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Stable Model Predictive Strategy for Rendezvous
Hovering Phases Allowing for Control Saturation

Paulo R. Arantes Gilz∗, Mioara Joldes†, Christophe Louembet‡, Frédéric Camps§

LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Abstract

This paper presents a model predictive control strategy for the hovering phases of the impulsive
spacecraft rendezvous problem producing a convergent sequence of relative trajectories, even under
propellers saturation constraints. Adopting a linearized dynamics for the relative spacecraft dynam-
ics, we present a parametrization of the relative trajectories. This parametrization and the constraints
describing the hovering zones are employed in the formulation of the impulsive fuel-optimal control
strategy, which is then proved to be stable. Numerical methods are proposed to solve the optimiza-
tion problems characterizing each call of the controller. Finally, hardware-in-the-loop simulations
using a synthesized LEON3 microprocessor and linear and disturbed nonlinear models for the relative
dynamics are performed to assess the efficiency and robustness of the proposed approach.

1 Introduction

Mastering the spacecraft rendezvous was crucial during the space conquest era and nowadays opens new
economical opportunities for the space industry. In fact, numerous space tugs have been developed by
the different actors in this industry. In particular, a key feature for mission success is the autonomy:
the ability of the involved spacecraft to compute their guidance and control commands without human
intervention.

The work presented in this paper aims to design a consumption-optimal controller compatible with
the performance of a space flight certified computation board. We focus on the phases of the rendezvous
problem in which a chaser spacecraft must keep station inside a restricted tolerance zone in space (we
assume a rectangular cuboid) defined in the body-fixed frame of a leader spacecraft - these are the so-
called “hovering” phases [16]. In this work, the hovering phases are controlled by means of chemical
thrusters and the control actions are modeled as impulsive velocity corrections. In previous works, we
addressed this problem from two different points of view. In [7], several linear control laws based on
the dynamical hybrid systems theory have been developed. However, such approaches are not able to
account for any constraints on the state or command despite their proven ability to stabilize the chaser
vehicle around a given relative orbit. In [2, 3], the hovering control is achieved by means of predictive
control laws accounting for input saturation conditions and polytopic constraints on the relative position.
The proposed work improves and expands on these MPC-oriented papers.

Since the early years of 2000, the model predictive control (MPC) schemes for impulsive spacecraft
rendezvous have been developed in the aim of providing fuel-thrifty and sustainable control algorithm.
The model predictive control is here thought as closed loop control scheme that embeds the resolution of
an optimal control on a receding horizon. This control scheme is named implicit closed-loop [23, 11]. In the
context of space relative motion, the advantage of such control scheme is to minimize the consumption
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while accounting for restrictions and constraints arisen from technological and safety requirements in
addition to provide robust stability to identified perturbations [6]. In the framework of a chemical
propulsion and its impulsive modeling, the literature is rich of examples of model predictive controller
that can be cast into several categories according to [23].

A first implicit closed-loop approach known as open-loop min-max MPC is based on the resolution of
an inner uncertain optimal control problems as in [22, 25]. Such MPC approach has been successful in
relative motion impulsive control in presence of navigation errors [13]. If robust stability can be derived
[21], all good properties of such control schemes collapse if the feasible recursion (i.e., the case in which all
inner programs are feasible) can not be established. A second approach, called constraint tightening MPC,
is designed to ensure the recursive feasibility by a priori tightening the constraints on the predicted states
[17]. This approach has been developed mainly for linear time invariant systems and necessitates either
the existence of stabilizing state-feedback controller [6, 28] or off-line computation [17, 30]. However,
saturations are not explicitly considered in cited works. Moreover, such control schemes are difficult to
apply to time varying dynamics derived from elliptical relative motion. In another approach, the so-
called feedback MPC, the decision variables are the feedback policies instead of the control value. With
such approach, the MPC control avoids the open-loop propagation of the uncertainties and limits the
spread of perturbed trajectories[18]. Considering affine state feedback policies, the tube-based MPC is
derived [20, 24] where the computations are usually made off-line. Such approach has been applied to
rendezvous guidance and control problem in [9] while considering a fixed-time horizon.

In this work, we develop an implicit closed-loop MPC algorithm. Our strategy aims at maintaining
the chaser in a given window thanks to periodic motion as proposed in the recent work [29]. However,
we particularly control the relative motion around window-included free periodic orbits described in [10],
contrarily to the forced orbits exploited in [29]. The periodic orbits of interest have been described in
[10] in terms positive polynomial certification and in [3] as a semi-algebraic set.

Our contribution consists also in providing the readers an MPC controller for which stability is proved
even when the presence of saturation constraints on controls may make the space window unreachable
from the current state. A second contribution is the performance of extensive numerical results that
aim to highlight the efficiency of the MPC controller in terms of control quality and numerical burden.
Following the FPGA framework of the tests carried out in [14, 15], the simulations presented herein are
executed in a hardware-in-the-loop fashion, where the control computation is executed on a synthesized
FPGA LEON3 board certified for spacecraft usage.

2 Modeling the rendezvous hovering phases problem

In this section we present the assumptions and equations employed in the modeling of the linearized
relative dynamics between spacecraft. Once this model is obtained, by performing transformations of the
state variable, a parametrization of the periodic space-constrained relative trajectories is deduced. These
developments are employed in Sections 3 for the formulation of the MPC scheme and its stability proof,
as well as in Section 4.2 for the conception of semi-algebraic check functions for the space constraints.

2.1 Relative spacecraft motion

Figure 1 presents the frames used to model the relative motion between the leader Sl and the follower
Sf spacecrafts. The Earth-Centered Inertial and the Local Vertical / Local Horizontal frames are re-
spectively given by

{
O, ~I, ~J, ~K

}
and {Sl, ~x, ~y, ~z}.

The angle ν, between the direction of perigee and the leader’s position, is the true anomaly, 0 < e < 1
is the leader orbit eccentricity, a is the leader orbit semi-major axis and µ is Earth’s gravitational constant.
Considering that ‖−−→OSl‖� ‖

−−→
SlSf‖ and assuming Keplerian orbits, the relative dynamics can be linearized
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Figure 1: Inertial and relative frames

and described by the simplified linearized Tschauner-Hempel equations [32, 35]:

X̃ ′xz(ν) =


0 0 1 0
0 0 0 1
0 0 0 2
0 3

ρν
−2 0


︸ ︷︷ ︸

Ãxz(ν)

X̃xz(ν), X̃ ′y(ν) =
[

0 1
−1 0

]
︸ ︷︷ ︸
Ãy(ν)

X̃y(ν),
(2.1)

where ρν = ρ(ν) = (1 + e cos ν). In (2.1) we explicitly split the equations to emphasize the fact that
the so-called in-plane motion (xz-plane) is decoupled from the out-of-plane motion (y-axis). For a given
time t, the change of variable from the LVLH state X(t) = [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]T to the X̃(ν)
vector can be performed via the following transformation:

X̃(ν) = T (ν)X(t), with T (ν) =
[
ρνI3 03

ρ′ν I3
(
k2ρν

)−1 I3

]
, (2.2)

where (·)′ = d(·)
dν and k2 =

√
µ

a3(1−e2)3 .

During the rendezvous hovering phases, the follower spacecraft is required to remain in the interior of
a certain limited region of the space. We assume in the sequel that this hovering range is a rectangular
cuboid (tolerance box):

x ≤ x(t) ≤ x y ≤ y(t) ≤ y z ≤ z(t) ≤ z, ∀t ≥ t0. (2.3)

Another variable change is performed in order to obtain a better-suited representation of these con-
strained relative trajectories, with the advantage of providing a physical description of the relative orbits,
contrary to the states X and X̃ that only give the instantaneous position and velocity. The new state,
the so-called vector of parameters for the spacecraft relative motion, is defined as (see [8, 10] for details):

D(ν) = [d0(ν), d1(ν), d2(ν), d3(ν), d4(ν), d5(ν)]T (2.4)
and can also be split into two vectors representing respectively the in-plane and the out-of-plane motion:
Dxz(ν) = [d0(ν), d1(ν), d2(ν), d3(ν)]T and Dy(ν) = [d4(ν), d5(ν)]T .

