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a b s t r a c t

Power ultrasound is known to enhance crystals nucleation, and nucleation times can be reduced by one
up to three orders of magnitude for several organic or inorganic crystals. The precise physics involved in
this phenomenon still remains unclear, and various mechanisms involving the action of inertial cavita-
tion bubbles have been proposed. In this paper, two of these mechanisms, pressure and segregation
effects, are examined. The first one concerns the variations of supersaturation induced by the high pres-
sures appearing in the neighbourhood of a collapsing bubble, and the second one results from the mod-
ification of clusters distribution in the vicinity of bubble. Crystallisation experiments were performed on
zinc sulphate heptahydrate ZnSO4 ! 7H2O, which has been chosen for its pressure-independent solubility,
so that pressure variations have no effect on supersaturation. As observed in past studies on other spe-
cies, induction times were found lower under insonification than under silent conditions at low supersat-
urations, which casts some doubts on a pure pressure effect. The interfacial energy between the solid and
the solution was estimated from induction times obtained in silent conditions, and, using classical nucle-
ation theory, the steady-state distribution of the clusters was calculated. Segregation theory was then
applied to calculate the over-concentrations of n-sized clusters at the end of the collapse of a 4 lm bubble
driven at 20 kHz by different acoustic pressures. The over-concentration of clusters close to the critical
size near a collapsing bubble was found to reach more than one order of magnitude, which may favour
the direct attachment process between such clusters, and enhance the global nucleation kinetics.

1. Introduction

Crystallisation is a process used in many industrial domains
including chemical, pharmaceutical and petro-chemical industries,
and usually considered in terms of nucleation and crystal growth
[1]. Works on the influence of ultrasound in crystallisation pro-
cesses have been published for several years [2–6]. The positive
influence of ultrasound on crystallisation processes is shown by
the drastic reduction of the induction time, metastable zone width,
the modification of the crystals size distribution and the increase in
the number of crystals at equivalent supersaturation [2].

The precise mechanism of the effect of ultrasound on nucleation
is yet unclear [7,8]. Various theoretical explanations involving the
action of inertial cavitation bubbles have been described in the
literature:

1. Cooling hypothesis: the solubility of crystals generally decreases
as the temperature is lowered, and when the bubble expands,
the cooling of the neighbouring liquid may therefore increase
supersaturation, on a short timescale [8].

2. Pressure hypothesis: when the bubble collapses, the neighbour-
ing liquid suffers high pressure, up to 1 GPa. Pressure variations
shift the thermodynamical equilibrium between the solute and
the solid phase [9]. For species which are denser in solid form
than in solute form, increasing pressure decreases solubility,
so that high pressures appearing near the bubble collapse
would increase supersaturation and therefore enhance nucle-
ation. [8,6,10].

3. Evaporation hypothesis: solvent evaporation into the bubble
may produce a depletion layer of solvent near the bubble wall,
leading to an local increase of the solute concentration and
therefore of supersaturation. This hypothesis has been men-
tioned in Ref. [11] on the basis of the results of Ref. [12], but
has not been explored theoretically.

4. Finally, it has been recently proposed [13], and quantified the-
oretically [10], that the large acceleration of the bubble at the
end of the collapse could segregate the solute and the crystal
precursors from the solvent during a very short time, enhancing
the global nucleation kinetics.

All these effects sound reasonable and may in fact act in a
complementary fashion. The partial or total invalidation of one of
these hypothesis requires additional sono-crystallisation data.
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The crystal of interest must be conveniently selected in view of its
pertinent physical properties involved in the above-mentioned
phenomena.

Past studies have revealed that ultrasound also enhances nucle-
ation of species which solubility increases with pressure [2,11].
This casts some doubts on the reality of the pressure effect, which
mechanism is recalled in Section 2, and, as an additional confirma-
tion, we sought a crystal which solubility is pressure-independent.
Zinc sulphate heptahydrate (referred hereinafter as ZnSO4 ! 7H2O)
was found to have this property. We performed crystallisation
experiments by cooling crystallisation, with and without ultra-
sound. The experimental protocol and the results are presented
in Section 3. In Section 4, nucleation of ZnSO4 ! 7H2O is examined
in the light of classical nucleation theory, and the segregation
hypothesis is examined by quantifying the over-concentration of
crystal precursors induced by an inertial cavitation bubble, using
the results of Ref. [10].

2. Pressure effect

Thermodynamics states that a phase change occurs when the
chemical potential of a species in the initial phase is higher than
the one of the species in the new phase, the difference Dl being
termed as ‘‘driving force’’. Nucleation, relevant to first-order phase
transitions, and recalled in Section 4, depicts the precise mecha-
nism of the formation of the new phase [9] from an initial metasta-
ble state. Crystallisation in solution belongs to such transitions,
and the driving force Dl not only increases with solute concentra-
tion, but also varies with pressure. This effect may be understood
simply as a manifestation of Le Chatelier’s principle: increasing
pressure favours the apparition of the densest phase. Therefore if
the solute is less dense than the solid phase, a pressure increase
will increase supersaturation and favour nucleation of the solid.
At constant temperature T, the driving force can be expressed by
[9,14,6]:

DlðT;pÞ ¼ DlðT;p0Þ þ
Z p

p0

!vLðpÞ & vSðp0Þð ÞT dp; ð1Þ

where DlðT; p0Þ is the driving force at temperature T and atmo-
spheric pressure p0, !vL is the specific molecular volume of the sol-
ute, and vS is the molecular volume of the solid. The driving force
can be expressed as a function of the supersaturation ratio
SðT; pÞ ¼ aðT;pÞ=aeqðT;pÞ where aðT; pÞ is the activity of the solute
(or its concentration in the case of dilute solutions), and aeqðT; pÞ
its equilibrium value at temperature T and pressure p:

DlðT;pÞ ¼ kBT ln SðT;pÞ; ð2Þ

where kB is the Boltzmann constant.
Further assuming that !vL & vS is independent of p, from (1), the

expression of supersaturation as a function of temperature and
pressure reads:

S T; pð Þ ¼ S T; p0ð Þ exp
!vL & vS

kBT
ðp& p0Þ

! "
: ð3Þ

The latter expression can be understood as follows: for species with
property !vL & vS > 0, thus more dense in solid form than in solute
form, supersaturation increases with pressure, so that an increase
of the latter would favour nucleation. The pressure effect invoked
to explain nucleation enhancement by cavitation originates
therefore from the large pressure occurring in the liquid at the
end of the bubble collapse.

To further quantify the latter point, we consider a standard
value !vL & vS ¼ 0:01 nm3. In this case, the driving force for a given
activity a at 0.1 MPa (that is in ambient conditions) is found to be
the same as the driving force for an activity a=10 at 950 MPa. This
means that, if such pressures could be reached, the same nucle-
ation rates could be obtained with a solution more diluted than
in ambient conditions. To assess the latter point, a simulation of
a typical inertial cavitation bubble shows that the pressure in the
liquid near a collapsing bubble may indeed reach up to 1 GPa
(Fig. 1). The model used is described elsewhere [15,12,10]

Nomenclature

Symbols
a activity
aeq activity at equilibrium
C0 molecular concentration of possible nucleating sites
CS molar concentration of the solid
Ceq equilibrium molar concentration of the solution
Cn pseudo-equilibrium concentration of (n)-cluster
c a shape factor
Dn diffusion coefficient of a (n)-cluster in the solution
f frequency of ultrasound
JS nucleation rate
K pre-factor for interfacial-tension calculation
kB Boltzmann constant
knm kinetic constant of attachment between a (n)-cluster

and a (m–n)-cluster
lmn kinetic constant of detachment of a (m)-cluster
M molar mass
n number of monomers in a cluster
n' number of monomers in the critical cluster
Pe Peclet number
p pressure
p0 ambient pressure
R0 ambient radius of the bubble
S supersaturation ratio ¼ a

aeq

# $

T temperature
t time

tind induction time
V volume of the solution
!vL specific molecular volume of solute
vS molecular volume of the solid
W' nucleation work
WðnÞ work necessary to form a (n)-cluster
Xn concentration of (n)-cluster for stationary nucleation
XsegðnÞ concentration of the clusters at the bubble wall
Zn concentration of (n)-cluster
z Zeldovich factor

Greek symbols
b parameter representing the difference in the densities of

the two segregated species
c interfacial tension between solid and solution
c( mean molal activity coefficient
g dynamic viscosity
/ osmotic coefficient of water
Dl driving force for nucleation
q density of the solution
qS density of the solid
x mass-fraction of dissolved solid in the solution
xeq equilibrium mass-fraction of dissolved solid in the solu-

tion
Dx absolute supersaturation



and has been validated by single-bubble sonoluminescence
experiments.

Thus, the pressure effect could favour nucleation in the case
where !vL & vS > 0. This is the case for ammonium sulphate, which
sono-crystallisation was studied by Virone et al. [6]. Using an
estimate of the collapse pressure of the cavitating bubbles, they
made an attempt to calculate the nucleation rate using the above
theory, assuming that homogeneous nucleation occurs, and the
calculated induction times were compared to the values measured
in a specially designed cavitator. They found a poor agreement
between the experimental and calculated induction times, which
was attributed, among other reasons, to the hypothesis of station-
ary nucleation and the limitations of the detection method.

Besides, strong reduction of induction times have been ob-
served for different crystals under ultrasound: potassium sulphate
[2] and glycine [11], which conversely, are less dense in the solid
phase than in solute form ð!vL & vS < 0Þ. The positive results
obtained with such crystals demonstrate that the pressure effect
alone cannot explain all experimental results.

Fig. 2 displays the relative solubility of different salts as a func-
tion of pressure. It is seen for example that the solubility of ammo-
nium nitrate is lower at high pressure than in ambient conditions,
while the opposite holds for potassium sulphate. Zinc sulphate

heptahydrate presents the interesting feature that its solubility
in water is pressure-independent over a large pressure range
[16,17], which means that the molecular volumes of solute and
solid are very close ð!vL & vS ¼ 0Þ. Thus, this salt is a good candidate
to confirm or disprove the pressure effect on crystals nucleation.
We therefore carried out experiments of ZnSO4 ! 7H2O crystallisa-
tion, under silent conditions and in the presence of ultrasound.

3. Experimental

3.1. Solubility

An excess of solid (zinc sulphate heptahydrate, Riedel-de Hain
purity min 99%) was added to a known mass of ultra pure water
(18.2 MX cm) at constant temperature. The conductivity of solu-
tion was monitored. The liquid-solid equilibrium was considered
to be reached when the conductivity did not vary noticeably. A
quantity of 4 g of suspension was taken off and filtered
(0.45 lm). The solvent (water) was evaporated from solution at
ambient temperature in order to know the amount of salt dis-
solved, and to preserved the hydratation of salt. Besides, X-ray dif-
fraction has been made on some dry samples in order to make sure
that the solid phase was indeed the heptahydrate form of zinc sul-
phate. The main peaks examined for ZnSO4 ! 7H2O were 2h = 20!,
21!, 34.1! and 35! [18].

