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Line-based Monocular Graph SLAM

Dong Ruifang1, Vincent Fremont2, Simon Lacroix3, Isabelle Fantoni2, Liu Changan1

Abstract— This paper presents a new line based 6-DOF
monocular algorithm that uses the iSAM2, a point-based Graph
SLAM approach. We extend iSAM2 to minimize the reprojec-
tion error of the line features to solve the line-based SLAM
problem. A specific line representation is exploited that com-
bines the Plücker Coordinates and the Cayley representation.
The Plücker Coordinates are used for the 3D line projection
function, and the Cayley representation helps to update the
lines parameters during the non-linear optimization process. An
undelayed initialization method with inverse depth parameters
is also adopted. Both simulation and real experiments are
carried out showing that the approach achieves high accuracy
and consistency, and outperforms EKF-based SLAM method.

I. INTRODUCTION

Monocular SLAM is a SLAM problem where the only
onboard perception sensor is a single camera [1]. It is
more challenging than the SLAM problems using laser
sensors and/or RGB-D cameras because of the lack of scale-
free depth information. Works on visual SLAM focuse on
mapping landmarks points. Point landmarks have interesting
properties in the context of visual SLAM: Point feature
selection, description and tracking have been well-studied
in the literature [2]. However, a map consisting of a sparse
set of 3D points is far from describing the structure of the
surrounding world. Instead, line shape structures exist in
most of the man-built environments. Then a line-based map
can give higher level relevant information about the observed
environment. This is especially true for scenes with abundant
line elements such as transmission towers, buildings, etc.
Furthermore, edge matching can be achieved even when
important viewpoints changes occur, like in loop closing,
or when registering aerial with ground data. For all these
reasons, in this work, we focus on the representation, the
camera motion estimation and the landmark localization for
line feature based monocular SLAM.

A. Related work

Previous work on line representations can be divided
in two approaches: The non-linear minimal 4-parameters
formalism, and the linear over-parametrized representation.
For the first one, the authors of [3] propose to use two
cosines direction with 2D coordinates to create the direction
and position of a line. In [4], a line is represented as two
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planes intersection that are parallel to the X-axis and the Y-
axis respectively. Several conventions coexist to represent
all possible lines with a satisfactory numerical precision.
More recently, lines used in [5] are parametrized by two
pairs of elevation and angles with the two corresponding
camera centers as anchors. The Cayley representation is used
in [6] to model lines. These representations use only four
parameters that give the 4 degrees of freedom of a line in
3D space. Therefore there is no internal gauge freedom nor
any consistency constraint. This feature makes the minimal
representations well adapted for non-linear optimization. It
is however difficult to express the line projection function
because of the intrinsic non linearity.

For the linear over-parametrized approaches, [7] and [8]
represent a line with its two endpoints. In [9], the midpoint
and the direction of the segment are used to represent a 3D
line. For these two representations, neither the endpoints nor
the midpoint of segments are observable. In [10] a 3D line is
represented by its closest point to the origin together with its
direction. In [11] and [12], the authors use the Plücker line
representation that includes the moment of a line to the origin
and the line direction in space. The Plücker coordinates are
well adapted to the projection through a pinhole camera, but
the internal gauge freedom may induce numerical instabili-
ties during the non-linear optimization step. This is mainly
due to the fact that the Plücker coordinates have two degrees
of internal gauge freedoms and are subject to the Plücker
constraints.

In this paper, the Plücker Coordinates and the Cayley
representation are combined: The Plücker Coordinates are
employed to build the projection function for the 3D lines
and the Cayley representation is applied to update their
parameters during the non-linear optimization process.

For camera motion estimation and landmark localization,
there mainly exist two frameworks in monocular visual
SLAM. One is based on filtering, and represents all camera
poses and the map as a single state vector. The other one uses
non-linear optimization methods, or smoothing approaches,
to compute the estimate of all poses and the map, given
an initial guess. For line-based monocular SLAM, most of
previous works focus on filtering-based solutions. The works
of [7], [8], [11], [12], [13] use Extended Kalman Filter (EKF)
as the line-based SLAM framework. While in [7], [8], [12]
delayed techniques are used for initialization, and in [11] an
undelayed solution is proposed. We encourage the reader to
consult [14], [15], [16] for discussions on delayed/undelayed
initializations and their importance in monocular SLAM.