These parameters can be expressed in function of X̃ as follows:

Dxz(ν)= 1
e2 − 1


0 −(3 ecν+e2+2) ρ2

ν −esνρν
0 3(e+ cν) −(2cν+ec2ν+e) sνρν

0 3sν(ρν+e2)
ρν

−sν(2+ecν) 2e− cνρν

1 −3 esν(2+ecν)
ρν

esν(2+ecν) ecνρν−2


︸ ︷︷ ︸

Cxz(ν)

X̃xz(ν), Dy(ν)=
[
cν −sν
sν cν

]
︸ ︷︷ ︸

Cy(ν)

X̃y(ν),

(2.5)
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where sν = sin(ν) and cν = cos(ν).
By manipulating equations (2.1) and (2.5) (see [8] for details), one can obtain the following dynamical

system representing the evolution of the vector of parameters:

D′xz(ν) =


0 0 0 0
0 0 0 0

− 3e
ρ2
ν

0 0 0

3
ρ2
ν

0 0 0


︸ ︷︷ ︸

ADxz (ν)

Dxz(ν), D′y(ν) =
[
0 0
0 0

]
︸ ︷︷ ︸
ADy (ν)

Dy(ν),
(2.6)

which can also be described by its transition matrix:

Dxz(ν) =


1 0 0 0
0 1 0 0

−3eJν0(ν) 0 1 0
3Jν0(ν) 0 0 1


︸ ︷︷ ︸

ΦDxz (ν,ν0)

Dxz(ν0), Dy(ν) =
[
1 0
0 1

]
︸ ︷︷ ︸

ΦDy (ν,ν0)

Dy(ν0),
(2.7)

where Jν0(ν) is given by:

Jν0(ν) :=
∫ ν

ν0

dτ

ρ(τ)2 =
√

µ

a3
t− t0

(1− e2)3/2 . (2.8)

Remark 2.1. Hereafter we use the notation C(ν), AD(ν) and ΦD(νN , νi) to refer to the concatenation
of the respective in-plane and out-of-plane matrices.

In what follows, the problem constraints are presented. They intervene in the constrained fuel-optimal
control problem that is to be solved at each call of the model predictive controller.

2.2 Space constrained periodic relative trajectories

One is interested in obtaining periodic trajectories, since this guarantees that the relative motion remains
bounded in absence of disturbances. However, the relative trajectories described by (2.1) are not periodic
in general. By imposing X̃(ν+ 2π) = X̃(ν), ∀ν one can deduce that a necessary and sufficient condition
for this constraint to be respected is:

d0(ν0) = 0. (2.9)

Remark 2.2. The condition d0(ν0) = 0 is straightforwardly deduced, since the only non-periodic and
divergent term Jν0(ν) in the relative motion equations always appears multiplied by d0:

x̃(ν) = (2 + e cν)(d1(ν0) sν − d2(ν0) cν) + d3(ν0) + 3 (1 + e cν)2 d0(ν0)Jν0(ν),
z̃(ν) = (1 + e cν)(d2(ν0) sν + d1(ν0) cν − 3 e sν d0(ν0)Jν0(ν)) + 2 d0(ν0).

Remark 2.3. A notable property of periodic trajectories is that the vector of parameters D(ν) remains
constant for any value of ν since its dynamic matrix AD(ν) has non-zero values only in its first column
(see (2.6)).

By imposing d0 = 0 (periodicity condition) and using (2.2) and (2.5), the inequalities in (2.3) are
rewritten as:

x ≤ Fx(ν)T Dxz ≤ x
y ≤ Fy(ν)T Dy ≤ y, ∀ν,
z ≤ Fz(ν)T Dxz ≤ z

Fx(ν) = [ 0, (2+e cν)sν
1+e cν , −(2+e cν)cν

1+e cν , 1
1+e cν ]T

Fz(ν) = [ 0, cν , sν , 0 ]T

Fy(ν) = [ cν
1+e cν ,

sν
1+e cν ]T

(2.10)

The admissible set i.e., the set of periodic trajectories satisfying the inequalities in (2.10), is then
defined as:

SD :=

D ∈ R6

∣∣∣∣∣∣ d0 = 0,
x ≤ Fx(ν)TDxz ≤ x
y ≤ Fy(ν)TDy ≤ y
z ≤ Fz(ν)TDxz ≤ z

,∀ν

 , (2.11)
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and since the out-of-plane and in-plane dynamics can be decoupled, we also define:

SDy =
{
Dy ∈ R2 ∣∣ y ≤ Fy(ν)TDy ≤ y,∀ν

}
, (2.12)

SDxz =
{
Dxz ∈ R4

∣∣∣∣ d0 = 0, x ≤ Fx(ν)TDxz ≤ x
z ≤ Fz(ν)TDxz ≤ z

,∀ν
}
. (2.13)

Proposition 2.1. The admissible set SD is convex and bounded.

Proof. The convexity can be straightforwardly proven by showing that any convex combination of two
elements of SD also belongs to SD. In order to prove the boundedness of the set, we evaluate the
inequalities in (2.11) at specific values:

Computing the bounds for d1 and d2: by evaluating the z inequalities at ν = 0 and ν = π
2 , we obtain:

z ≤ d1 ≤ z (2.14)
z ≤ d2 ≤ z (2.15)

Computing the bounds for d3: by evaluating the x inequalities at ν = 0, ν = 2π
3 and ν = 4π

3 and
manipulating the produced inequalities, we obtain:

x
(

4+e−e2

4+e

)
≤ d3 ≤ x

(
4+e−e2

4+e

)
(2.16)

Computing the bounds for d4 and d5: by evaluating the y inequalities at ν = 0 and ν = π
2 , we obtain:

y(1 + e) ≤ d4 ≤ y(1 + e) (2.17)
y ≤ d5 ≤ y (2.18)

Then, since any element of SD is entry-wise bounded, the set SD is itself bounded. �

The description of the admissible set previously presented consists in the evaluation of infinitely many
affine inequalities on the vector of parameters, which depends on ν. Although theoretically interesting,
this description is not practical from a numerical point of view, since the infinitely many constraints are
hard to be accounted for, when employed in the formulation of optimization problems. In Section 4,
alternative finite descriptions are presented and employed.