The solubility of ZnSO4 ! 7H2O in water has been measured at
different temperatures. The plus signs in Fig. 3 represent our
own experimental values of solubility, expressed in mass fractions
x in g of hydrated salt/g of solution, measured at different temper-
atures, along with solubility data found in the literature. Experi-
ments have been repeated three times, yielding an experimental
error on xeq ranging between 10&4 and 9) 10&4 g=g, depending
on the temperature (note that the plus signs in Fig. 3 appear thick
because all the measurements at the same temperature are
displayed).

As can be seen in Fig. 3, the solubility of ZnSO4 ! 7H2O in water
increases as a function of temperature, and our experimental solu-
bilities are in reasonable agreement with the results of the litera-
ture [19–21], although our values are systematically lower than
the latter. We have no explanation for this discrepancy, and feel
that using our own solubility measurements on the salt we used
in crystallisation experiments is the safest method.

In order to calculate the supersaturations involved in our
crystallisation experiments, an analytical expression of xeqðTÞ is
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Fig. 1. Simulation of an inertial cavitation air bubble. Top: radius interface of
bubble on one acoustic period, for a field amplitude of 130 kPa, R0 ¼ 4 lm and
frequency of 20 kHz. In the bottom, pressure in the liquid at the bubble interface.
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Fig. 2. Relative solubility of different salts as a function of pressure from [17].
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Fig. 3. Solubility of ZnSO4 ! 7H2O as a function of temperature. Triangles: [19];
) signs: [20]; squares: [21]; þ signs: our experimental data.



needed. Since those experiments are performed for temperatures
between 24 !C and 25 !C, we chose to use a linear fit between
the three solubilities measured at 20 !C and the three ones
measured at 25 !C. We obtain:

xeq ðg=gÞ ¼ 7:2610&3T ð*CÞ þ 0:4618 ð4Þ

with an error lower than 3) 10&4 g=g for temperatures ranging
between 24 !C and 25 !C.

3.2. Measurement of induction time

The experimental apparatus used for the determination of
induction time is represented in Fig. 4. A thermostated vessel
(500 ml) was stirred with a magnetic stir bar at a constant rotation
speed of about 500 rpm. Ultrasound was applied at the top of the
liquid by a stainless tip transducer with a diameter of 1.1 cm, im-
mersed at a 1.5 cm depth in the vessel. Two ultrasonic power levels
were used, corresponding to dissipated powers of 16 and 30 W,
measured in water by the calorimetric method at 25 !C. The solu-
tion temperature is measured with an instrumental resolution of
0.01 !C.

Before each experiment, in order to dissolve all the solid, sus-
pensions were heated to a temperature higher by 8 !C than the sat-
uration temperature during 1 hour. The saturation temperature
ranged between 28 !C and 32 !C. Then, the solution was rapidly
cooled to a temperature around 25 !C. Ultrasound is applied at
the end of the cooling phase (’720 s). The appearance of crystals
was detected by the sudden increase of temperature. The induction
time tind is defined as the time elapsed between the creation of
supersaturation and the appearance of crystals. The induction time
is measured as soon as the temperature 25 !C is reached. At the end
of each experiment, the suspension was filtrated (0.45 lm), and
the crystals were dried at room temperature, in order to avoid
destruction of the crystalline structure by heating.

3.3. Results and discussion

Figs. 5 and 6 display examples of time variations of the solution
temperature in silent conditions, and under insonification, respec-
tively (note the different scales on the time-axis). The different
steps are clearly visible on both figures: heating, cooling, and pla-
teau at crystallisation temperature. The increase of temperature
observed on the plateau corresponds to the appearance of the solid
phase.

The variation of induction time with absolute supersaturation is
summarised in Fig. 7 and Tables 1 and 2. The absolute supersatu-
ration Dx ¼ x&xeqðTÞ is calculated as the difference between
the initial, and saturation mass fractions at the crystallisation tem-
perature. The absolute error on Dx is the sum of the absolute er-
rors on x and xeq and reaches 5) 10&4 for all points.

We obtained the same type of curve with and without ultra-
sound. The induction time decreases when absolute supersatura-

tion increases. This behaviour agrees with classical results on
crystallisation. However, we can observe that ultrasound has a sig-
nificant effect on induction time, especially at low supersaturation,
where the induction time can be reduced by one order of magni-
tude. This effect is less significant at high supersaturation, since
nucleation is very fast anyway in this case. Besides, it was checked
that the X-ray diffraction patterns of the powders crystallised
without and with ultrasound were the same, and correspond to
the same orthorhombic structure.

Fig. 4. Experimental set-up: (1) Thermostated reactor; (2) sonotrode; (3) generator of ultrasound; (4) conductimetry probe; (5) conductimeter; (6) temperature probe; (7 and
8) cooling baths; (9) magnetic stirrer; and (10) computer.

0 20000 40000 60000
24

26

28

30

32

34

Time (s)

T 
(ºC

)

Fig. 5. Experiment without ultrasound, Dx ¼ x&xeqðTÞ ¼ 0:0305( 5) 10&4 g=g,
cooling time = 720 s, temperature of dissolution = 36 !C, tind ¼ 13740 s, tempera-
ture of crystallisation = 24.70 !C.
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Fig. 6. Experiment with ultrasound, Dx ¼ x&xeqðTÞ ¼ 0:0317( 5) 10&4 g=g,
cooling time = 720 s, temperature of dissolution = 36 !C, dissipated power = 16 W,
tind ¼ 960 s, temperature of crystallisation = 24.68 !C.



