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Stable Model Predictive Strategy for Rendezvous

Hovering Phases Allowing for Control Saturation

Paulo R. Arantes Gilz∗, Mioara Joldes†, Christophe Louembet‡, Frédéric Camps§

LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Abstract

This paper presents a model predictive control strategy for the spacecraft rendezvous hovering

phases. Using a sequence of impulsive velocity changes, the spacecraft is controlled to reach and

remain on a periodic trajectory inside a given box-type hover zone, while minimizing the fuel con-

sumption. The path constraints (box-type and periodicity) are satisfied continuously in time, based

on a particular parametrization of the linearized relative spacecraft trajectories. The control sat-

uration constraint is enforced by re-planning. First, a sequence of saturated impulsive controls is

selected such that the spacecraft gets on a periodic trajectory. Second, a fixed-length sequence of

saturated impulses brings the spacecraft closer to the hover zone. The convergence of this approach

is proved. Numerical methods are proposed to solve the required constrained optimization problems.

Finally, hardware-in-the-loop simulations, using a synthesized LEON3 microprocessor, are performed

to assess the efficiency and robustness of the proposed approach.

Nomenclature

|| · ||i `i-norm

| · | absolute value

0n null matrix of dimension n× n

Ã(ν), AD(ν) dynamics matrices for the states X̃(ν) and D(ν)

a semi-major axis (m)
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B input matrix for X(ν)

C(ν) variable transformation matrix from X̃(ν) to D(ν)

D(ν) state that parametrizes the relative trajectories

∆V impulsive velocity corrections (m/s)

e eccentricity

η(ν) mismatch between initial and current distance to SD

In identity matrix of dimension n

Jν0(ν) divergent integral term (rad)

J(∆V ) fuel-consumption (m/s)

ν true anomaly (rad)

ΦD(νi, νj) state-transition matrix for D(ν)

SD admissible set

sgn(·) sign function

T (ν) variable transformation matrix from X(t) to X̃(ν)

Tc convergence time (rad)

τI true anomaly interval between impulses (rad)

τP true anomaly interval between impulses to generate periodic trajectories (rad)

τS true anomaly interval between sequences of impulses (rad)

µ Earth’s gravitational constant (m3/s2)

X̃(ν) transformed relative positions and velocities (m and m/rad)

X(t) relative positions and velocities in the LVLH frame (m and m/s)

1 Introduction

Mastering the spacecraft rendezvous was crucial during the space conquest era and nowadays opens new

economical opportunities for the space industry. In fact, numerous space tugs have been developed by

the different actors in this industry. In particular, a key feature for mission success is the autonomy:
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the ability of the involved spacecraft to compute their guidance and control commands without human

intervention.

The work presented in this paper aims to design a consumption-optimal controller compatible with

the performance of a space flight certified computation board. This work is focused on the phases of the

rendezvous problem in which a chaser spacecraft must hover inside a restricted tolerance zone in space

(we assume a rectangular cuboid) defined in the local orbital frame of a leader spacecraft - these are the

so-called “hovering” phases [1].

From the control point of view, the considered system is particular. First, the relative motion is

governed by Keplerian dynamics. Second, it is controlled by means of chemical thrusters, which are able

to provide high thrusts by mass ejection, but usually on a short time period. During the thrusting period,

the relative velocity of the spacecraft evolves very quickly with respect to the Keplerian dynamics. Thus,

the controlled system behavior can be represented by two dynamics with different time scales. Since the

time scale difference is large, the rapid evolution of the relative velocity can be seen as an instantaneous

change from the orbital dynamics perspective. Consequently, the control is considered as impulsive and

the controlled relative motion is regarded as an impulsive system [2, chapter 1].

A wide range of control frameworks exist for handling these systems, among which adaptive control

[3, 4], feedback impulsive control [5], Lyapunov-based non linear output feedback control [6], hybrid

control [7, Chapter 1] and model predictive control.

Since the late nineties, model predictive control (MPC) schemes for impulsive spacecraft rendezvous

have been developed with the aim of providing fuel-efficient and ”flyable” control algorithms (cf. the

recent review papers [8, 9]). In fact, its popularity comes from the ability to account for constraints

and uncertainties directly into the trajectory design thanks to the resolution of a constrained optimal

control problem. The latter problem has also been extensively studied in the last two decades from

different perspectives. On the one hand, the orbital elements have been exploited to design proximity

maneuvers under separation constraints with the advantages of accounting for orbital disturbances in

the dynamics [10, 11]. On the other hand, the use of Cartesian elements also led to numerous works.

First, the constrained optimal control problem has been converted into a linear program by means of

dynamics discretization [12, 13]. Then, an analytic transition matrix (see for instance [14] and references

therein) has been exploited to design impulsive maneuvers under the general Keplerian assumptions

[15]. Different safety requirements have been addressed in several works such as visibility constraints

[16], collision or plume avoidance [17, 18] or hovering [1]. In parallel, the effects of uncertainties on the

open-loop, such as navigation errors or maneuver mis-execution, have also been studied [18–20].

The literature is rich of model predictive control applications for spacecraft rendezvous. In fact, model

predictive control has been proven to ensure stability of the loop [21] even with the obstacle avoidance

requirements [22]. It can also provide robustness to identified perturbations [23] or to navigation errors
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[24]. While the robust stability can be derived from a theoretical point of view [25], the features of such

control schemes are lost if the recursive feasibility of the embedded programs can not be established.

The constraint tightening MPC, permits to ensure the recursive feasibility by a priori tightening the

constraints on the predicted states. The implementation of this technique necessitates either the existence

of a stabilizing state-feedback controller [23, 26] or the off-line computation of some controls [27, 28].