The main drawback of EKF-based algorithms is associated



to the limited number of update parameters, it is well known
that the computational complexity of the EKF becomes
intractable fairly quickly, hence the number of features in
the map will be severly limited. Moreover, filtering has been
shown to be inconsistent when applied to the inherently non-
linear SLAM problem [17]. On the other side, smoothing
approaches estimate the full robot trajectory from a full
set of measurements. These methods solve the so-called
full SLAM problem, and they mainly rely on least squares
error minimization techniques. To the best of our knowledge,
few line-based monocular SLAM works using nonlinear
optimization methods exist. Only recently, [6] extended the
sparse bundle adjustment algorithm to solve the line-based
SFM (Structure-From-Motion) problem.

In this work, we also focus on the nonlinear optimization
process, the incremental Smoothing And Mapping (iSAM2)
[18] for SLAM. The iSAM2 approach provides an efficient
and exact solution to a sparse nonlinear optimization problem
in an incremental setting that is employed for nonlinear esti-
mation. The iSAM2 implementation was originally designed
for point-based reconstruction: in this paper, we extend the
iSAM2 approach to make it appropriate for updating and
optimizing line parameters.

B. Contributions and outline

The primary contributions of this paper are the following:
First, two representations of lines are combined during
the monocular SLAM process: the Plücker Coordinates are
employed to build the projection function while the Cayley
representation is applied to update the line parameters during
the iSAM2 optimization. Second, the iSAM2 approach is
extended to solve the line-based visual monocular SLAM
problem, thus build more structured maps than point-based
approaches.

The paper is organized as follows. Section II gives a
complete description of the 3D line representations and
manipulations used in this paper. Then the back-end opti-
mization using the modified iSAM2 approach is described
in Section III. In Section IV, simulations and experiments
on real image sequences are presented. Finally, Section V
concludes the paper and presents some future work.

II. 3D LINE REPRESENTATION FOR SLAM

A. Plücker Coordinates

A line in the 3D projective space P3, can be defined from
two 3-vector points A,B ∈ R3 belonging to the line. This
line can be coded as a homogeneous 6-vector L , with the
so called Plücker coordinates L = (v;n)>. Assume O is
the origin of the world frame, its Plücker coordinates are
obtained from:

{
v =

−→
OB −

−→
OA

n =
−→
OA×

−→
OB or n =

−→
OA× v or n =

−→
OB × v

(1)

where n is called the 3-vector line moment and is normal
to the plane containing the line L and the origin O, with a

magnitude equal to the distance from the line to origin, and
v is the 3-vector direction vector from A to B.

1) Plücker line manipulations: Having defined L =
(v;n)

>, the expression of the transformation from camera
frame to world frame is:

Lw = H · Lc ∆
=

[
R [t]×R
0 R

]
· Lc (2)

where R, t represent respectively the 3×3 rotation matrix
and the 3-vector translation vector. The element [t]× repre-
sents the skew-symmetric matrix of the vector t, H is the
motion matrix for Plücker lines. The inverse transformation
is performed with:

Lc = H−1 · Lw ∼
[

R> −R>[t]×
0 R>

]
· Lw (3)

where Lc = (vc;nc)> represents the Plücker Coordinates
of line in the camera frame, while Lw = (vw;nw)>

represents the Plücker coordinates of line in world frame.
The corresponding linear expression for the 3-vector pro-

jected Plücker line l in image is expressed as:

l = K ·R> · (nw − t× vw) or l = K · nc (4)

where the intrinsic matrix K for the Plücker line is:

K =

 αv 0 0
0 αu 0

−αvu0 −αuv0 αuαv

 (5)

while αv, αu are the focal lengths in X and Y directions
respectively, u0, v0 are the coordinates of the principal point
in the image plane, the derivation of K is given in [6].

Notice that when the line is expressed in camera frame,
only the plane’s normal nc appears in the projection equa-
tion, meaning that 2 degrees of freedom (DOF), the line’s
range and orientation contained in vc, are not observable.

2) Plücker Line Initialization: Monocular SLAM is a
partially observable problem, in which the sensor does not
give sufficient information to estimate the full state of a
landmark given a single observation. It then raises to a
landmark initialization problem. In [14], the authors pre-
sented the undelayed initialization method with inverse depth
parameters to initialize the line segments for Monocular
SLAM, which we adopt in our work. The initialization means
obtaining the 3D position of landmarks from measurements
defined in images. The following details the retro-projection
process from the measurement lines to Euclidean space lines.

