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Alperin’s Fusion Theorem for localities

RÉMI MOLINIER

In these notes we give a version of the Alperin-Goldschmidt Fusion Theorem for localities.

20D20, 20J15; 20J06

The notion of a locality was introduced by Chermak [Ch] to study p-local structures of finite groups and to
prove the existence and uniqueness of linking systems associated to saturated fusion systems. Along the way
he proved that there is a one-to-one correspondance between localities with saturated fusion system F and
transporter systems associated to F . Linking systems and transporter systems were introduced by Broto,
Levi and Oliver in [BLO2] and Oliver and Ventura in [OV1] respectively. They introduced these categories
to study p-completed classifying spaces of finite groups and to develop a theory of classifying spaces for
saturated fusion systems. Localities give a more group-like point of view on these objects which allows us
to use tools from group theory. This paper gives also an example where the setup of localities helps to prove
results on transporter systems.

We present here a version of the Alperin-Goldschmidt Fusion Theorem for localities which generalizes the
Alperin-Goldschmidt Fusion Theorem for finite groups (a nice version can be found in [St, Theorem 1]).
Chermak already gave a version of Alperin’s Fusion Theorem for proper localities (i.e. localities which
correspond to linking systems) in [Ch, Proposition 2.17]. Here to be able to work with any locality we have
to relax a bit his notion of L-essential subgroups. We use this Theorem to get a generalization of the Alperin
Fusion Theorem for transporter systems given by Oliver and Ventura in [OV1]. We give an example at the
end how this can be applied to calculate limits of functors over a transporter system and we use it with group
cohomology.

Acknowledgement. The author is eternally grateful to Andy Chermak for so many discussions and teaching
him so much about partial groups and localities. The author would also like to thank the referee for his
fruitful comments.

1 Localities and fusion systems

The notions of partial group and locality are due to Chermak and we refer the reader to [Ch, Section 2] for
the definitions and the basic properties. If L is a partial group, we will denote by D(L) its domain and by
Π : D(L)→ L its partial product. We will also say that (L,∆, S) is a locality when (L, S) is a locality via
∆ according to [Ch, Definition 2.9].

Let (L,∆, S) be a locality. For g ∈ L we write

Sg = {s ∈ S | (g−1, s, g) ∈ D(L) and sg ∈ S}.
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More generally, if w = (g1, g2, . . . , gr) is a word of elements of L we write Sw for the set of elements s of
S such (g−1

1 , s, g1) ∈ D(L) and sg1 ∈ S , (g−1
2 , sg1 , g2) ∈ D(L) and (sg1)g2 ∈ S , etc...

Notice that if w ∈ D(L) then Sw ≤ SΠ(w) . We also recall that w ∈ D(L) if and only if Sw ∈ ∆. In particular,
Sg ∈ ∆ for all g ∈ L.

Lemma 1.1 ([Ch, Lemma 2.7]) Let (L,∆, S) be a locality.

(a) For every P ∈ ∆, NL(P) is a subgroup of L.

(b) Let g ∈ L and let P ∈ ∆ with Pg ∈ ∆. Then, for all h ∈ NL(P), (g−1, h, g) ∈ D(L). Moreover,

cg : NL(P) // NL(Pg)

is an isomorphism of groups.

A fusion system over a p-group S is a way to abstract the action of a finite group G ≥ S on the subgroups
of S by conjugation. We refer the reader to [AKO, Chapter I] for the definitions, the basic properties and
the usual notations about fusion systems. An important example is given by the fusion system of a locality.

Example Let (L,∆, S) be a locality. The fusion system of L over S is the fusion system FS(L) generated
by {cg : Sg → (Sg)g | g ∈ L}: for P,Q ≤ S and ϕ ∈ Hom(P,Q), ϕ ∈ HomFS(L)(P,Q) if ϕ is a composite
of restrictions of cg : Sg → (Sg)g for g ∈ L.

We recall that, if F is a fusion system over a p-group S , we say that P ≤ S is fully normalized in F if
|NS(P)| ≥ |NS(Q)| for all Q ∈ PF .

Lemma 1.2 ([Ch, Proposition 2.18(c)]) Let (L,∆, S) a locality and P ∈ ∆. If P is fully normalized in
FS(L), then NS(P) ∈ Sylp(NL(P)).

2 Alperin’s Fusion Theorem

Definition 2.1 let G be a finite group. A subgroup H of G is strongly p-embedded if H < G and for every
g ∈ G r H , p does not divide |H ∩ Hg|.

Lemma 2.2 ([AKO, Proposition A.7.(b)]) Let G be a finite group and S ∈ Sylp(G). If G does not contains
a strongly p-embedded subgroup, then

G = 〈x ∈ G | S ∩ Sx 6= 1〉.

Definition 2.3 Let (L,∆, S) be a locality. A subgroup P ∈ ∆ is L-essential if

(i) NS(P) ∈ Sylp(NL(P)) (or, equivalently P is fully normalized in FS(L)), and

(ii) NL(P)/P contains a strongly p-embedded subgroup.

Denote by ∆e ⊆ ∆ the subcollection of L-essential subgroups of S .
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Notice also that for a subgroup P ≤ S to be L-essential, we do not require P to be centric in L as it is
required in [Ch] Definition 2.4.

Theorem 2.4 Let (L,∆, S) be a locality. Then, for every g ∈ L, there exists Q1,Q2, . . . ,Qn ∈ ∆e ∪ {S}
and w = (g1, g2, . . . , gn) ∈ D(L) such that,

(a) for every i ∈ {1, 2, . . . , n}, gi ∈ NL(Qi) and Sgi = Qi ; and

(b) Sw = Sg and g = Π(w).

Proof We will say that g ∈ L admits an essential decomposition if there exists Q1,Q2, . . . ,Qn ∈ ∆e ∪{S}
and w = (g1, g2, . . . , gn) ∈ D(L) such that (a) and (b) are satisfied. Notice that we have the followings.

(1) If g ∈ L admits an essential decomposition then g−1 admits an essential decomposition.

(2) If (g1, g2, . . . , gn) ∈ D(L) with S(g1,g2,...,gn) = Sg1g2···gn and each gi admits an essential decomposition,
then g1g2 · · · gn admits an essential decomposition.

Assume Theorem 2.4 is false and, among all g ∈ L which does not admit an essential decomposition, choose
g with |Sg| as large as possible. Set P = Sg , P′ = Pg and F = FS(L).

If P = S , then g ∈ NL(S) and g admits an essential decomposition with n = 1, Q1 = S and w = (g).
Thus, we can assume that P < S . Since P = Sg ∈ ∆, Lemma 1.1 implies that NL(P) is a subgroup of L.
Choose Q ∈ ∆ fully normalized and h, h′ ∈ L such that Ph = Q and
(P′)h′ = Q. By Lemma 1.2, NS(Q) ∈ Sylp(NL(Q)). Hence, by Lemma
1.1 and Sylow’s Theorem (applied in NL(Q)), we can choose h and h′

such that NS(P)h ≤ NS(Q) and NS(P′)h′ ≤ NS(Q). Then P < NS(P) ≤ Sh

and P′ < NS(P′) ≤ Sh′ and, by maximality of |Sg| = |P| = |P′|, h and h′

admit an essential decomposition. The word w = (h−1, g, h′) is in D(L)
via Q and g′ := h−1gh′ ∈ NL(Q). Thus g = hg′h′−1 .

Q

cg′

��

P

ch

@@

cg
// P′

ch′
__

Since g′ ∈ NL(Q) and g = hg′h′−1 , P ≤ S(h,g′,h′−1) ≤ Sg = P, i.e. S(h,g′,h′−1) = Sg . Therefore, if g′ admits
an essential decomposition, then, by (1) and (2), g admits an essential decomposition. Now, if Q < Sg′ ,
then the maximality of |Sg| = |P| = |Q| implies that g′ admits an essential decomposition. Thus Q = S′g
and, up to replace g by g′ , we can assume that P is fully normalized and g ∈ NL(P).

If P ∈ ∆e , then g admits an essential decomposition with n = 1, Q1 = P and w = (g). Thus, P ∈ ∆r∆e

and NL(P)/P does not contain a strongly p-embedded subgroup. Since P is fully normalized, NS(P) ∈
Sylp(NL(P)) and, by Lemma 2.2, we can write g as a product g = g1g2 · · · gn with, for i ∈ {1, 2, . . . , n},
P < NS(P) ∩ NS(P)gi . We have P ≤ S(g1,g2,...,gn) ≤ Sg = P and so S(g1,g2,...,gn) = Sg . Now, as P <

NS(P) ∩ NS(P)gi ≤ Sgi , the maximality of |Sg| = |P| yields that each gi admits an essential decomposition.
Therefore, by (2), g admits an essential decomposition which contradicts the initial assumption.

As mention before, for a subgroup P ≤ S to be L-essential, we do not require P to be centric. Indeed,
Theorem 2.4 does not work if we add this requirement.

Example Let L = Σ3 be the symmetric group over 3 letters and p = 2. let S =< (1, 2) > and ∆ be the
collection of all the subgroups of S (i.e. ∆ = {S, {e}}). Then (L,∆, S) is a locality where S and {e} are
L-essential. But only S is centric and (1, 2, 3) is not the product of elements in NL(S) = S .
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3 Application to transporter systems

3.1 Transporter systems and localities

We refer the reader to [OV1, Definition 3.1] for the definition of transporter system. The typical example is
the following.

Example Let G be a finite group S ∈ Sylp(G) and ∆ an F -invariant collection of subgroups of S . The
transporter category of G over S with set of object ∆ is the small category T = T ∆

S (G) with set of objects
∆ and, for P,Q ∈ ∆,

MorT (P,Q) = {g ∈ G | Pg ≤ Q}.

By [OV1, Proposition 3.12], it is a transporter system associated to FS(G).

In [Ch, Appendix X], Chermak gives a one-to-one correspondence between localities with fusion system F
and transporter systems associated to F . One direction of this correspondence is given by the following
construction.

Definition 3.1 Let (L,∆, S) be a locality. We define the transporter system of (L,∆, S) as the category
T∆(L) with set of object ∆ and with, for P,Q ∈ ∆,

MorT (P,Q) = {g ∈ L | P ≤ Sg and Pg ≤ Q}.

By [Ch, Lemma X.1], this define a transporter system associated to FS(L).

Proposition 3.2 ([Ch, Proposition X.9]) Let F be a saturated fusion system over a p-group S , and T be
an associated transporter system. Then there exists a locality (L,∆, S) such that T = T∆(L).

3.2 Alperin’s Fusion system for transporter systems

Definition 3.3 Let F be a saturated fusion system and T be an associated transporter system. A subgroup
P ∈ Ob(T ) is T -essential if

(i) NS(P) ∈ Sylp(AutT (P)), and

(ii) AutT (P)/P contains a strongly p-embedded subgroup.

Denote by T e the full subcategory of T with set of objects S and all the T -essential subgroups of S .

Let (L,∆, S) be a locality. By definition, a subgroup P ≤ S is T∆(L)-essential if and only if P is L-essential.

The following Theorem gives a generalization of the Alperin Fusion Theorem for transporter systems [OV1,
Proposition 3.10].

Theorem 3.4 Let F be a fusion system over a p-group S . If T is a transporter system associated to F ,
then every morphism in T is a composite of restrictions of automorphisms of S or T -essential subgroups.
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Proof By Proposition 3.2, there is a locality (L,∆, S) such that T = T∆(L). Let P,Q ∈ ∆ = Ob(T ) and
choose g ∈ MorT (P,Q) ⊆ L. Without loss of generality, we can assume that P = Sg and Q = Sg

g . By
Theorem 2.4, there exists Q1,Q2, . . . ,Qn ∈ ∆e ∪ {S} and w = (g1, g2, . . . , gn) ∈ D(L) such that,

(i) for every i ∈ {1, 2, . . . , n}, gi ∈ NL(Qi) and Sgi = Qi ; and

(ii) Sw = Sg and g = Π(w).

We have P = Sg = Sw ≤ Sg1 = Q1 and inductively, for 1 ≤ i ≤ n− 1, Pg1···gi ≤ Qi+1 = Sgi+1 . Thus g is
the composite of the restriction of gi ∈ AutT (Qi) to gi ∈ MorT (Pg1···gi−1 ,Pg1···gi), for 1 ≤ i ≤ n.

The following Corollary, which is a direct consequence of Theorem 3.4, may be helpful when computing
limits over transporter systems.

Corollary 3.5 Let F be a fusion system over a p-group S . Let T be a transporter system associated to F
and let

F : T // A

be a functor into an abelian category A Then,

lim←−
T

F = lim←−
T e

F.

We can for example use the previous corollary with F = FS(G), where G is a finite group and S ∈ Sylp(G),
and F = H∗(−,M) for M a Z(p)[G]-module.

Corollary 3.6 Let G be a finite group and S ∈ Sylp(G). Let M a Z(p)[G]-module. Then

H∗(G,M) ∼= lim←−
T e

S (G)
H∗(−,M).

Proof By the Cartan-Eilenberg Theorem [CE, Chap XII, Theorem 10.1],

H∗(G,M) ∼= lim←−
TS(G)

H∗(−,M).

Then we can apply Corollary 3.5.

A more general version was actually proved by Grodal in [Gr, Corollary 10.4] using deep algebraic topology.
The proof we give here is algebraic and more elementary.
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