2.3 Propellers, fuel-consumption and saturation

We suppose that the follower spacecraft has six identical thrusters, one pair symmetrically and oppositely
disposed by axis, as indicated in Fig. 2:

Figure 2: Propellers arrangement

We consider the employment of chemical propellers producing instantaneous impulsive velocity cor-
rections ∆V . Given that, the fuel consumption is then modeled as the sum of the absolute value of the
thrusts applied in each direction:

J(∆V ) =
N∑
i=1
‖∆V (νi)‖1=

N∑
i=1
|∆Vx(νi)|+|∆Vy(νi)|+|∆Vz(νi)|, (2.19)
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and assuming that the saturation threshold for each propeller is ∆V > 0, this constraint is written as:

|∆Vx(νi)|≤ ∆V , |∆Vy(νi)|≤ ∆V , |∆Vz(νi)|≤ ∆V . (2.20)

For a given true anomaly value ν, the state right after an impulse ∆V (ν) = [∆Vx(ν), ∆Vy(ν), ∆Vz(ν)]T
is defined as X+(ν) and can be computed by:

X+(ν) = X(ν) +B∆V (ν), B = [03 I3]T . (2.21)

Performing the variable changes X(ν)
(2.2)
→ X̃(ν)

(2.5)
→ D(ν), the parameter vector after the impulse

D+(ν) is given by:
D+(ν) = D(ν) + C(ν)T (ν)B∆V (ν). (2.22)

Using the transition matrices given in (2.7), the vector of parameters right after a sequence of impulses
applied at ν1 . . . νN−1, νN can be expressed as follows:

D+(νN ) = ΦD(νN , ν1)D(ν1) +
N∑
i=1

ΦD(νN , νi)C(νi)T (νi)B︸ ︷︷ ︸
BD(νN ,νi)

∆V (νi) (2.23)

or, similarly, by splitting the dynamics into out-of-plane and in-plane motion, we obtain:

D+
xz(νN ) = ΦDxz (νN , ν1)Dxz(ν1) +

∑N
i=1BDxz (νN , νi) ∆Vxz(νi),

D+
y (νN ) = ΦDy (νN , ν1)Dy(ν1) +

∑N
i=1BDy (νN , νi) ∆Vy(νi),

(2.24)

where ∆Vxz(νi) = [∆Vx(νi), ∆Vz(νi)]T ,

BDxz (νN , ν) = 1
k2(e2 − 1)ρν


ρ2
ν −esνρν

−(2cν + ec2ν + e) sνρν
−sν(2 + ecν)− 3eJν(νN ) 2e− cνρν + 3e2sνρνJν(νN )
esν(2 + ecν) + 3Jν(νN ) ecνρν−2− 3esνρνJν(νN )

 ,

BDy (νN , ν) = 1
k2ρν

[
−sν
cν

]
.

(2.25)

By introducing the matrices:

M(ν1, . . . , νN ) :=
[
BD(νN , ν1), . . . , BD(νN , νN )

]
,

Mxz(ν1, . . . , νN ) := [BDxz (νN , ν1), . . . , BDxz (νN , νN )],

My(ν1, . . . , νN ) := [BDy (νN , ν1), . . . , BDy (νN , νN )],

and the vectors:
∆V :=

[
∆V (ν1), . . . ∆V (νN )

]T
,

∆Vxz :=
[
∆Vx(ν1), ∆Vz(ν1) . . . ∆Vx(νN ), ∆Vz(νN )

]T
,

∆Vy :=
[
∆Vy(ν1), . . . ∆Vy(νN )

]T
,

expressions (2.23) and (2.24) can be further simplified:

D+(νN ) = ΦD(νN , ν1)D(ν1) + M(ν1, . . . , νN ) ∆V,
D+
xz(νN ) = ΦDxz (νN , ν1)Dxz(ν1) + Mxz(ν1, . . . , νN ) ∆Vxz,

D+
y (νN ) = ΦDy (νN , ν1)Dy(ν1) + My(ν1, . . . , νN ) ∆Vy.

(2.26)
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2.4 Fuel-optimal impulsive control problem

Once the mathematical models for the evolution of the vector of parameters and for the constraints are
obtained (Sections 2.2 and 2.3), we can formulate the fuel-optimal impulsive control problem that is
solved at each call of the MPC algorithm:

Problem 1. Given N ≥ 3, ν1 < . . . < νN ∈ R>0, D(ν1) ∈ R6, e, a, µ ∈ R, find ∆V ∗ ∈ R3N such that:

∆V ∗ = argmin
∆V

J(∆V )

s.t.


D(ν1) = D1
D+(νN ) = ΦD(νN , ν1)D(ν1) +M(ν1, . . . , νN ) ∆V
d+

0 (νN ) = 0
D+(νN ) ∈ SD

(P)

In the sequel we show that the periodicity equality constraint d+
0 (νN ) = 0 can be dropped by consid-

ering only the impulsive velocity corrections that produce periodic relative trajectories. The idea is to
construct a basis for the affine subspace to which the vectors of impulsive velocity corrections such that
d+

0 (νN ) = 0 belong. In order to do so, let us begin by rewriting the first line of (2.23):

d+
0 (νN ) = d0(ν1) +

∑N
i=1

1
k2(e2 − 1)

[
ρν −esν

]
∆Vxz(νi). (2.27)

By defining the row vector

M0(ν1, . . . , νN ) := 1
k2(e2 − 1)

[
ρν1 , −esν1 , . . . ρνN , −esνN

]
,

we can rewrite the equation (2.27) as:

d+
0 (νN ) = d0(ν1) +M0(ν1, . . . , νN )∆Vxz. (2.28)

Then we express ∆Vxz as:

∆Vxz(λ) =

 | |
v1 . . . v2N−1
| |


︸ ︷︷ ︸

M⊥0 (ν1, ..., νN )

λ+ ∆V0, (2.29)

where ∆V0 ∈ R2N is an arbitrary sequence of in-plane impulses producing a periodic relative trajectory
and M⊥0 (ν1, . . . , νN )λ represents a linear combination of the vi vectors belonging to the kernel of the
row vector M0(ν1, . . . , νN ), given by:

vi := [ 0, . . . 0︸ ︷︷ ︸
(i−1) zeros

, ai+1, − ai, 0, . . . 0︸ ︷︷ ︸
(2N−1−i) zeros

]T , (2.30)

where ai is the i-th entry of M0(ν1, . . . , νN ).
Problem (P) accounts for both the in-plane and out-of-plane dynamics, even though they can be

solved separately (in Section 3, these dynamics are split and represented by the functions γxz and γy
respectively). Moreover, one can remark that the control actions are not saturated in the formulation of
(P); an ad hoc function γ∆V is employed to take these constraints into account in the following.

3 Model Predictive Control Strategy

In this section we present the model predictive control strategy that computes sequences of impulses
generating a sequence of states (Dk)k∈N that, even under saturation of the actuators, iteratively converges
to a state belonging to a given non-empty admissible set SD.

The main ideas used in the conception of this strategy, which is formally summarized in Algorithm 1,
are the following ones:

7



Periodic trajectories produce no drift. Let us recall the transition matrix for the in-plane motion:

Dxz(ν) =


1 0 0 0
0 1 0 0

−3eJν0(ν) 0 1 0
3Jν0(ν) 0 0 1


︸ ︷︷ ︸

ΦDxz (ν,ν0)

Dxz(ν0). (3.1)

Remark that if d0(ν0) = 0 the vector of parameters does not evolve within time. In order to eliminate this
“drift” effect and keep the distance between the vector of parameters and the admissible set constant,
Algorithm 1 first focuses on bringing d0 to 0 (see Fig. 3).

Figure 3: Generation of a periodic trajectory: between the triangle and the circle, the vector of parameters evolves in a
plane d0 = constant parallel to the plane d2 × d3; an impulsive velocity correction applied with the goal of reducing the
absolute value of d0 is represented by the vertical line linking a circle and a triangle; the square represents a vector of
parameters describing a periodic trajectory (it does not evolve within time).

To achieve periodicity, one impulse would always be sufficient if the saturation conditions were met:

Proposition 3.1 (Minimal periodic impulse). Let

γp : R× R → R2

d0xz (ν1), ν1 7→ argmin∆Vxz ‖∆Vxz‖1
s.t. d+

0xz (ν1) = d0xz (ν1) +M0(ν1)∆Vxz(ν1) = 0
(3.2)

Then, for any set of inputs, the function γp is well-defined in the sense that the feasible set of the
minimization problem is not empty.