1) Compute the Plücker line representation 3-vector l in
the image;
The line measurement z = (p1, p2) in the image plane
is represented with two 2-vector endpoints p1, p2 ∈ R2

. The associated Plücker line representation l in image
can be computed as:

l = p1 × p2 (6)



where p1 and p2 represent the homogeneous 3-vector
coordinates of p1 and p2.

2) Compute the Plücker sub-vector nc from the measured
line l, and normalize it to unit vector n̂c.
The segment l detected in image uniquely determines
the plane η containing the 3D line and the optical
center C (see Fig. 1). It is known as the representation
plane. The line moment nc in the camera frame is
obtained by simply inverting Eq. (4):

Fig. 1: Retro-projection of a segment in the image (excerpt
from [14]).

nc = K−1 · l. (7)

The line moment nc needs to be normalized into
n̂c for a convenient implementation of inverse depth
parameters-based initialization.

3) Compute the Plücker sub-vector vc from n̂c.
The non-measured direction vector vc is meant to lie
on the plane η, then vc is initialized as:

vc = β1 · e1 + β2 · e2, β1, β2 ∈ R (8)

e1 =
(n̂c

y, n̂
c
x, 0)

>√
(n̂c

x)
2
+
(
n̂c
y

)2 , e2 =
n̂c

‖n̂c‖
× e1 (9)

where (e1, e2) is a pair of 3-vector orthonormal basis
of the plane η, β = (β1, β2) is provided as prior. It
is possible to get vc ⊂ η for any values of β, and
importantly, the Plücker constraint v⊥n is satisfied by
construction. Note that the distance from the line to
the optical center is given by d = ‖n̂c‖/vc = 1/‖β‖,
this is an inverse-depth parameterization.

4) Transform Lc = (n̂c,vc) to Lw using Eq. (2).

B. Cayley Representation of 3D Lines

The Plücker line representation must satisfy the constraint
v⊥n, which is not easy to enforce in the optimization
process. In [11], the Plücker constraint is guaranteed at
initialization time but is not enforced further during the
landmarks updates. So, in order to guarantee that the lines
parameters satisfy the Plücker constraint, the Cayley repre-
sentation is adopted to update the line during the nonlinear
optimization process.

The Cayley representation is defined as a 4-vector w =
(d, s), where d represents the distance from the line to the
optical center, and s is a 3-vector which encodes the rotation
information as illustrated in Fig. 2.

wO
wX

wY

wZ

0 ( )p O ( )m X

( )l Z

( )l m Y

d

X

Y

Z

s


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Fig. 2: Interpretation of the Cayley representation of a 3D
line, excerpt from [6]. d is the distance from the origin of
the world frame OwXwY wZw to the 3D line. The rotation
between OwXwY wZw and OXY Z the object frame is
determined by a rotation angle θ = 2arctan ‖s̄‖ around the
rotation axis s̄ = s/‖s‖.

To transform the Plücker line to a Cayley line, an orthogo-
nal matrix Q is constructed from the Plücker line as follows:

1) Compute the closest point P0 in the line L = (v;n)>

to origin:

P0 = (v × n)/‖v‖2, P0 ∈ R3. (10)

2) Compute the related line moment m for P0. We need
to normalize the direction vector v first, that is vn =
v/‖v‖2 , then:

m = P0 × vn, d = ‖m‖ (11)

3) Construct the 3× 3 orthogonal matrix Q:

Q =

[
vn,

m

‖m‖
,

vn ×m

‖vn ×m‖

]
. (12)

Then a skew-symmetric matrix formed by the vector
s = (sx, sy, sz)

> can be computed from Q and the
identity matrix I3×3 as :

[s]× = (Q− I)(Q+ I)−1. (13)

Thus, the Cayley representation w = (d, s) can be
obtained. However, most of 4-parameter non-linear represen-
tations of lines have some singularities, and [6] presented
a modified Cayley representation to solve the singularity
problem as:

Q =

{
[vn, i1, i2] if ‖m‖ ≤ τ[
vn, m

‖m‖ ,
vn×m

‖vn×m‖

]
otherwise (14)

where i1 and i2 are one pair of the 3-vector orthogonal base
of the nullspace formed by the linear system (vn)> · i = 0
, and τ is a small number close to 0.