The results obtained are very similar to the ones obtained for
potassium sulphate [2], glycine [11] or ammonium sulphate [6].
Thus, it appears that the ability of cavitation to accelerate nucle-
ation at low supersaturation is similar for crystals which solubility
either increases with pressure, or decreases with pressure, or is
pressure-independent. This generic tendency questions therefore
the reality of the pressure effect on nucleation in solutions.

One may argue however, that the nucleated crystals could be a
different polymorph, which solubility decreases with pressure,
which would be further transformed in some way to the one ob-
served at the end of the experiment. This cannot be completely ex-
cluded since our experimental method clearly does not allow to
observe the early stages of nucleation, and that various phenomena
may have already occurred when we detect the first crystals. This
is by the way the scenario classically mentioned for ice nucleation
under ultrasound, where high pressure phases of ice, which are
denser than liquid water, are the polymorphs suspected to nucle-

ate by the pressure effect, and further grow and transform into
ice I [22]. However, although classically mentioned, there is no di-
rect experimental proof of this scenario. Furthermore, it strongly
relies on the existence of a polymorph which solubility is lower
at high pressure, which, to our knowledge, is not the case for
K2SO4 for example. The universality of the effect of cavitation on
various salts suggests therefore that the pressure effect is not gen-
eric enough to be the only mechanism involved, and that a more
generic physical mechanism should be invoked.

For this reason, after recalling the main lines of the classic
nucleation theory, we examine hereafter the present results in
the light of the segregation theory [10,13].

4. Theory

4.1. Nucleation

The formation of crystals in liquid solutions begins with nucle-
ation. The classical nucleation theory describes nucleation as
successive attachments and detachments of single molecules, de-
noted as ‘‘monomers’’, to form clusters of different sizes [9,14],
having the density of the solid. The work WðnÞ necessary to form
a cluster containing n monomers is given by the difference
between the free energy of the system in its initial and final state,
and is the sum of two competitive energy terms:

WðnÞ ¼ &nDlþ ccðnvSÞ2=3; ð5Þ

where Dl is the driving force given by (1), c is the solid–liquid
interfacial tension, vS the molecular volume of the solid, and c is a
shape factor [ð36pÞ1=3 in the case of a spherical cluster]. The nega-
tive volume energy term represents the natural tendency of a clus-
ter to appear in the metastable solution, whereas the positive
energy term represents the interfacial energy necessary to form
the cluster interface. The competition of these two energy contribu-
tions lead to a maximum W' of the work WðnÞ for a value n ¼ n',
known as ‘‘critical cluster’’ or ‘‘nucleus’’, the maximum work W'

thus representing the energy barrier for nucleation to occur. Assum-
ing spherical clusters, n' and W' are respectively given by:

n' ¼ 8c3v2
Sc3

27ðkBTÞ3ln3S
ð6Þ
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Fig. 7. Induction time of ZnSO4 ! 7H2O as a function of absolute supersaturation in
silent conditions (circles), insonification with P ¼ 16 W (triangles) and insonifica-
tion with P ¼ 30 W (squares). The horizontal errorbars have been skipped for the
points with insonification, in order to make the figure readable. They are equal to
the ones for the points in silent conditions. The vertical errorbars are represented
for all points.

Table 1
Results of all experiments without ultrasound: induction time as function of absolute
supersaturation Dx.

x (g/g) Dx (g/g) Temperature of
crystallisation

tind (s)

ð(2) 10&4Þ ð(5) 10&4Þ (±0.01 !C) (±180 s)

Without ultrasound
0.6649 0.0314 24.70 6240
0.6649 0.0315 24.69 6480
0.6649 0.0316 24.68 6420
0.6651 0.0319 24.65 3720
0.6651 0.0317 24.68 3960
0.6651 0.0318 24.67 3900
0.6664 0.0326 24.60 2760
0.6665 0.0332 24.67 2040
0.6645 0.0308 24.75 10,140
0.6645 0.0311 24.70 9900
0.6645 0.0310 24.72 9780
0.6640 0.0305 24.71 13,320
0.6640 0.0305 24.70 13,740
0.6640 0.0307 24.68 13,500
0.6643 0.0307 24.73 11,400
0.6690 0.0358 24.65 600
0.6683 0.0347 24.72 1080
0.6683 0.0348 24.70 1140
0.6683 0.0348 24.70 1200

Table 2
Results of all experiments with ultrasound: induction time as function of absolute
supersaturation Dx, for different dissipated powers.

x (g/g) Dx (g/g) Temperature of
crystallisation

tind (s)

ð(2:10&4Þ ð(5:10&4Þ (±0.01 !C) (±180 s)

With ultrasound P ¼ 16 W
0.6649 0.0308 24.8 1620
0.6649 0.0307 24.82 1800
0.6649 0.0311 24.76 1380
0.6643 0.0312 24.65 1320
0.6643 0.0314 24.62 1140
0.6643 0.0312 24.66 1260
0.6651 0.0319 24.65 1020
0.6651 0.0315 24.72 780
0.6651 0.0317 24.68 960
0.6654 0.0320 24.68 540
0.6654 0.0319 24.70 420

With ultrasound P ¼ 30 W
0.6649 0.0308 24.80 1020
0.6649 0.0307 24.82 960
0.6643 0.0315 24.65 480
0.6643 0.0314 24.62 420
0.6654 0.0320 24.68 300



and

W' ¼ 4c3v2
Sc3

27ðkBTÞ2ln2S
: ð7Þ

The nucleation kinetics may be obtained by assuming that the
cluster population evolves by successive attachments and detach-
ment process [9], represented by the pseudo-chemical reactions:

ðnÞ þ ðm& nÞ¢ ðmÞ: ð8Þ

The kinetics of the elementary direct and inverse reactions (8) is as-
sumed to be first-order against each reactive and product. Denoting
ZnðtÞ the time-varying concentration in clusters of size n, knm the
reaction rate of the direct reaction, and lmn the rate of the inverse
reaction, the reaction (8) contributes to the rate of production of
Zn as:

dZn

dt
¼ &knmZnZm&n þ lmnZm: ð9Þ

The attachment and detachment frequencies knm and lmn depend on
the attachment mechanism, but are not independent. Elementary
reactions (9) are generally recast by using the ‘‘equilibrium’’ con-
centration of the clusters Cn determined by thermodynamical con-
siderations, by considering the solution as an ideal mixture of
clusters of all sizes:

Cn ¼ C0 exp &WðnÞ
kBT

! "
; ð10Þ

where C0 is the molecular concentration of possible nucleating sites,
generally evaluated by 1=vS. Introducing Cn in (9), one obtains the
equilibrium condition:

&knmCnCm&n þ lmnCm ¼ 0; ð11Þ

which allows to express the detachment constants lmn once the
attachments constants knm are known. It should be recalled that
an equilibrium concentration of clusters does not make sense in
the case of a super-saturated solution, but it constitutes an elegant
turnaround to avoid the estimation of detachment frequency. A
deeper discussion of these aspects is out of the scope of this paper,
and we refer the interested reader to Ref. [9] for a detailed consid-
eration of these theoretical issues.

Accounting for all the reactions starting at, or reaching the clus-
ter size ðnÞ, the ordinary differential equation (ODE) governing the
production-rate of (n)-clusters reads [9]:

dZn

dt
¼ 1

2

Xn&1

m¼1

kmn Zn&mZm & Cn&mCm
Zn

Cn

% &

&
XM

m¼nþ1

knm Zm&nZn & Cm&nCn
Zm

Cm

% &
: ð12Þ

More progress can be made by noting that, since clusters ðnÞ are
much less numerous than monomers, it is generally considered
that the only attachments likely to occur are the ones between
ðnÞ-clusters and monomers [so that m ¼ nþ 1 in Eq. (8)], disre-
garding direct attachments between ðnÞ and ðm& nÞ. In this case
the governing set of equations (12) can be considerably simplified.
Furthermore, considering the cluster-size n as a continuous vari-
able, the sets transforms into a partial-differential equation for
ZnðtÞ, which is more amenable to analytical solutions [14,9]. In par-
ticular, a stationary solution Xn of the governing equation can be
sought by setting @ZnðtÞ=@t ¼ 0 and one obtains:

Xn ¼
1
2

Cn 1& erf p1=2zðn& n'Þ
' () *

ð13Þ

where z is the so-called Zeldovich factor:

z ¼ 3
4
ffiffiffiffi
p
p kBT

cv2=3
S c

 !3=2

ln2S;

measuring the narrowness around the critical cluster of the energy
peak defined by (7). This solution is displayed in Fig. 8 for one of the
lowest supersaturation Dx ¼ 0:0305 g=g (corresponding to the
leftmost points of Fig. 7), yielding a supersaturation ratio
S ¼ 1:222 and a critical cluster n' ¼ 117. Section A details the calcu-
lation of supersaturation ratio from ions activities. The vertical
dashed-line materialises the critical cluster size n'. This graph can
be readily interpreted as follows: below the critical size, the detach-
ment processes are dominant, so that the concentration in small
clusters is almost the equilibrium one. Above n' the attachment
process become preponderant, and the large clusters grow rapidly,
so that their concentration is low. The critical cluster thus appears
as a ‘‘bottleneck’’ on the nucleation process, as a result of the energy
barrier located there and quantified by Eq. (7).

Then, from the analytical solution (13), the global stationary
nucleation rate JS, that is, the number of critical clusters formed
per unit-time and unit-volume, can be obtained by evaluating
the number of nuclei crossing the critical size per unit-time, and
one finally obtains [9]:

JS ¼ A exp & B

T3ln2S

% &
; ð14Þ

where A is a quantity almost independent of the supersaturation ra-
tio S, and B reads

B ¼ 4c3v2
Sc3

27k3
B

: ð15Þ

The induction time can be related to the nucleation rate JS by
tind ¼ 1=ðJSVÞ, where V is the volume of the solution. This result,
along with Eq. (14), is classically used to determine the liquid-solid
interfacial energy c from induction-time measurements, by fitting
lnðtindÞ vs. 1=ðT3ln2SÞ with a straight line, which slope yields B and
therefore c.

It may be argued however, that during the induction time we
measure, nucleation is not the only phenomenon involved but that
growth can also occur.In this case, matching tind with 1=ðJSVÞ is no
longer justified and the theory must be enhanced in order to also
account for growth. The methodology is more complex in this case,
because numerous growth-mechanisms can be involved. To assess
the latter point, we followed the method of Ref. [23], by consider-
ing separately all possible growth mechanism, each one yielding
theoretically a specific functional dependence between rescaled
functions of the induction time tind and the supersaturation S.
The most probable mechanism is then elected by choosing the best
correlation with the experimental points among all the potential
solutions.

We performed such an extended study, and a summary is
presented in Section B. The conclusion is that a pure nucleation
process still remains the best candidate, so that growth mecha-
nisms are thought to be of lower importance, at least in the early
stages of the solid formation we consider here. Of course, the study
of Section B is only made on the experimental points without ultra-
sound, since the underlying theories are only valid in this case.
Thus, an influence of the cavitation bubbles on growth-processes
cannot be definitely excluded, and considering only their effect
on nucleation, as done below in this paper, should be considered
as a working hypothesis rather than an established fact.

The linear fit between lnðtindÞ and 1=ðT3ln2SÞ is displayed in
Fig. 9, and yields c ¼ 3:21( 0:04 mJ=m2.



The value of the interfacial energy c is crucial since it has a huge
influence on all quantities calculated within nucleation theory,
especially n'. Thus, in order to check the correctness of our
experimentally determined value of c, we compare the latter to
the well-known semi-empirical relation [24,14]:

cv2=3
S

kBT
¼ K ln

CS

Ceq
; ð16Þ

where CS is the molar concentration of the solid phase, Ceq is the
molar equilibrium concentration of the solute, and K a multiplica-
tive factor, which recommended value ranges between 0.3 and
0.5. Our experimental value of c casts well in Eq. (16) with a numer-
ical factor K ¼ 0:423( 0:005.

With the value of c at hand, it is possible to evaluate the size of
the critical cluster n' by Eq. (6) for each supersaturation value. The
result is displayed in Fig. 10. In the range of supersaturations used
in our experiments [1.222, 1.263], n' ranges between 74 and 117.

4.2. Segregation theory

As an alternative to the hypothesis of pressure effect, which, as
shown in Section 3.3, should be discarded for zinc sulphate, we re-
cently proposed that nucleation enhancement by ultrasound could
be caused by a direct effect of cavitation on the agglomeration pro-
cess of the clusters [10,13].

The basic mechanism is that at the end of the collapse, the fast
inward motion of the mixture is stopped violently by the gas re-
compression in the bubble, yielding a huge outward acceleration
(typically 1011 g). If the clusters are more dense that the surround-
ing liquid, which is generally the case for crystallisation in solu-
tions, they undergo an inward drift motion relative to the liquid,
and become over-concentrated near the bubble wall for a very
short time (typically 1 ns). This forced diffusion of two species of
different densities in a pressure gradient physics is somewhat sim-
ilar to the one underlying ultra-centrifugation, and is known as
‘‘pressure diffusion’’.

This segregation effect around a given cavitation bubble has
been quantified analytically in Ref. [10] by a perturbation method.
The theory allows to calculate the spatio-temporal variations of the
concentration in any species of known density and diffusion coeffi-
cient (or hydrodynamic radius), once the bubble radial dynamics is
known. On this basis, it has been suggested in Ref. [13] that in a
metastable solution, this effect should over-concentrate the
clusters near the bubble wall at each collapse, therefore favouring
their direct collision, and enhancing the global nucleation kinetics.

To further quantify this hypothesis, we evaluate the concentra-
tion of clusters as they become segregated from the liquid by the
bubble motion, in the conditions of the above crystallisation
experiments. We consider the same supersaturation as in Fig. 8,
yielding a critical cluster size n' ¼ 117, and quantify the concen-
tration of clusters which size ranges between 1 and 3n', near a
typical inertial cavitation bubble. We assume an air bubble of
ambient radius R0 ¼ 4 lm in water, driven by a far sound field
of the form p1ðtÞ ¼ p0½1& p'a sinð2pftÞ,, where p0 is the ambient
static pressure, f ¼ 20 kHz the frequency, and p'a the dimension-
less driving amplitude. Inertial cavitation, involving explosive
growth and collapse of the bubble, occurs slightly above p'a ¼ 1
[25,26], and the steady-state dynamics is calculated using the
model of Ref. [15].
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Fig. 8. Concentration of clusters for stationary nucleation. Dx ¼ 0:0305 g=g;
S ¼ 1:222; n' ¼ 117.
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Fig. 9. Logarithm of the experimental induction time vs. 1=ðT3ln2SÞ. The slope
allows to calculate the interfacial energy c through Eq. (15). The errorbars represent
the experimental errors.
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Fig. 10. Size of the critical cluster as a function of the supersaturation ratio S,
calculated from Eq. (6). The points correspond to our experiments. The horizontal
errorbars originate from the experimental errors on x and xeq, and the vertical
errorbars originate both from the experimental errors on x and xeq and the
uncertainty on the determination of c, when using Eq. (6).



The segregation theory developed in Ref. [10] shows that the
concentration of the densest species of a mixture at the bubble
wall reads:

CðtÞ ¼ C1 C'av þ C'oscðtÞ
' (

; ð17Þ

where C1 is the concentration of the species in the undisturbed li-
quid, and the expressions of C'av and C'osc depend on the mixture and
the bubble-dynamics:

C'av ¼ exp bIð Þ; ð18Þ

C'oscðtÞ ¼ exp bIð Þ &b

Pe1=2 gðtÞ; ð19Þ

where the quantity I involves averages of some functionals of the
bubble radius, and, in the range of parameters considered here, is
small enough to have ebI ’ 1. The function gðtÞ can be evaluated
once the bubble dynamics is known, and is typically a narrow posi-
tive pulse centred near the bubble collapse. Of special interest is the
maximum value gmax reached by gðtÞ near the bubble collapse. The
parameter b basically represents the difference in the densities of
the two segregated species. In the present case, for of cluster of size
n, it reads:

bn ¼
1
2

R2
0 2pfð Þ2 vS

kBT
q& qSð Þn; ð20Þ

where R0 is the bubble ambient radius, f the ultrasound frequency,
q the density of the solution, and qS the density of the solid, so
that b is negative in the present case since the solid phase is den-
ser than the liquid (as is generally the case for crystallisation in
solution).

The Péclet number Pe appearing in Eq. (19) is defined by:

Pen ¼
R2

0ð2pf Þ
Dn

; ð21Þ

where Dn is the diffusion coefficient of (n)-clusters in the solution. It
can be evaluated by the Stokes–Einstein relation, assuming spheri-
cal clusters:

Dn ¼
kBT

6p 3vSn=ð4pÞð Þ1=3g
; ð22Þ

where g is the liquid viscosity.
We assume that far from the bubbles, stationary nucleation

takes place so that their undisturbed concentration C1ðnÞ is Xn gi-
ven by Eq. (13) (see Fig. 8), and we calculate the concentration of
the clusters at the bubble wall XsegðnÞ ¼ Xn )maxtC

'
oscðn; tÞ from

Eqs. (19)–(22), for each size n. The result is displayed in Fig. 11
for various amplitudes of the driving acoustic pressure. The vertical
dashed line denotes the size of the critical cluster. It is seen that
segregation over-concentrates all the clusters, especially in a re-
gion below the critical cluster, up to more than 20 times for an
acoustic pressure of 1.5 bar (upper curve). The concentration in
clusters for stationary nucleation far from the bubble (Eq. (13)
and Fig. 8) is recalled in dashed line for comparison.

We suggest that this transitory over-concentration may en-
hance drastically the process of cluster growth not only by mono-
mer aggregation, but may also favour direct aggregation of
multimers, generally negligible in silent nucleation. Looking at
Fig. 11, it is seen for example that near a cavitation bubble driven
at 1.5 bar, the concentration of the 80-mers clusters is multiplied
by about 25, which multiplies their mutual collision probability
by 625. Segregation makes therefore direct aggregation processes
more probable, which may lead to a global enhancement of nucle-
ation process.

Applying this theory to other solutions yields similar results
[11]. The segregation theory relies in fact only on the hypothesis
that the solid phase is denser than the solution, which is generally

the case for solution crystallisation, and applies indifferently to
potassium sulphate, ammonium sulphate or glycine. The present
theory presents therefore the advantage to be compatible with
all the experimental results mentioned above. The missing link
with macroscopic results is the calculation of a macroscopic induc-
tion-time, based on this theory. This would require to solve the
equations of transitory nucleation like, Eq. (12), taking into account
the periodic transitory over-concentration peaks over the whole
range of cluster sizes. This theoretical problem is currently under
consideration for a single-bubble. It should also be noted that there
is yet no direct experimental validation or invalidation of the seg-
regation effect, although its theoretical basis is well-established.
Work is also in progress in this way.

Finally, we emphasise that the quantitative extrapolation of this
single-bubble theory to observable macroscopic effects in
multi-bubble fields is difficult, for the same reasons as the ones
mentioned for the pressure effect [6], or any other proposed
microscopic mechanism. Indeed, in the absence of a reliable theory
yielding the size-distribution and spatial repartition of the cavita-
tion bubbles, no precise extrapolation can be done. This issue is in
fact more general than sono-crystallisation, and is also relevant to
sonochemistry, and any cavitation-enhanced process.

5. Conclusions

Past results on sono-crystallisation of species less dense in solid
form than in solute form have cast some doubts on the nucleation
enhancement by the high pressures appearing near a cavitation
bubble. The present results on zinc sulphate show that, although
its solubility is pressure-independent, the induction time is drasti-
cally reduced by ultrasound. Instead, we have shown that an inter-
pretation by the segregation theory remains semi-quantitatively
plausible, and shows that the over-concentration of the clusters
around the critical nucleus near collapsing bubbles may reach
more than one order of magnitude. This enhances the direct aggre-
gation probability between near-critical clusters by more than two
orders of magnitude, and may therefore accelerate the global
nucleation process. A more precise quantification of this process
is under consideration.
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Fig. 11. Solid lines: concentration of clusters near a 4 lm air bubble driven at
20 kHz, at the end of the collapse; from bottom to top: p'a ¼ 1:2;1:3;1:4;1:5. The
dashed line represents the concentration for stationary nucleation far from the
bubble (same curve as Fig. 8). The vertical dashed line denotes the critical cluster
size. S ¼ 1:222; n' ¼ 117.
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Appendix A. Calculation of the supersaturation ratio

In the molality (mole of solute per kg of ‘‘free’’ water) scale, the
activity of salt MmM XmX in solution can be expressed by the follow-
ing equation:

aMX ¼ mMXcMX ; ðA:1Þ

where mMX and cMX represents the molality and the activity coeffi-
cient respectively.

In the aqueous solution, the dissociation of salt MmM XmX can be
expressed by:

MmM XmX ! mMMzþmXXz&:

The ionic activity for each component i can be written as:

ai ¼ mici: ðA:2Þ

For an hydrate salt, such as ZnSO4 ! 7H2O, the dissociation can be
expressed by:

ZnSO4 ! 7H2O! Zn2þ þ SO2&
4 þ 7H2O:

Therefore, the expression of the supersaturation ratio of
ZnSO4 ! 7H2O can be written as:

S ¼
a2

Zn2þ a2
SO2&

4
a7

H2O

a2
Zn2þ ;eq

a2
SO2&

4 ;eq
a7

H2O;eq
: ðA:3Þ

Using Eq. (A.2), Eq. (A.3) can be expressed as:

S ¼
m2þ

Zn cZn2þmSO2&
4
cSO2&

4
a7

H2O

mZn2þ ;eqcZn2þ ;eqmSO2&
4 ;eqcSO2&

4 ;eqa7
H2O;eq

: ðA:4Þ

The mean molal activity coefficient (noted c() can be calculated
from the ionic activity coefficient using:

cmMþmX
( ¼ cmM

Mzþ ) cmX
Xz& ; ðA:5Þ

where mM and mX are the stoichiometric coefficients of cation and
anion respectively.