Proof. The line vector M0(ν1) has the following expression:

M0(ν1) = (k2(e2 − 1))−1 [1 + e cos(ν1) −e sin(ν1)
]

and since the term 1 + e cos(ν1) 6= 0, ∀ν1 (because 0 < e < 1), it is always possible to set:

∆Vxz = k2(e2 − 1)
[
− d0xz (ν1)

1+e cos(ν1) 0
]T
,

satisfying the equation 0 = d0xz (ν1) +M0(ν1)∆Vxz. �

Remark 3.1. Since the minimization problem in (3.2)contains `1-norm criteria (which are not strictly
convex), infinitely many solutions may exist. In order to enforce unicity, we could have taken the solution
with minimal `2-norm (which is strictly convex), but for the sake of brevity, we consider in the sequel
that in these special cases only one minimum is arbitrarily chosen.

To account for saturation, we define the following saturation function:

γ∆V : Rn\
{
~0
}
→ Rn

v 7→ ∆V
‖v‖∞

.v,
(3.3)

which is used to scale-down the impulses solutions of the optimization Problem (P), when solved
from Algorithm 1. These decoupled problems (lines 2 and 3) have at least one solution, as stated in the
following propositions.
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Proposition 3.2 (Minimal out-of-plane impulses). Given N ≥ 3, τI ∈ R>0 s.t. ∀k ∈ Z>0, τI 6= kπ, and
ν1, . . . , νN s.t. νk+1 = νk + τI , let

γy : R2 × R× . . .× R → RN
Dy(νN ), ν1, . . . , νN 7→ argmin∆Vy ‖∆Vy‖1

s.t. D+
y (νN ) = Dy(ν1) +My(ν1, . . . , νN )∆Vy ∈ SDy

(3.4)

Then, the function γy is well-defined in the sense that the feasible set of (3.4) is not empty, that is,
∀Dy ∈ R2, D∗y ∈ SDy 6= ∅, ∃∆Vy ∈ RN s.t. D∗y = Dy +My(ν1, . . . , νN )∆Vy.

Proof. The matrix My(ν1, . . . , νN ) has the following expression:

My(ν1, . . . , νN ) = k−2

[
− sin(ν1)

ρ(ν1) . . . − sin(νN )
ρ(νN )

cos(ν1)
ρ(ν1) . . . cos(νN )

ρ(νN )

]
.

This matrix has rank 2, since det(My(ν1, ν2)) = sin(ν2−ν1)
ρ(ν1)ρ(ν2) 6= 0 because of the hypothesis on ν1, . . . , νN .

Then, ∀Dy, D
∗
y ∈ R2 the vector ∆Vy = (MT

y My)−1MT
y (D∗y − Dy) is well-defined and satisfies D∗y =

Dy +My(ν1, . . . , νN )∆Vy. This is also particularly true if D∗y ∈ SDy 6= ∅. �

Proposition 3.3 (Minimal in-plane impulses). Given N ≥ 3, τI ∈ R>0 s.t. ∀k ∈ Z>0, τI 6= kπ and
ν1, . . . , νN s.t. νk+1 = νk + τI , let

γxz : R4 × R× . . .× R → R2N

Dxz(ν1), ν1, . . . , νN 7→ argmin∆Vxz ‖∆Vxz‖1
s.t. D+

xz(νN ) = Dxz(ν1) +Mxz(ν1, . . . , νN )∆Vxz ∈ SDxz
(3.5)

Then the function γxz is well-defined in the sense that the feasible set of (3.5) is not empty, that is,
∀Dxz ∈ R4, D∗xz ∈ SDxz 6= ∅, ∃∆Vxz ∈ R2N s.t. D∗xz = Dxz +Mxz(ν1, . . . , νN )∆Vxz.

Proof. Let us choose ∆Vxz as in (2.29). As demonstrated in Proposition 3.1 it is always possible to set
d+

0xz to any arbitrary value with a single impulse. Since M⊥0 (ν1, . . . , νN )λ has no influence on the first
entry of D∗xz − Dxz, we conclude that ∆V0 can be chosen to set the first entry of D∗xz − Dxz to any
arbitrary value.

Now, let us demonstrate that it is always possible to choose λ that allow us to set the other three
entries of D∗xz −Dxz to any arbitrary values. Computing MxzM

⊥
0 (ν1, . . . , νN ), we obtain:

MxzM
⊥
0 (ν1, . . . , νN ) = (k6(e2 − 1)2)−1


0 0 0 0 0 . . . 0 0

sin(ν1)
ρ(ν1) ? sin(ν2)

ρ(ν2) ? sin(ν3)
ρ(ν3) . . . ? sin(νN )

ρ(νN )
− cos(ν1)

ρ(ν1) ? − cos(ν2)
ρ(ν2) ? − cos(ν3)

ρ(ν3) . . . ? − cos(νN )
ρ(νN )

1+ρ(ν1)
ρ(ν1) ? 1+ρ(ν2)

ρ(ν2) ? 1+ρ(ν3)
ρ(ν3) . . . ? 1+ρ(νN )

ρ(νN )

 .
and this matrix has rank 3, since:

det




sin(ν1)
ρ(ν1)

sin(ν2)
ρ(ν2)

sin(ν3)
ρ(ν3)

− cos(ν1)
ρ(ν1) − cos(ν2)

ρ(ν2) − cos(ν3)
ρ(ν3)

1+ρ(ν1)
ρ(ν1)

1+ρ(ν2)
ρ(ν2)

1+ρ(ν3)
ρ(ν3)


 = −2sin(ν2 − ν1) + sin(ν3 − ν2)− sin(ν3 − ν1)

k18(e2 − 1)6ρ(ν1)ρ(ν2)ρ(ν3) (3.6)

= −8
sin ν2−ν1

2 sin ν3−ν2
2 sin ν3−ν1

2
k18(e2 − 1)6ρ(ν1)ρ(ν2)ρ(ν3) 6= 0, (3.7)

because of the hypothesis on ν1, . . . , νN .
This implies that ∀Dxz, D

∗
xz ∈ R4 it is possible to chose λ and ∆V0 in such a manner that ∆Vxz(λ) =

M⊥0 (ν1, . . . , νN )λ + ∆V0 satisfies D∗xz = Dxz + Mxz(ν1, . . . , νN )∆Vxz. This is also particularly true if
D∗xz ∈ SDxz 6= ∅. �

Remark 3.2. Similarly, in the minimization problems (3.4) and (3.5), one arbitrary minimum is chosen
when the problem is not strictly convex.
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Saturated impulses can be used to bring the vector of parameters closer to the admissible
set once periodicity is achieved : let be an arbitrary periodic relative trajectory parametrized by
D(ν1) and a sequence of impulses ∆V ∗ producing a trajectory D∗(νN ) belonging to the admissible set
SD:

SD 3 D∗(νN ) = ΦD(νN , ν1)D(ν1) +M(ν1, . . . , νN )∆V ∗.

As previously discussed, since D(ν1) is a periodic trajectory, ΦD(νN , ν1)D1(ν1) = D1(ν1) and we can
rewrite the previous equation as:

D∗(νN ) = D(ν1) +M(ν1, . . . , νN )∆V ∗.

If this sequence of impulses is scaled by a real number η between 0 and 1 (representing the saturation),
it generates a vector of parameters D◦(νN ), given by:

D◦(νN ) = D(ν1) + ηM(ν1, . . . , νN )∆V ∗.

This new vector of parameters D◦(νN ) is closer to the admissible trajectory D∗(νN ) than the original
D(ν1):

‖D∗(νN )−D◦(νN )‖2≤ ‖D∗(νN )−D(ν1)‖2,

since D∗(νN )−D(ν1) = M(ν1, . . . , νN )∆V ∗ and D∗(νN )−D◦(νN ) = (1− η)M(ν1, . . . , νN )∆V ∗;

It is possible to get closer and closer to the admissible set by iteratively applying at least
three saturated impulses within a true anomaly interval different from multiples of π :
this property is based on the fact that under these particular assumptions, the input matrices Mxz and
My have full rank (details in Prop. 3.2 and 3.3).