Transferring back from the Cayley representation to the
Plücker coordinates is trivial:

Q = [q1,q2,q3] = (I− [s]×)
−1(I+ [s]×)

=
(1−‖s‖2)I+2[s]×+2ss>

1+‖s‖2 .
(15)

According to the definition of Q in Eq. (12):

vn = q1 and m = d · q2. (16)



III. BACK-END OPTIMIZATION USING INCREMENTAL
SMOOTHING AND MAPPING

In [18], the incremental smoothing and mapping (iSAM2)
has been originally implemented for feature point based
SLAM. In this work, their implementation is extended to
solve the line feature based SLAM. So far, the robot poses
are parameterized by their rotation matrices and translation
vectors as Xi = (Ri, ti) , with i ∈ 0 . . .M ; and the positions
of the 3D line landmarks are represented by their Plücker
coordinates Lj = (nj ;vj)

> , with j ∈ 1 . . . N , and are
updated by the 4-vector Cayley representation wj = (dj , sj)
as described in the previous section.

A. The Error Model

Let ui denote the control input or measured odometry,
with i ∈ 1 . . .M . The robot motion prediction error model
is defined as:

e(Xi,Xi−1) = Xi − f(Xi−1,ui), (17)

where Xi,Xi−1 is the robot state at time i and i − 1,
f(Xi−1,ui) represents the motion model of the robot. It is
generally a non-linear function.

Let zk(p1, p2) represent the line measurement in the
image, with k ∈ 1 . . .K. Unlike point features whose error
function is simply the distance between the observed location
and the projected location in the image plane, the line
measurement prediction error model is defined in this work
as a 2-vector e containing the signed orthogonal distances
from the endpoints to the re-projected line (see Fig. 3).

e =

[
e1
e2

]
=

[
l> · p1/

√
l21 + l22

l> · p2/
√
l21 + l22

]
∈ R2, (18)

where, p1 and p2 represent the 3-vector homogeneous coor-
dinates of endpoint p1 and p2, l = (l1, l2, l3)

> represents the
predicted line using the line projection function of Eq. (4).

p1

p2

Matched 

segment

Re-projected

 line 

l 

e1

e2

Fig. 3: Illustration of the error model of a re-projected line.

The re-projection error γ of the estimated lines can be
computed as:

γ2 = e21 + e22. (19)

We only consider lines of sufficient length, as very short
line segment yields an artificially small error, in this work,
the line segment with the length less than 30 pixels is
unaccepted.

B. The Optimization Process

Smoothing And Mapping (SAM) aims to recover the
maximum a posteriori estimate for all unknown poses Xi of
the robot and landmark positions Lj , given the measurements
zk and control inputs ui. This leads to the following non-
linear least-squares problem:

(20)

Θ∗ = argmin
Θ

{
M∑
i=1

‖e (Xi−1,Xi)‖2Ωi

+

K∑
k=1

‖e (Xik,Ljk)‖2Λk

}

where, Θ ∆
= (X,LK) , while X

∆
= {Xi} ,with LK

∆
= {Lj};

e(Xi−1,Xi) is the motion prediction error shown in (17),
e(Xik,Ljk) is the measurement prediction error shown in
Eq. (18), the correspondences (Xik,Ljk) indicate that line
measurement zk is derived from pose Xi and landmark
position Lj ; Ωi and Λk represent the covariance matrix of
the two errors. The detailed derivation behind Eq. (20) can
be found almost entirely in [17].

Next, the terms in Eq. (20) are linearized as follows. First
the terms of the motion prediction error are obtained as:

(21)
e(Xi,Xi−1) ≈

{
X0

i + δXi

}
−
{
fi(X

0
i−1,ui) + Fi

i−1δXi−1

}
≈
{
δXi − Fi

i−1δXi−1

}
+ αi

where, αi = X0
i − fi

(
X0

i−1,ui

)
, Fi−1

i = ∂fi(Xi−1,ui)
∂Xi−1

.
For the measurement prediction error e(Xik,Ljk), Eq.

(18) reveals that the error can no longer be obtained from
the subtraction e(Xik,Ljk) = h(Xik,Ljk) − zk, but from
an implicit function that is obtained by composing the line
transformation and projection from Eq. (4) and the error
measurements from Eq. (18). The result is a somewhat
complicated expression with a generic form e(Xik,Ljk) =
gk(Xik,Ljk, zk) . Linearizing the terms of measurement
prediction error gives:

e (Xik,Ljk) ≈ gk
(
X0

ik,L0
jk, zk

)
+Hik

k δXik + Jjk
k δwjk

(22)

where, Hik
k =

∂gk(Xik,Ljk,zk)
∂Xik

, Jjk
k =

∂gk(Xik,Ljk,zk)
∂wjk

.
It is worth noticing the significant change of Jacobians

and increment with respect to lines. This is due to the
Cayley representation used in the update process where the
increment of line changes into δwjk instead of δLjk.