Using this mean coefficient, Eq. (A.4) becomes:

S ¼
m2

ZnSO4
c2
(a7

H2O

m2
ZnSO4 ;eqc2

(;eqa7
H2O;eq

: ðA:6Þ

The molality is calculated using our own experimental values of
the mass fractions, summarised in Table 1, by:

mZnSO4 ¼
1000x=MZnSO4 !7H2O

1&xMZnSO4=MZnSO4 !7H2O
; ðA:7Þ

where MZnSO4 !7H2O and MZnSO4 are the molar mass of ZnSO4 ! 7H2O
and ZnSO4 respectively.

Introducing Eq. (A.7) in Eq. (A.6), the supersaturation S now
reads:

S ¼ x
xeq

% &2 1&xeqMZnSO4=MZnSO4 !7H2O

1&xMZnSO4=MZnSO4 !7H2O

% &2 c(
c(;eq

 !2
aH2O xð Þ

aH2O xeq
' (

!7

:

ðA:8Þ

The value of c( is obtained by using a modified Pitzer equation,
following Ref. [27].

The water activity aH2OðxÞ can be related to the osmotic coeffi-
cient of water /, the molality mZnSO4 , and the number of moles of
ions m ¼ mZn2þ þ mSO2&

4
formed from 1 mol of salt:

ln aH2O ¼ &
m)m)MH2O

1000
/: ðA:9Þ

The osmotic coefficient of ZnSO4 ! 7H2O is calculated using the same
model as for c( [27].

The numerical values obtained for water activities and mean
activity coefficients for ZnSO4 ! 7H2O solution are in good agree-
ment with the results of Ref [28]. The obtained values of supersat-
uration S, using Eq. (A.8), range between S ¼ 1:222 and 1.263.

Appendix B. Examination of growth processes

The induction time tind can be represented by the sum of the
time necessary for the critical nucleus to be formed, and the time
for this nucleus to grow up to a visible size. These two times de-
pend on the nucleation and growth rates of the crystals and the
induction time reads [23]:

tind ¼
1
JV
þ a

anJGn&1

 !1=n

; ðB:1Þ

where J is the nucleation rate, G the growth rate, an the shape factor
of nuclei, V the volume and a ¼ Vm=V the volume fraction of nuclei,
where Vm is the macroscopic volume of the nuclei.

The induction time measurements are obtained by a method
involving three dimensional (3D) growth of the nucleus up to a
registrable macroscopic volume Vm, so that n is 4.

Mass transport from solution (diffusion and convection) and
surface integration of ions or molecules to crystal lattice (either
two-dimensional nucleation or screw dislocation mechanism) are
the two consecutive processes occurring during the growth of crys-
tals. In the following, different growing mechanisms have been
inspected.

The nucleation rate can be expressed by:

J ¼ kJ exp & B

ln2S

% &
ðB:2Þ

and the growth rates by:

- 2D nucleation mechanism:

G2D ¼ kGðS& 1Þ2=3S1=3 exp & B2D

3 ln S

% &
: ðB:3Þ

- Screw dislocation mechanism:

GSC ¼ kGðS& 1Þ2: ðB:4Þ

- Growth limited by transport process:

GD ¼ kGðS& 1Þ: ðB:5Þ

The terms B and B2D are respectively proportional to surface en-
ergy crystal-solution, c3, and to specific edge energy j2.

For the calculation of induction times, three limiting cases have
been studied:

1. tj . tg

2. tj ¼ tg

3. tj / tg

For these different cases, the temperature has been assumed
constant and equal to 25 !C. Each assumption yields an expression



with a function F ind dependent on induction time and supersatura-
tion ðFind ¼ Sk1ðS& 1Þk2tindÞ.

The plot of Find as a function of 1= ln S;1=ln2S or lnðS& 1Þ would
appear as a straight line (cases 1 and 3–6, Table B.1) and the plot of
Find as a function of 1=ln2S as a 2nd order polynom, if the assump-
tions were verified.

The different correlation factors obtained are summarised in Ta-
ble B.1. They are very close. The two highest correlation factors are
respectively obtained for the nucleation mononuclear model and
the polynuclear nucleation model based on 2D-nucleation growth
(0.977 and 0.983). However in the case of polynuclear model, the
B2D parameter is found negative which it is physically impossible.
The same result was obtained in Ref. [29]. Thus, in this study, the
mononuclear model has been chosen and a value of 3:21 mJ=m2

for the surface energy has been elected.
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Table B.1
Nucleation and growth models. First colon: hypothesis. Second colon: abscissa of the fit. Third colon: ordinate of the fit. Fourth colon: correlation coefficient.

Model Abscissa Ordinate R2

(1) tj . tg mononuclear model 1
ln2 S

lnðtindÞ 0.977

(2) tj ¼ tg 2D nucleation growth, polynuclear model 1
ln S ln tindS1=4 ) ðS& 1Þ1=2

h i
0.983

(3) tj ¼ tg growth by screw dislocation mechanism, polynuclear model 1
ln2 S ln tind ) ðS& 1Þ3=2Þ

h i
0.972

(4) tj ¼ tg Growth limited by transport process, polynuclear model 1
ln2 S ln tind ) ðS& 1Þ3=4

h i
0.975

(5) tj / tg 2D nucleation growth 1
ln S ln tindS1=3 ) ðS& 1Þ2=3

h i
0.971

(6) tj / tg growth by screw dislocation mechanism, or growth limited by transport process lnðS& 1Þ lnðtindÞ 0.969