Now that all the necessary functions are defined, Algorithm 1 describing the proposed model predictive
control strategy is presented hereafter:

Algorithm 1: Model predictive control strategy
Require: X(ν1), ∆V , SD, τS , τP , τI ∈ R>0 s.t. ∀k ∈ Z>0, τI 6= kπ, N ≥ 3, ν1, . . . , νN s.t. νk+1 = νk + τI

1 D(ν1)← C(ν1)T (ν1)X(ν1);
2 ∆V ∗xz ← γxz(Dxz(ν1), ν1, . . . , νN );
3 ∆V ∗y ← γy(Dy(ν1), ν1, . . . , νN );

// If the saturation is violated by the in-plane impulses
4 if ‖∆V ∗xz‖∞> ∆V then

// If the trajectory is periodic
5 if d0xz (ν1) == 0 then
6 ∆V ∗xz ← γ∆V

(∆V ∗xz)
// If the trajectory is not periodic

7 else
8 ∆V ∗y ← 0;
9 ∆V ∗xz ← γp(d0xz (ν1), ν1);

10 if ‖∆V ∗xz‖∞> ∆V then
11 ∆V ∗xz ← γ∆V

(∆V ∗xz);
12 apply impulse ∆V ∗xz and ∆V ∗y at ν1
13 ν1 ← ν1 + τP ; // wait τP before call algorithm again
14 stop ; // end of algorithm
15 end

// If the saturation is violated by the out-of-plane impulses
16 if ‖∆V ∗y ‖∞> ∆V then
17 ∆V ∗y ← γ∆V

(∆V ∗y );
18 end
19 apply impulses ∆V ∗xz and ∆V ∗y at ν1 . . . νN

20 ν1 ← νN + τS ; // wait τS before call algorithm again
21 stop ; // end of algorithm

Algorithm 1 takes as input a relative state in the LVLH framework X(ν1), a saturation threshold
∆V , a non-empty admissible set SD described by x, x, y, y, z, z, a sequence of N true anomaly instants
ν1, . . . , νN equally spaced by τI , the true anomaly interval between impulses to generate a periodic
trajectory τP and the true anomaly interval between sequences of impulses τS . Consecutive calls of this
algorithm produce a pattern of impulsive velocity corrections similar to the one presented in Fig. 4.
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Figure 4: Pattern of impulsive velocity corrections along the true anomaly for a number of impulses N = 3.

3.1 Proof of convergence and invariance

In this section we prove the stability of previously described control strategy by demonstrating that the
iterative application of the command actions computed in Algorithm 1 produces a sequence of states
(Dk)k∈N that converges to an element of SD. Moreover, the admissible set is proved to be invariant
under the action of the proposed controller, which garantees that the state remains in the admissible set
once the convergence is established.

In Algorithm 1, if no saturation occurs, the convergence of the state D to the admissible set SD
is trivial (by definition, one single call of γxz and γy is necessary to produce an admissible state D).
However, for the cases in which the magnitude of the computed impulses goes beyond the saturation
threshold, the stability proof is based on a geometrical property of convex sets: the idea is to prove that
for a given convex K ⊂ Rn and any three elements A,A′ , C ∈ Rn such that A ∈ Rn\K, C ∈ K and
A
′ = C + λ(A−C), 0 < λ < 1, the distance from A to K is less than the distance from A

′ to K (in the
sense of the norm ‖ · ‖2):

Proposition 3.4. Let be K ⊂ Rn convex, A ∈ Rn\K, C ∈ K, B = argmin
ξ∈K

‖ξ − A‖2, 0 < λ < 1,

A
′ = C + λ(A− C), B′ = argmin

ξ∈K
‖ξ −A′‖2. Then, dist

K
(A′) = ‖B′ −A′‖2< ‖B −A‖2= dist

K
(A).

Figure 5: Illustration of points A, A′ , B, B′′ , C and convex K

Proof. We define B′′ = C + λ(B − C) (see Figure 5). Since K is convex and B
′′ is between B and C,

B
′′ ∈ K. By developing the difference B′′ −A′ , we have that:

B
′′
−A

′
= λ(B −A)⇒ ‖B

′′
−A

′
‖2= λ‖B −A‖2.

But since B′ is the projection of A′ onto K, we obtain:

‖B
′
−A

′
‖2≤ ‖B

′′
−A

′
‖2= λ‖B −A‖2⇒ ‖B

′
−A

′
‖2< ‖B −A‖2.

�

We split the proof of stability in two parts: first we show that Algorithm 1 brings the out-of-plane
related entries Dy to an element of SDy ; then we prove that Algorithm 1 brings the in-plane related
entries Dxz to an element of SDxz :
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3.1.1 Convergence of the out-of-plane motion:

In the following proposition, the sequence (φk)k∈N represents the iterative application of the control
Algorithm 1 on the state Dy related to the out-of-plane motion:

Proposition 3.5 (Convergence of the out-of-plane trajectory). Let be Dy ∈ R2, ν, τI , τS ∈ R>0 s.t.
∀k ∈ Z>0, τI 6= kπ, N ≥ 3 and SDy 6= ∅. Then, the following sequence:

(φk)k∈N :=


φ0 = Dy,

φk = φk−1 +My(ν(1)
k , . . . , ν

(N)
k )∆Vyk , if ‖∆Vyk‖∞≤ ∆V

φk = φk−1 +My(ν(1)
k , . . . , ν

(N)
k )γ∆V (∆Vyk), if ‖∆Vyk‖∞> ∆V

,

where ν(i)
k = ν + (i − 1)τI + (k − 1)τS and ∆Vyk = γy(φk−1, ν

(1)
k , . . . , ν

(N)
k ), converges to an element of

SDy .

Proof. From Proposition 3.2, the function γy returns a sequence of impulses that generates an admissible
trajectory, i.e. φk = φk−1 + My(ν(1)

k , . . . , ν
(N)
k )∆Vyk ∈ SDy . Then, if for some k∗ the impulse ∆Vyk∗

respects the saturation constraint, we have that ∀k ≥ k∗, φk ∈ SD.
However, suppose that the saturation is always violated for any k ∈ N (worst case scenario). By

writing the expressions of φk considering the non-scaled and the scaled sequence of impulses, we obtain:

φ̄k = φk−1 +My(ν(1)
k , . . . , ν

(N)
k )∆Vyk

φk = φk−1 +My(ν(1)
k , . . . , ν

(N)
k )∆Vyk∆V /‖∆Vyk‖∞

By manipulating the previous equations, we obtain the following expression:

φ̄k − φk = (1−∆V /‖∆Vyk‖∞)(φ̄k − φk−1)

From the saturation hypothesis we have that ∆V < ‖∆Vyk‖∞ and consequently:

‖φ̄k − φk‖2 = (1−∆V /‖∆Vyk‖∞)‖φ̄k − φk−1‖2< ‖φ̄k − φk−1‖2

Since φ̄k belongs to SDy , which is a convex set, from Proposition 3.4 we conclude that:

dist
SDy

(φk) ≤ (1−∆V /‖∆Vyk‖∞) dist
SDy

(φk−1) < dist
SDy

(φk−1)

We then define the following sets:

Pk :=
{
D ∈ R2

∣∣∣∣ dist
SDy

(D) ≤ dist
SDy

(φk−1)
}
,

Qk :=
{

∆Vy ∈ R2 ∣∣ ∃ ν ∈ R, ∃D ∈ Pk s.t. ∆Vy = γy(D, ν, . . . , ν + (N − 1)τI)
}
,

and ∆V ?yk := max
∆Vy∈Qk

‖∆Vy‖∞. One can remark that since dist
SDy

(φk) < dist
SDy

(φk−1), the sets Qk form a

sequence of inclusions Qk+1 ⊆ Qk and, consequently, ∆V ?yk+1
≤ ∆V ?yk . Now let us define the following

two sequences:

(ak)k∈N :=
{

a0 = dist
SDy

(φ0),

ak = αak−1
and (bk)k∈N :=


b0 = dist

SDy
(φ0)

bk = dist
SDy

(φk−1)

where α = (1 − ∆V /∆V ?y1
). The sequence (ak)k∈N has a general term of the form ak = αk a0 and

converges to zero when k tends to infinite: α < 1 ⇒ ak →
k→∞

0. The second sequence represents the
distance of the terms of the sequence φk to the admissible set SDy . Since we suppose that the saturation
is always violated, we have the following inequalities:

∆V < ‖∆Vyk‖∞< ∆V ?yk ≤ ∆V ?y1
, ∀k ∈ N
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Then, since dist
SDy

(φk) ≤ (1−∆V /‖∆Vyk‖∞) dist
SDy

(φk−1) and ∀k ∈ N, (1−∆V /‖∆Vyk‖∞) < α, by com-

paring the sequences (ak)k∈N and (bk)k∈N we prove that bk →
k→∞

0, which is equivalent to dist
SDy

(φk) →
k→∞

0.

�

By demonstrating that the sequence (φk)k∈N converges to a point in the admissible set we prove that
the MPC strategy is convergent for the out-of-plane motion.

3.1.2 Convergence of the in-plane motion:

If the initial state Dxz is not periodic and Algorithm 1 does not produce a sequence of impulses that
respects the saturation threshold, the while loop described in lines 10-23 is executed with the goal
of generating a periodic trajectory. In the following proposition, the sequence (θk)k∈N represents the
behavior of the first entry of the state vector Dxz during the execution of this while loop:

Proposition 3.6 (Convergence to a periodic trajectory). Let be d0xz ∈ R, ν ∈ R, τP ∈ R>0. Then, the
sequence (θk)k∈N defined by:

(θk)k∈N :=


θ0 = d0xz ,

θk = θk−1 +M0(νk)∆Vxzk , if ‖∆Vxzk‖∞≤ ∆V
θk = θk−1 +M0(νk)γ∆V (∆Vxzk), if ‖∆Vxzk‖∞> ∆V

,

where ∆Vxzk = γp(θk−1, νk) and νk = ν + (k − 1)τP , converges to 0.

Proof. The proof is mutatis mutandis similar to that presented in Proposition 3.5. �

By demonstrating that the sequence (θk)k∈N converges to zero, we prove that iterative calls of the
MPC strategy produces a periodic trajectory. Once the trajectory becomes periodic, the behavior of the
state Dxz under iterative calls of Algorithm 1 can be represented by the sequence (ϕk)k∈N introduced in
the following proposition:

Proposition 3.7 (Convergence of the in-plane trajectory). Let be Dxz ∈ R4 s.t. d0xz = 0, ν, τI , τS ∈ R>0
s.t. ∀k ∈ Z>0, τI 6= kπ, N ≥ 3 and SDxz 6= ∅. Then, the following sequence:

(ϕk)k∈N :=


ϕ0 = Dxz,

ϕk = ϕk−1 +Mxz(ν(1)
k , . . . , ν

(N)
k )∆Vxzk , if ‖∆Vyk‖∞≤ ∆V

ϕk = ϕk−1 +Mxz(ν(1)
k , . . . , ν

(N)
k )γ∆V (∆Vxzk), if ‖∆Vxzk‖∞> ∆V

,

where ν(i)
k = ν + (i− 1)τI + (k− 1)τS and ∆Vxzk = γxz(ϕk−1, ν

(1)
k , . . . , ν

(N)
k ), converges to an element of

SDxz .

Proof. The proof is mutatis mutandis similar to that presented in Proposition 3.5. �

By demonstrating that the sequence (ϕk)k∈N converges to a point in the admissible set, we prove
that the MPC strategy is convergent for the in-plane motion.

3.1.3 Invariance

So far we established the convergence of the vector of parameters to an element of the admissible set.
Now let us prove that once an admissible trajectory is obtained, it is preserved by the proposed model
predictive control algorithm. But first, let notice that the SD is naturally invariant as a subset of the
invariant set of periodic orbits.

Proposition 3.8 (Invariance). The set SD is invariant under the action of the instructions defined in
Algorithm 1.
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Proof. This is evident: since D ∈ SD ⇒ d0 = 0 (periodicity), the function γp is never called; the functions
γy and γxz compute the fuel-optimal sequence of impulses that generate a trajectory respecting the out-
of-plane and the in-plane space constraints respectively. But since

D ∈ SD ⇒ x ≤ x(ν) ≤ x, y ≤ y(ν) ≤ y, z ≤ z(ν) ≤ z, ∀ν,

the functions will return a null sequence of impulses. �

4 Finite descriptions of the space constraints

As previously discussed in Section 2.2, the infinitely many affine inequalities in the description of the
admissible set (see Eq. 2.11) are hard to be accounted in practice. Moreover, although the functions γy
and γxz in (3.4) and (3.5) were defined as the solutions of optimization problems whose the feasible sets
are the projections of the admissible set in the out-of-plane and in-plane directions, practical ways to
compute these solutions were not discussed. Hereafter, we present two different finite descriptions for the
admissible set and the respective methods employed on the resolution of the their associated fuel-optimal
impulsive optimization problems.

4.1 SDP description of periodic space costrained relative trajectoires

Deaconu presents in [8, 9, 10] a finite mathematical description of the periodic relative trajectories
respecting polytopic space constraint. This description is obtained by performing a variable change that
converts each one of the ”belonging to one side of the plane” constraints into one polynomial non-negative
constraint; after that, we apply the result demonstrated by Nesterov in [26], that links the univariate
polynomial non-negativity to the existence of a semi-definite positive matrix whose entries are related
to the coefficients of the polynomial. By performing variable changes, the space-constraints inequalities
in (2.3) can then be reformulated as:

Γx(s) ≥ 0, Γx(s) ≥ 0, Γy(s) ≥ 0, Γy(s) ≥ 0, Γz(s) ≥ 0, Γz(s) ≥ 0, ∀s ∈ R. (4.1)

Let be γw the vector of coefficients of the polynomial Γw in (4.1). Applying Nesterov results [26,
Theorem 17.10], we finally obtain the following novel description for the admissible set:

SD =
{
D ∈ R6 ∣∣ d0 = 0, ∃Yw � 0 s.t γw = Λ∗(Yw), w ∈

{
x, x, y, y, z, z

}}
(4.2)

where the operator Λ∗ is defined by:

Λ∗(Y )(j) = tr(Y Hm,j), j = 1, . . . , 2m+ 1 (4.3)

and Hm,j ∈ R(m+1)×(m+1) are the Hankel matrices that contain ones on the j-th anti-diagonal and zeros
elsewhere. The associated fuel-optimal impulsive optimization problem is formulated as follows:

Problem 2. Given N ≥ 3, ν1 < . . . < νN ∈ R>0, D(ν1) ∈ R6, e, a, µ ∈ R, find ∆V ∗ ∈ R3N such that:

∆V ∗ = argmin
∆V

J(∆V )

s.t.