Using the linearized process from Eq. (21) and Eq. (22)
in Eq. (20) gives:

(23)

δ∗ = argmin
δ

(
M∑
i=1

∥∥Gi
iδXi − Fi−1

i δXi−1 + αi

∥∥2
Ωi

+

N∑
k=1

∥∥∥Hik
k δXik + Jjk

k δwjk + gk

∥∥∥2
Λk

)
.

To avoid treating δXi in a special way, the matrix Gi
i =

Ih×h is introduced, with h the dimension of Xi.



Following what SAM performs, dropping the Mahalanobis
notation and collecting all the Jacobian matrices into a
matrix A, and the vectors αi and gk into a right-hand side
vector b, the following standard least-squares problem (24)
is obtained.

δ∗ = argmax
δ

‖Aδ + b‖2Σ (24)

while A = Σ−>/2Y,b = Σ−>/2B. Σ is a diagonal
matrix consists of each Ωi and Λk, Y is a sparse Jacobian
matrix, the non-zero blocks are only at states affected by the
constraints imposed by the measurements. We illustrate the
sparsity of Yi (linking Xi and Xi−1) and Yk (linking Xi

and Lj)as:

Yi =
[
· · · Fi−1

i Gi
i · · ·

]
Yk =

[
· · · Hik

k · · · Jjk
k · · ·

]
.

C. 3D Line Endpoints Update

The line endpoints in 3D space are defined via two
abscissas that need to be updated while the related line is
updated. The update process is defined as follows:

• Transform Lw to Lc;
• Compute two semi-infinite line equations sl1 and sl2

defined by the optical center C and the detected end-
point P1 and P2;

• Calculate the closest points on the Plücker line Lc to
sl1 and sl2 so that we can get P c

L1 and P c
L2 ;

• Transform P c
L1 and P c

L2 to Pw
L1 and Pw

L2;
• Use Pw

Li = Pw
0 + ti · vw/‖vw‖ to find ti (i = 1, 2),

Pw
0 being the closest point from Lw to the origin of the

world frame.

IV. EXPERIMENTAL RESULTS

A. Simulations

Simulation allows to compare the estimated values against
perfect ground truth and therefore to assess the errors of
the estimations, and also allows comparisons with the EKF-
based approach.

The scenario is shown in Fig. 4 that consists of a model
of transmission tower built with 38 segments, and the height
of tower is 7m. Occlusions are not simulated and all the
edges are visible. 90 frames are processed. A robot with one
perspective camera (90◦FOV, 640×480 pix resolution, 0.5
pix error) looking inwards to the model from a given distance
of 5m, gathering images. In order to observe the scale factor,
the robot takes noisy odometry readings with errors. There is
no loop closure in the simulation experiment. The end points
of all lines are projected in all views, where their positions
are corrupted by an additive Gaussian noise.

Fig. 4 shows the transmission tower being reconstructed
by our proposed approach. It can be seen that the estimated
lines are consistent with the true model.

In all the simulation experiments, the accuracy of the
estimated camera pose is measured by computing the error
of each component (x, y, z, roll, pitch, yaw) between the
estimated camera pose and the ground truth. Besides, the

 

Fig. 4: Left: a simulated 3D transmission tower made of 38
segments; right: the reconstructed model.

quality of reconstruction results is evaluated by computing
the estimation error from (19) that describes the error be-
tween re-projected lines and measurement lines.

Fig. 5: The results of re-projection errors

Fig. 5 shows the re-projection errors of our proposed
algorithm and EKF-based method. It gives the error for
each frame. It can be seen that the re-projected error of
our algorithm is less than the EKF-based method overall,
and the curve of our method is much smoother than the
curve of EKF-based method. So it demonstrates that the
reconstruction accuracy of our algorithm outperforms the
EKF-based method. But at the start, the error of EKF-based
method is less, it is because in the simulation process, the
number of line features be initialized increases gradually, on
the other hand, at the begining of 38 frames, each frame
adds a new initialized line to the map, the result curve
indicates that the EKF-based SLAM might be beneficial
when processing the small number of variables, then with the
poses and landmarks increase, the inaccuracy accumulates.

