v itself, execute RulingSet and ColorByBF S in the same L 2 -phase. If DistC(v) denotes v's distance to the nearest BFS tree root (RulingSet survivor), there is at least one endpoint u with |DistC(u) -DistC(v)| = 1. Because of the difference in the parity of these distances, u and v choose different values in [2∆ + 2], and at least one edge becomes non-defective. Theorem 3. DegreeColoring solves (∆ + 1)-coloring in O(∆ 2 log n + ∆ 3) rounds.

Protocol 3

 3 U nif DegreeColoring 1: IN: id: Identifier OUT: color: Integer value 2: Ut := ∅ Stores color values chosen for output by terminated neighbors 3: color := 1 4: // Each node removes at least one defective edge per L5-phase 5: for L5-phase p5 := 1 ; p5++ do 6: U := ∅ Stores newColor values already chosen during this phase 7: newColor := 0 newColor ∈ [2∆ + 2] during the L5-phase 8:

function

 LimitedDegreeColoring(id, c): color 1: color := 1 2: for L3-phase p3 := 1 ; p3 ≤ c ; p3++ do 3: U := ∅ Stores newColor values already chosen during this phase 4:

1 12 :

 112 U := BroadcastColors(newColor, color = p2, U, c) 13:color := newColor 14:for L1-phase p1 := 1 ; p1 ≤ c + 1 ; p1++ do 15:color := LimitedColorReduction(color, c, 2c + 3 -p1) 16:if color = 0 then Return 0 No color in [c + 1] could be chosen 17: collision := ColorCollision(color) 18: if collision then Return 0If not properly colored, no color is chosen 19: Return color Lemma 8. Let ∆ a = (2 +) • a, with > 0. Given the input c = ∆ a , LimitedDegreeColoring outputs a (∆ a + 1)coloring on a subgraph of nodes, which includes all nodes with degree less than or equal to ∆ a . All other nodes have output 0. The round complexity is O(a 2 • log n + a 3).

 A. (∆ + 1)-coloring Uniform in N First, let us focus on the first protocol, uniform in N . LimitedDegreeColoring is executed iteratively by uncolored nodes until all nodes are properly colored. Since a is known, and by Lemma 7, each invocation of the function colors a constant fraction of the nodes of the communication graph. Colored nodes no longer participate in subsequent LimitedDegreeColoring calls. By Theorem 6, executing LimitedDegreeColoring l = O(log N) times (or more) colors all nodes with O(a • log N) colors. As N is unknown, invocations of LimitedDegreeColoring continue until the executing node is colored properly (local termination component). When this happens for all nodes, the O(a • log N)-coloring is transformed into a (∆ + 1)-coloring by ReduceColors, as in Protocol 3. This takes an additional O(a 2 • log 2 n) rounds. Protocol 4 U nif N ArbColoring 1: IN: id: Identifier, a: Arboricity of G, : Parameter 2: OUT: color: Integer value 3: ∆a := (2 +) • a 4: for L4-phase p4 := 1 ; p4++ do At most l = 2 • log n L4-phases 5:

4 7 :

 47 if color = 0 then 8: color := color + (p4 -1) • (∆a + 1) 9: Exit L4 loop 10: 5 color is an O(a • log n)-coloring 11: color := ReduceColors(color, ∅) At most O(a

Protocol 5 U nif AArbColoring 1 :

 1 IN: id: Identifier, N: Polynomial upper bound on n, : Parameter 2: OUT: color: Integer value 3: for L5-phase p5 := 1 ; p5++ do At most 1 + log a L5-phases. 4: ∆p5 := (2 +) • 2 p5 5: len := 2 • log N 6:

Lemma 10 .

 10 Given a 2-hop c-coloring, the CONGEST model with edge bandwidth B can be simulated in the beeping model, with an O(c 2 • B) multiplicative factor. Finally, using the simulation of CONGEST, one can use the result of Barenboim and Elkin [16] (given for CONGEST), to obtain an O(a)-coloring in the beeping model. It is done by first computing, in the beeping model, a 2-hop

Fig. 5 :

 5 Fig. 5: Finite State Machine Component for EBET (k = 2)

Lemma 16 .

 16 For any given simulation L 1 -phase p and participating node v, all previous actions from v were correct.1) Moreover, if next(v, p) = true:a) If v listens for round rC(v) -1: ∃u ∈ N (v), u participating, s.t. u beeps for rC(v) -1 ⇔ v detects a (correct) beep for rC(v) -1 in a phase p < p. b) If v beeps for round rC(v) -1: ∃u ∈ N (v), uparticipating, s.t. u listens for rC(v) -1 ⇔ u detects a (correct) beep for rC(v) -1 in a phase p < p. c) v's action for round rC(v, p) is correct, 2) Otherwise, v's action for round rC(v, p) -1 is correct.

 It is used in ReduceColors, a uniform version of the color reduction L 2 -phase from DegreeColoring.

	function UnifBroadcastColors(newColor, changingColor, U): U
	1: for L1-phase p1 := 1 ; p1++ do	L1-phase consists of two rounds
	2:	// First round	
	3:	if newColor >= p1 and changingColor then BEEP Not finished yet
	4:	else	
	5:	LISTEN	
	6:	if no beep heard then Return U	If all neighbors beeped their colors
	7:	// Second round	
	8:	if newColor = p1 and changingColor then
	9:	BEEP	Communicate your color
	10:	else	
	11:	LISTEN	
	12:		

if beep heard then U := U ∪ {p1} Keep neighbors' newColor values Next, we design a uniform version of ColorReduction.