D(ν1) = D1
D+(νN ) = ΦD(νN , ν1)D(ν1) +M(ν1, . . . , νN ) ∆V
d+

0 (νN ) = 0
∃Yw � 0 s.t. γw(D+(νN )) = Λ∗(Yw) , w ∈

{
x, x, y, y, z, z

}
(P.SDP)

This problem can be solved by dedicated semi-definite program (SDP) solvers (SDPA, SeDuMi,
SDPT3, CSDP, etc).

4.2 Envelope description of periodic space costrained relative trajectoires

In [3] a redefinition of the set of periodic space-constrained trajectories based on the evaluation of convex
semi-algebraic functions is provided by finding the envelope of the curves defining the boundary of the
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so-called admissible set. Therein, the periodic vectors of parameters D ∈ R6, s.t. d0 = 0 respecting the
space-constraints inequalities (2.3) are such that:

gx(D) ≤ 0, gx(D) ≤ 0, gy(D) ≤ 0, gy(D) ≤ 0, gz(D) ≤ 0, gz(D) ≤ 0, (4.4)

where the functions gw(D) are convex but non-differentiable functions. Hence the admissible set can be
redefined as:

SD =
{
D ∈ R6 ∣∣ d0 = 0, gw(D) ≤ 0, w ∈

{
x, x, y, y, z, z

} }
(4.5)

and the associated fuel-optimal impulsive optimization problem:
Problem 3. Given N ≥ 3, ν1 < . . . < νN ∈ R>0, D(ν1) ∈ R6, e, a, µ ∈ R, find ∆V ∗ ∈ R3N such that:

∆V ∗ = argmin
∆V

J(∆V )

s.t.


D(ν1) = D1
D+(νN ) = ΦD(νN , ν1)D(ν1) +M(ν1, . . . , νN ) ∆V
d+

0 (νN ) = 0
gw(D+(νN )) ≤ 0, w ∈

{
x, x, y, y, z, z

}
(P.ENV)

This problem is characterized by convex but non-differentiable functions in its criterion and in the
description of its feasible set. It can be converted into an unconstrained optimization problem via penalty
methods and the resulting problem can be solved by sub-gradient methods (see [3] for details).

5 Simulations and Results

Hereafter we present the results obtained by employing the proposed MPC algorithm to control the
relative motion between spacecraft during the rendezvous hovering phases.

5.1 Hardware-in-the-loop simulations

The tests are performed in a hardware-in-the-loop environment: each call of the MPC algorithm is
executed on a board dedicated to space application; the computed control actions are sent via network
connection to a computer running a Matlab/Simulink model that simulates the relative dynamics between
spacecraft (see Fig. 6).

Figure 6: Hardware-in-the-loop environment: network connection between board and simulator via user datagram protocol.

5.1.1 Software

Both the SDP and the envelope (hereafter we use the abbreviation ENV) approaches are adopted to
model the fuel-optimal control problem. The SDP problems are solved via the CSDP solver [5], using
the standard options and parameters. The envelope problems are solved by a combination of penalty
method with iterative optimization algorithms based on sub-gradients: the constraints are weighted
by a coefficient equivalent to 108 and added to the objective function and the resulting unconstrained
problem is solved by performing (at most) 50 iterations of the BFGS method1 presented by Lewis and
Overton [19, Algorithm 2.1], followed by 500 iterations of the sub-gradient method presented by Shor
[31, Theorem 2.2] (see [3] for details). All embedded programs are coded in C.

1A version of the algorithm HANSO v2.2 translated to C is used (http://www.cs.nyu.edu/overton/software/hanso/).
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5.1.2 Hardware

The board is an AEROFLEX GAISLER GR-XC6S that contains a synthesized LEON3 microprocessor
[27] and supports a IEEE-754 compliant floating-point unit with single and double precision (32 and
64-bit floats). It has a 128 Mbyte DDR2 RAM, a 8 Mbyte PROM and a 8 Mbyte SPI PROM memories
and runs a Linux 2.6 environment that simulates the performance of devices usually employed in space
applications [12]. The embedded libraries occupy 12 Mbyte and the C binary executables have 44 Kbyte
(ENV) and 148 Kbyte (SDP).

5.1.3 Simulating the relative dynamics

Two types of simulator are used: a linear simulator computing the evolution of the relative motion via the
propagation of the vector of parameters presented in equations 2.26; and a nonlinear simulator [1] based
on the Gauss planetary equations for the relative motion [33, 34] that takes into account the effects of
disturbances, such as the atmospheric drag, Earth’s oblateness, uncertainties on the measurement of the
relative state (we consider a white noise on position and velocity characterized by the following standard
deviation: dp = 10−2 m, dv = 10−5 m/s), execution errors on the orientation and magnitude of applied
impulsive velocity corrections (we consider a mismatch of ±1◦ in orientation and ±1% in magnitude).
The linear simulations are performed in order to verify the theoretical results about the stability of the
proposed algorithm. The nonlinear simulations assess the robustness of the proposed algorithm under
disturbances and nonlinearities that are not taken into account by the linear model.

5.1.4 Scenarios

In order to compare the obtained results to those presented in [7], the same scenarios (based on the
PRISMA mission [4]) are studied: Earth’s gravitational constant: µ = 3.986004418.1014; leader’s orbital
parameters: e = 0.004, a = 7011 km, i = 98◦, Ω = 0◦, ω = 0◦; leader’s initial true anomaly ν0 = 0◦;
number of impulses adopted is N = 3; true anomaly interval between impulses τI = 120◦; true anomaly
interval between sequence of impulses τS = 120◦; true anomaly interval to achieve periodicity τP = 3, 6◦;
space constraints: x = 50, x = 150, y = −25, y = 25, z = −25, z = 25; propellers saturation threshold:
0.5 m/s; duration of simulation: 10 orbital periods; initial relative state:

X01 = [ 400, 300, −40, 0, 0, 0]T
X02 = [ −800, 600, 200, 0, 0, 0]T
X03 = [ −1500, 1300, 150, 0, 0, 0]T
X04 = [ 5000, 1300, 500, 0, 0, 0]T

,

where the first three components of each vector represent the relative LVLH positions (in meters) and
the last three, the relative LVLH velocities (in meters per second);

5.2 Results analysis

5.2.1 Convergence definition

To evaluate the convergence, we extend the use the mismatch ratio η presented in [7]. The mismatch
ratio is given by:

η(ν) =
dist
SD

D(ν)

dist
SD

D(ν0) =
dist
SD

C(ν)T (ν)D(ν)

dist
SD

C(ν0)T (ν0)D(ν0) , (5.1)

which is the ratio between the distance to the admissible set of the current and initial vector of parameters.
For a given δ ∈ [0, 1] the convergence time Tc is defined as:

Tc(δ) ∈ R>0 s.t. ∀ν ≥ Tc, η(ν) ≤ δ, (5.2)

and we set δ to 5%.
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5.2.2 Consumption, convergence time and running time

Convergence (δ < 5%) and hovering are obtained for all performed simulations. Table 1, present the
obtained fuel-consumption J . From this point of view, the SDP-based controller is the most performing
with respect to the ENV-based controller. This is due to the fact that the limited number of iterations
of the BFGS and sub-gradient algorithms generate suboptimal solutions of (P.ENV), while the SDP
approach always returns the optimal solution of (P.SDP). Nevertheless, both approaches engender fuel-
consumptions that are approximatively half of the lower values produced by any of the three control laws
proposed in [7].

