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Lp AND ALMOST SURE RATES OF CONVERGENCE

OF AVERAGED STOCHASTIC GRADIENT ALGORITHMS:

LOCALLY STRONGLY CONVEX OBJECTIVE

Antoine Godichon-Baggioni*

Abstract. An usual problem in statistics consists in estimating the minimizer of a convex function.
When we have to deal with large samples taking values in high dimensional spaces, stochastic gradient
algorithms and their averaged versions are efficient candidates. Indeed, (1) they do not need too much
computational efforts, (2) they do not need to store all the data, which is crucial when we deal with big
data, (3) they allow to simply update the estimates, which is important when data arrive sequentially.
The aim of this work is to give asymptotic and non asymptotic rates of convergence of stochastic
gradient estimates as well as of their averaged versions when the function we would like to minimize is
only locally strongly convex.
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1. Introduction

With the development of automatic sensors, it is more and more important to think about methods able to
deal with large samples of observations taking values in high dimensional spaces such as functional spaces. We
focus here on an usual stochastic optimization problem which consists in estimating

m := arg min
h∈H

E [g(X,h)] , (1.1)

where H is a Hilbert space and X is a random variable supposed to be taking value in a space X and g :
X ×H −→ R. One usual method, given a sample X1, . . . , Xn, is to consider the empirical problem generated
by this sample, i.e. to consider the M -estimates (see the books of [18, 21] among others)

m̂n := arg min
h∈H

n∑
k=1

g (Xk, h) ,

and to approximate m̂n using deterministic optimization methods (see [3] for instance). Nevertheless, one of the
most important problem of such methods is that they become computationally expensive when we deal with
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large samples taking values in high dimensional spaces. Thus, in order to overcome this, stochastic gradient
algorithms introduced by [27] are efficient candidates. Indeed, they do not need too much computational efforts,
do not require to store all the data and can be simply updated, which represents a real interest when the data
arrive sequentially.

The literature is very large on this domain (see the books of [12, 20] among others) and on the method
to improve their convergence which consists in averaging the Robbins-Monro estimates, which was introduced
by [29] and whose first convergence results were given by [26]. Many asymptotic results exist in the literature
when data lies in finite dimensional spaces (see [12, 23, 24] for instance) but the proofs can not be directly
adapted for infinite dimensional spaces. Moreover, an asymptotic result such as a Central Limit Theorem does
not give any clue of how far the distribution of the estimate is from its asymptotic law for a fixed sample size
n. Then, non asymptotic properties are always desirable for statisticians who deal with real data (see the nice
arguments of [28] for example). As a consequence, these last few years, statisticans have more and more focused
on non asymptotic rates of convergence. For example, [22] and [1] give some general conditions to get the rate
of convergence in quadratic mean of averaged stochastic gradient algorithms, while [13], for instance, focus on
non asymptotic rates for strongly convex stochastic composite optimization.

The aim of this work is to seek inspiration in the demonstration methods introduced by [6] and improved
by [4, 14] to give convergence results for stochastic gradient algorithms and their averaged versions when the
function we would like to minimize is only locally strongly convex. First, we establish almost sure rates of
convergence of the estimates in general Hilbert spaces. Furthermore, as mentioned above, asymptotic results
are often non sufficient, and Lp rates of convergence of the algorithms are so given.

The paper is organized as follows. Section 2 introduces the framework, assumptions, the algorithms and
some convexity properties on the function we would like to minimize. Two examples of application are given in
Section 3: we first focus on the estimation of geometric quantiles, which are a generalization of the real quantiles
introduced by [8]. They are robust indicators which can be useful in statistical depth and outliers detection (see
[30], [9] or [17]). In a second time, we focus on the estimation of generalized p-means [2, 25], used in several
domains such that computer vision [31] or medical imaging [15]. In a third time, stochastic gradient algorithms
can be applied in several regressions [1, 10] and we focus on robust logistic regression. In Section 4, the almost
sure and Lp rates of convergence of the estimates are given. Our theoretical results are illustrated by numerical
experiments in Section 5. Finally, the proofs are postponed in Section 6 and in Appendix.

2. The algorithms and assumptions

2.1. Assumptions and general framework

Let H be a separable Hilbert space such as Rd or L2(I) for some closed interval I ⊂ R. We denote by 〈., .〉
its inner product and by ‖.‖ the associated norm. Let X be a random variable taking values in a space X , and
let G : H −→ R be the function we would like to minimize, defined for all h ∈ H by

G(h) := E [g(X,h)] , (2.1)

where g : X ×H −→ R. Moreover, let us suppose that the functional G is convex. We consider from now that
the following assumptions are fulfilled:

(A1) The functional g is Frechet-differentiable for the second variable almost everywhere. Moreover, G is
differentiable and denoting by Φ(.) its gradient, there exists m ∈ H such that

Φ(m) := ∇G(m) = 0.
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(A2) The functional G is twice continuously differentiable almost everywhere and for all positive constant A,
there is a positive constant CA such that for all h ∈ B (m,A),

‖Γh‖op ≤ CA,

where Γh is the Hessian of the functional G at h and ‖.‖op is the usual spectral norm for linear operators.
(A3) There exists a positive constant ε such that for all h ∈ B (m, ε), there is a basis of H composed of

eigenvectors of Γh. Moreover, let us denote by λmin the limit inf of the eigenvalues of Γm, then λmin is
positive. Finally, for all h ∈ B (m, ε), and for all eigenvalue λh of Γh, we have λh ≥ λmin

2 > 0.
(A4) There are positive constants ε, Cε such that for all h ∈ B (m, ε),

‖∇G(h)− Γm(h−m)‖ ≤ Cε ‖h−m‖2 .

(A5) Let f : X ×H −→ R+ and let C be a positive constant such that for almost every x ∈ X and for all
h ∈ H, ‖∇hg(x, h)‖ ≤ f(x, h) + C ‖h−m‖ almost surely.

(a) There is a positive constant L1 such that for all h ∈ H,

E
[
f(X,h)2

]
≤ L1.

(b) For all integer q, there is a positive constant Lq such that for all h ∈ H,

E
[
f(X,h)2q

]
≤ Lq.

Note that for the sake of simplicity, we often denote by the same way the different constants. We now make
some comments on the assumptions. First, note that no convexity assumption on the functional g is required.

Assumptions (A2) and (A3) give some properties on the spectrum of the Hessian and ensure that the
functional G is locally strongly convex. Note that assumption (A3) can be resumed as λmin (Γm) > 0, where
λmin(.) is the function which gives the smallest eigenvalue (or the lim inf of the eigenvalues in infinite dimensional
spaces) of a linear operator, if the functional h 7→ λmin (Γh) is continuous on a neighborhood of m.

Moreover, assumption (A4) allows to bound the remainder term in the Taylor’s expansion of the gradient.
Note that since the functional G is twice continuously differentiable and since Φ(m) = 0, it comes Φ(h) =∫ 1

0
Γm+t(h−m)(h−m)dt, and in a particular case, Φ(h)−Γm(h−m) =

∫ 1

0

(
Γm+t(h−m)(h−m)− Γm(h−m)

)
dt.

Thus, assumption (A4) can be verified by giving a neighborhood of m for each there is a positive constant Cε
such for all h in this neighborhood, if we consider the functional ϕh : [0, 1] −→ H defined for all t ∈ [0, 1] by
ϕh(t) := Γm+t(h − m)(h − m), then for all t ∈ [0, 1],

‖ϕ′h(t)‖ ≤ Cε ‖h−m‖2 .

Assumption (A5) enables us to bound the gradient under conditions on the functional f . More precisely,
(A5a) is sufficient to get the almost sure rates of convergence while we need to assume (A5b) to obtain the
Lp rates of convergence. This still represents a significant relaxation of the usual conditions needed to get non
asymptotic results. For example, a main difference with [1] and [14] is that, instead of having a bounded gradient,
we split this bound into two parts: one which admits qth moments, and one which depends on the estimation
error. Moreover, note that it is possible to replace assumption (A5) by

(A5a′) There is a positive constant L1 such that for all h ∈ H,

E
[
‖∇hg (X,h)‖2

]
≤ L1

(
1 + ‖h−m‖2

)
.
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(A5b′) For all integer q, there is a positive constant Lq such that for all h ∈ H,

E
[
‖∇hg (X,h)‖2q

]
≤ Lq

(
1 + ‖h−m‖2q

)
.

Remark 2.1. These assumptions are analogous to the usual ones in finite dimension ([23], [24]) but in our
case, the proofs remain true in infinite dimension.

Remark 2.2. Note that the Hessian of the functional G is not supposed to be compact. Then, if H = Rd, its
smallest eigenvalue λmin (Γm) does not necessarily converge to 0 when the dimension d tends to infinity.

2.2. The algorithms

Let X1, . . . , Xn, . . . be independent random variables with the same law as X. The stochastic gradient
algorithm is defined recursively by

Zn+1 = Zn − γn∇hg (Xn+1, Zn) (2.2)

=: Zn − γnUn+1,

where Z1 is chosen bounded and Un+1 := ∇hg (Xn+1, Zn). The step sequence (γn) is a decreasing sequence of
positive real numbers which verifies the following usual assumptions (see [12])∑

n≥1

γn =∞,
∑
n≥1

γ2n <∞.

The term Un+1 can be considered as a random perturbation of the gradient Φ at Zn. Indeed, let (Fn) be the
sequence of σ-algebra defined for all n ≥ 1 by Fn := σ (X1, . . . , Xn) = σ (Z1, . . . , Zn), then

E [Un+1|Fn] = ∇G(Zn) =: Φ (Zn) .

In order to improve the convergence, we now introduce the averaged algorithm ([29], [26]) defined recursively
by

Zn+1 = Zn +
1

n+ 1

(
Zn+1 − Zn

)
, (2.3)

with Z1 = Z1. This can also be written as follows

Zn =
1

n

n∑
k=1

Zk.

2.3. Some convexity properties

We now give some convexity properties of the functional G. The proofs are given in Appendix. First, since
∇G(m) = 0 and since G is twice continuously differentiable, note that for all h ∈ H,

∇G(h) = ∇G(h)−∇G(m) =

∫ 1

0

Γm+t(h−m)(h−m)dt.

The first proposition gives the local strong convexity of the functional G.
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Proposition 2.3. Assume (A1) to (A3) and (A5a) hold. For all positive constant A and for all h ∈ B (m,A),

〈∇G(h), h−m〉 ≥ cA ‖h−m‖2 ,

with cA := min
{
λmin

2 , λminε
2A

}
. Moreover, there is a positive constant C such that for all h ∈ H,

|〈∇G(h), h−m〉| ≤ C ‖h−m‖2 .