 3 loop) local termination component is similar to the local termination component in U nif BroadcastColors. A node has finished an L 4 -phase if all of its neighbors have chosen a new color. The protocol's local termination component is described previously. The additional U t variable is used to store unavailable colors that have already been chosen by neighboring nodes which have terminated the protocol.

	function UnifCollisionBeep(id): collision
	1: collision := f alse
	2: for L1-phase p1 := 1 ; p1++ do	L1-phase consists of two rounds
	3:	if p1 > l(α(id)) then Return collision
	4:	if αp1(id) = 0 then
	5:	BEEP ; LISTEN
	6:	if beep heard in the second round then collision := true
	7:	else
	8:	LISTEN ; BEEP
	9:	if beep heard in the first round then collision := true
	function ColorCollision(id, color): collision
	1: for L2-phase p2 := 1 ; p2++ do	At most ∆ + 1 L2-phases
	2:	if color = p2 then
	3:	collision := U nif CollisionBeep(id)
	4:	Return collision
	5:	2

 In each L 4 -phase of Protocol 4, only uncolored nodes (V rem) participate in LimitedDegreeColoring. Since the subgraph induced by V rem also has arboricity at most a, by Lemmas 7 and 8, 2+ |V rem | nodes have a degree less than ∆ a and thus are part of the subgraph with a (∆ a + 1)coloring. They exit the L 4 loop, thus by Theorem 6, there are at most 2 • log n = O(log n) L 4 -phases. Since we use non-overlapping ranges of ∆ a + 1 colors for each L 4 -phase, arbColor is an O(a • log n)-coloring. The round complexity follows from the number of L 4 -phases and Lemma 8.

2 • log 2 n) rounds 12: EndProtocol color ∈ [∆ + 1] Theorem 7. Protocol 4 solves MIS and (∆ + 1)-coloring with O(a 2 log 2 n + a 3 log n) round complexity. This protocol is uniform in N but non-uniform in a. Proof. Let us prove that after all L 4 -phases, arbColor is an O(a • log n)-coloring.

 Protocol 6 Simulating the square communication graph: SquareSim 1: IN: beep: Boolean value OUT: detectedBeep: Boolean value 2: detectedBeep := f alse 3: if beep then BEEP These protocols are very efficient on bounded degree graphs, and efficient for graphs with polylogarithmic ∆. 2-hop coloring is an important tool in the beeping model, used to break symmetry and to deal with the interferences. In the next section, we show how this can be used to simulate the stronger CONGEST communication model and obtain an O(a)-coloring. Corollary 1. 2-hop MIS and 2-hop (∆ 2 + 1)-coloring can be solved in O(∆ 4 log n + ∆ 6) rounds.

			Transmit beep to neighbor nodes: First round
	4: else
	5:	LISTEN
	6:	if beep heard then detectedBeep := true
	7: if detectedBeep then BEEP	Transmit to distance 2 nodes: Second round
	8: else
	9:	LISTEN
	10:	if beep heard and not beep then detectedBeep := true
	11: EndProtocol
	protocols for solving 2-hop coloring with (∆ 2 + 1) colors and
	2-hop MIS.

 Edge bandwidth, color: Integer value from a 2-hop c-coloring, c: maximum color value, mSend: Hash table of messages to send 2: OUT: mRec: Hash table of messages received 3: for L3-phase p3 := 1 ; p3 ≤ c ; p3++ do

	Protocol 7 InitCongest	
	1: IN: color: Integer value from a 2-hop c-coloring
	2: OUT: Nb: Port numbers	
	3: N b := ∅	Stores neighbors' colors (used as ports)
	4: for round r := 1 ; r ≤ c ; r++ do		Get neighbors' colors
	5:	if r = color then BEEP	
	6:	else	
	7:	LISTEN	
	8:	if beep heard then N b := N b ∪ {r}
	9: EndProtocol	
	Protocol 8 SimCongest	
	4:	for L2-phase p2 := 1 ; p2 ≤ c ; p2++ do
	5:	for L1-phase p1 := 1 ; p1 ≤ B ; p1++ do
	6:	if p3 = color then	p3 can send its p1th bit to p2
	7:	if p2 ∈ N b and mSend[p2]p1 = 0 then	Send a 0 message
	8:	BEEP ; LISTEN	
	9:	else if p2 ∈ N b and mSend[p2]p1 = 1 then Send a 1 message
	10:	LISTEN ; BEEP	
	11:	else	
	12:	LISTEN ; LISTEN		Synchronize
	13:	else if p2 = color then	Listen for a possible incoming p1th bit
	14:	LISTEN ; LISTEN	Then append the received bit in mRec
	15:	if beep heard in first round then mRec[p3] := mRec[p3] 0
	16:	if beep heard in second round then mRec[p3] := mRec[p3] 1
	17:	else	
	18:	LISTEN ; LISTEN		Synchronize
	19: EndProtocol	

1: IN: B: