
Fast Beeping Protocols for Deterministic MIS and
(∆ + 1)-Coloring in Sparse Graphs

(Extended Version)
Joffroy Beauquier∗‡, Janna Burman∗‡, Fabien Dufoulon∗‡ and Shay Kutten†‡

∗ LRI, Université Paris-Sud, CNRS, Université Paris-Saclay, France. beauquier@lri.fr, burman@lri.fr, dufoulon@lri.fr
† Technion - Israel Institute of Technology, Haifa, Israel. kutten@ie.technion.ac.il

Abstract—The beeping model is an extremely restrictive broad-
cast communication model that relies only on carrier sensing. We
consider two problems in this model: (∆+1)-vertex coloring and
maximal independent set (MIS), for a network of unknown size
n and unknown maximum degree ∆. Solving these problems
allows to overcome communication interferences, and to break
symmetry, a core component of many distributed protocols. The
presented results apply to general graphs, but are efficient in
graphs with low edge density (sparse graphs), such as bounded
degree graphs, planar graphs and graphs of bounded arboricity.
We present O(∆2 logn + ∆3) time deterministic uniform MIS
and coloring protocols, which are asymptotically time op-
timal for bounded degree graphs. Furthermore, we devise
O(a2 log2 n+a3 logn) time MIS and coloring protocols, as well as
O(a2∆2 log2 n+a3∆3 logn) time 2-hop MIS and 2-hop coloring
protocols, where a is the arboricity of the communication graph.
Building upon the 2-hop coloring protocols, we show how the
strong CONGEST model can be simulated and by using this
simulation we obtain an O(a)-coloring protocol. No results about
coloring with less than ∆ + 1 colors were known up to now in
the beeping model.

I. INTRODUCTION

The discrete beeping model was introduced by Cornejo
and Kuhn [1] to provide a convenient formal framework for
studying radio networks having severe restrictions on communi-
cation capabilities, yet where widely applicable protocols can be
designed and analytically proven in an efficient manner. Since
protocol executions in distributed computing are frequently
hard to grasp (even with simulations or experiments), having
formal models is crucial for both practical and theoretical
reasons. In the discrete beeping model, time is divided into
synchronous rounds, and in each round, a node can either
listen or transmit a unary signal (beep) to all its neighbors. The
possibility to directly transmit a beep to a node is defined by
a static communication graph, and nodes have absolutely no
knowledge of this graph. A beeping node receives no feedback,
while a silent one can only detect that either at least one of its
neighbors beeped or that all of them were silent. A listening
node does not receive the identifiers of its beeping neighbors, as
a beep is merely a detectable burst of energy. Protocols can use
the synchronous nature of the rounds to transmit information
through beeps, but doing so impacts the time complexity in a

‡ This work has been supported by the Israeli-French Maimonide research
project grant and by an Israeli Ministry of Science and Technology grant.

quantifiable manner. This work studies how this difficulty can
be overcome.

Applications of this model range from radio networks with
reduced network stacks [1], such as energy-limited sensor
networks, which can provide improved speed, low cost and
less transmission errors, to biological networks [2], where
the beeping model allows to study the efficiency of natural
protocols. Indeed, most biological systems communicate in
a primitive manner. Fireflies communicate through flashes of
light [3] and cells through the diffusion of specific chemical
markers [4].

Different applications will result in different communication
graphs. Graphs with low edge density are said to be sparse. The
maximum degree and the arboricity of a graph are measures
of its edge density, where low values indicate sparse graphs.
Contrarily to graphs with low maximum degree, low arboricity
graphs can be seen as graphs which are “globally” sparse
but may be “locally” dense. Many real-world networks are
sparse [5]. In particular, graphs embedded in some surface, for
example the plane, have low arboricity.

The distributed vertex coloring and maximal independent set
(MIS) problems are fundamental building blocks in protocol
design. The coloring problem consists in assigning colors
to nodes such that no two neighboring nodes (sharing an
edge in the communication graph) have the same color. The
MIS problem consists in choosing a set of nodes in the
communication graph such that no two nodes in the set are
neighbors, and such that any node not in the set has a neighbor
in that set. Solving these problems is important for dealing
with the interferences inherent to the beeping model. More
specifically, a coloring can be used to allocate resources that
cannot be shared by neighboring nodes. Nodes in an MIS
can act as cluster heads in order to coordinate actions, and
participate in a network backbone construction.

Serving as important primitives for protocol design in the
beeping model, MIS and coloring problems have received a
lot of attention (see Sect. I-B). Efficient probabilistic solutions
were proposed for general graphs. However, the more difficult
deterministic case, useful whenever random behavior is inap-
propriate or deterministic guarantees are required, has received
much less attention. In this work, we are interested in designing
deterministic protocols having efficient time complexity.

A. Preliminaries

Let [k] be the set {1, . . . , k}. For any two integers a, b
(∈ Z) and any positive integer k (∈ N>0), let a ≡ b mod k
denote the congruence relationship between a and b such that
a mod k = b mod k. The operator ‖ is used for the string
concatenation. For any positive integer k, l(k) is the length of
the binary representation of k, i.e., l(k) = 1 + blog2 kc. For
any function f : N>0 7→ N>0 and any positive integer k, fi(k),
where i ∈ [l(k)], denotes the ith most significant bit of f(k)’s
binary representation.

The communication network is represented by a simple
connected undirected graph G = (V,E), where V is the node
set and E the edge set. The network size |V | is also denoted
by n, the diameter by D and the maximum degree by ∆. For
a node v ∈ V , the neighbors of v are N (v) = {u ∈ V s.t.
(u, v) ∈ E} and its degree is deg(v) = |N (v)|. Nodes have
unique identifiers (ids). This property is essential in order to
break symmetry in deterministic protocols. The identifier of a
node u ∈ V , id(u), is an integer from [N] where N = nc with
a constant c > 1. N is an upper bound on the total number
of nodes in G. The length of id(u) is denoted by l(u). Then,
the maximum length over all ids in G is lmax = maxu∈V l(u).
We have lmax=O(logN)=O(log n).
The distance between two nodes u and v in G is dist(u, v).
The square graph of G is the graph G2 = (V,Es), where
Es = {(u, v) | u, v ∈ V, dist(u, v) ≤ 2}. G[R] denotes the
subgraph of G induced by R ⊂ V . Its edges (EG[R]) are the
edges of G connecting two vertices in R. The arboricity of
G, denoted by a(G) or just a, is the minimum number of
disjoint forests into which the edge set E can be partitioned.
Equivalently, Nash-Williams [6] proved that arboricity is also
a measure of density, i.e., a = max

R⊆V,|R|≥2

|EG[R]|
|R|−1 .

B. Related Work

In [7], round complexity lower bounds are given for the MIS
and (∆ + 1)-coloring problems. These bounds are Ω(log n)
and Ω(∆ + log n) respectively. They were obtained assuming
randomized algorithms, and thus apply to both deterministic and
randomized ones. In the latter case, the solution or the running
time is guaranteed with high probability (w.h.p.). Moreover,
these bounds apply to a stronger variant of the beeping model
(with collision detection). In this variant, listening nodes can
distinguish between a single beep and the superposition of
multiple beeps (a collision).

In [1], the authors present the first coloring protocol for the
beeping model. It outputs a correct coloring after O(∆+log n)
rounds w.h.p. Following this paper, randomized MIS and
coloring protocols were designed for the beeping model
with collision detection, in a series of papers ([4], [8], [9]).
These protocols achieve optimal round complexity, but assume
collision detection. Moreover, the resulting colorings often
employ more than ∆ + 1 colors. These protocols can be
translated to the weaker beeping model (with no collision
detection) with an Ω(log n) multiplicative factor.

Schneider and Wattenhofer [10] solve deterministic MIS
in radio networks with collision detection. Although the term
”beeping model” does not appear in [10], the presented protocol
straightforwardly works in this model. It is time optimal for
growth-bounded graphs (GBG). These are graphs where, for
any given node v and integer r, the number of nodes in any
independent set (see definition in Sect. I-D) within distance r
of v is bounded by f(r), which is polynomial in r. However,
this property does not cover all bounded degree graphs, trees,
planar graphs, or more generally, sparse graphs.
The round complexities of different MIS and coloring protocols
are compared below (see respectively Figure 1 and 2). The
only deterministic protocols are those in [10] and in the present
paper. Some protocols require K, an upper bound on ∆.

Fig. 1: MIS protocols

Ref Time Comments
[8] O(log2 n) w.h.p. anonymous nodes
[10] O(log n) GBG, deterministic
Here O(∆2 log n+ ∆3) deterministic

Fig. 2: Coloring protocols

Ref Time Comments
[9] O(∆ log n+ log2 n) (w.h.p.) ∆ + log n colors
[9] O(K log2 n) (w.h.p.) K + 1 colors
[1] O(∆ + log n) (w.h.p.) O(K) colors
Here O(∆2 log n+ ∆3), deterministic ∆ + 1 colors

C. Protocol-related Definitions

In the beeping model, an execution proceeds in synchronous
rounds (there are synchronized local clocks and all nodes start
at the same time: synchronous start). In each round, nodes
synchronously execute the following steps:

1) Send: Each node beeps (instruction BEEP in protocols) or
listens (LISTEN in protocols). Beeps are transmitted to all
neighbors of the beeping node.

2) Receive: If a node beeped in the previous step, then it
learns no information from its neighbors. Otherwise, it knows
whether or not at least one of its neighbors beeped during
the previous step of the same round.

3) Process: Each node performs local computations.
One of the most common message passing models is the
CONGEST model of edge bandwidth B [11]. It is stronger
than the beeping model, as nodes communicate by sending
messages of maximum length B (commonly O(log n)) in a
round. Different messages can be sent to different neighbors
and nodes receive the full content of all incoming messages.

We adopt the classical definitions. The state of a node is
the vector of the values of its variables. A variable var of
a node v is explicitly associated to v using a subscript varv.
A configuration is a vector of the states of all nodes. An
execution proceeds in rounds and is defined by the sequence

of the configurations at the end of each round, starting from an
initial configuration. If the same configuration (resp. state of a
node) is repeated indefinitely at the end of each round, we say
that this configuration (resp. the state) is terminal. When such
a configuration is reached, it is said that the system/protocol
has terminated, or that termination has occurred. A problem is
given as a first order predicate over configurations. A protocol
is said to solve a problem if each execution terminates, and each
terminal configuration satisfies the predicate of the problem
specification. The round complexity (time complexity) of a
protocol is the number of rounds needed to reach a terminal
configuration in the worst case. A protocol is said to be uniform
in a parameter p if it does not depend on the value of p. It
is said to be locally termination detecting, or simply locally
terminating, if for any given node v, v detects if it has reached
a terminal state.

In the beeping model, protocols must specify what is done
in each round. Due to the nature of the communication model,
each action is performed on a sequence of consecutive rounds.
For instance, a node may have to wait for a round of silence, or
beep only every k rounds. At the code level, this type of action
is expressed by a loop. As it will appear later, in some complex
protocols, such loops are nested. For the sake of clarity, we
will name the sequence of rounds in the innermost loop the
L1-phase, the sequence of loops in the loop just above, the
L2-phase, and so on.
We extend previous definitions concerning protocols to Li-
phases, in particular uniformity and termination. We consider
terminal Li-phase states (states that no longer change in this Li-
phase), locally terminating Li-phases (any given node v detects
when it has reached a terminal Li-phase state) and uniform
Li-phases (when the range of the loop index is unknown).
The problem of detecting when a given Li-phase has ended
(terminated) for all nodes raises the question of synchronizing
the start of the following Li-phase.
We solve this problem by using Li-synchronization points,
represented by i in the code. Upon reaching an Li-
synchronization point (after having reached a terminal Li-phase
state), any given node v waits for all of its neighbors to reach
a terminal Li-phase state before executing the following Li-
phase, if there is any. Li-synchronization points require locally
terminating Li-phases, so that any given node v can detect
when all of its neighbors have reached the synchronization point.
The method for detecting that was first introduced in Förster
et al. [12], with the ”Balanced Execution Technique” (BET).
However, BET only guarantees L1-synchronization points. In
appendix A, we extend BET to guarantee Li-synchronization
points for any i ≥ 1. The extension, referred to as EBET,
is crucial in the design of complex uniform protocols in the
beeping model.

We call a protocol a competition protocol when nodes are
“eliminated” round after round until the “surviving” nodes form
an independent set (possibly empty). In this paper, we only
consider competition protocols where the elimination process
is deterministic and depends on identifier comparison.

D. Problem Specifications

The predicates (over configurations) defining the problems
considered in the paper can be naturally obtained from the
definitions given below.
A set I ⊆ V of vertices is said to be an independent set if for
any u, v in I , u and v are not neighbors in G. An independent
set I is maximal (MIS) if any vertex in V \ I has a neighbor
in I . A 2-hop MIS of G is an MIS of its square graph G2.
A set J ⊆ V of vertices is said to be a (t, s)-ruling set [13], if
for any two vertices u, v ∈ J , dist(u, v) ≥ t, and for any vertex
v ∈ V \J , there exists a vertex u ∈ J such that dist(u, v) ≤ s.
With this definition, an MIS is a (2, 1)-ruling set. A forest is
said to be a (t, s)-ruling forest if the roots are a (t, s)-ruling
set and the trees are of depth at most s.
A c-coloring col is a function from V into a set of colors
[c] such that ∀(u, v) ∈ E col(u) 6= col(v). Notice that in a
c-coloring, nodes with the same color constitute an independent
set. It is thus possible to construct an MIS from them. A 2-hop
coloring of G is a coloring of its square graph G2.
Any given function colorD is a d-defective c-coloring [14]
if ∀v ∈ V , colorD(v) ∈ [c] and v has at most d neighbors
colored with colorD(v). We say that colorD has a defect of d.
An edge where both endpoints have different colors is said to
be a non defective edge, otherwise it is said to be a defective
edge. With this definition, a (proper) coloring is a 0-defective
coloring.

E. Contributions

The first contribution of this paper is a tool for analyzing
competition protocols: the labeled ”deterministic” competition
graphs (Sect. II). Using such graphs in protocol analysis is
inspired by [15]. Here we adapt this technique to the case of
deterministic competition protocols. This general tool may be
useful also in future studies of MIS and coloring.

The second and main contribution of the paper is a series
of uniform MIS and coloring protocols. First, we present
O(∆2 log n+∆3) deterministic uniform protocols for MIS and
(∆ + 1)-coloring, where ∆ is the unknown maximum degree
(Sect. III). These protocols are time optimal for bounded degree
graphs. They also scale well to graphs with polylogarithmic ∆.
Indeed, in these graphs, the time complexity is polylogarithmic
in regards to n, which is very efficient.
Then, we extend the previous protocols with time complexity
dependent on ∆, to protocols with time complexity dependent
on the arboricity a (Sect. IV). We get O(a2 log2 n+ a3 log n)
time MIS and (∆ + 1)-coloring uniform protocols. This results
in efficient polylogarithmic time complexity for the large
family of graphs where a = O(logc n). Finally, we extend
the previous protocols into O(a2∆2 log2 n+ a3∆3 log n) time
2-hop coloring and 2-hop MIS uniform protocols (Sect. V).
Given a 2-hop coloring, we prove that the CONGEST model
can be simulated with some multiplicative overhead (Sect. VI).
Using this simulation and the algorithm proposed in [16] for
the CONGEST model, we get an O((a2∆2 + aµ∆4) · log2 n+
a3∆3 log n) time O(a)-coloring protocol in the beeping model,
for any given positive constant µ < 1. To the best of our

knowledge, this is the first coloring protocol using less than
∆ + 1 colors in the beeping model.

II. RULING SET PROTOCOL AND COMPETITION GRAPHS

Ruling sets serve as building blocks to construct complex
protocols. They have been used to compute MIS [13] and
colorings [17], [18]. In these papers, the ruling sets are used
to decompose the network, and nodes in the ruling set (the
“local leaders”) take care of solving the problem for the nodes
within a certain distance. In the beeping model, doing so is
more difficult. We show in the next section, how ruling sets
can still be used to design an efficient coloring protocol.

In this section, we introduce a competition protocol
(RulingSet - Protocol 1 in Sect. II-B) computing a
(2, 2 logN)-ruling set. This protocol can be considered as a
variant of the ruling set algorithm from [13]. That algorithm is
heavily recursive, requiring concurrent communications, which
are incompatible with the beeping model. Therefore, we adapt
it and provide a non-recursive competition protocol with a
similar behavior. To prove correctness (Sect. II-C), we use
competition graphs, which are directed graphs that serve to
model the behavior of competition protocols and help analyzing
them. They were first used in [15], but in association with a
non-deterministic elimination process. As we are interested in
deterministic protocols, we use the nodes’ identifiers to label
the edges of a competition graph with α-encodings (Sect. II-A),
and these values determine a deterministic elimination process.
The resulting labeled competition graphs allow to compute the
surviving nodes in a convenient way.

4 1 0 0 1 1 1 0 0 0
binary

The encoding starts with as many 1’s as the length
of the binary representation, followed by a 0.

α-encoding

Then, append binary representation from the second bit
onwards

Fig. 3: Description of α-encoding

A. α-encoding

We α-encode integers to design uniform competition pro-
tocols, as in Casteigts et al. [19]. This encoding allows to
compare integers (identifiers) bit by bit in a uniform manner.
Indeed, when using α-encodings (of integers from [N]), such
protocols do not need to know the binary integers’ lengths
(depending on logN) to compare them bit by bit. The α-
encoding of integer i is made up of two parts, as explained in
Figure 3. Comparing two α-encodings α(i) and α(j) consists
of first comparing the minimum number of bits necessary to
encode the integers, and if it is the same, comparing the binary
representations of i and j (the first bit is unnecessary, because
it is 1 and the length is already known).

Definition 1. Let i be a positive integer, bin its binary
representation and l(i) the length of bin. Let bin−1 be the
binary representation without the leading 1 and 1l(i) a binary
string of l(i) 1’s. The α-encoding of i, denoted by α(i), is
1l(i) ‖ 0 ‖ bin−1 (where ‖ denotes string concatenation).

α-encoding preserves the order between two integers.

Lemma 1. For any i, j ∈ N>0: i < j ⇔ α(i) ≺ α(j), where
≺ is the lexicographical order on α-encodings.

B. Uniform Competition Protocol for Computing a Ruling Set

Nodes use their unique identifiers for comparison and
survivors of the elimination process constitute the output set.
Each node v has a unique identifier id(v). The identifiers are
encoded on at most lmax bits, but lmax is unknown to the
nodes and thus the binary representations of the identifiers do
not necessarily have the same length. Every node v computes
the α-encoding α(id(v)) (or α(v) for short, by notation abuse)
and outputs a boolean value survivedv. We prove that the
output is a (2, 2 logN)-ruling set (Theorem 2).

Protocol 1 RulingSet
1: IN: id: Integer OUT: survived: Boolean value
2: survived := true, α := α(id) . Get α-encoding
3: for round r := 1 ; r ≤ l(α) ; r++ do . r is incremented after each iteration
4: if αr = 1 then BEEP . Consider the rth most significant bit
5: else
6: LISTEN
7: if beep heard then . If a neighbor has a higher identifier
8: survived := false
9: EndProtocol

10: EndProtocol . No beep heard

The following lemma is straightforward.

Lemma 2. RulingSet has a round complexity of
maxv∈V l(α(v)) = O(logN).

C. Correctness Analysis of Protocol 1

The output set of RulingSet is analyzed through a game,
which we refer to as the “elimination game”. This game
is enacted on an edge-labeled directed acyclic graph Gdag,
the labeled competition graph, constructed from the original
communication graph G and the nodes’ unique identifiers.
This construction process is adapted here to the RulingSet
protocol, but it applies to any competition protocol. Gdag =
(V,Edag, label), where Edag is the set of directed edges and
label an edge labeling function. Gdag is constructed from the
α-encodings of the identifiers, encoded on a maximum of
2lmax bits.
• Let (u, v) be an edge of G with α(u) � α(v). Then,

(u, v) is a directed edge in Gdag , directed from u to v.
• Let (u, v) be an edge of Gdag. For the smallest index
i ∈ [2lmax] such that αi(u) = 1 and αi(v) = 0, set
label(u, v) to i: the edge (u, v) is labeled (with) i.

For any edge e = (u, v) of Gdag , u is called the origin and
v the extremity of e. The following lemma is straightforward.

The elimination game is played by the nodes of Gdag , round
by round, in the following way: on round r, all surviving nodes

4: ’100’ 2: ’10’ 3: ’11’Input graph and
identifiers

111000 1100 1101
3 4Gdag, using α-

encoding on ids

Constructing Gdag

Fig. 4: Example of Gdag construction

with an outwards edge e labeled label(e) = r eliminate the
extremities of these edges. The game finishes when no more
node can be eliminated (thus after at most 2lmax rounds). A
node’s survival is stored as a boolean in the survived variable.

Definition 2. Let v be a vertex in Gdag . Let e be an incoming
edge. We say that e is acting if the origin of e is not eliminated
before round label(e), and non acting otherwise. If e = (u, v)
is an acting incoming edge, then u eliminates v at round
label(e) if and only if v has not already been eliminated.
We define the same notions for outgoing edges.

Definition 3. Let Π = (v1, . . . , vl) be a directed path in Gdag .
There is a unique label sequence Slab(Π) = (s1, . . . , sl−1) s.t.
∀r ∈ [l − 1], er=(vr, vr+1) and sr= label(er).

Results similar to the following lemma and theorem are
proven in [20] for a more limited case. Lemmas 3 and 4
are straightforward.

Lemma 3. Let Π = (v1, . . . , vl) be a directed path in Gdag.
Slab(Π) has no consecutive equal labels: ∀r∈ [l−1] sr 6=sr+1.

Theorem 1. Let v be any node from Gdag not surviving the
elimination game. There exists a surviving node u such that
dist(u, v) ≤ 2lmax, where lmax = O(logN) .

Proof. First, a path Π from a surviving node u to node v is
constructed, then we prove that Π’s length is at most 2lmax.
Π is constructed by induction. Node v did not survive, so there
exists an acting incoming edge. The acting incoming edge
(w, v) with the smallest label is added to Π. If w does not
survive the elimination game, the previous actions are repeated
and an acting incoming edge is added to Π. This is done until
a surviving node is reached. Since at least one node survives
the elimination game, Π’s construction is well-defined and
Π = (el, . . . , e1).
Now, let us prove by contradiction that l ≤ 2lmax. Suppose
l > 2lmax and focus on Slab(Π). Because the edge-labels are
integers from [2lmax] and consecutive labels are non equal
by Lemma 3, there exists an extremum sr indexed by r ∈
{2, . . . , 2lmax}. Thus there exists i ∈ {r − 1, r} such that
si > si+1. However, both ei and ei+1 are acting incoming
edges, by construction. Thus, the origin of ei is eliminated in
round si+1, which contradicts the fact that ei is acting. Hence,
we have a contradiction.

Lemma 4. Let I = {v ∈ V s.t. survivedv = true} at the
termination of RulingSet. Let S be the set of survivor nodes
of an elimination game played on Gdag . We have I = S.

Theorem 2. The output set I = {v ∈ V s.t. survivedv =
true} of RulingSet is a (2, 2 logN)-ruling set.

III. MIS AND VERTEX COLORING PROTOCOLS

Let us now present MIS and (∆+1)-coloring protocols with
O(∆2 logN+∆3) round complexity, where ∆ is the maximum
degree of the communication graph G. When ∆ = O(1), we
obtain an asymptotically optimal O(log n) round complexity
[10] . For polylogarithmic ∆, the protocol is still very efficient.
Nodes know the maximum degree ∆ at first, but this assumption
is dropped later on. Nodes know no polynomial upper bound
N on their total number.

The protocols presented here are based on computing and
refining defective colorings. Defective colorings were first used
to solve the distributed coloring problem in [21] and [22]. Here,
we refine the defective coloring differently from the previous
works. The exact method is explained below.

A. Non-uniform Protocols for MIS and (∆ + 1)-coloring

The (∆ + 1)-coloring protocol DegreeColoring (Protocol
2) refines the initial ∆-defective coloring until the coloring is
proper. DegreeColoring can be seen as an L4-phase. It has
∆ L3-phases: in each of these phases, the defect is reduced by
at least 1. Each L3-phase is made of ∆+1 coloring L2-phases,
followed by an additional color reduction L2-phase.
In each coloring L2-phase, nodes with a specific color com-
pute a (2, 2 logN)-ruling forest on the subgraph induced by
themselves, using RulingSet (Protocol 1) and Breadth First
Searches (BFS) - ColorByBFS function (see below). During
BFS, they recolor themselves with an even or odd available
color depending on the parity of their depth in the ruling forest.
Finally, all nodes communicate the changes in color and update
their set of unavailable colors. The following color reduction
L2-phase is made up of ∆ + 1 L1-phases. In each such L1-
phase, the range of colors used by all nodes is reduced by 1
(if the range is greater than ∆ + 1). This is important because
the color range affects the round complexity, and the color
range can increase exponentially if it is not reduced in each
L3-phase.

Let us now present the functions used in a coloring
L2-phase. There are two functions, ColorByBFS and
BroadcastColors. ColorByBFS recolors each participating
node. The resulting coloring can be defective. The input
parameters are a boolean (inSet) indicating whether or not
the node is part of the ruling set, i.e., serving as BFS roots,
and a set of unavailable colors (U). The roots initiate parallel
BFS. Other nodes compute their distance to the nearest root,
which is given by the BFS, and recolor themselves with an
available (not in U) newColor, according to the parity of this
distance. The newColor values returned by ColorByBFS
are in [2∆ + 2]. This is because the set of unavailable colors
contains at most ∆ colors, and possibly all of the same parity.
Therefore, ColorByBFS chooses the smallest available odd
(resp. even) value amidst the first ∆+1 odd (resp. even) values.
BroadcastColors communicates the colors chosen by the
neighboring nodes. The function has four input parameters: the

function ColorByBFS(inSet, U): newColor

1: beeping := false . |U | ≤ ∆, U ⊂ [2∆ + 2].
2: if inSet then beeping := true . Roots initiate BFS
3: for round r := 1 ; r++ do
4: if beeping then
5: BEEP . All nodes beep once. The root is r − 1 hops away.
6: newColor := min{k ∈ (N>0 \ U) | k ≡ r mod 2}
7: Return newColor . newColor ∈ [2∆ + 2]
8: else
9: LISTEN

10: if beep heard then beeping := true

node’s color (newColor), a boolean indicating whether or not it
should participate in the current invocation (changingColor),
a set of unavailable colors (U) and the maximum degree ∆.
The color is transmitted through the round number.

function BroadcastColors(newColor, changingColor, U , ∆): U

1: for round r := 1 ; r ≤ 2∆ + 2 ; r++ do
2: if newColor = r and changingColor then BEEP
3: else
4: LISTEN
5: if beep heard then U := U ∪ {r} . More unavailable colors
6: Return U

Now, let us present the ColorReduction function invoked
in the color reduction L2-phase. Its input parameters are an
integer value given by a d-defective c-coloring (color), the
maximum degree ∆ and the maximum color c (in the coloring).
Nodes broadcast colors from [∆ + 1] in ∆ + 1 rounds, after
which, nodes with color = c change their color to the smallest
available color in [∆ + 1]. The output is the node’s new color
(color), given by a d-defective c′-coloring, with c′ = min(c−
1,∆ + 1).

function ColorReduction(color, ∆, c): color

1: U := ∅ . U stores unavailable colors
2: for round r := 1 ; r ≤ ∆ + 1 ; r++ do
3: if color = r then BEEP
4: else
5: LISTEN
6: if beep heard then U := U ∪ {r}
7: if color = c then color := min([∆ + 1] \ U)
8: Return color

In DegreeColoring, we only require L1-synchronization
points (for RulingSet and ColorByBFS), introduced in Sect.
I-C. Both functions are uniform in N , and thus are not explicitly
terminating (if executed alone). However, they are locally
terminating. Therefore we can use BET to perform neighboring
termination detection and make nodes start the next step of the
protocol synchronously. On the other hand, as the time lengths
of all L2, L3 and L4-phases (and ColorReduction calls) are
upper bounded by ∆ + 1, their termination is completely
synchronized at all nodes and we do not need L2, L3 and
L4-synchronization points.

Lemma 5. At the start (and end) of an L3-phase, color ∈
[∆ + 1].

Lemma 6. The defect of color is reduced by one per L3-phase.

Proof. Let color be d-defective at the start of L3-phase p3.
For any given node v, v has at most d defective edges. It is

Protocol 2 DegreeColoring
1: IN: id: Identifier, ∆: Maximum degree OUT: color: Integer value
2: color := 1
3: // Each node removes at least one defective edge per L3-phase
4: for L3-phase p3 := 1 ; p3 ≤ ∆ ; p3++ do
5: U := ∅ . Stores newColor values already chosen during this phase
6: newColor := 0 . newColor ∈ [2∆ + 2] during L3-phase
7: // An L3-phase starts with ∆ + 1 coloring L2-phases
8: for coloring L2-phase p2 := 1 ; p2 ≤ ∆ + 1 ; p2++ do
9: if color = p2 then inSet := RulingSet(id)

10: 1 . L1-synchronization point
11: if color = p2 then newColor := ColorByBFS(inSet, U)
12: 1

13: U := BroadcastColors(newColor, (color = p2), U,∆)
14: 2 . This synchronization point is not needed (strictly explanatory)
15: color := newColor
16: // Followed by one L2-phase, which contains ∆+1 color reduction L1-phases
17: // Before the L2-phase, color ∈ [2∆ + 2]
18: for color reduction L1-phase p1 := 1 ; p1 ≤ ∆ + 1 ; p1++ do
19: color := ColorReduction(color,∆, 2∆+3− p1)
20: 1

21: // After all color reduction L1-phases, color ∈ [∆ + 1]
22: 3 . Not needed, for clarity only
23: EndProtocol

easy to see that non-defective edges remain non-defective. In
a non-defective edge (v, u), let v be the node with the higher
color w.l.o.g. During L3-phase p3, v stores a set of unavailable
newColor values, including newColoru. As such, when v
executes ColorByBFS, newColorv 6= newColoru.
All endpoints of the defective edges of v, and v itself, execute
RulingSet and ColorByBFS in the same L2-phase. If
DistC(v) denotes v’s distance to the nearest BFS tree root
(RulingSet survivor), there is at least one endpoint u with
|DistC(u)−DistC(v)| = 1. Because of the difference in the
parity of these distances, u and v choose different values in
[2∆ + 2], and at least one edge becomes non-defective.

Theorem 3. DegreeColoring solves (∆ + 1)-coloring in
O(∆2 log n+ ∆3) rounds.

Given a (∆+1)-coloring, it is simple to compute an MIS in
∆ + 1 rounds. Nodes with the same color form an independent
set. Adding iteratively (at each round) nodes from each such
set to a common independent set results in an MIS. Thus, MIS
can also be solved in O(∆2 log n+ ∆3) rounds.

B. Uniform (∆ + 1)-coloring

Now, we wish to transform DegreeColoring into
UnifDegreeColoring, which is uniform in both ∆ and
n. The first step is to replace the functions used in
DegreeColoring by uniform functions, and to synchronize
them using synchronization points. Then, every non-uniform
stopping condition of a loop appearing in DegreeColoring
should be eliminated and replaced by a so called local
termination component. This component is an Li−2-phase
executed at the end of each iteration (Li−1-phase) of the loop
(Li-phase). It serves to detect if the executing node has finished
the ongoing loop. More formally, this component serves to
detect whether the executing node has reached a terminal Li-
phase state, and makes the Li-phase locally-terminating.

First, let us present UnifBroadcastColors, a uniform
version of BroadcastColors (since BroadcastColors re-
quires ∆). UnifBroadcastColors is an L2-phase, made of

consecutive L1-phases, each composed of 2 rounds. In the
first round, the executing node v beeps if it has not yet
communicated newColorv. Otherwise, it listens so it can
detect if all of its neighbors have already communicated
their newColor value, and if so, v terminates. In the second
round, we have the round behavior of BroadcastColors. In
such a way, we obtain a uniform function having the same
behavior as BroadcastColors. Moreover, in this particular
case, since all L1-phases contain exactly 2 rounds, it is also
locally synchronized, even without using EBET, and therefore
there is no need to indicate synchronization points explicitly.

function UnifBroadcastColors(newColor, changingColor, U): U

1: for L1-phase p1 := 1 ; p1++ do . L1-phase consists of two rounds
2: // First round
3: if newColor >= p1 and changingColor then BEEP . Not finished yet
4: else
5: LISTEN
6: if no beep heard then Return U . If all neighbors beeped their colors
7: // Second round
8: if newColor = p1 and changingColor then
9: BEEP . Communicate your color

10: else
11: LISTEN
12: if beep heard then U := U ∪{p1} . Keep neighbors’ newColor values

Next, we design a uniform version of ColorReduction.
It is used in ReduceColors, a uniform version of the color
reduction L2-phase from DegreeColoring.
UnifColorReduction has two input parameters: the node’s
color (color), given by a d-defective c-coloring, and a set of
unavailable colors (U). It also has two output parameters: the
node’s new color color, given by a d-defective c′-coloring
(with c′ = min(c − 1,∆ + 1)), and a boolean sameColor
indicating whether color changed. Every node v transmits its
color value to its neighbors by beeping in the first round of the
L1-phase indexed by color. Nodes with the highest color in
their neighborhood choose the smallest available color (colors
previously transmitted by neighbors are forbidden). If that color
is the node’s current color, then sameColor is assigned to
true. Other nodes do not change their color (and end with
sameColor equal to false). Here again, there is no need to
indicate synchronization points explicitly, since all L1-phases
contain exactly 2 rounds.
ReduceColors is an L4-phase. It has two input parameters:
the node’s color (color), given by a d-defective c-coloring, and
a set of unavailable colors (U). It has a single output: the node’s
new color (color), given by a d-defective (∆ + 1)-coloring.
The main idea is to have the nodes with the highest color in
their neighborhood change their color to the smallest available
color (in [∆ + 1]). At some point, they can no longer improve
their color (finished is true). These nodes terminate, allowing
the other nodes in their neighborhood to change their color
value. Here, it is crucial to put L2-synchronization points after
the UnifColorReduction and UnifBroadcastColors calls,
because these functions are uniform. Thus, different nodes
can finish executing these functions at different times, i.e.,
not synchronously. As these functions are locally terminating,
EBET can be used to ensure the synchronization points.

function UnifColorReduction(color, U): color, sameColor

1: sameColor := false
2: for L1-phase p1 := 1 ; p1++ do . L1-phase consists of two rounds
3: // First round
4: if color = p1 then BEEP
5: else
6: LISTEN
7: if beep heard then U := U ∪ {p1}
8: // Second round
9: if color > p1 then BEEP

10: else
11: // Only a node with the highest color in its neighborhood hears no beep
12: LISTEN
13: if beep heard then Return (color, sameColor)
14: else
15: color := min([p1] \ U)
16: if color = p1 then sameColor := true
17: Return (color, sameColor)

function ReduceColors(color, U): color

1: finished := false
2: while not finished do . At most c L3-phases
3: (color, finished) := UnifColorReduction(color, U)
4: 2

5: U := UnifBroadcastColors(color, finished, U)
6: 2 . Actually, also an L3-synchronization point
7: Return color

Following this, let us describe the functions used for
UnifDegreeColoring’s local termination component. These
functions are used to detect when the executing node’s color
is proper, i.e., no neighbor has the same color. Then, the
executing node can exit the outermost loop and thus locally
terminate the protocol (see lines 24 to 29).
ColorCollision uses UniformCollisonBeep to detect
whether there are same color neighbors amongst executing
nodes. The function has two input parameters: an identifier
(id) and the node’s color (color). The output parameter is a
boolean indicating whether the node detected a collision with a
same color node (collision). In each L2-phase p2, nodes with
color p2 check for a collision by using UnifCollisionBeep.
If no neighboring node with the same color p2 exists, then no
collision is detected by the executing nodes.
UnifCollisionBeep detects whether there are any neighbors
amongst the currently executing nodes (a collision). The input
parameter is an identifier (id) and the output parameter is
a boolean indicating whether the node detected a collision
(collision). In each L1-phase, a node beeps in the first or the
second round, depending on whether the p1th most significant
bit of α(id) is 0 or 1. If a beep is heard, then there is a
collision. Two executing neighboring nodes always detect
a collision because they have different identifiers. A node
terminates if the phase index p1 is greater than the length of
the α-encoding of its id.

Finally we describe UnifDegreeColoring. The main idea
is the same as in DegreeColoring: we refine the initial
∆-defective coloring until the coloring is proper. The main
differences are the local termination components. The L4-
phase’s (L3 loop) local termination component is similar to
the local termination component in UnifBroadcastColors.
A node has finished an L4-phase if all of its neighbors have

function UnifCollisionBeep(id): collision

1: collision := false
2: for L1-phase p1 := 1 ; p1++ do . L1-phase consists of two rounds
3: if p1 > l(α(id)) then Return collision
4: if αp1(id) = 0 then
5: BEEP ; LISTEN
6: if beep heard in the second round then collision := true
7: else
8: LISTEN ; BEEP
9: if beep heard in the first round then collision := true

function ColorCollision(id, color): collision

1: for L2-phase p2 := 1 ; p2++ do . At most ∆ + 1 L2-phases
2: if color = p2 then
3: collision := UnifCollisionBeep(id)
4: Return collision
5: 2

chosen a new color. The protocol’s local termination component
is described previously. The additional Ut variable is used to
store unavailable colors that have already been chosen by
neighboring nodes which have terminated the protocol.

Protocol 3 UnifDegreeColoring
1: IN: id: Identifier OUT: color: Integer value
2: Ut := ∅ . Stores color values chosen for output by terminated neighbors
3: color := 1
4: // Each node removes at least one defective edge per L5-phase
5: for L5-phase p5 := 1 ; p5++ do
6: U := ∅ . Stores newColor values already chosen during this phase
7: newColor := 0 . newColor ∈ [2∆ + 2] during the L5-phase
8: // This L3 loop is an L4-phase
9: for coloring L3-phase p3 := 1 ; p3++ do

10: if color = p3 then inSet := RulingSet(id)
11: 1

12: if color = p3 then newColor := ColorByBFS(inSet, U ∪ Ut)
13: 1

14: U := UnifBroadcastColors(newColor, color = p3, U)
15: 2 . L2-synchronization point here, thus we have coloring L3-phases
16: // From here on, local termination component for L4-phase
17: if color > p3 then BEEP . Beep if new color still not chosen
18: else
19: LISTEN . Check if any neighbor is still choosing a new color
20: if no beep heard then Exit L3 loop
21: 4 . Crucial because some nodes end the L4-phase earlier than others
22: color := ReduceColors(newColor, Ut) . After, color ∈ [∆ + 1]
23: 4

24: // From here on, local termination component for L5 loop
25: collision := ColorCollision(color)
26: 3 . Because ColorCollision is an L3-phase
27: Ut := UnifBroadcastColors(color, collision = false, Ut)
28: 2 . Because UnifBroadcastColors is an L2-phase
29: if not collision then EndProtocol . Exit L5 loop

Theorem 4. MIS and (∆ + 1)-coloring can be solved in
O(∆2 log n+ ∆3) rounds with a protocol uniform in both
∆ and N .

IV. IMPROVEMENTS FOR GRAPHS WITH SMALL ARBORICITY

DegreeColoring is efficient for graphs with polylogarith-
mic maximum degree ∆. However, not all graphs have a
low maximum degree, and in these graphs, Protocol 3 is less
efficient. Using ideas from [23] and [24], it is possible to
design a (∆+1)-coloring protocol which is efficient on graphs
with low arboricity a (more specifically, with polylogarithmic
a). Notice that some important topologies like trees and planar
graphs have an arboricity of 1 and 3 respectively, while their
maximum degree can be arbitrarily large.

Theorem 5. MIS and (∆ + 1)-coloring can be solved with
O(a2 log2 n+a3 log n) round complexity in the beeping model,
where a is the arboricity of the communication graph.

To support this theorem, we design two coloring protocols
with the above round complexity: one is uniform in N but not
in a, and the other is uniform in a but not in N . It is important
to have a protocol uniform in a, since a may be harder to
obtain than an upper bound on N . The following results from
[24] are used to obtain these protocols.

Lemma 7. [24] If G is of arboricity a, at least ε
2+ε |V | nodes

have a degree less than (2 + ε)a.

Theorem 6. [24] If G is of arboricity a, it can be decomposed
into l = O(log n) sets of nodes H1, . . . ,Hl such that each
set Hi has maximum degree O(a) in the induced subgraph
G[∪lk=iHk].

The LimitedDegreeColoring function is the main compo-
nent of both protocols. It colors all participating low-degree
nodes, if it is given an upper bound on the arboricity a. A node
v is considered to be a low-degree node if it has deg(v) ≤ ∆a,
where ∆a = (2 + ε) · a for a parameter ε > 0. Contrarily to
DegreeColoring, it may happen that some nodes have no
available colors in [∆a + 1], due to their high degree, and
end the function uncolored, represented by the color 0. We
use LimitedColorReduction, a slightly modified version of
ColorReduction. It is not presented here, but the only change
is that color is set to 0 if [∆ + 1] \ U is an empty set.

function LimitedDegreeColoring(id, c): color

1: color := 1
2: for L3-phase p3 := 1 ; p3 ≤ c ; p3++ do
3: U := ∅ . Stores newColor values already chosen during this phase
4: newColor := 0
5: for L2-phase p2 := 1 ; p2 ≤ c+ 1 ; p2++ do
6: if color = p2 then inSet := RulingSet(id)
7: 1 . L1-synchronization point
8: if color = p2 then
9: newColor := ColorByBFS(inSet, U)

10: if color 6∈ [2c+ 2] then Return 0 . Not a good color
11: 1

12: U := BroadcastColors(newColor, color = p2, U, c)
13: color := newColor
14: for L1-phase p1 := 1 ; p1 ≤ c+ 1 ; p1++ do
15: color := LimitedColorReduction(color, c, 2c+ 3− p1)
16: if color = 0 then Return 0 . No color in [c+ 1] could be chosen
17: collision := ColorCollision(color)
18: if collision then Return 0 . If not properly colored, no color is chosen
19: Return color

Lemma 8. Let ∆a = (2 + ε) · a, with ε > 0. Given the
input c = ∆a, LimitedDegreeColoring outputs a (∆a + 1)-
coloring on a subgraph of nodes, which includes all nodes
with degree less than or equal to ∆a. All other nodes have
output 0. The round complexity is O(a2 · log n+ a3).

Proof. The round complexity is straightforward.
LimitedDegreeColoring outputs a (∆a + 1)-coloring on the
subgraph of nodes with non-zero colors because all colors are
chosen from [2∆a + 2], if available. and are then reduced to
[∆a + 1]. ColorCollision ensures that the coloring is valid.

Now, let us prove by contradiction that for any given node
u with deg(u) ≤ ∆a, the output is a non-zero color. u
outputs 0 due to LimitedColorReduction, ColorByBFS or
ColorCollision. The first two cases are impossible because
|U(u)| ≤ ∆a. In the last case, ColorCollision is executed
after ∆a L3-phases. In each L3-phase, incident non-defective
edges remain non-defective, and at least one incident defective
edge becomes non-defective. Since after ∆a L3-phases u has no
defective edges, u has no neighbor v with coloru = colorv .

A. (∆ + 1)-coloring Uniform in N

First, let us focus on the first protocol, uniform in N .
LimitedDegreeColoring is executed iteratively by uncol-
ored nodes until all nodes are properly colored. Since a is
known, and by Lemma 7, each invocation of the function
colors a constant fraction of the nodes of the communication
graph. Colored nodes no longer participate in subsequent
LimitedDegreeColoring calls. By Theorem 6, executing
LimitedDegreeColoring l = O(logN) times (or more)
colors all nodes with O(a · logN) colors. As N is unknown,
invocations of LimitedDegreeColoring continue until the ex-
ecuting node is colored properly (local termination component).
When this happens for all nodes, the O(a · logN)-coloring is
transformed into a (∆ + 1)-coloring by ReduceColors, as in
Protocol 3. This takes an additional O(a2 · log2 n) rounds.

Protocol 4 UnifNArbColoring
1: IN: id: Identifier, a: Arboricity of G, ε: Parameter
2: OUT: color: Integer value
3: ∆a := (2 + ε) · a
4: for L4-phase p4 := 1 ; p4++ do . At most l = 2

ε · logn L4-phases
5: color := LimitedDegreeColoring(id,∆a)
6: 4

7: if color 6= 0 then
8: color := color + (p4− 1) · (∆a + 1)
9: Exit L4 loop

10: 5 . color is an O(a · logn)-coloring
11: color := ReduceColors(color, ∅) . At most O(a2 · log2 n) rounds
12: EndProtocol . color ∈ [∆ + 1]

Theorem 7. Protocol 4 solves MIS and (∆ + 1)-coloring
with O(a2 log2 n+ a3 log n) round complexity. This protocol
is uniform in N but non-uniform in a.

Proof. Let us prove that after all L4-phases, arbColor is an
O(a · log n)-coloring. In each L4-phase of Protocol 4, only un-
colored nodes (Vrem) participate in LimitedDegreeColoring.
Since the subgraph induced by Vrem also has arboricity at most
a, by Lemmas 7 and 8, ε

2+ε |Vrem| nodes have a degree less
than ∆a and thus are part of the subgraph with a (∆a + 1)-
coloring. They exit the L4 loop, thus by Theorem 6, there
are at most 2

ε · log n = O(log n) L4-phases. Since we use
non-overlapping ranges of ∆a + 1 colors for each L4-phase,
arbColor is an O(a · log n)-coloring. The round complexity
follows from the number of L4-phases and Lemma 8.

B. (∆ + 1)-coloring Uniform in a

In the second protocol (uniform in a), we compute an
upper bound on a. This is done by estimating a iteratively.
At each iteration (L5-phase) i, a is estimated to be 2i and

LimitedDegreeColoring is executed l = O(logN) times,
given this estimation. After O(log a) iterations, the estimation
is at least as large as the actual arboricity. When this happens,
LimitedDegreeColoring executed O(logN) times provides
a proper coloring (followed by the color range reduction) as
in the first protocol.

Protocol 5 UnifAArbColoring
1: IN: id: Identifier, N: Polynomial upper bound on n, ε: Parameter
2: OUT: color: Integer value
3: for L5-phase p5 := 1 ; p5++ do . At most 1 + blog ac L5-phases.
4: ∆p5 := (2 + ε) · 2p5
5: len := 2

ε · logN
6: for L4-phase p4 := 1 ; p4 ≤ len ; p4++ do
7: color := LimitedDegreeColoring(id,∆p5)
8: 4

9: if color 6= 0 then
10: color +=(∆p5 − 2− ε+ p5− 1) · len+ (p4− 1) · (∆p5 + 1)
11: Exit L5 loop
12: 5 . Not needed, for clarity only
13: 6 . color is an O(a·logn)-coloring
14: color := ReduceColors(color) . At most O(a2 · log2N) rounds
15: EndProtocol . color ∈ [∆ + 1]

Theorem 8. Protocol 5 solves MIS and (∆ + 1)-coloring
with O(a2 log2 n+ a3 log n) round complexity. This protocol
is uniform in arboricity a but non-uniform in N .

Proof. Let us first prove that Protocol 5 solves (∆+1)-coloring.
At the end of L5-phase p5, by Lemma 8, all nodes with degree
less than ∆p5 = (2 + ε) · 2p5 are colored. By Lemmas 7 and 8,
and Theorem 6, at L5-phase p5 = 1+blog ac, ∆p5 ≥ (2+ε)·a
and all nodes are colored after 2

ε · logN L4-phase. Since
the color ranges from different L4-phases or different L5-
phases do not overlap, and the non-zero colors returned by
LimitedDegreeColoring form a coloring, arbColor is an
O(a · logN)-coloring. And after the ReduceColors call, the
coloring is reduced to a (∆ + 1)-coloring.
It is straightforward to prove the round complexity. Since
arbColor is an O(a · logN)-coloring, ReduceColors takes
at most O(a2 log2N) rounds, while the L5 loop takes at most
O(a2 log2N + a3 logN) rounds.

V. UNIFORM PROTOCOLS FOR 2-HOP MIS AND 2-HOP
(∆2 + 1)-COLORING

To obtain protocols for 2-hop MIS and 2-hop coloring, we
provide and use a general transformer, the SquareSim protocol
(Protocol 6), allowing to ”simulate G2 over G”. The idea is
that nodes propagate beeps for an extra round (and therefore
contact nodes at distance 2), so that they can simulate a protocol
on the square of the communication graph, for a small time
multiplicative overhead. SquareSim provides two primitives
SquareSim(true) and SquareSim(false) to simulate in G,
the BEEP and LISTEN instructions invoked on graph G2.

Lemma 9. A protocol designed to be executed on G2 can be
simulated on G by replacing all BEEP instructions by calls
to SquareSim(true) and LISTEN instructions by calls to
SquareSim(false).

The maximum degree of the square communication graph is
∆2. By applying Lemma 9 to the previous protocols, we obtain

Protocol 6 Simulating the square communication graph: SquareSim

1: IN: beep: Boolean value OUT: detectedBeep: Boolean value
2: detectedBeep := false
3: if beep then BEEP . Transmit beep to neighbor nodes: First round
4: else
5: LISTEN
6: if beep heard then detectedBeep := true
7: if detectedBeep then BEEP . Transmit to distance 2 nodes: Second round
8: else
9: LISTEN

10: if beep heard and not beep then detectedBeep := true
11: EndProtocol

protocols for solving 2-hop coloring with (∆2 + 1) colors and
2-hop MIS. These protocols are very efficient on bounded
degree graphs, and efficient for graphs with polylogarithmic
∆. 2-hop coloring is an important tool in the beeping model,
used to break symmetry and to deal with the interferences. In
the next section, we show how this can be used to simulate
the stronger CONGEST communication model and obtain an
O(a)-coloring.

Corollary 1. 2-hop MIS and 2-hop (∆2 + 1)-coloring can be
solved in O(∆4 log n+ ∆6) rounds.

Instead of the maximum degree of the square of the given
graph, consider its arboricity. Using a result from [25], showing
that a(G2) ≤ 23 · a ·∆, we obtain Corollary 2, which provides
a more efficient result for graphs with small arboricity.

Corollary 2. 2-hop MIS and 2-hop (∆2 + 1)-coloring are
solved by the two protocols in Sect. IV with an O(a2∆2 log2 n+
a3∆3 log n) round complexity. One of them is uniform in N
but not in a, and the other is uniform in a but not in N .

VI. CONGEST MODEL SIMULATION AND O(a)-COLORING

By using a 2-hop coloring, nodes can simulate the trans-
mission of messages through the edges of the communication
graph, like in the CONGEST model with edge bandwidth
B (commonly O(logN)). We want to make sure that for any
given node v, a message can be sent or received along any edge
without interference, and that the provenance and destination
of the message can be deduced easily.

First, InitCongest (Protocol 7) is used at the beginning
of the simulation to obtain all possible message provenance
and destinations for any given node v (simulated by the colors
from the 2-hop coloring). After which, the transmission of
messages is done through SimCongest.

Our simulation algorithm SimCongest (Protocol 8) is made
of two components. The first component is used to transmit a
B bit message. If we have no interference, a node can transmit
B bits during 2B rounds (in phases of two rounds, one round
for transmitting bit 1 and another one for bit 0).
The second component, and the core part of the simula-
tion, deals with the interferences inherent to the beeping
model. Here, a 2-hop c-coloring (for some constant c) is
required so that messages can be associated to a pair of
colors p = (colorProvenance, colorDestination), according
to their provenance and destination (c2 possibilities). The
simulation is composed of phases, each of c2 invocations of

the first component. In this way, transmitted bits never collide.
The B bit messages are part of the input parameters of
SimCongest. They are given through a hash table (mSend),
with the message destinations (colors) as keys and the messages
as values. The messages received are stored in a similar
structure (mRec), where the message provenances are the
keys.

Protocol 7 InitCongest
1: IN: color: Integer value from a 2-hop c-coloring
2: OUT: Nb: Port numbers
3: Nb := ∅ . Stores neighbors’ colors (used as ports)
4: for round r := 1 ; r ≤ c ; r++ do . Get neighbors’ colors
5: if r = color then BEEP
6: else
7: LISTEN
8: if beep heard then Nb := Nb ∪ {r}
9: EndProtocol

Protocol 8 SimCongest
1: IN: B: Edge bandwidth, color: Integer value from a 2-hop c-coloring, c: maximum

color value, mSend: Hash table of messages to send
2: OUT: mRec: Hash table of messages received
3: for L3-phase p3 := 1 ; p3 ≤ c ; p3++ do
4: for L2-phase p2 := 1 ; p2 ≤ c ; p2++ do
5: for L1-phase p1 := 1 ; p1 ≤ B ; p1++ do
6: if p3 = color then . p3 can send its p1th bit to p2
7: if p2 ∈ Nb and mSend[p2]p1 = 0 then . Send a 0 message
8: BEEP ; LISTEN
9: else if p2 ∈ Nb and mSend[p2]p1 = 1 then . Send a 1 message

10: LISTEN ; BEEP
11: else
12: LISTEN ; LISTEN . Synchronize
13: else if p2 = color then . Listen for a possible incoming p1th bit
14: LISTEN ; LISTEN . Then append the received bit in mRec
15: if beep heard in first round then mRec[p3] := mRec[p3] ‖ 0
16: if beep heard in second round then mRec[p3] := mRec[p3] ‖ 1
17: else
18: LISTEN ; LISTEN . Synchronize
19: EndProtocol

The following lemma is straightforward.

Lemma 10. Given a 2-hop c-coloring, the CONGEST model
with edge bandwidth B can be simulated in the beeping model,
with an O(c2 ·B) multiplicative factor.

Finally, using the simulation of CONGEST, one can use the
result of Barenboim and Elkin [16] (given for CONGEST),
to obtain an O(a)-coloring in the beeping model. It is done
by first computing, in the beeping model, a 2-hop (∆2 + 1)-
coloring in O(a2∆2 log2 n+a3∆3 log n) rounds (Corollary 2).
Then the O(a)-coloring from [16] (with O(aµ log n) round
complexity) is combined with the CONGEST simulation,
using the (∆2 + 1)-coloring obtained before. By Lemma 10,
the resulting simulation of the O(a)-coloring protocol has
O(aµ∆4 log2 n) round complexity.

The final result is an O((a2∆2+aµ∆4)·log2 n+a3∆3 log n)
time O(a)-coloring protocol in the beeping model. Notice
that now by using this coloring algorithm, together with the
SquareSim protocol, to obtain a 2-hop O(a · ∆)-coloring
(see Sect. V), we reduce the time multiplicative factor when
simulating CONGEST algorithms. Consequently, one obtains
a more efficient simulation.

REFERENCES

[1] A. Cornejo and F. Kuhn, “Deploying wireless networks with beeps,” in
DISC, 2010, pp. 148–162.

[2] S. Navlakha and Z. Bar-Joseph, “Distributed information processing in
biological and computational systems,” Commun. ACM, vol. 58, no. 1,
pp. 94–102, Dec. 2014.

[3] R. Guerraoui and A. Maurer, “Byzantine fireflies,” in DISC, 2015, pp.
47–59.

[4] Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, and F. Kuhn,
“Beeping a maximal independent set,” Distributed Computing, vol. 26,
no. 4, pp. 195–208, Aug 2013.

[5] D. Eppstein and D. Strash, “Listing all maximal cliques in large sparse
real-world graphs,” in SEA, 2011, pp. 364–375.

[6] C. S. A. Nash-Williams, “Decomposition of finite graphs into forests,”
Journal of the London Mathematical Society, vol. 39, p. 12, 1964.

[7] A. Casteigts, Y. Métivier, J. M. Robson, and A. Zemmari, “Design
Patterns in Beeping Algorithms: Examples, Emulation, and Analysis,”
ArXiv e-prints, Jul. 2016.

[8] A. Scott, P. Jeavons, and L. Xu, “Feedback from nature: An optimal
distributed algorithm for maximal independent set selection,” in PODC,
2013, pp. 147–156.

[9] A. Casteigts, Y. Métivier, J. M. Robson, and A. Zemmari, “Design
Patterns in Beeping Algorithms,” in OPODIS, 2016, pp. 15:1–15:16.

[10] J. Schneider and R. Wattenhofer, “What is the use of collision detection
(in wireless networks)?” in DISC, 2010, pp. 133–147.

[11] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, ser.
Monographs on Discrete Mathematics and Applications. Society for
Industrial and Applied Mathematics, 2000.

[12] K.-T. Förster, J. Seidel, and R. Wattenhofer, “Deterministic leader election
in multi-hop beeping networks,” in DISC, 2014, pp. 212–226.

[13] B. Awerbuch, M. Luby, A. V. Goldberg, and S. A. Plotkin, “Network
decomposition and locality in distributed computation,” in FOCS, 1989,
pp. 364–369.

[14] L. Barenboim and M. Elkin, Distributed Graph Coloring: Fundamentals
and Recent Developments. Morgan & Claypool Publishers, 2013.

[15] A. J. Hoffman, K. Jenkins, and T. Roughgarden, “On a game in directed
graphs,” Inf. Process. Lett., vol. 83, no. 1, pp. 13–16, 2002.

[16] L. Barenboim and M. Elkin, “Deterministic distributed vertex coloring
in polylogarithmic time,” in PODC, 2010, pp. 410–419.

[17] J. Schneider and R. Wattenhofer, “Distributed coloring depending on the
chromatic number or the neighborhood growth,” in SIROCCO, 2011, pp.
246–257.

[18] J. Schneider, M. Elkin, and R. Wattenhofer, “Symmetry breaking
depending on the chromatic number or the neighborhood growth,” Theor.
Comput. Sci., vol. 509, no. C, pp. 40–50, Oct. 2013.

[19] A. Casteigts, Y. Métivier, J. Robson, and A. Zemmari, “Deterministic
leader election in O(D + logn) time with messages of size O(1),” in
DISC, 2016, pp. 16–28.

[20] R. Cole and U. Vishkin, “Deterministic coin tossing with applications to
optimal parallel list ranking,” Information and Control, vol. 70, no. 1,
pp. 32 – 53, 1986.

[21] L. Barenboim and M. Elkin, “Distributed (δ+1)-coloring in linear (in δ)
time,” in STOC, 2009, pp. 111–120.

[22] F. Kuhn, “Weak graph colorings: Distributed algorithms and applications,”
in SPAA, 2009, pp. 138–144.

[23] A. Goldberg, S. Plotkin, and G. Shannon, “Parallel symmetry-breaking
in sparse graphs,” in STOC, 1987, pp. 315–324.

[24] L. Barenboim and M. Elkin, “Sublogarithmic distributed mis algorithm
for sparse graphs using nash-williams decomposition,” in PODC, 2008,
pp. 363–379.

[25] G. Agnarsson and M. Halldorsson, “Coloring powers of planar graphs,”
SIAM Journal on Discrete Mathematics, vol. 16, no. 4, pp. 651–662,
2003.

APPENDIX A
EBET

We remind that the ”Balanced Execution Technique” (BET)
from Förster et al. [12] guarantees L1-synchronization points.
Now, we present an extension of BET, with which we guarantee
Li-synchronization points for all i ≥ 1. The ”Extended

Balanced Execution Technique” (EBET) allows the design
of complex uniform protocols in the beeping model.

A. Introducing EBET

Synchronization points are not a natural primitive in the
beeping model: an Li-synchronization point forces nodes
which have reached a terminal Li-phase state (ended the
Li-phase) to wait for their neighboring nodes to end the
Li-phase, before starting the next one. Some protocols are
difficult to design in a uniform manner without the use of
synchronization points. Therefore, we want to be able to design
a protocol P using synchronization points, and then apply a
“technique” on the formal description of P , so that the result is
a protocol that can be run in the beeping model (not necessarily
a formal description). The resulting protocol is called Psim.
The technique we use for that is EBET.

EBET has two crucial components and a parameter k
(∈ N>0), which controls the small multiplicative overhead
of EBET. The first component is a Finite State Machine
(FSM), used to stall nodes when they have ended an Li-phase
(synchronization property), for all i ≤ k, so that other nodes can
catch up (resulting in a resynchronization process for the start
of the next Li-phase). The second is a balanced round counter
rC, which is used so that nodes can reach some agreement on
the clock value for the current L1-phase. By balanced counter,
we mean that the rC values of two neighbors differ by at most
1 (balancing property). Thus two neighbors participating in the
same L1-phase are in the same round, or in consecutive rounds.
EBET’s main addition is an extention to the FSM component.
As a consequence, EBET provides Li-synchronization points,
for all i ≤ k. For better clarity, we consider EBET with k = 2,
but it is simple to extend the following techniques for any
given positive integer k.

We assume that in P and Psim, all nodes start synchronously.
By using synchronization points, P is easily described, coded
and understood. Here we consider P to be a uniform loop
of L2-phases (thus a uniform L3-phase). Whereas Psim is a
uniform loop of L1-phases, and each of its L1-phase simulates
a round of P . Since the L1-phases of Psim contain exactly 11
rounds (referred to as slots to differentiate from the rounds in
P), Psim can be run in the beeping model. We refer to phases
of P as original phases, and to phases of Psim as simulation
phases. It is crucial that Psim outputs the same result as P ,
and proving this is the main focus of Sect. A-C.

In the first section, we describe the balanced counter
technique (extending that of [12]), which allows EBET to
maintain a balanced round counter, and to guarantee the
synchronization property for all Li-phases. When abstracted
to a higher level, the synchronization property results in the
simulation of Li-synchronization points. In the second section,
we describe how communication is adapted for EBET. Indeed,
nodes do not have perfectly synchronized round counters, so
we adapt the manner in which nodes communicate between
themselves (having a balanced counter is crucial here), so as
to simulate an execution with synchronized round counters.

B. Extending the Balanced Counter Technique for EBET

1) Slot Behavior in the Balanced Counter Technique: The
balanced counter technique is implemented in the following
manner. Nodes have the following variables: state, rC, p1

and p2. Theses variables are parametrized by a node v and if
unclear, by a simulation L1-phase p, to indicate their value for
v at the start of a simulation L1-phase p. The state variable can
be any of the 5 states from Figure 5 (CT , R-N , R-W , R-N2
and R-W2). A node v has state(v, p) = CT , it is said to be
participating (in phase p), because it is simulating a round of an
original L1-phase in P . We define CT2 = {CT,R-N,R-W},
a composite state, and similarly, a node v with state(v) ∈ CT2
is simulating an original L2-phase in P (not necessarily a
round).

Fig. 5: Finite State Machine Component for EBET (k = 2)

COUNTstart

RESET −NOTIFY RESET −WAIT

COUNT2

RESET −NOTIFY 2 RESET −WAIT2

No neighbors in
R-W or R-W2 No neighbors

in COUNT

No neighbors
in R-N

No neighbors in
R-W or R-W2 No neighbors

in COUNT2

No neighbors
in R-N2

Each simulation L1-phase contains exactly 8 slots and is
used to transmit a node’s local clock value and its FSM state.
Using this information, nodes know if they are ahead or behind
of their neighbors, and act accordingly. The first three slots
(indexed 0 to 2) are used to transmit the counter value (rC)
modulo 3, and the other slots (indexed 3 to 7) are used to
transmit the current FSM state of a node (state). For any given
node v, the information is transmitted in the following manner
during each simulation L1-phase:
• If state = CT , then v beeps in slots (rC mod 3) and 3,
• If state = R-N , then v beeps in slot 4,
• If state = R-W , then v beeps in slots rC mod 3 and 5,
• If state = R-N2, then v beeps in slot 6,
• If state = R-W2, then v beeps in slots rC mod 3 and 7.

Node v listens in all slots it does not beep in.
Now, we describe the state transitions of the FSM, and their

guard conditions (also shown in Figure 5). These conditions
are essential for the balanced counter and synchronization
properties (Lemmas 13 and 14) in EBET. For any given node
v, the allowed state transitions are:

1) CT → R-N if no node u ∈ N (v) is in R-W or R-W2,
2) R-N → R-W if no node u ∈ N (v) is in CT ,
3) R-W → CT if no node u ∈ N (v) is in R-N ,
4) CT → R-N2 if no node u ∈ N (v) is in R-W or R-W2,

5) R-N2→ R-W2 if no node u ∈ N (v) is in CT2,
6) R-W2→ CT if no node u ∈ N (v) is in R-N2.

The state transitions of the FSM can be decomposed into
two cycles. We denote the first cycle (transitions 1→ 2→ 3)
as an L1-cycle, and the second cycle (transitions 4→ 5→ 6)
as an L2-cycle. An L1-cycle is used to transition to the next
original L1-phase (if there is one) of the current original L2-
phase being simulated (from P), and essentially implements
an L1-synchronization point. Similarly, an L2-cycle is used to
transition to the next original L2-phase (if there is one) in P ,
and essentially implements an L2-synchronization point.

In terms of states, an L1-cycle goes CT → R-N → R-W →
CT . R-N is used to indicate the executing node has finished
the simulated original L1-phase. Nodes in that state do not
interfere with their neighbors’ simulations of that original L1-
phase, as the balanced counter rC is not transmitted: no beeps
in the first three slots.
On the other hand, R-W is used to indicate the node is
starting the next original L1-phase. Nodes in that state stall
neighboring nodes participating in that next original L1-phase
in two different ways. First, a rC value of 0 is transmitted,
which stalls the increment function of these neighboring nodes
(see following section, Sect. A-B2). As such, the neighboring
rC values satisfy rC ≤ 1 (Lemma 12). Second, neighboring
nodes are prevented from transitioning to R-N or R-N2 until
the node participates, i.e., transitions to CT (see the conditions
of transitions 1 and 4).
Since R-W interferes with participating nodes while R-N
does not, the synchronization property relies heavily on the
conditions of transition 2. That is, a node remains in R-N
while its neighbors simulate additional rounds of the original
L1-phase, and only transitions once all neighboring nodes have
finished, i.e., transitioned to R-N .

In the same way, an L2-cycle goes CT → R-N2 →
R-W2→ CT . The R-N2 (resp., R-W2) state acts similarly
to the R-N (resp., R-W) state. Since R-W2 interferes with
participating nodes, as well as nodes going through a L1-
cycle, while R-N2 does not, the synchronization property
relies heavily on the conditions of transition 5. That is, a node
remains in R-N2 while its neighbors simulate additional L1-
phases of the original L2-phase (either participating or going
through L1-cycles), and only transitions to the next L2-phase
once all neighbors have finished, i.e., transitioned to R-N2.

The synchronization property results from the following
observations. Two neighboring nodes going through a L1-cycle
(resp. L2-cycle) are always in two consecutive states of the
L1-cycle (resp., L2-cycle), due to the transition conditions.
In other words, they have gone through the same number of
L1-cycles (resp., L2-cycles), unless a node participates and
its neighbors is still in state R-W (resp., R-W2). In which
case, the participating node can neither increment its balanced
counter (beyond 1), nor transition to any other state, and thus
waits for its neighbor. Finally, consider two neighboring nodes,
one going through a L1-cycle and the other through a L2-
cycle. Then the second node’s state is necessarily R-N2, and

it neither interferes with the first node, nor transitions before
the first node enters a L2-cycle (i.e., enters the R-N2 state).

2) Functions of the Balanced Counter Technique: The L1

and L2-cycles, as well as the balanced counter rC, are managed
by the following functions: reset, reset2 and increment.
These functions can only be invoked by participating nodes and
increment p1, p2 and rC while ensuring the synchronization
and balancing properties. When node v increments p1 (resp.,
p2), that means that v has done a full L1-cycle (resp., L2-
cycle). Consequently, p1 (resp., p2) counts the number of
L1-synchronization points invoked in the current original L2-
phase (resp., the number of L2-synchronization points invoked).
The synchronization property, which states that p1 and p2 are
the same for two neighboring participating nodes, means that
they are simulating the same original L1-phase.

We define a boolean next(v, p), used in the following
function, for any given simulation L1-phase p and node v.
The boolean is true if and only if all neighboring nodes of v
have equal or greater rC values. v learns its next value after
the first three slots of p, since the boolean is true if and only
if v detects no beeps in slot rC(v)− 1 mod 3. If next(v, p)
is true, then rC(v) is incremented at the end of phase p.
increment is used to increment rC without violating the

balancing property. Node v calls increment in the very first
phase of Psim (and whenever an original L1-phase starts), and
calls increment again whenever the previous call finishes, until
the original L1-phase is finished. During these calls, v simulates
P since state(v) = CT . When increment is invoked by a
node v, v waits for the first simulation L1-phase p in which
next(v, p) is true. At the end of this phase, v increments rC.
reset is used to go through a full L1-cycle. When invoked

by v, v goes through a full L1-cycle (transitions 1, 2 and 3).
During the cycle, rC(v) is reset to 0 after transition 1 succeeds
and p1(v) is incremented after transition 3 succeeds. Similarly,
reset2 is used to go through a full L2-cycle (transitions 4, 5
and 6). During the cycle, rC(v) and p1(v) are reset to 0 after
transition 4 succeeds and p2(v) is incremented after transition
6 succeeds. The reset (resp. reset2) function simulates a L1-
synchronization point (resp. L2-synchronization point): it is
invoked by a participating node v in the round after it reaches
a L1-synchronization point (resp. L2-synchronization point),
when simulating P . The details are in Sect. A-C.

3) Properties of the Balanced Counter Technique: First, we
give a few lemmas (Lemmas 11 and 12), which are then used
to prove both the balancing and synchronization properties
(Lemmas 13 and 14).

Lemma 11. For any given simulation L1-phase p and node v,
if state(v, p) = R-W2, then for all u ∈ N (v) state(u, p) 6∈
{R-N,R-W}.

Proof. Let us prove this lemma by induction on p. Trivially true
for p = 0 because of the initialization conditions (state(v, 0) 6=
R-W2).
For the induction step, by contradiction, let us consider a node
u ∈ N (v), such that state(u, p) ∈ {R-N,R-W}. Since at
most one transition can be enacted by a node per phase, we

know state(v, p−1) ∈ {R-N2, R-W2} and state(u, p−1) ∈
CT2. It is not possible that state(v, p−1) = R-N2 because of
the condition for transition 5. Now, consider state(v, p− 1) =
R-W2. It is not possible that state(u, p− 1) = CT because
of the condition for transition 1, and it is not possible that
state(u, p−1) ∈ {R-N,R-W} due to the induction hypothesis.
As a result, for all u ∈ N (v) state(u, p) 6∈ {R-N,R-W}.

Lemma 11 is used to simplify the proof of Lemma 12. It also
highlights the fact that nodes which have ended the current L2-
phase are stalled in the R-N2 state until all of their neighbors
also end the L2-phase.

Lemma 12. For any given simulation L1-phase p and node
v, if state(v, p) ∈ {R-W,R-W2}, then for all u ∈ N (v)
rC(u, p) ≤ 1.

Proof. Let us prove this lemma by induction on p. Trivially
true for p = 0 because of the initialization conditions
(state(v, 0) 6∈ {R-W,R-W2}).
For the induction step, consider a given simulation L1-phase
p and node v, where state(v, p) ∈ {R-W,R-W2}. Since
state(v, p) 6= CT , rC(v, p) = 0. Consider any given neighbor-
ing node u of v. If state(u, p) 6= CT , then rC(u, p) = 0. Now,
consider state(u, p) = CT . Let us prove that rC(u, p) ≤ 1.

First, consider state(v, p) = R-W . Since at most one
transition can be enacted by a node per phase, we know
state(v, p − 1) ∈ {R-N,R-W} and state(u, p − 1) ∈
{CT,R-W,R-W2}. By Lemma 11, state(u, p− 1) 6= R-W2.
It is also not possible that state(v, p−1) = R-N . The condition
for transition 2 renders state(u, p − 1) = CT impossible,
and state(u, p − 1) = R-W is also impossible, because u
is then unable to enact transition 3 at the same time that v
enacts transition 2. Finally, the remaining possibilities are that
state(v, p − 1) = R-W and state(u, p − 1) ∈ {CT,R-W}.
For state(u, p− 1) = R-W , since u enacts transition 3 at the
end of phase p−1, rC(u, p) = 0. As for state(u, p−1) = CT ,
rC(u, p − 1) ≤ 1 by induction hypothesis. Since v stalls u
(state R-W and rC(v, p− 1) = 0), u is unable to increment
rC higher than 1 at the end of phase p− 1 and rC(u, p) ≤ 1.

Now, consider state(v, p) = R-W2. Since at most one
transition can be enacted by a node per phase, we know
state(v, p − 1) ∈ {R-N2, R-W2} and state(u, p − 1) ∈
{CT,R-W,R-W2}. First, consider state(v, p − 1) = R-N2.
Since at the end of phase p − 1, v enacts transition 5, we
have state(u, p − 1) 6∈ CT2. However, it is also impossible
that state(u, p − 1) = R-W2, because then at the end
of phase p − 1, u and v enacts respectively transition 6
and 5. Now, let us consider state(v, p − 1) = R-W2. By
Lemma 11, it is impossible that state(u, p − 1) = R-W .
If state(u, p − 1) = R-W2, then as u enacts transition
6 at the end of phase p − 1, rC(u, p) = 0. Otherwise,
if state(u, p − 1) = CT , then by induction hypothesis,
rC(u, p− 1) ≤ 1. Since v stalls u, rC(u, p) ≤ 1.

Using Lemma 12, which states that nodes in R-W or in
R-W2 stall the balanced counters of neighboring participating
nodes, we prove the balancing property (Lemma 13).

Lemma 13 (Balancing property). For any given simulation
L1-phase p and two neighboring participating nodes u and v,
|rC(v, p)− rC(u, p)| ≤ 1.

Proof. Let us prove that rC satisfies the balancing property
by induction on p. For p = 0, the balancing property is given
by the initialization conditions.
For the induction step, consider a simulation L1-phase p > 0
and two neighboring nodes u and v. In the first case, u and v
were participating in simulation L1-phase p− 1. Then by the
induction hypothesis for p−1, |rC(u, p−1)−rC(v, p−1)| ≤
1. Since counters can only increase by one per simulation
L1-phase, and increment stalls nodes which are ahead, the
induction hypothesis holds. In the second case, at least one
of the nodes was not participating in simulation L1-phase
p− 1. W.l.o.g, u was not participating. Due to the transition
restrictions, u was in R-W or R-W2 in p− 1 (node u cannot
transition from R-N to CT in a single phase). Thus, by Lemma
12, rC(v, p − 1) ≤ 1. The same line of arguments as above
shows that the induction hypothesis holds.

The balancing property highlights the fact that early nodes
are stalled by neighboring nodes with smaller counters, and
so on until the latest node. However this latest node is never
stalled, and thus controls the increment rate of all balanced
counters. Once this node catches up with the other nodes, all
nodes increment their round counters synchronously. Thus,
from the perspective of the latest node, the balanced counters
are fully synchronized counters.

Now, we prove the synchronization property (Lemma 14),
which states that p1 (resp., p2) is an index for original
L1-phases (resp., L2-phases). As a result, two neighboring
participating nodes are simulating the same L1-phase (in the
same L2-phase).

Lemma 14 (Synchronization property). For any given sim-
ulation L1-phase p and two neighboring nodes u and v, if
state(u, p) = state(v, p) = CT then p1(v, p) = p1(u, p) and
p2(v, p) = p2(u, p). It can also be said that u and v have
invoked reset2 the same number of times, and have invoked
reset the same number of times since they last invoked reset2.

Proof. Let us prove by induction on p, that for any given
simulation L1-phase p and two neighboring nodes u and v:

1) if state(u, p) = R-W and state(v, p) = CT (or vice
versa) then p1(v, p) = p1(u, p) + 1 and p2(v, p) =
p2(u, p),

2) else if state(u, p) = R-W2 and state(v, p) = CT (or
vice versa) then p1(v, p) = p1(u, p) = 0 and p2(v, p) =
p2(u, p) + 1,

3) else if state(u, p) = CT2 and state(v, p) = R-N2 (or
vice versa) then p1(v, p) = 0 and p2(v, p) = p2(u, p),

4) otherwise, p1(v, p) = p1(u, p) and p2(v, p) = p2(u, p).
The synchronization property corresponds to the case when
state(u, p) = state(v, p) = CT .
Trivially true for p = 0 because of the initialization conditions.
For the induction step, consider a simulation L1-phase p > 0
and two neighboring participating nodes u and v.

First, consider state(u, p) = R-W and state(v, p) = CT .
By lemma 11, state(v, p − 1) 6= R-W2. Because it is not
possible for both u and v to transition at the end of phase
p−1 (see condition for transition 3), or for u to transition from
R-N to R-W if v stays in CT (see condition for transition 2),
state(u, p−1) 6= R-N . Thus, consider state(u, p−1) = R-W .
We know state(v, p − 1) = CT or state(v, p − 1) = R-W .
Thus, by induction hypothesis (items 1 and 3) for p− 1, item
1 of the induction hypothesis holds.

Now, consider state(u, p) = R-W2 and state(v, p) = CT .
Suppose by contradiction that state(u, p − 1) = R-N2.
Because of the condition for transition 5, the only possibility
is that state(v, p − 1) = R-W2. However, it is impossible
for both u and v to transition at the end of phase p− 1 (see
condition for transition 6). Thus, consider state(u, p− 1) =
R-W2. By lemma 11, state(v, p − 1) 6= R-W . Thus, either
state(v, p − 1) = R-W2, or state(v, p − 1) = CT . And by
induction hypothesis (items 2 and 3) for p− 1, item 2 of the
induction hypothesis holds.

Then, consider state(u, p) = CT2 and state(v, p) = R-N2.
Since at most one transition can be enacted by a node per phase,
we know state(u, p− 1) ∈ CT2 ∪ {R-W2} and state(v, p−
1) ∈ {CT,R-N2}. First, consider state(v, p− 1) = R-N2. It
is impossible that state(u, p − 1) = R-W2, because of the
condition for transition 6. Then, state(u, p − 1) ∈ CT2 and
we can rely on the induction hypothesis (item 3) for p − 1.
Now, consider state(v, p−1) = CT . Because of the condition
for transition 4, it is impossible that state(u, p− 1) = R-W2.
Thus, by induction hypothesis (items 1 and 4) for p− 1 and
the definition of reset2 (p1 is reset after transition 4 succeeds),
item 3 of the induction hypothesis holds.

Finally, consider the other cases. Then either state(u, p) =
state(v, p), or state(u, p) 6= state(v, p). Moreover, for p− 1,
then either state(u, p− 1) = state(v, p− 1) or state(u, p−
1) 6= state(v, p − 1). By using the induction hypothesis (all
items), item 4 of the induction hypothesis holds.

Using the balancing and synchronization properties, we can
simulate fully synchronized round counters (as in BET) with
rC. Consequently, EBET simulates the rounds of an original
L1-phase.

C. Balanced Executions in EBET

We extend the simulation L1-phases with 3 additional slots.
Thus, a simulation L1-phase contains 11 slots. The 3 extra
slots are dedicated to the simulation of a round r in P . That
simulated round is either rC or rC − 1, depending on the rC
values of the neighboring nodes.
We define a correct action, for any given participating node v
and simulation L1-phase p of Psim. v’s action when simulating
round r in simulation L1-phase p is said to be correct if it
is the same as v’s action in round r of P . We prove that all
actions (simulating rounds of P) done by nodes in Psim are
correct. Thus, Psim and P have the same result.

1) Rules to ensure Balanced Execution: We give the
following additional rules. They ensure, that for any given

participating node v and simulation L1-phase p of Psim, v’s
actions in L1-phase p is correct.
• If next(v, p) = false, v simulates round rC(v, p)− 1.
• Otherwise, v simulates round rC(v, p).
A round r is simulated by v in the following way. If v’s

action for r is BEEP , then v beeps in slot r mod 3 + 8 of
simulation L1-phase p, and otherwise it listens in that slot.

With the rules above, the following definitions are natural.
For any given node v and for any simulated round r of P , we
define pn(v, r) as the first simulation L1-phase p in which v
simulates the next round (r + 1). We also define pf (v, r) as
the first simulation L1-phase p in which v simulates round r.

Now, consider end of phase rounds of P (rounds in which a
node ends an Li-phase and thus reaches a Li-synchronization
point). A participating node v detects whether it reaches a
Li-synchronization point after round r of P in simulation
L1-phase pn(v, r), since in that phase, v is already done
with beeping or listening to beeps for round r (as even
the slowest neighbors simulated r in the previous phase).
Consequently, consider rF as the round after which v reaches
a Li-synchronization point in P . v invokes reset or reset2
(depending on the synchronization point) in simulation L1-
phase pn(v, rF), which ensures the simulation of P is correct.

2) Simulation Proofs: First, we give the following simple
lemma. It states that when a node v is simulating round
rC(v, p)−1 in a simulation L1-phase p, it has already simulated
the round once, in a previous simulation phase. The round is
simulated again while v is waiting for the slower nodes (with
smaller rC values), until next(v) is true, in which case all
neighboring nodes have caught up.

Lemma 15. For any given phase p > 0 and participating node
v, v has already simulated round rC(v)− 1 at least once.

Now, we prove a crucial lemma (Lemma 16). Basically,
it states that for any simulation L1-phase p, all nodes have
correctly simulated P for all rounds r < rC(v, p). Moreover,
in the round in which a participating node v increments rC(v),
rC(v) is simulated correctly, due to the fact that all neighbors
have already acted once for rC(v)− 1, and that all of these
actions were correct. Using this lemma, obtaining Theorem 9
is straightforward.

Lemma 16. For any given simulation L1-phase p and partic-
ipating node v, all previous actions from v were correct.

1) Moreover, if next(v, p) = true:
a) If v listens for round rC(v) − 1: ∃u ∈ N (v), u

participating, s.t. u beeps for rC(v)− 1 ⇔ v detects
a (correct) beep for rC(v)− 1 in a phase p′ < p.

b) If v beeps for round rC(v) − 1: ∃u ∈ N (v), u
participating, s.t. u listens for rC(v)− 1 ⇔ u detects
a (correct) beep for rC(v)− 1 in a phase p′ < p.

c) v’s action for round rC(v, p) is correct,
2) Otherwise, v’s action for round rC(v, p)− 1 is correct.

Proof. Let us prove this lemma by induction on the simulation
L1-phase p. For p = 0, the induction hypothesis (IH) holds
obviously.

For the induction step, consider a phase p > 0 and any given
participating node v. First, from the IH in phase p− 1, we get
that all actions done by v previous to phase p−1 were correct,
as well as the action v executed in p− 1.

Next, let us prove part 1a and 1b of the IH. Consider
any given phase p′ in which v or any of its neighbors
simulates rC(v, p) − 1 for the first time. In part 1 of the
IH, next(v, p) = true thus p′ < p (Lemma 15).
Let us prove (⇒) of parts 1a and 1b. Consider u ∈ N (v) s.t.
u beeps (resp. listens) for rC(v, p) − 1. We prove v detects
u’s beep (resp. u detects v’s beep). The faster node of the pair
(u and v) is stalled by the slower node. When the slower node
first simulates rC(v, p)− 1 in a phase p′ < p, the faster node
w is still simulating rC(v, p)− 1 because next(w, p′) is false.
Thus, in p′, v detects u’s beep (resp. u detects v’s beep). By
the IH, any beep heard is correct.
(⇐) follows from the fact that beeps are transmitted to
neighboring nodes only and because of the manner in which
the last three slots are used (and non participating nodes do
not use them).
Since all previous actions done by v were correct and part 1a
of the IH holds (for phase p), part 1c of the IH holds.

Finally, let us prove part 2 of the IH. Suppose next(v, p) =
false. We know v’s action for rC(v, p)− 1 in phase p− 1 is
correct, by part 1a of the IH or part 2 of the IH (depending
on next(v, p − 1)). Since the action chosen by v for round
rC(v, p)− 1 does not change, part 2 of the IH holds.

Theorem 9. The outputs of P and Psim are identical.

Finally, let us prove that the round complexity of Psim,
Rsim, is close to R, the round complexity of P . Theorem 10
states that using EBET impacts the round complexity by a small
multiplicative factor only. It should be noted though, that R is
dependent on the Li-synchronization points. Indeed, P might
be slowed by the synchronization points (due to the “global”
resynchronization process). However, when each original Li-
phase’s round complexity is bounded independently of a
parameter (in particular, the diameter D), R is independent of
that parameter, and Rsim is also independent of that parameter.

Theorem 10. Let Rsim be the round complexity of Psim and
R be that of P . Then Rsim = O(R).

Proof. First, there is a constant factor (here 11) between the
number of rounds and the number of simulation L1-phases in
Psim. Thus, we compare the number of simulation L1-phases
in Psim and the number of rounds in P .
Let L be any given original L1-phase of P . Let w be the node
which takes the most rounds to end L, that quantity being rw.
In Psim, for any given node, at most rw simulation L1-phases
are used to simulate L. This holds for all original L1-phases,
and starting the next L1-phase takes a constant number of
simulation L1-phases. Moreover, P uses Li-synchronization
points at the end of every original Li-phase, thus its round
complexity R is the sum of the round complexities of all
original L1-phases. Consequently, we have Rsim = O(R).