This result remains true replacing assumption (A5a) by (A5a′).

The following corollary ensures that m is the unique solution of the problem defined by (1.1).

Corollary 2.4. Assume (A1) to (A3) and (A5a) hold. Then, m is the unique solution of the equation

∇G(h) = 0,

and in a particular case, m is the unique minimizer of the functional G.

Remark 2.5. Assumption (A3) and Proposition 2.3 enable us to invert the Hessian at m and to have a control
on the “loss” of strong convexity. More precisely, assumption (A3) could be replaced by

(A3′) There is a basis composed of eigenvectors of Γm and its smallest eigenvalue λmin (or the lim inf of the
eigenvalues in the case of infinite dimensional spaces) is positive. Moreover there are positive constant
c, c′ such that for all A > 0 and for all h ∈ B (m,A),

〈∇G(h), h−m〉 ≥ min

{
c,
c′

A

}
‖h−m‖2 .

Finally, the last proposition gives an uniform bound of the remainder term in the Taylor’s expansion of the
gradient.

Proposition 2.6. Assume (A1), (A2), (A4) and (A5a) hold. Then, there is a positive constant Cm such
that for all h ∈ H,

‖∇G(h)− Γm(h−m)‖ ≤ Cm ‖h−m‖2 .

This result remains true replacing assumption (A5a) by (A5a′).

3. Applications

3.1. Applications in general separable Hilbert spaces

In this section, let us consider a separable Hilbert space H and let X be a random variable taking values in H.
Estimating geometric quantiles: The geometric quantile mv of X corresponding to a direction v, where
v ∈ H and ‖v‖ < 1, is defined by

mv := arg min
h∈H

E [‖X − h‖ − ‖X‖]− 〈h, v〉 .

Note that if v = 0, the geometric quantile m0 corresponds to the geometric median [16, 19]. Let Gv be the
function we would like to minimize, defined for all h ∈ H by Gv(h) := E [‖X − h‖+ 〈X − h, v〉]. Since ‖v‖ < 1,
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it comes

lim
‖h‖→∞

Gv(h) = +∞,

and Gv admits so a minimizer mv, which is also a solution of the following equation

∇Gv(h) = −E
[
X − h
‖X − h‖

]
− v = 0.

Then, assumption (A1) is fulfilled and the stochastic gradient algorithm and its averaged version are defined
recursively for all n ≥ 1 by

mv
n+1 = mv

n + γn

(
Xn+1 −mv

n

‖Xn+1 −mv
n‖

+ v

)
,

mv
n+1 = mv

n +
1

n+ 1

(
mv
n+1 −mv

n

)
,

with mv
1 = mv

1 chosen bounded (choosing a positive constant M , one can take mv
1 of the form mv

1 := X1 1‖X1‖≤M
for example). In order to ensure the uniqueness of the geometric quantiles and the convergence of these estimates,
we consider from now that the following assumptions are fulfilled:

(B1) The random variable X is not concentrated on a straight line: for all h ∈ H, there is h′ ∈ H such that
〈h, h′〉 = 0 and

Var (〈X,h′〉) > 0.

(B2) The random variable X is not concentrated around single points: for all positive constant A, there is a
positive constant CA such that for all h ∈ B (mv, A),

E
[

1

‖X − h‖

]
≤ CA, E

[
1

‖X − h‖2

]
≤ CA.

Note that assumption (B2) is not restrictive when we deal with a high dimensional space. For example, if
H = Rd with d ≥ 3, as discussed in [5, 7], this condition is satisfied since X admits a density which is bounded
on every compact subset of Rd. Finally, this assumption ensures the existence of the Hessian of Gv, which is
defined for all h ∈ H by

∇2Gv(h) = E
[

1

‖X − h‖

(
IH −

X − h
‖X − h‖

⊗ X − h
‖X − h‖

)]
,

where for all h, h′, h′′ ∈ H, h⊗ h′(h′′) := 〈h, h′′〉h′. Moreover, Corollary 2.1 in [6] ensures that if assumptions
(B1) and (B2) are fulfilled, assumptions (A2) and (A3) are verified, while Lemma 5.1 in [6] ensures that
assumption (A4) is fulfilled. Finally, for all positive integer p ≥ 1 and for all h ∈ H,

E

[∥∥∥∥ X − h
‖X − h‖

+ v

∥∥∥∥2p
]
≤ 22p,

and assumptions (A5a) and (A5b) are so verified.
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Estimating p-means: Les p ∈ (1, 2), then, the p-mean of X is defined by

m(p) = arg min
h∈H

E [‖X − h‖p]
1
p = arg min

h∈H

1

p
E [‖X − h‖p] (3.1)

Note that the cases p = 1 and p = 2 correspond respectively to the geometric median and the usual mean. Let
Gp be the function we would like to minimize defined for all h ∈ H by Gp(h) = 1

pE [‖X − h‖p]. This function is
convex and

lim
‖h‖→∞

Gp(h) = +∞,

and Gp admits so a minimizer m(p), which is also a solution of the following equation

∇Gp(h) = −E
[
(X − h) ‖X − h‖p−2

]
= 0.

Then, assumption (A1) is fulfilled and the stochastic gradient algorithm and its averaged version are defined
recursively for all n ≥ 1 by

m
(p)
n+1 = m(p)

n + γn

(
Xn+1 −m(p)

n

)∥∥∥Xn+1 −m(p)
n

∥∥∥p−2
m

(p)
n+1 = m(p)

n +
1

n+ 1

(
m

(p)
n+1 −m(p)

n

)
.

In order to ensure some differentiability properties and the convergence of the estimates, les us now introduce
some assumptions:

(B1a′) The random variable X admits a moment of order 2p− 2.
(B1b′) For all positive integer q, the random variable X admits a moment of order q.

(B2′) The random variable X is not concentrated around single points: for all positive constant A, there is a
positive constant CA such that for all h ∈ B

(
m(p), A

)
,

E
[
‖X − h‖p−2

]
≤ CA E

[
‖X − h‖p−3

]
≤ CA

Assumption (B1a′) ensures that the gradient of Gp is well defined and that assumption (A5a) is fulfilled while
assumption (B1b′) ensures that (A5b) is fulfilled. Indeed, for all h ∈ H,

‖∇hgp (X,h)‖ = ‖X − h‖p−1 ≤ 2p−1
(∥∥∥X −m(p)

∥∥∥p−1 +
∥∥∥m(p) − h

∥∥∥p−1)
≤ 2p−1

(∥∥∥X −m(p)
∥∥∥p−1 + 1 +

∥∥∥m(p) − h
∥∥∥)

Remark that this example can not be treated thanks to the theoretical tools of [14] and [1]. Indeed, in these
previous papers, uniform bounds of the gradient are needed while in this example, the gradient is bounded by
a term with finite moments and a term depending on the estimation errors. Finally, assumption (B2′) ensures
that the function we would like to minimize is twice continuously differentiable and

∇2G(h) = E

[
1

‖X − h‖2−p

(
IH − (2− p) X − h

‖X − h‖
⊗ X − h
‖X − h‖

)]
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Since p ∈ (1, 2), λmin

(
∇2G(m)

)
≥ (p − 1)E

[
1

‖X−m‖

]
> 0 and assumption (A3) is so fulfilled. Finally, thanks

to (B2′), assumptions (A2) and (A4) are also fulfilled.

3.2. An application in a finite dimensional space: a robust logistic regression

Let d ≥ 1 and H = Rd. Let (X,Y ) be a couple of random variables taking values in H × {−1, 1}. The aim
is to minimize the functional Gr defined for all h ∈ Rd by (see [1])

Gr(h) := E [log (cosh (Y − 〈X,h〉))] .

In order to ensure the existence and uniqueness of the solution, we consider from now that the following
assumptions are fulfilled:

(B1′′) There exists mr such that ∇Gr(mr) = 0.
(B2′′) The Hessian of the functional Gr at mr is positive.

(B3a′′) The random variable X admits a 2-nd moment.
(B3b′′) For all integer p, the random variable X admits a pth moment.

Assumption (B1′′) ensures the existence of a solution while (B2′) gives its uniqueness. Assumption (B3a′′)
ensures that the functional Gr is twice Fréchet-differentiable and its gradient and Hessian are defined for all
h ∈ Rd by

∇Gr(h) = E
[
− sinh (Y − 〈X,h〉)
cosh (Y − 〈X,h〉)

X

]
,

∇2Gr(h) = E

[
1

(cosh (Y − 〈X,h〉))2
X ⊗X

]
.

Note that assumption (B2′′) is verified, for example, since there are positive constants M,M ′ such that
the matrix E

[
X ⊗X1{‖X‖≤M}1{‖Y ‖≤M ′}

]
is positive. Then, the solution mr can be estimated recursively as

follows:

mr
n+1 = mr

n + γn
sinh (Yn+1 − 〈Xn+1,m

r
n〉)

cosh (Yn+1 − 〈Xn+1,mr
n〉)

Xn+1,

mr
n+1 = mr

n +
1

n+ 1

(
mr
n+1 −mr

n

)
,

with mr
1 = mr

1 bounded. Under assumptions (B1′′) to (B3a′′), hypothesis (A1) to (A5a) are satisfied, while
under additional assumption (B3b′′), hypothesis (A5b) is satisfied. Remark that this example is already treated
in [1], but only for a bounded gradient, i.e. under the existence of a positive constant R such that

|sinh (Y − 〈X,h〉)|
cosh (Y − 〈X,h〉)

‖X‖ ≤ R,

i.e. only in the case where X is bounded.

Remark 3.1. Remark that these results remain true for several cases of regression. For example, one can
consider the logistic regression

ml := arg min
h∈Rd

E [log (1 + exp (−Y 〈X,h〉))] ,
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with (X,Y ) taking values in Rd × {−1, 1}. Then, one can consider estimates of the form

ml
n+1 = ml

n + γn
exp

(
−Yn+1

〈
Xn+1,m

l
n

〉)
1 + exp (−Yn+1 〈Xn+1,ml

n〉)
Yn+1Xn+1,

ml
n+1 = ml

n +
1

n+ 1

(
ml
n+1 −ml

n

)
.

4. Rates of convergence

In this section, we consider a learning rate sequence (γn)n≥1 of the form γn := cγn
−α with cγ > 0 and

α ∈ (1/2, 1). Note that taking α = 1 could be possible with a good choice of the value of the constant cγ (taking
cγ >

1
λmin

for instance). Nevertheless, the averaging step enables us to get the optimal rate of convergence with

a smaller variance than the stochastic gradient algorithm with a fastly decreasing step sequence γn = cγn
−1

(see [23, 24, 26] for more details).

4.1. Almost sure rates of convergence

In this section, we focus on the almost sure rates of convergence of the algorithms defined in (2.2) and (2.3).
First, the following theorem gives the consistency of the algorithms.

Theorem 4.1. Suppose (A1) to (A3) and (A5a) hold. Then,

lim
n→∞

‖Zn −m‖ = 0 a.s,

lim
n→∞

∥∥Zn −m∥∥ = 0 a.s.

This result remains true replacing assumptions (A3) and/or (A5a) by (A3′) and/or (A5a′).

The following theorem gives the almost sure rates of convergence of the stochastic gradient algorithm as well
as of its averaged version under the additional assumption (A4).

Theorem 4.2. Suppose (A1) to (A5a) hold. For all δ, δ′ > 0,

‖Zn −m‖2 = o

(
(lnn)δ

nα

)
a.s,

∥∥Zn −m∥∥2 = o

(
(lnn)1+δ

′

n

)
a.s.

This result remains true replacing assumptions (A3) and/or (A5a) by (A3′) and/or (A5a′).

Note that similar results are given in [23], but only in finite dimension. More precisely, the given proofs cannot
be directly extended to the case where H is an infinite dimensional space. For example, these methods rely on
the fact that the Hessian of the functional G admits finite dimensional eigenspaces, which is not necessarily true
for general Hilbert spaces. Another problem is that norms are not equivalent in infinite dimensional spaces, and
consequently, the Hilbert-Schmidt (or Frobenius) norm for linear operators is not necessarily finite even if the
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spectral norm is. For example, under assumption (A3), if H is an infinite dimensional space,

‖Γm‖op ≤ C‖m‖, and ‖Γm‖H−S = +∞,

where ‖.‖H−S is the Hilbert-Schmidt norm.

4.2. Lp rates of convergence

In this section, we focus on the Lp rates of convergence of the algorithms. The proofs are postponed in
Section 6. The idea is to give non asymptotic results without focusing only on the rate of convergence in
quadratic mean. Indeed, recent works (see [4, 14] for instance), confirm that having Lp rates of convergence can
be very useful to establish rates of convergence of more complex estimates.

Theorem 4.3. Assume (A1) to (A5b) hold. Then, for all integer p, there is a positive constant Kp such that
for all n ≥ 1,

E
[
‖Zn −m‖2p

]
≤ Kp

npα
. (4.1)

This result remains true replacing assumptions (A3) and/or (A5b) by (A3′) and/or (A5b′).

Finally, the last theorem gives the Lp rates of convergence of the averaged estimates.

Theorem 4.4. Assume (A1) to (A5b) hold. Then, for all integer p, there is a positive constant K ′p such that
for all n ≥ 1,

E
[∥∥Zn −m∥∥2p] ≤ K ′p

np
.

This result remains true replacing assumptions (A3) and/or (A5b) by (A3′) and/or (A5b′).

As done in [6, 14], one can check that, under assumptions, these rates of convergence are the optimal ones
for Robbins-Monro algorithms and their averaged versions, i.e. one can prove that there are positive constants
c, c′ such that for all n ≥ 1,

E
[
‖Zn −m‖2

]
≥ c

nα
, E

[∥∥Zn −m∥∥2] ≥ c′

n
.

Remark 4.5. One can obtain the same Lp and almost sure rates of convergence for the stochastic gradient
algorithm replacing assumption (A4) by

(A4′) There are positive constants ε > 0 and β ∈ (1, 2] such that for all h ∈ B (m, ε)

‖∇G(h)− Γm(h−m)‖ ≤ Cβ ‖h−m‖β .

Moreover, one can get the same Lp and almost sure rates of convergence for the averaged algorithm replacing
(A4) by (A4′) and taking a step sequence of the form γn := cγn

−α with α ∈ (β−1, 1).

Remark 4.6. Let p be a positive integer, it is possible to get the L2p rates of convergence of the Robbins-Monro
algorithm just supposing that there is a positive integer q such that q > 2 p + 2 and a positive constant Lq

such that E
[
f (X,h)

2q
]
≤ Lq (or such that E [∇hg (X,h)] ≤ Lq

(
1 + ‖h−m‖2q

)
) and taking a step sequence

of the form γn := cγn
−α with α ∈

(
1
2 ,

q
p+2+q

)
.
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Figure 1. Comparison of the evolution of the quadratic mean error of gradient estimates (in
blue) and of their averaged version (in red) in relation to the sample size.

5. Simulation study

In this section, we consider a random gaussian vector X ∼ N (0, I100) taking values in R100, and we aim to
estimate the p-mean m(p) of X with p = 1.5. Note that in this case, m(p) = 0R100 . We now consider q samples
X1,1, . . . , X1,n, . . . , Xq,1, . . . , Xq,n with a size n. In order to compare the different estimates, for a fixed sample
size n, we will consider the empirical quadratic mean error of the estimates, i.e. given an estimate m̂ of m and
the associate estimates m̂1,n, . . . , m̂q,n, we will consider

QME (m̂,m) =
1

q

q∑
i=1

‖m̂i,n −m‖2 .

In order to initialize the algorithms, we take the first data, i.e. m
(p)
i,1 = Xi,1. In Figure 1, we consider a step

sequence γn = cγn
−α with c = 2 and α = 0.66. One can check that the averaged algorithm converges faster

than the gradient and become better after having dealt with a small number of data (about 50). This quite
bad behavior on the first step can be explained by a quite bad initialization of the gradient algorithm which
so spend some time before turning around the target. In Figure 2, we study the impact of the choice of α on
the performance of the estimates for a fixed constant cγ = 2. The case where α = 1 is not considered since
it needs to have informations on the smallest eigenvalue of the Hessian of the functional we would like to
minimize, informations that are usually unknown. Without any surprise (in view of Thms. 4.2 an 4.3), gradient
estimates seems to converge faster when α increases. Inversely, for small sample size, the averaged version seems
to converge faster when α decreases for small sample size, before having analogous behaviors for n = 1000. This
can be explained by the fact that the less important is α, the more the gradient estimates will “move”, and the
more they have a chance to turn around the target quickly.

Finally, in Table 1, we study the impact on the estimates of the choices of α and cγ for a moderate sample
size n = 104. As expected, one can see that averaged estimates are globally better than gradient ones and are
more stable in relation to the choice of the step sequence. The quite critical choices of step sequence for the
averaged algorithm are when we both take cγ small and α close to 1. This is not surprising because here again,
the gradient steps need too much data before turning around the target, since, for example,

104∑
i=1

i−0.9 ' 15.7.
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Figure 2. Comparison of the quadratic mean error of gradient estimates (on the left)
and of their averaged version (on the right) in relation to the sample size for α =
0.55, 0.66, 0.75, 0.85, 0.9.

Table 1. Quadratic mean errors (.10−2) of the gradient estimates (on the left) and of averaged
estimates (on the right) for a sample size n = 10 000 for different α and cγ .

Gradient estimates
α

0.55 0.66 0.75 0.85 0.9
1 9.95 3.76 1.84 1.07 2.33
2 20.29 7.39 3.40 1.52 1.15

cγ 5 50.34 17.80 8.08 3.37 2.20
10 101.75 36.40 15.79 6.54 4.18
20 209.05 73.62 31.32 12.87 7.94

Averaged estimates
α

0.55 0.66 0.75 0.85 0.9
1 1.05 1.12 1.41 4.02 12.05
2 1.00 1.05 1.11 1.34 1.63

cγ 5 1.01 1.01 1.03 1.08 1.13
10 1.01 1.00 1.02 1.05 1.06
20 0.99 1.00 0.99 1.04 1.03

6. Proofs

6.1. Some decompositions of the algorithms

In order to simplify the proofs thereafter, we introduce some usual decompositions of the algorithms. First,
let us recall that the Robbins-Monro algorithm is defined by

Zn+1 = Zn − γnUn+1, (6.1)

with Un+1 := ∇hg (Xn+1, Zn). Then, let ξn+1 := Φ(Zn)− Un+1, equality (6.1) can be written as

Zn+1 −m = Zn −m− γnΦ(Zn) + γnξn+1. (6.2)

Note that (ξn) is a martingale differences sequence adapted to the filtration (Fn). Furthermore, linearizing the
gradient, equation (6.2) can be written as

Zn+1 −m = (IH − γnΓm) (Zn −m) + γnξn+1 − γnδn, (6.3)

where δn := Φ(Zn)− Γm (Zn −m) is the remainder term in the Taylor’s expansion of the gradient. Note that

thanks to Proposition 2.6, there is a positive constant Cm such that for all n ≥ 1, ‖δn‖ ≤ Cm ‖Zn −m‖2. Finally,
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by induction, we have the following usual decomposition

Zn −m = βn−1 (Z1 −m) + βn−1Mn − βn−1Rn, (6.4)

with

βn−1 :=

n−1∏
k=1

(IH − γkΓm) , Mn :=

n−1∑
k=1

γkβ
−1
k ξk+1,

β0 := IH , Rn :=

n−1∑
k=1

γkβ
−1
k δk.

In the same way, in order to get the rates of convergence, we need to exhibit a new decomposition of the
averaged algorithm. In this aim, equality (6.3) can be written as

Γm (Zn −m) =
Zn −m
γn

− Zn+1 −m
γn

+ ξn+1 − δn.

As in [24], summing these equalities, applying Abel’s transform and dividing by n, we have

Γm
(
Zn −m

)
=

1

n

(
Z1 −m
γ1

− Zn+1 −m
γn

+

n∑
k=2

(
1

γk
− 1

γk−1

)
(Zk −m)−

n∑
k=1

δk

)
+

1

n

n∑
k=1

ξk+1. (6.5)

6.2. Proof of Section 4.1

Proof of Theorem 4.1. Using decomposition (6.2) and since (ξn) is a sequence of martingale differences adapted
to the filtration (Fn),

E
[
‖Zn+1 −m‖2 |Fn

]
= ‖Zn −m‖2 − 2γn 〈Zn −m,Φ(Zn)〉+ γ2n ‖Φ(Zn)‖2 + γ2nE

[
‖ξn+1‖2 |Fn

]
.

Moreover, with Assumption (A5a),

E
[
‖ξn+1‖2 |Fn

]
= E

[
‖Un+1‖2 |Fn

]
− 2 〈E [Un+1|Fn] ,Φ(Zn)〉+ ‖Φ(Zn)‖2

≤ E
[
(f(Xn+1, Zn) + C ‖Zn −m‖)2 |Fn

]
− ‖Φ(Zn)‖2

≤ 2L1 + 2C2 ‖Zn −m‖2 − ‖Φ(Zn)‖2 .

Thus,

E
[
‖Zn+1 −m‖2 |Fn

]
≤
(
1 + 2C2γ2n

)
‖Zn −m‖2 − 2γn 〈Φ(Zn), Zn −m〉+ 2γ2nL1.

Since 〈Φ(Zn), Zn −m〉 ≥ 0 and
∑
n≥1 γ

2
n < +∞, Robbins-Siegmund theorem (see Thm. E.1) ensures that

‖Zn −m‖ converges almost surely to a finite random variable and that∑
n≥1

γn 〈Φ(Zn), Zn −m〉 < +∞ a.s.
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Moreover, since 〈Φ (Zn) , Zn −m〉 ≥ 0, by induction, there is a positive constant M such that for all n ≥ 1,

E
[
‖Zn+1 −m‖2

]
≤
(
1 + 2C2γ2n

)
E
[
‖Zn −m‖2

]
+ 2γ2nL1

≤

∏
k≥1

(
1 + 2C2γ2k

)E
[
‖Z1 −m‖2

]
+ 2L1

∏
k≥1

(
1 + 2C2γ2k

)∑
k≥1

γ2k

≤M.

Thus, one can conclude the proof in the same way as in the proof of Theorem 3.1 in [5] for instance. Finally,
one can apply Toeplitz’s lemma (see [12], Lem. 2.2.13) to get the strong consistency of the averaged algorithm.

In order to get the almost sure rates of convergence of the Robbins-Monro algorithm, we now introduce a
technical lemma which gives the rate of convergence of the martingale term βn−1Mn in decomposition (6.4).

Lemma 6.1. Suppose assumptions (A1) to (A3) and (A5a) hold. Then, for all δ > 0,

‖βn−1Mn‖2 = o

(
(lnn)δ

nα

)
a.s.

Proof of Lemma 6.1. Since (ξn) is a sequence of martingale differences adapted to the filtration (Fn), and since
Mn+1 = Mn + γnβ

−1
n ξn+1,

E
[
‖βnMn+1‖2 |Fn

]
= ‖βnMn‖2 + 2γn 〈βnMn,E [ξn+1|Fn]〉+ γ2nE

[
‖ξn+1‖2 |Fn

]
= ‖βnMn‖2 + γ2nE

[
‖ξn+1‖2 |Fn

]
≤ ‖IH − γnΓm‖2op ‖βn−1Mn‖2 + γ2nE

[
‖ξn+1‖2 |Fn

]
.

Since each eigenvalue λ of Γm verifies 0 < λmin ≤ λ ≤ C and since (γn) converges to 0, there is a rank n0 such
that for all n ≥ n0, ‖IH − γnΓm‖op ≤ 1− λminγn. Thus, for all n ≥ n0,

E
[
‖βnMn+1‖2 |Fn

]
≤ (1− λminγn)

2 ‖βn−1Mn‖2 + γ2nE
[
‖ξn+1‖2 |Fn

]
.

Let δ > 0, for all n ≥ 1, let Vn := n2α−1

(lnn)1+δ
‖βn−1Mn‖2, then for all n ≥ n0,

E [Vn+1|Fn] ≤ (1− λminγn)
2 (n+ 1)2α−1

(ln(n+ 1))1+δ
‖βn−1Mn‖2 +

(n+ 1)2α−1

(ln(n+ 1))1+δ
γ2nE

[
‖ξn+1‖2 |Fn

]
= (1− λminγn)

2

(
n+ 1

n

)2α−1(
lnn

ln(n+ 1)

)1+δ

Vn +
(n+ 1)2α−1

(ln(n+ 1))1+δ
γ2nE

[
‖ξn+1‖2 |Fn

]
.

Moreover, there are a positive constant c and a rank n′0 (let us take n′0 ≥ n0) such that for all n ≥ n′0,

(
1− λmincγn

−α)(n+ 1

n

)2α−1(
lnn

ln(n+ 1)

)1+δ

≤ 1− cn−α.



LP RATES OF CONVERGENCE OF AVERAGED STOCHASTIC GRADIENT ALGORITHMS 855

Furthermore, cn−αVn = c nα−1

(lnn)1+δ
‖βn−1Mn‖2. Thus, for all n ≥ n′0,

E [Vn+1|Fn] ≤ Vn +
(n+ 1)2α−1

(ln(n+ 1))1+δ
γ2nE

[
‖ξn+1‖2 |Fn

]
− c nα−1

(lnn)1+δ
‖βn−1Mn‖2 . (6.6)

Finally, since E
[
‖ξn+1‖2 |Fn

]
≤ 2L1 + 2C ‖Zn −m‖2 and since ‖Zn −m‖ converges almost surely to 0, the

application of the Robbins-Siegmund theorem (see Theorem E.1) ensures that (Vn) converges almost surely to
a finite random variable and ensures that

∑
n≥n′0

nα−1

(lnn)1+δ
‖βn−1Mn‖2 <∞ a.s.

Previous inequality can also be written as

∑
n≥n′0

1

n lnn

(
nα

(lnn)δ
‖βn−1Mn‖2

)
<∞ a.s,

so that we necessarily have, applying Toeplitz’s lemma,

nα

(lnn)δ
‖βn−1Mn‖2

a.s−−−−→
n→∞

0. (6.7)

Remark 6.2. Note that this proof is the main difference with [24]. Indeed, in order to prove the same result,
many methods were used but they cannot be directly applied if H is a infinite dimensional space. For example,
it is based on the fact that the Hessian of the function we would like to minimize admits finite dimensional
eigenspaces, which is not automatically verified in our case.

Proof of Theorem 4.2. Rate of convergence of the Robbins-Monro algorithm: Applying decomposition (6.4), as
in [23], let

∆n = βn−1 (Z1 −m)− βn−1Rn = (Zn −m)− βn−1Mn.

We have

∆n+1 = Zn+1 −m− βnMn+1

= (IH − γnΓm) (Zn −m) + γnξn+1 − γnδn − γnξn+1 − (IH − γnΓm)βn−1Mn

= (IH − γnΓm) ∆n − γnδn.

Thus, applying a lemma of stabilization (see [11] Lem. 4.1.1 for instance), and since ‖δn‖ ≤ Cm ‖Zn −m‖2,

‖∆n‖ = O (‖δn‖) = O
(
‖Zn −m‖2

)
a.s.



856 A. GODICHON-BAGGIONI

Finally, since (Zn) converges almost surely to m, ‖∆n‖ = o (‖Zn −m‖) almost surely and

‖Zn −m‖ ≤ ‖βn−1Mn‖+ ‖∆n‖

= o

(
(lnn)δ/2

nα/2

)
+ o (‖Zn −m‖) a.s,

which concludes the proof.
Rate of convergence of the averaged algorithm: With the help of decomposition (6.5),

∥∥Zn −m∥∥2 ≤ 5

λ2minn
2

‖Z1 −m‖2

γ21
+

5

λ2minn
2

‖Zn+1 −m‖2

γ2n
+

5

λ2minn
2

∥∥∥∥∥
n∑
k=1

δk

∥∥∥∥∥
2

+
5

λ2minn
2

∥∥∥∥∥
n∑
k=2

(Zk −m)

(
1

γk
− 1

γk−1

)∥∥∥∥∥
2

+
5

λ2minn
2

∥∥∥∥∥
n∑
k=1

ξk+1

∥∥∥∥∥
2

.

As in [14], thanks to the almost sure rate of convergence of the Robbins-Monro algorithm, one can check that

1

n2
‖Z1 −m‖

γ1
= o

(
1

n

)
a.s,

1

n2
‖Zn+1 −m‖2

γ2n
= o

(
1

n

)
a.s,

1

n2

∥∥∥∥∥
n∑
k=2

(Zk −m)

(
1

γk
− 1

γk−1

)∥∥∥∥∥
2

= o

(
1

n

)
a.s,

1

n2

∥∥∥∥∥
n∑
k=1

δk

∥∥∥∥∥
2

= o

(
1

n

)
a.s.

Let δ > 0 and M ′n :=
√
n√

(lnn)1+δ

∥∥ 1
n

∑n
k=1 ξk+1

∥∥ = 1√
n(lnn)1+δ

‖
∑n
k=1 ξk+1‖. Since (ξn) is a martingale differences

sequence adapted to the filtration (Fn), and since

E
[
‖ξn+2‖2 |Fn+1

]
≤ 2E

[
f(Xn+2, Zn+1)2|Fn+1

]
+ 2C2 ‖Zn+1 −m‖2

≤ 2L1 + 2C2 ‖Zn+1 −m‖2 ,

we have

E
[
M ′2n+1|Fn+1

]
=

n(lnn)1+δ

(n+ 1)(ln(n+ 1))1+δ
M ′2n +

1

(n+ 1)(ln(n+ 1))1+δ
E
[
‖ξn+2‖2 |Fn+1

]
≤M ′2n +

1

(n+ 1)(ln(n+ 1))1+δ

(
2L1 + 2C2 ‖Zn+1 −m‖2

)
.

Since ‖Zn+1 −m‖ converges almost surely to 0, applying Robbins-Siegmund theorem (see Thm. E.1), M ′2n
converges almost surely to a finite random variable, which concludes the proof.
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6.3. Proof of Theorem 4.3

In order to prove Theorem 4.3 with the help of a strong induction on p, we have to introduce some technical
lemmas (the proofs are given in Appendix). Note that these lemmas remain true replacing assumptions (A3)
and/or (A5b) by (A3′) and/or (A5b′) but the proofs are only given for the first assumptions.

The first lemma gives a bound of the 2pth moment when inequality (4.1) is verified for all integer from 0 to
p− 1.

Lemma 6.3. Assume (A1) to (A5b) hold. Let p be a positive integer, and suppose that for all k ≤ p− 1, there
is a positive constant Kk such that for all n ≥ 1,

E
[
‖Zn −m‖2k

]
≤ Kk

nkα
. (6.8)

Then, there are positive constants c0, C1, C2 and a rank nα such that for all n ≥ nα,

E
[
‖Zn+1 −m‖2p

]
≤ (1− c0γn)E

[
‖Zn −m‖2p

]
+

C1

n(p+1)α
+ C2γnE

[
‖Zn −m‖2p+2

]
.

Then, the second lemma gives an upper bound of the (2p+ 2)th moment when inequality (4.1) is verified for
all integer from 0 to p− 1.

Lemma 6.4. Assume (A1) to (A3) and (A5b) hold. Let p be a positive integer, and suppose that for all
k ≤ p− 1, there is a positive constant Kk such that for all n ≥ 1,

E
[
‖Zn −m‖2k

]
≤ Kk

nkα
.

Then, there are positive constants C ′1, C
′
2 and a rank nα such that for all n ≥ nα,

E
[
‖Zn+1 −m‖2p+2

]
≤
(

1− 2

n

)p+1

E
[
‖Zn −m‖2p+2

]
+

C ′1
n(p+2)α

+ C ′2γ
2
nE
[
‖Zn −m‖2p

]
.

Finally, the last lemma enables us to give a bound of the probability for the Robbins-Monro algorithm to go
far away from m, which is crucial in order to prove Lemma 6.4.

Lemma 6.5. Assume (A1) to (A3) and (A5b) hold. Then, for all integer p ≥ 1, there is a positive constant
Mp such that for all n ≥ 1,

E
[
‖Zn −m‖2p

]
≤Mp.

Proof of Theorem 4.3. As in [14], we will prove with the help of a strong induction that for all integer p ≥ 1,

and for all β ∈
(
α, p+2

p α− 1
p

)
, there are positive constants Kp, Cβ,p such that for all n ≥ 1,

E
[
‖Zn −m‖2p

]
≤ Kp

npα
,

E
[
‖Zn −m‖2p+2

]
≤ Cβ,p

nβp
.

Applying Lemma 6.5, Lemma 6.3 and Lemma 6.4, as soon as the initialization is satisfied, the proof is strictly
analogous to the proof of Theorem 4.1 in [14]. Thus, we will just prove that for p = 1 and for all β ∈ (α, 3α− 1),
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there are positive constants K ′1, C
′
β,1 such that for all n ≥ 1,

E
[
‖Zn −m‖2

]
≤ K ′1
nα

,

E
[
‖Zn −m‖4

]
≤
C ′β,1
nβ

.

We now split the end of the proof into two steps.

Step 1: Calibration of the constants. In order to simplify the demonstration thereafter, we now intro-
duce some notations. Let K ′1, C

′
β,1 be positive constants such that K ′1 ≥ 21+αC1c

−1
0 c−1γ , (c0, C1 are defined in

Lem. 6.3), and 2K ′1 ≥ C ′β,1 ≥ K ′1 ≥ 1. By definition of β, there is a rank nβ ≥ nα (nα is defined in Lem. 6.3
and in Lem. 6.4) such that for all n ≥ nβ ,

(1− c0γn)

(
n+ 1

n

)α
+

1

2
c0γn +

2α+β+1cγC2

(n+ 1)β
≤ 1,(

1− 2

n

)2(
n+ 1

n

)β
+
(
C ′1 + C ′2c

2
γ

)
23α

1

(n+ 1)3α−β
≤ 1,

with C2 defined in Lemma 6.3 and C ′1, C
′
2 defined in Lemma 6.4. The rank nβ exists because since β > α,

(1− c0γn)

(
n+ 1

n

)α
+

1

2
c0γn +

2α+β+1cγC2

(n+ 1)β
= 1− c0γn +

α

n
+

1

2
c0γn +O

(
1

nβ

)
= 1− 1

2
c0γn + o

(
1

nα

)
.

Moreover, since β < 3α− 1, we have β < 2, and(
1− 2

n

)2(
n+ 1

n

)β
+
(
C ′1 + C ′2c

2
γ

)
23α

1

(n+ 1)3α−β
= 1− (4− 2β)

1

n
+ o

(
1

n

)
+O

(
1

n3α−β

)
= 1− (4− 2β)

1

n
+ o

(
1

n

)
.

Step 2: The induction on n. Let us take K ′1 ≥ max1≤k≤nβ

{
kαE

[
‖Zk −m‖2

]}
and

C ′β,1 ≥ max1≤k≤nβ

{
kβE

[
‖Zk −m‖4

]}
. We now prove by induction that for all n ≥ nβ ,

E
[
‖Zn −m‖2

]
≤ K ′1
nα

,

E
[
‖Zn −m‖4

]
≤
C ′β,1
nβ

.

Applying Lemma 6.3 and by induction, since 2K ′1 ≥ C ′β,1 ≥ K ′1 ≥ 1,

E
[
‖Zn+1 −m‖2

]
≤ (1− c0γn)E

[
‖Zn −m‖2p

]
+

C1

n2α
+ C2γnE

[
‖Zn −m‖2p+2

]
≤ (1− c0γn)

K ′1
nα

+
C1

n2α
+ 2C2γn

K ′1
nβ

.
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Factorizing by
K′1

(n+1)α ,

E
[
‖Zn+1 −m‖2

]
≤ (1− c0γn)

(
n+ 1

n

)α
K ′1

(n+ 1)α
+

2αC1c
−1
γ γn

(n+ 1)α
+

2α+β+1cγC2

(n+ 1)β
K ′1

(n+ 1)α
.

Taking K ′1 ≥ 21+αC1c
−1
γ c−10 ,

E
[
‖Zn+1 −m‖2

]
≤
(

(1− c0γn)

(
n+ 1

n

)α
+

1

2
c0γn +

2α+β+1cγC2

(n+ 1)β

)
K ′1

(n+ 1)α
.

By definition of nβ ,

E
[
‖Zn+1 −m‖2

]
≤ K ′1

(n+ 1)α
. (6.9)

In the same way, one can check by induction and applying Lemma 6.4 that

E
[
‖Zn+1 −m‖4

]
≤

((
1− 2

n

)2(
n+ 1

n

)β
+ 23α

C ′1 + C ′2c
2
γ

(n+ 1)3α−β

)
C ′β,1

(n+ 1)β
.

By definition of nβ ,

E
[
‖Zn+1 −m‖4

]
≤
C ′β,1
nβ

, (6.10)

which concludes the induction on n, and one can conclude the induction on p and the proof in a similar way as
in [14].

6.4. Proof of Theorem 4.4

Proof of Theorem 4.4. Let λmin be the smallest eigenvalue of Γm, with the help of decomposition (6.5), for all
integer p ≥ 1,

E
[∥∥Zn −m∥∥2p] ≤ 52p−1

λ2pminn
2p

E
[
‖Z1 −m‖2p

]
γ2p1

+
52p−1

λ2pminn
2p

E
[
‖Zn+1 −m‖2p

]
γ2pn

+
52p−1

λ2pminn
2p
E

∥∥∥∥∥
n∑
k=1

δk

∥∥∥∥∥
2p


+
52p−1

λ2pminn
2p
E

∥∥∥∥∥
n∑
k=2

(Zk −m)

(
1

γk
− 1

γk−1

)∥∥∥∥∥
2p
+

52p−1

λ2pminn
2p
E

∥∥∥∥∥
n∑
k=1

ξk+1

∥∥∥∥∥
2p
 .
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As in [14], applying Theorem 4.3 and Lemma 4.1 in [14], one can check that there are positive constants
R1,p, R2,p, R3,p, R4,p such that for all n ≥ 1,

1

n2p

E
[
‖Z1 −m‖2p

]
γ2p1

≤ R1,p

n2p
,

1

n2p

E
[
‖Zn+1 −m‖2p

]
γ2pn

≤ R2,p

n(2−α)p
,

1

n2p
E

∥∥∥∥∥
n∑
k=2

(Zk −m)

(
1

γk
− 1

γk−1

)∥∥∥∥∥
2p
 ≤ R3,p

n(2−α)p
,

1

n2p
E

∥∥∥∥∥
n∑
k=1

δk

∥∥∥∥∥
2p
 ≤ R4,p

n2αp
.

We now prove with the help of a strong induction that for all integer p ≥ 1, there is a positive constant Cp such
that

E

∥∥∥∥∥
n∑
k=1

ξk+1

∥∥∥∥∥
2p
 ≤ Cpnp.

Step 1: Initialization of the induction. Since (ξn) is martingale differences sequence adapted to the filtration
(Fn),

E

∥∥∥∥∥
n∑
k=1

ξk+1

∥∥∥∥∥
2
 =

n∑
k=1

E
[
‖ξk+1‖2

]
+ 2

n∑
k=1

n∑
k′=k+1

E [〈ξk+1, ξk′+1〉] =

n∑
k=1

E
[
‖ξk+1‖2

]
.

Moreover, since E
[
‖ξn+1‖2 |Fn

]
≤ E

[
‖Un+1‖2 |Fn

]
≤ 2E

[
f(Xn+1, Zn)2|Fn

]
+ 2C2 ‖Zn −m‖2, applying The-

orem 4.3, there is a positive constant C1 such that for all n ≥ 1,

E

∥∥∥∥∥
n∑
k=1

ξk+1

∥∥∥∥∥
2
 ≤ 2

n∑
k=1

E
[
f(Xk+1, Zk)2|Fk

]
+ 2C2

n∑
k=1

E
[
‖Zk −m‖2

]
≤ C1n.

Step 2: The induction. Let p ≥ 2, we suppose from now that for all p′ ≤ p− 1, there is a positive constant
Cp′ such that for all n ≥ 1,

E

∥∥∥∥∥
n∑
k=1

ξk+1

∥∥∥∥∥
2p′
 ≤ Cp′np′ .

First, note that ∥∥∥∥∥
n+1∑
k=1

ξk+1

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
k=1

ξk+1

∥∥∥∥∥
2

+ 2

〈
n∑
k=1

ξk+1, ξn+2

〉
+ ‖ξn+2‖2 .
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Thus, let Mn :=
∑n
k=1 ξk+1, with the help of previous equality and applying Cauchy-Schwarz’s inequality,

‖Mn+1‖2p ≤
(
‖Mn‖2 + ‖ξn+2‖2

)p
+ 2 〈Mn, ξn+2〉

(
‖Mn‖2 + ‖ξn+2‖2

)p−1
+

p∑
k=2

(
p

k

)
2k ‖Mn‖k ‖ξn+2‖k

(
‖Mn‖2 + ‖ξn+2‖2

)p−k
.

We now bound the expectation of the three terms on the right-hand side of previous inequality. First, since

‖Un+1‖ ≤ f (Xn+1, Zn) + C ‖Zn −m‖ ,

‖Φ(Zn)‖ ≤
√
L1 + C ‖Zn −m‖ ,

we have

E
[
‖ξn+2‖2k |Fn+1

]
≤ 32k−1

(
E
[
f(Xn+2, Zn)2k|Fn+1

]
+ 22kC2k ‖Zn+1 −m‖2k + Lk1

)
≤ 32k−1

(
Lk + Lk1 + 22kC2k ‖Zn+1 −m‖2k

)
.