Convergence times Tc for each simulations are reported in Table 2. The non linear simulation envi-
ronment has little impact on convergence performances except for the initial condition X04. Comparing
with the hybrid controller developed in [7], the proposed approaches are not generally the best. For
instance, for X01 the control law B in [7] generates a convergence time equal to 0.34 orbits, while the
proposed SDP and ENV approaches take twice as much time to converge. This indicates that the strat-
egy that we propose gives more emphasis to reducing the consumption than producing short convergence
times. Besides, when the initial condition recede from the hovering zone, the MPC controller abilities
to account for input constraints permit to ensure the convergence and limit the convergence time. On
the other hand, the behavior of hybrid controllers is degraded in terms of convergence and consumption
due to the presence of the saturation (one of the examples of application of the hybrid controller even
diverges).

Table 1: Consumption J (m/s)

Initial SDP ENV
condition LIN NLIN LIN NLIN
X01 0.45 0.47 0.53 0.58
X02 1.20 1.25 1.31 1.32
X03 2.21 2.26 2.31 2.38
X04 4.75 4.71 5.41 6.69

Table 2: Convergence time Tc (number of orbits)

Initial SDP ENV
condition LIN NLIN LIN NLIN
X01 0.66 0.66 0.64 0.69
X02 0.66 0.66 0.64 0.69
X03 1.65 1.65 1.65 1.65
X04 2.69 1.70 1.67 2.66

Table 3 and 4 permit to compare the numerical performance both SDP and ENV based controllers.
For both approaches, the average time to compute a sequence of N = 3 impulses is lower than 3.0 seconds
and the maximal running time is never longer than 4.0 seconds (this time is negligible when compared
to the orbital period T = 2π

√
a3/µ ≈ 5842 seconds). Moreover, the amount of memory allocated by the

execution of the binaries are 5056 Kbyte for the SDP approach and 5584 Kbyte for the ENV approach
- these are reasonable values compared to the available memory of approximatively 90 Mbyte.

Table 3: Average running time (s)

Initial SDP ENV
condition LIN NLIN LIN NLIN
X01 2.82 2.94 0.30 2.71
X02 2.82 2.86 0.31 2.68
X03 2.83 2.87 0.41 2.52
X04 2.70 2.89 1.54 2.81

Table 4: Maximal running time (s)

Initial SDP ENV
condition LIN NLIN LIN NLIN
X01 2.93 3.31 3.05 2.91
X02 2.96 3.23 3.07 3.09
X03 2.93 3.05 3.23 3.12
X04 2.79 3.54 3.29 3.37

5.2.3 Relative trajectories, impulses and distance to the admissible set

In Figures 7 - 10, we show the resulting 3D relative trajectories (we zoom into the hovering region),
the computed and applied impulses for the nonlinear simulations and the evolution of the mismatching
ratio η(ν) for the initial conditions X03 and X04. By observing the relative trajectories obtained for the
linear simulations, we notice that the relative movement converges to a periodic trajectory included in
the hovering zone and, once this trajectory is reached, it remains unchanged - this fact illustrates the
convergence and invariance results demonstrated in Prop. 3.5 - 3.8. The same behavior, however, is not
observed for nonlinear simulations: due to the presence of disturbances and uncertainties, the control
actions are not able to produce perfect periodic orbits. This is also observed in Fig. 11a where for
the nonlinear simulation, the mismatch ratio oscillates close to zero, but never reaches it. Moreover,
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although some impulses are saturated (Fig. 7b, 8b, 9b and 10b), the convergence is achieved for both
linear and nonlinear simulations.

(a) 3D Relative Trajectory. (b) Computed and applied impulses
during nonlinear simulation.

(c) Convergence to admissible set.

Figure 7: Results for trajectory X03 (SDP approach).

(a) 3D Relative Trajectory. (b) Computed and applied impulses
during nonlinear simulation.

(c) Convergence to admissible set.

Figure 8: Results for trajectory X04 (SDP approach).

(a) 3D Relative Trajectory. (b) Computed and applied impulses
during nonlinear simulation.

(c) Convergence to admissible set.

Figure 9: Results for trajectory X03 (ENV approach).

(a) 3D Relative Trajectory. (b) Computed and applied impulses
during nonlinear simulation.

(c) Convergence to admissible set.

Figure 10: Results for trajectory X04 (ENV approach).
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(a) Effect of disturbances in nonlinear simulations. (b) Impulses producing a periodic trajectory.

Figure 11: Details of results obtained for trajectory X04 (SDP approach).

Figure 12: Trajectory X04, linear simulation. Decrease of the mismatch ratio after each sequence of 3 impulses (SDP
approach).

In Fig. 11b we show in details the four initial impulses applied in order to reduce the absolute value
of d0 (these impulses are computed via γp and are separated by true anomaly intervals of τP , indicated
in the figure; for nonlinear simulations, due to the disturbances, the condition d0 = 0 is never reached,
being therefore replaced by another condition |d0|< threshold). In Fig. 12 we show that after each
sequence of N = 3 impulses, the distance to the admissible set decreases (indicated by the dotted lines).
Furthermore, during the interval between sequences of impulses (indicated by τS and the shaded zones),
the mismatch ratio remains constant.

5.2.4 Impact of parameters on fuel-consumption

Hereafter we study the effect of some parameters (eccentricity, number of impulses, initial true anomaly
and the three true anomaly intervals τP , τI , τS) on the total fuel-consumption. We perform linear
simulations using the SDP approach for the four initial states X01 − X04; one single parameter varies
at time and the others are kept at the same values employed in the previous simulations. The obtained
results are presented in Fig. 14 - 18.

Fig. 13 indicates that a small number of impulses should be chosen, since the fuel-consumption
increases with the growth of this parameter. The augmentation of the fuel-consumption with the increase
of the eccentricity (Fig. 14) or with the reduction of the interval between impulses (Fig. 15) are consistent
with results previously presented in the literature [8, Section 6.4]. Different choices of initial true anomaly
produce a sinusoidal profile for the fuel-consumption, which implies the existence of a fuel-optimal choice
for the initial firing instant ν0 (Fig. 16). In Fig. 17, the consumption increases until it reaches its
maximum around τp = 2.4◦ or 0.042 rad, then starts to decrease; in order to minimize consumption and
convergence time, this parameter should be set to the smallest value possible, which is defined by the
physical limitations of the spacecraft propellers. The profile of consumption obtained by varying the
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interval between sequences of impulses does not present a particular shape or behavior and therefore no
general conclusion can be obtained from it (Fig. 18). Remark: in Fig. 16 - 18, for each initial state,
the fuel-consumptions are normalized between 0 and 1.

Figure 13: Impact of number of im-
pulses on fuel-consumption.

Figure 14: Impact of eccentricity on
fuel-consumption.

Figure 15: Impact of true anomaly
interval between impulses on fuel-
consumption.

Figure 16: Impact of initial true
anomaly on fuel-consumption.

Figure 17: Impact of true anomaly
interval between impulses to gen-
erate peridic trajectories on fuel-
consumption

Figure 18: Impact of true anomaly
interval between sequences of im-
pulses on fuel-consumption

6 Conclusions

In this article, a new model predictive control strategy is proposed for the impulsive spacecraft rendezvous
hovering phases. A theoretical stability proof is provided, demonstrating that, even when the saturation
of the propellers is taken into account, the proposed strategy produces a sequence of control actions
generating a periodic relative trajectory included in the hovering region.

Hardware-in-the-loop simulations using a LEON3 synthesized microprocessor reveal that although
the proposed approach may produce greater convergence times, it is more efficient with respect to fuel-
consumption than other methods proposed in the literature. Moreover, the timings obtained during
these tests bring out the fact that this approach can be efficiently embedded in space dedicated devices.
Finally, an analysis of the impact of the parameters rendezvous scenarios on the fuel-consumption is also
presented.

Future works should focus in investigating the robustness of the proposed controller from a theoretical
point of view, providing, for example, an idea of the influence of the nonlinearities, disturbances and
scenario parameters on the stability of the method.
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