Fig. 6 shows the comparison of the camera pose of the
ground truth, our proposed SLAM, EKF-based SLAM and
odometry. For the translation part, it can be seen that the
differences between odometry estimation and ground truth
is obvious as the green curve shows, the EKF-based SLAM
is much better than the odometry result, whereas our iSAM2
based result is the closest to the ground truth one as the red
curve shows. For the rotation part, the differences in Y aw is
negligible, the estimated values of all methods are virtually
identical, while the differences in Roll and Pitch indicate
that our proposed algorithm works better than EKF-based
method and odometry estimation.
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Fig. 6: Comparison of the ground truth, our proposed line-based SLAM, EKF-based SLAM, and odometry estimation

B. Experiments on real image sequences
To evaluate our proposed method with real images, the

segments detector LSD (Line Segment Detector) [19] and
the descriptor LBD (Line Band Descriptor)[20] have been
used. LSD is a popular line detecting method, designed to
work on any digital image without parameter tuning, while
LBD works under various situations: Low-texture scenes,
partial occlusion, rotation changes, blurred images, moderate
viewpoint changes, and scale change. LSD and LBD are
combined to ensure robust and reliable segment matches.

Two image sequences are tested in this paper. First image
sequence is acquired with a web camera (Logitech Webcam
C270, 640 × 480 pixels). A constant motion model is used
to feed the prediction step of our SLAM approach since a
really slow motion is operated with the camera. The scene
contains a fan shown Fig. 7a: the reason why this scene
has been chosen is that the lines of fan lie on the same
plane. Fig. 7b shows the mapped 3D line segments and the
estimated camera poses. The lines of the fan appear precisely
reconstructed. In this experiment, there are 26 poses, 68 lines
are reconstructed in 3D, and a total of 687 constraints or
measurements. The proposed approach took about 20s to
get the full results.

(a) Scene with a fan (b) Reconstructed fan

Fig. 7: Scene with a fan and reconstructed lines and poses.

The second image sequence comes from [21], it is

recorded by UAV in a room of an approximate size of
8m × 8.4m × 4m , which contains different objects, e.g.
ladder, boxes and cabinets. The IMU data provided by the
dataset is used to feed the prediction step of our SLAM
approach using a strapdown inertial calculation. Fig. 8 shows
the example images and the snapshot of the reconstructed
scenes. The scene structures seem to be well recovered.
In addition, the estimated trajectory is compared with the
ground truth as Fig. 9 shows. It can be seen that it is close
to the true path. The high reconstruction and estimation accu-
racy benefits from the unconstrained Cayley representation of
line and the appropriate modified iSAM2 approach. During
this experiment, there are 1074 poses estimated, 2229 lines
are reconstructed in 3D, and a total of 11640 constraints or
measurements. The proposed approach took about 840s to
get the total results.

V. CONCLUSIONS AND FUTURE WORKS

This paper describes a novel line-based 6-DOF monocular
SLAM algorithm which uses the iSAM2 approach. The
difficult issue of representing the lines has been addressed
by a combination of the Plücker Coordinates and the Cayley
representation. An undelayed initialization method has been
adopted to initialize the line features. Finally, the iSAM2
approach, originally designed for the point-based SLAM
problem, has been extended to solve the line-based SLAM
problem, which greatly improves the accuracy. Simulation
experiments have been carried out to assess the accuracy
of the proposed algorithm. The accuracy of the estimated
pose result has been evaluated, and the reconstruction qual-
ity has been measured and shows the good accuracy of
our algorithm. Meanwhile, the results have been compared
with the EKF-based method and shows that the proposed
algorithm outperforms the EFK-based methods. Experiments



(a) (b)

(c) (d)

(e) (f)

Fig. 8: The mapped scene. The first column are example
images from the sequences and the second column shows
the snapshots of the mapped scene.

Fig. 9: The estimated trajectory

on real image sequences have also been performed, and
promising result have been obtained. However, this work
still needs some improvements on some aspects: First, the
lines initialization must be handled carefully, and some initial
depth information may help; Second, global loop-closure
detection method should be added to enhance the robustness
of the approach; Third, real-time requirements are crucial for
SLAM applications, so the processing time of the proposed
approach has to be optimized. In addition, we will focus
on specific line-based SLAM applications like power tower
inspection, railway analysis, or factory building inspection.
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