Then, since Mn is Fn+1-measurable,

E
[(
‖Mn‖2 + ‖ξn+2‖2

)p]
≤ E

[
‖Mn‖2p

]
+

p∑
k=1

(
p

k

)
E
[
E
[
‖ξn+2‖2k |Fn

]
‖Mn‖2p−2k

]
≤ E

[
‖Mn‖2p

]
+

p∑
k=1

(
p

k

)
32k−1

(
Lk + Lk1

)
E
[
‖Mn‖2p−2k

]
+

p∑
k=1

(
p

k

)
32k−122kC2kE

[
‖Zn+1 −m‖2k ‖Mn‖2p−2k

]

By induction,

p∑
k=1

(
p

k

)
32k−1

(
Lk + Lk1

)
E
[
‖Mn‖2p−2k

]
≤

p∑
k=1

(
p

k

)
32k−1

(
Lk + Lk1

)
Cp−kn

p−k = O
(
np−1

)
.

Moreover, since for all positive real number a and for all positive integer q, a ≤ 1 + aq, applying Hölder’s
inequality and by induction, let

(?) : =

p∑
k=1

(
p

k

)
32k−122kC2kE

[
‖Zn+1 −m‖2k ‖Mn‖2p−2k

]
≤

p∑
k=1

(
p

k

)
32k−122kC2kE

[
‖Mn‖2p−2k

]
+

p∑
k=1

(
p

k

)
32k−122kC2kE

[
‖Zn+1 −m‖2qk ‖Mn‖2p−2k

]
≤

p∑
k=1

(
p

k

)
32k−122kC2k

(
E
[
‖Zn+1 −m‖2qp

]) k
p
(
E
[
‖Mn‖2p

]) 2p−2k
2p

+O
(
np−1

)
.
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Note that
(
E
[
‖Mn‖2p

]) 2p−2k
2p ≤ 1 + E

[
‖Mn‖2p

]
. Thus, taking q ≥ 2 and applying Theorem 4.3, there are

positive constants C0, C
′
1 such that

(?) ≤
p∑
k=1

(
p

k

)
32k−122kC2k (Kqp)

k
p

1

nqkα

(
1 + E

[
‖Mn‖2p

])
+O

(
np−1

)
≤ C0γ

2
nE
[
‖Mn‖2p

]
+ C ′1n

p−1.

Finally, there are positive constants C0, C1 such that

E
[(
‖Mn‖2 + ‖ξn+2‖2

)p]
≤
(
1 + C0γ

2
n

)
E
[
‖Mn‖2p

]
+ C1n

p−1. (6.11)

Moreover, since (ξn) is a martingale differences sequence adapted to the filtration (Fn) and applying Lemma E.2,

2E
[
〈Mn, ξn+2〉

(
‖Mn‖2 + ‖ξn+2‖2

)p−1]
= 2

p−1∑
k=1

(
p− 1

k

)
E
[
〈Mn, ξn+2〉 ‖ξn+2‖2k ‖Mn‖2p−2−2k

]
≤

p−1∑
k=1

(
p− 1

k

)
E
[
‖ξn+2‖2k+2 ‖Mn‖2p−2−2k

]
+

p−1∑
k=1

(
p− 1

k

)
E
[
‖ξn+2‖2k ‖Mn‖2p−2k

]

Since p ≥ 2 and by induction, as for (?), one can check that there are positive constants C ′0, C
′
1 such that for

all n ≥ 1,

2E
[
〈Mn, ξn+2〉

(
‖Mn‖2 + ‖ξn+2‖2

)p−1]
≤ C ′0γ2nE

[
‖Mn‖2p

]
+ C ′1n

p−1. (6.12)

Moreover, let

(??) : =

p∑
k=2

(
p

k

)
2kE

[
‖Mn‖k ‖ξn+2‖k

(
‖Mn‖2 + ‖ξn+2‖2

)p−k]

≤
p∑
k=2

(
p

k

)
2p−1E

[
‖ξn+2‖k ‖Mn‖2p−k

]
+

p∑
k=2

(
p

k

)
2p−1E

[
‖Mn‖k ‖ξn+2‖2p−k

]
.

We now bound the two terms on the right-hand side of previous inequality. First, let

(??′) :=

p∑
k=2

(
p

k

)
2p−1E

[
‖Mn‖k ‖ξn+2‖2p−k

]
≤

p∑
k=2

(
p

k

)
2p−3E

[(
‖Mn‖2 + ‖Mn‖2k−2

)(
‖ξn+2‖2p−2k+2

+ ‖ξn+2‖2p−2
)]
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As for (?), one can check that there are positive constants C ′′0 , C
′′
1 such that for all n ≥ 1,

(??′) ≤ C ′′0 γ2nE
[
‖Mn‖2p

]
+ C ′′1 n

p−1.

In the same way, let

(??′′) :=

p∑
k=2

(
p

k

)
2p−1E

[
‖ξn+2‖k ‖Mn‖2p−k

]
≤

p∑
k=2

(
p

k

)
2p−3E

[(
‖ξn+2‖2 + ‖ξn+2‖2k−2

)(
‖Mn‖2p−2k+2

+ ‖Mn‖2
)]

As for (?), there are positive constants C ′′′0 , C
′′′
1 such that

(??′′) ≤ C ′′′0 γ2nE
[
‖Mn‖2p

]
+ C ′′′1 n

p−1,

and in a particular case

(??) ≤ (C ′′0 + C ′′′0 ) γ2nE
[
‖Mn‖2p

]
+ (C ′′1 + C ′′′1 )np−1. (6.13)

Thus, thanks to inequalities (6.11) to (6.13), there are positive constants B0, B1 such that for all n ≥ 1,

E
[
‖Mn+1‖2p

]
≤
(
1 +B0γ

2
n

)
E
[
‖Mn‖2p

]
+B1n

p−1

≤

( ∞∏
k=1

(
1 +B0γ

2
k

))
E
[
‖M1‖2p

]
+

( ∞∏
k=1

(
1 +B0γ

2
k

)) n∑
k=1

B1k
p−1

≤

( ∞∏
k=1

(
1 +B0γ

2
k

))
E
[
‖M1‖2p

]
+

( ∞∏
k=1

(
1 +B0γ

2
k

))
B1n

p,

which concludes the induction and the proof.

Appendix A. Proofs of Propositions 2.3 and 2.6

Proof of Proposition 2.3. If h ∈ B (m, ε), under assumptions (A2) and (A3) and by dominated convergence,

〈Φ(h), h−m〉 =

〈∫ 1

0

Γm+t(h−m)(h−m)dt, h−m
〉
≥ λmin

2
‖h−m‖2 .

In the same way, if ‖h−m‖ > ε, since G is convex, under assumptions (A2) and (A3) and by dominated
convergence,

〈Φ(h), h−m〉 =

〈∫ 1

0

Γm+t(h−m)(h−m)dt, h−m
〉
≥
∫ ε
‖h−m‖

0

〈
Γm+t(h−m)(h−m), h−m

〉
dt

≥ λminε

2
‖h−m‖ .
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Thus, let A be a positive constant and h ∈ B (m,A),

〈Φ(h), h−m〉 ≥ cA ‖h−m‖2 ,

with cA := min
{
λmin

2 , λminε
2A

}
. We now give an upper bound of this term. First, thanks to assumption (A2), let

A be a positive constant, for all h ∈ B (m,A),

〈Φ(h), h−m〉 =

∫ 1

0

〈
Γm+t(h−m)(h−m), h−m

〉
dt ≤

∫ 1

0

∥∥Γm+t(h−m)

∥∥
op
‖h−m‖2 dt ≤ CA ‖h−m‖2 .

Moreover, applying Cauchy-Schwarz’s inequality and thanks to assumption (A5a), for all h ∈ H such that
‖h−m‖ ≥ A,

|〈Φ(h), h−m〉| ≤
√
L1 ‖h−m‖+ C ‖h−m‖2 ≤

(√
L1

A
+ C

)
‖h−m‖2 ,

which concludes the proof.

Proof of Proposition 2.6. Let us recall that there are positive constants ε, Cε such that for all h ∈ B (m, ε),

‖Φ(h)− Γm(h−m)‖ ≤ Cε ‖h−m‖2 .

Let h ∈ H such that ‖h−m‖ ≥ ε. Then, thanks to assumptions (A2) and (A3),

‖Φ(h)− Γm(h−m)‖ ≤ ‖Φ(h)‖+ ‖Γm‖op ‖h−m‖
≤ (E [f(X,h)] + C ‖h−m‖) + C0 ‖h−m‖

≤
(√

L1

ε2
+
C

ε
+
C0

ε

)
‖h−m‖2 ,

which concludes the proof.

Appendix B. Proof of Lemma 6.5

We propose here a not detailed proof. For analogous and more detailed calculus, one can see the proof of
Lemma 5.3 in [6].

Proof of Lemma 6.5. We prove Lemma 6.5 with the help of a strong induction on p. The case p = 1 is already
done in the proof of Theorem 3.1. We suppose from now that p ≥ 2 and that for all k ≤ p− 1, there is a positive
constant Mk such that for all n ≥ 1,

E
[
‖Zn −m‖2k

]
≤Mk.

Let Vn := Zn −m− γnΦ(Zn), and with the help of decomposition (6.2)

‖Zn+1 −m‖2 = ‖Vn‖2 + γ2n ‖ξn+1‖2 + 2γn 〈Vn, ξn+1〉

≤ ‖Vn‖2 + γ2n ‖Un+1‖2 + 2γn 〈Zn −m, ξn+1〉 .
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Thus, applying Cauchy-Schwarz’s inequaltiy

‖Zn+1 −m‖2p ≤
(
‖Vn‖2 + γ2n ‖Un+1‖2

)p
+ 2pγn 〈Zn −m, ξn+1〉

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−1
+

p∑
k=2

(
p

k

)
2kγkn ‖Zn −m‖

k ‖ξn+1‖k
(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−k
. (B.1)

Applying Lemma E.2, for all positive integer k,

‖Un+1‖k ≤ 2k−1f (Xn+1, Zn) + 2k−1Ck ‖Zn −m‖k a.s, (B.2)

‖ξn+1‖k ≤ 3k−1f (Xn+1, Zn)
k

+ 3k−12kCk ‖Zn −m‖k + 3k−1L
k
2
1 a.s. (B.3)

Moreover, since 〈Φ (Zn) , Zn −m〉 ≥ 0,

‖Vn‖2 ≤
(
1 + 2C2γ2n

)
‖Zn −m‖2 + 2γ2nL1 (B.4)

We now bound each term on the right-hand side of inequality (B.1).

Bounding (∗) := E
[(
‖Vn‖2 + γ2n ‖Un+1‖2

)p]
. Applying inequality (B.2),

(∗) ≤ E
[
‖Vn‖2p

]
+

p∑
k=1

(
p

k

)
γ2pn 22p−2Lp−k1 E

[
E
[
f(Xn+1, Zn)2k|Fn

]
+ C2k ‖Zn −m‖2k

]
+

p∑
k=1

(
p

k

)
γ2kn 2p+k−2

(
1 + 2C2c2γ

)p−k E [‖Zn −m‖2p−2k (E [f(Xn+1, Zn)2k|Fn
]

+ C2k ‖Zn −m‖2k
)]
.

Moreover, thanks to assumption (A5b) and by induction, there are positive constants A0, A1 such that

(∗) ≤ E
[
‖Vn‖2p

]
+A0γ

2
nE
[
‖Zn −m‖2p

]
+A1γ

2
n. (B.5)

Thanks to inequality (B.4) and by induction,

E
[
‖Vn‖2p

]
≤
(
1 + 2C2γ2n

)p E [‖Zn −m‖2p]+

p∑
k=1

(
p

k

)(
1 + 2C2γ2n

)p−k
2kLk1γ

2k
n E

[
‖Zn −m‖2p−2k

]
≤
(
1 + 2C2γ2n

)p E [‖Zn −m‖2p]+O
(
γ2n
)
.

Then, there are positive constants A2, A3 such that

(∗) ≤
(
1 +A2γ

2
n

)
E
[
‖Zn −m‖2p

]
+A3γ

2
n. (B.6)

Bounding (∗∗) := 2pγnE
[
〈ξn+1, Zn −m〉

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−1]
. Since (ξn) is a martingale differences

sequence adapted to the filtration (Fn), and since Vn is Fn-measurable, and applying inequalities (B.2) to (B.4),
and by induction, one can check that there are positive constants A′1, A

′
2 such that

(∗∗) ≤ A′1γ3nE
[
‖Zn −m‖2p

]
+A′2γ

3
n. (B.7)
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Bounding (∗∗∗) :=
∑p
k=2

(
p
k

)
2kγknE

[
‖Zn −m‖k ‖ξn+1‖k

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−k]
. Applying Lemma E.2,

and inequalities (B.2) to (B.4) and by induction, one can check that there are positive constants A′′1 , A
′′
2 such

that

(∗ ∗ ∗) ≤ A′′1γ2nE
[
‖Zn −m‖2p

]
+A′′2γ

2
n. (B.8)

Conclusion. Applying inequalities (B.6) to (B.8) and by induction, there are positive constants B1, B2 such
that

E
[
‖Zn+1 −m‖2p

]
≤
(
1 +B1γ

2
n

)
E
[
‖Zn −m‖2p

]
+B2γ

2
n

≤

( ∞∏
k=1

(
1 +B1γ

2
k

))
E
[
‖Z1 −m‖2p

]
+B2

( ∞∏
k=1

(
1 +B1γ

2
k

)) ∞∑
k=1

γ2k

≤Mp,

which concludes the induction and the proof.

Appendix C. Proof of Lemma 6.4

We propose here a not detailed proof. For analogous and more detailed calculus, one can see the proof of
Lemma 4.2 in [14].

Proof of Lemma 6.4. Let p ≥ 1, we suppose from now that for all integer k < p, there is a positive constant Kk

such that for all n ≥ 1,

E
[
‖Zn −m‖2k

]
≤ Kk

nkα
. (C.1)

As in the previous proof, let us recall that

‖Zn+1 −m‖2p+2 ≤
(
‖Vn‖2 + γ2n ‖Un+1‖2

)p+1

+ 2(p+ 1)γn 〈Zn −m, ξn+1〉
(
‖Vn‖2 + γ2n ‖Un+1‖2

)p
+

p+1∑
k=2

(
p+ 1

k

)
2kγkn ‖Zn −m‖

k ‖ξn+1‖k
(
‖Vn‖2 + γ2n ‖Un+1‖2

)p+1−k
. (C.2)

We now bound the expectation of each term on the right-hand side of previous inequality.

Bounding (∗∗) := E
[
2(p+ 1)γn 〈Zn −m, ξn+1〉

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p]
. Since (ξn) is a sequence of mar-

tingale differences adapted to the filtration (Fn), and applying inequalities (B.2) and (B.3), and thanks to
asumtpion (A5b) as well as inequality (C.1), one can check that there are positive constants A1, A2, A3 such
that

(∗∗) ≤ A1γ
3
nE
[
‖Zn −m‖2p+2

]
+A2γ

3
nE
[
‖Zn −m‖2p

]
+

A3

n(p+2)α
. (C.3)
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Bounding (∗ ∗ ∗) :=
∑p+1
k=2

(
p+1
k

)
2kγknE

[
‖Zn −m‖k ‖ξn+1‖k

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p+1−k
]
. First, thanks to

inequality (B.3) and Lemma E.2, one can check that there are positive constants A′1, A
′
2, A

′
3 such that

(∗ ∗ ∗) ≤ A′1γ2nE
[
‖Zn −m‖2p+2

]
+A′2γ

2
nE
[
‖Zn −m‖2p

]
+

A′3
n(p+2)α

. (C.4)

Thus, applying inequalities (C.4) to (C.6), there are positive constants B0, B1, B2 such that

E
[
‖Zn+1 −m‖2p+2

]
≤ E

[(
‖Vn‖2 + γ2n ‖Un+1‖2

)p+1
]

+B0γ
2
nE
[
‖Zn −m‖2p+2

]
+B1γ

2
nE
[
‖Zn −m‖2p

]
+

B2

n(p+2)α
. (C.5)

Bounding (∗) := E
[(
‖Vn‖2 + γ2n ‖Un+1‖2

)p+1
]
. As in the proof of Lemma 6.5, and thanks to induction

inequality (C.1), there are positive constants A0, A
′
0, A

′′
0 such that

(∗) ≤ E
[
‖Vn‖2p+2

]
+A0γ

2
nE
[
‖Zn −m‖2p+2

]
+A′0γ

2
nE
[
‖Zn −m‖2p

]
+

A′′0
n(p+2)α

. (C.6)

Then, in order to conclude the proof, we just have to bound E
[
‖Vn‖2p

]
. Applying Proposition 2.1, one can

check that there is a positive constant c and a rank n′α such that for all n ≥ n′α,

C ‖Zn −m‖2 1{‖Zn−m‖≤cn1−α} ≥ 〈Φ(Zn), Zn −m〉1{‖Zn−m‖≤cn1−α} ≥
4

cγn1−α
‖Zn −m‖2 1{‖Zn−m‖≤cn1−α}.

Then, since ‖Φ(Zn)‖2 ≤ 2C2 ‖Zn −m‖2 + 2L1γ
2
n, there is a rank n′′α such that for all n ≥ n′′α,

‖Zn −m− γnΦ (Zn)‖2 1{‖Zn−m‖≤cn1−α} ≤
(

1− 3

n

)
‖Zn −m‖2 1{‖Zn−m‖≤cn1−α} + 2L1γ

2
n.

Then, one can check that there are positive constants A′′′1 , A
′′′
2 such that

E
[
‖Zn −m− γnΦ(Zn)‖2p+2 1{‖Zn−m‖≤cn1−α}

]
≤
(

1− 3

n

)p+1

E
[
‖Zn −m‖2p+2

]
+A′′′1 γ

2
nE
[
‖Zn −m‖2p

]
+

A′′′2
n(p+2)α

.

Moreover, applying Cauchy-Schwarz’s inequality, Markov’s inequality and Lemma 6.5, for all positive integer q,

E
[
‖Zn −m‖2p+2 1{‖Zn−m‖≥cn1−α}

]
≤
√
E
[
‖Zn −m‖4p+4

]√
P [‖Zn −m‖ ≥ cn1−α]

≤
√
M2p+2

√
Mq

cqnq(1−α)
,

and one can conclude the proof applying inequality (C.5), taking q ≥ (p+2)α
1−α and taking a rank nα such that for

all n ≥ nα,
(
1− 3

n

)p+1
+ (B0 +A′′′1 ) γ2n ≤

(
1− 2

n

)p+1
.
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Remark C.1. Note that in order to get the rate of convergence in quadratic mean of the Robbins-Monro
algorithm, i.e. in the case where p = 1, we just have to suppose that there are a positive integer q ≥ 3α

1−α and a

positive constant Lq such that for all h ∈ H, E
[
f (X,h)

2q
]
≤ Lq.

Appendix D. Proof of Lemma 6.3

We propose here a not detailed proof. For analogous and more detailed calculus, one can see Lemma 4.1 in [14].

Proof of Lemma 5.2. Let p ≥ 1, we suppose from now that for all integer k < p, there is a positive constant Kk

such that for all n ≥ 1,

E
[
‖Zn −m‖2k

]
≤ Kk

nkα
. (D.1)

Using decomposition (6.3) and Cauchy-Schwarz’s inequality, there are a positive constant c′ and a rank n′α
such that for all n ≥ n′α,

‖Zn+1 −m‖2 ≤ (1− c′γn) ‖Zn −m‖2 + γ2n ‖Un+1‖2 + 2γn 〈Zn −m, ξn+1〉+ 2γn ‖Zn −m‖ ‖δn‖ .

If p = 1, thanks to Proposition 2.6, we have

2 ‖δn‖ ‖Zn −m‖ ≤
c′

2
γn ‖Zn −m‖2 + 2

C2
m

c′
‖Zn −m‖4 ,

and since (ξn) is a martingale differences sequence adapted to the filtration (Fn), applying inequality (B.2), for
all n ≥ n′α,

E
[
‖Zn+1 −m‖2

]
≤
(

1− c′

2
γn + 2C2γ2n

)
E
[
‖Zn −m‖2

]
+ 2γ2nL1 + 2γn

C2
m

c′
E
[
‖Zn −m‖4

]
,

and one can conclude the proof for p = 1 taking a rank nα and a positive constant c such that for all n ≥ nα,
1− c′

2 γn + 2C2γ2n ≤ 1− cγn.

We suppose from now that p ≥ 2. For all n ≥ n′α,

E
[
‖Zn+1 −m‖2p

]
≤ (1− c′γn)E

[
‖Zn −m‖2 ‖Zn+1 −m‖2p−2

]
+ 2γnE

[
‖Zn −m‖ ‖δn‖ ‖Zn+1 −m‖2p−2

]
+ γ2nE

[
‖Un+1‖2 ‖Zn+1 −m‖2p−2

]
+ 2γnE

[
〈Zn −m, ξn+1〉 ‖Zn+1 −m‖2p−2

]
. (D.2)

We now bound each term which appear on the right-hand side of inequality (D.2) when we replace

‖Zn+1 −m‖2p−2 by the bound given by inequality (C.2).

Bounding (?) := (1− c′γn)E
[
‖Zn −m‖2 ‖Zn+1 −m‖2p−2

]
. First, applying inequality (B.4)

(∗) : = (1− c′γn)E
[
‖Zn −m‖2

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−1]
≤ (1− c′γn)

(
1 + 2C2γ2n

)p−1 E [‖Zn −m‖2p]
+

p−2∑
k=0

(
p− 1

k

)
(1− c′γn) γ2(p−1−k)n

(
1 + 2C2c2γ

)k E [‖Zn −m‖2k+2
(

2L1 + ‖Un+1‖2
)p−1−k]

.
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Applying inequalities (B.2) and (D.1), thanks to assumption (A5b) and since for all n ≥ nα we have 1−c′γn ≤ 1,
and for all k ≤ p− 2, we have 2p− 1− k ≥ p+ 1, one can check that there is a positive constant A1 such that

(∗) ≤
(
1− c′γn +A1γ

2
n

)
E
[
‖Zn −m‖2p

]
+O

(
1

n(p+1)α

)
. (D.3)

In the same way, since (ξn) is a sequence of martingale differences adapted to (Fn), applying Cauchy-Schwarz’s
inequality, as well as inequalities (D.1), (B.2) to (B.4), one can check that there is a positive constant A2 such
that

(∗)′ : = 2(p− 1) (1− c′γn) γnE
[
‖Zn −m‖2 〈Zn −m, ξn+1〉

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−2]
≤ A2γ

2
nE
[
‖Zn −m‖2p

]
+O

(
1

n(p+1)α

)
. (D.4)

In the same way, applying inequalities (B.4) and (D.1), with analogous calculus to the previous ones, one can
check that there are positive constants A3, A4 such that

(∗)′′ : = (1− c′γn)

p−1∑
k=2

(
p− 1

k

)
2kγknE

[
‖Zn −m‖k ‖ξn+1‖k ‖Zn −m‖2

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−1−k]
≤ A3γ

2
nE
[
‖Zn −m‖2p

]
+A4γ

2
nE
[
‖Zn −m‖2p+2

]
+O

(
1

n(p+1)α

)
. (D.5)

Finally, applying inequalities (D.3) to (D.5), there are positive constants B0, B1, B2 such that

(?) ≤
(
1− c′γn +B0γ

2
n

)
E
[
‖Zn −m‖2p

]
+B2γ

2
nE
[
‖Zn −m‖2p+2

]
+

B1

n(p+1)α
.

Bounding (??) := 2γnE
[
‖Zn −m‖ ‖δn‖ ‖Zn+1 −m‖2p−2

]
. First, let

(∗) : = 2γnE
[
‖Zn −m‖ ‖δn‖

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−1]
≤ 2p−1γnE

[
‖Zn −m‖ ‖δn‖ ‖Vn‖2p−2

]
+ 2p−1γ2p−1n E

[
‖Zn −m‖ ‖δn‖ ‖Un+1‖2p−2

]
.

Moreover, thanks to Proposition 2.6 and inequalities (B.4), (B.2), and (D.1), one can check that there are
positive constants A1, A2, A3 such that

(∗) ≤
(
c′

4
γn +A1γ

2
n

)
E
[
‖Zn −m‖2p

]
+A2γnE

[
‖Zn −m‖2p+2

]
+

A3

n(p+1)α
. (D.6)
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Since (ξn) is a sequence of martingale differences, let

(∗)′ : = 4(p− 1)γ2nE
[
‖Zn −m‖ ‖δn‖ 〈Zn −m, ξn+1〉

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−2]
= 4(p− 1)

p−2∑
k=1

(
p− 2

k

)
γ2k+2
n E

[
‖Zn −m‖ ‖δn‖ 〈Zn −m, ξn+1〉 ‖Vn‖2(p−2−k) ‖Un+1‖2k

]
.

Thanks to Proposition 2.6 and inequalities (D.1), (B.2) and (B.3), one can check that there are positive constants
A′1, A

′
2, A

′
3 such that

(∗)′ ≤ A′1γ2nE
[
‖Zn −m‖2p

]
+A′2γ

2
nE
[
‖Zn −m‖2p+2

]
+

A′3
n(p+1)α

. (D.7)

Finally, let

(∗)′′ : = 2γnE

[
‖Zn −m‖ ‖δn‖

p−1∑
k=2

(
p− 1

k

)
2kγkn ‖Zn −m‖

k ‖ξn+1‖k
(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−1−k]
.

With similar calculus, applying inequalities (D.1), (B.2) and (B.3), one can check that there are positive
constants A′′0 , A

′′
1 , A

′′
2 such that

(∗)′′ ≤ A′′0γ2nE
[
‖Zn −m‖2p

]
+A′′1γ

2
nE
[
‖Zn −m‖2p+2

]
+

A′′2
n(p+1)α

. (D.8)

Finally, applying inequalities (D.6) to (D.8), there are positive constants B′0, B
′
1, B

′
2 such that

(??) ≤
(

1

4
c′γn +B′0γ

2
n

)
E
[
‖Zn −m‖2p

]
+B′1γnE

[
‖Zn −m‖2p+2

]
+

B′2
n(p+1)α

.

Bounding γ2nE
[
‖Un+1‖2 ‖Zn+1 −m‖2p−2

]
. First, applying inequalities (D.1), (B.4), (B.2) and (B.3), there

are positive constants A0, A1 such that

γ2nE
[
‖Un+1‖2

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−1]
≤ A0γ

2
nE
[
‖Zn −m‖2p

]
+

A1

n(p+1)α
. (D.9)

Applying inequalities (D.1), (B.2) and (B.3), one can check that there are positive constants A′0, A
′
1 such that∣∣∣∣2(p− 1)γ3nE

[
‖Un+1‖2 〈Zn −m, ξn+1〉

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−2]∣∣∣∣ ≤ A′0γ2nE [‖Zn −m‖2p]+
A′1

n(p+1)α
. (D.10)

Finally, let

(∗)′ : =

p−1∑
k=2

(
p− 1

k

)
2kγk+2

n E
[
‖Un+1‖2 ‖Zn −m‖k ‖ξn+1‖k

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−1−k]
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Applying inequalities (D.1), (B.2) and (B.3), there are positive constants A′′0 , A
′′
1 such that

(∗)′ ≤ A′′0γ2nE
[
‖Zn −m‖2p

]
+

A′′1
n(p+1)α

. (D.11)

Thus, applying inequalities (D.10) and (D.11), there are positive constants B′′0 , B
′′
1 such that

γ2nE
[
‖Un+1‖2 ‖Zn+1 −m‖2p−2

]
≤ B′′0 γ2nE

[
‖Zn −m‖2p

]
+

B′′1
n(p+1)α

.

Bounding 2γnE
[
〈Zn −m, ξn+1〉 ‖Zn+1 −m‖2p−2

]
. First, since (ξn) is a martingale differences sequence

adapted to the filtration (Fn), let

(∗) : = 2γnE
[
〈ξn+1, Zn −m〉

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−1]
≤

p−1∑
k=1

(
p− 1

k

)
γ2k+1
n E

[(
‖ξn+1‖2 + ‖Zn −m‖2

)
‖Vn‖2(p−1−k) ‖Un+1‖2k

]
.

Thus, applying inequalities (D.1), (B.2) and (B.3), one can check that there are positive constants A0, A1 such
that

2γnE
[
〈ξn+1, Zn −m〉

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−1]
≤ A0γ

2
nE
[
‖Zn −m‖2p

]
+

A1

n(p+1)α
. (D.12)

In the same way, since p ≥ 2, applying inequalities (D.1), (B.2) and (B.3), one can check that there are positive
constants A′0, A

′
1 such that

4(p− 1)γ2nE
[
〈Zn −m, ξn+1〉2

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−2]
≤ A′0γ2nE

[
‖Zn −m‖2p

]
+

A′1
n(p+1)α

. (D.13)

Finally, applying inequalities (D.1), (B.2) and (B.3), one can check that there are positive constants A′′0 , A
′′
1 , A

′′
2

such that

(∗)′′ : = 2

p−1∑
k=2

(
p− 1

k

)
γk+1
n E

[
〈Zn −m, ξn+1〉 ‖Zn −m‖k ‖ξn+1‖k

(
‖Vn‖2 + γ2n ‖Un+1‖2

)p−k]
≤ A′′0γ2nE

[
‖Zn −m‖2p

]
+A′′1γ

2
nE
[
‖Zn −m‖2p+2

]
+

A′′2
n(p+1)α

. (D.14)

Then, applying inequalities (D.12) and (D.14), there are positive constants B′′′0 , B
′′′
1 , B

′′′
2 such that

2γnE
[
〈Zn −m, ξn+1〉 ‖Zn+1 −m‖2p−2

]
≤ B′′′0 γ2nE

[
‖Zn −m‖2p

]
+B′′′1 γ

2
nE
[
‖Zn −m‖2p+2

]
+

B′′′2
n(p+1)α

.

Conclusion
We have proved that there are positive constants c0, C1, C2 such that for all n ≥ n′α;

E
[
‖Zn+1 −m‖2p

]
≤
(

1− c′

2
γn + c0γ

2
n

)
E
[
‖Zn −m‖2p

]
+ C1γnE

[
‖Zn −m‖2p+2

]
+

C2

n(p+1)α
.
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Then, there are a positive constant c and a rank nα ≥ n′α such that for all n ≥ nα,

1 − c′

2 γn + c0 γ
2
n ≤ 1 − cγn, and in a particular case, for all n ≥ nα,

E
[
‖Zn+1 −m‖2p

]
≤ (1− cγn)E

[
‖Zn −m‖2p

]
+ C1γnE

[
‖Zn −m‖2p+2

]
+

C2

n(p+1)α
. (D.15)

Appendix E. Some useful existing results

Let us recall Robbins-Siegmund theorem (see [12] for instance):

Theorem E.1. [Robbins-Siegmund theorem] Let (Vn) , (An) , (Bn) , (Cn) be non negative random variables
adapted to a filtration (Fn) such that

E [Vn+1|Fn] ≤ Vn (1 +An) +Bn − Cn.

Then, on Γ =
{∑

n≥1An < +∞ and
∑
n≥1Bn < +∞

}
, (Vn) converges almost surely to a finite random

variable V∞ and
∑
n≥1 Cn < +∞ almost surely.

Let us now recall Lemma A.1 in [14]:

Lemma E.2. Let p, n be two positive integers and let a1, . . . , an be positive constants. Then, n∑
j=1

aj

p

= np−1
n∑
j=1

apj .
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