Concerning the disturbances rejection, [29] implements techniques of tube-based MPC [30, 31] for fixed-

time horizon rendezvous. With such an approach, the MPC controller avoids the open-loop propagation

of the uncertainties and limits the spread of perturbed trajectories [32].

Most of the above cited works implement the predictive control theory in order to achieve a stable

and robust closed loop. This fact often limits these approaches to linear time invariant Hill-Clohessy-

Wiltshire dynamics [33] (see for instance [17, 21, 22, 24]).

If time-varying Tschauner-Hempel dynamics [34] are considered, conventional guidance approaches

rely on constraints discretization for obtaining a tractable constrained optimization problem. A different

approach was proposed in [35] by one of the authors of this article. The idea is to account for path

constraints continuously in time, contrary to most techniques in literature, see [15, 16, 18, 23] and

references therein. On the same lines, a preliminary result of the current work was presented in [36].

This article presented a new guidance law which exploits insight on the dynamics structure of the

relative motion, like the periodicity of the Tschauner-Hempel dynamics and their analytic state transition

matrix [14].

The main contribution of this work is to provide an MPC control algorithm, whose convergence is proved

even if the hovering zone is unreachable because of control limitations. Our strategy aims at maintaining

the chaser in a given window thanks to some periodic orbits which correspond to equilibrium points

in the state space. A similar idea was proposed in [37] for different linear impulsive systems, in the

biomedical field.

The stability result is obtained by first discarding the saturation constraint from the constrained

optimal control problem, in order to ensure the recursive feasibility, and then scaling the obtained

control impulses, if they exceed the saturation threshold. Finally, we prove that employing a certain

sequence of such impulses ensures the convergence to (and the invariance with respect to) the hovering

zone.

In another related work [38], this problem is handled by considering impulsive systems as part of hybrid

systems [7, Chapter 1]. This resulted in several hybrid control laws, for which the ability to stabilize the

chaser vehicle around a given relative orbit was proven. However, this approach is not able to account

for any constraints on the state or command. Those hybrid controllers are implemented to assess the

relevance of the proposed predictive controller by means of comparisons.

Finally, an important contribution consists also in performing simulations in a hardware-in-the-loop
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fashion, following the framework of the tests carried out in [39, 40]. The control is computed on a syn-

thesized FPGA LEON3 board certified for spacecraft usage, while the space environment is simulated

on a high fidelity simulator [41]. The performances of the predictive controller are assessed by means of

non linear simulations featuring orbital disturbances, navigation and control execution errors.

In parallel with this work, the numerical efficiency of the programming instances on which the predictive

controller relies on, has been assessed in terms of numerical burden, by means of extensive runs and

compared to the classical scheme based on linear programming [42]. This study shows that accounting

for path constraints continuously in time (as in the proposed approach) and solving the discretized-

constraints instances by means linear programming, are both equivalent in terms of computation burden

and footprint. This strengthens the practical pertinence of the proposed method, since it has the advan-

tage of avoiding the systematic constraints violation due to discretization.

2 Modeling the rendezvous hovering phases problem

In this section we present the assumptions and equations employed in the modeling of the linearized

relative dynamics between spacecraft. Once this model is obtained, a parametrization of the periodic

space-constrained relative trajectories is deduced by performing transformations of the state variable.

These developments are employed in Section 3 for the formulation of the MPC scheme and its stabil-

ity proof, as well as in Section 2.7 for the conception of semi-algebraic check functions for the space

constraints.

2.1 Relative spacecraft motion

Figure 1 presents the frames used to model the relative motion between the leader Sl and the follower

Sf spacecrafts. The Earth-Centered Inertial and the Local Vertical / Local Horizontal (LVLH) frames

are respectively given by
{
O, ~I, ~J, ~K

}
and {Sl, ~x, ~y, ~z}.

Figure 1: Inertial and relative frames

The angle ν, between the direction of perigee and the leader’s position, is the true anomaly, 0 < e < 1
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is the leader orbit eccentricity, a is the leader orbit semi-major axis and µ is Earth’s gravitational constant.

Considering that ‖−−→OSl‖� ‖
−−→
SlSf‖ and assuming Keplerian orbits, the relative dynamics can be linearized

and described by the simplified linearized Tschauner-Hempel equations [34]:

X̃ ′xz(ν) =



0 0 1 0

0 0 0 1

0 0 0 2

0 3
ρν

−2 0


︸ ︷︷ ︸

Ãxz(ν)

X̃xz(ν), X̃ ′y(ν) =

 0 1

−1 0


︸ ︷︷ ︸
Ãy(ν)

X̃y(ν),
(1)

where (·)′ = d(·)
dν and ρν = ρ(ν) = (1 + e cos ν).

In (1), we explicitly split the equations to emphasize the fact that the so-called in-plane motion

(xz-plane) is decoupled from the out-of-plane motion (y-axis). The independent variable is the true

anomaly ν, since this often results in simplified computations. In particular, a closed-form transition

matrix Φ(ν, ν0), which describes the solution of equation (1) was proposed in [14]:

X̃(ν) = Φ(ν, ν0)X̃(ν0), ∀ν ≥ ν0. (2)

For a given time t, the change of variable from the LVLH state X(t) = [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]T

to the X̃(ν) vector can be performed via the following transformation:

X̃(ν) = T (ν)X(t), with T (ν) =

ρνI3 03

ρ′ν I3
(
k2ρν

)−1 I3

 , (3)

where k2 =
√

µ
a3(1−e2)3 .

During the rendezvous hovering phases, the follower spacecraft is required to remain in the interior of

a certain limited region of the space. We assume in the sequel that this hovering range is a rectangular

cuboid (tolerance box), in the LVLH frame:

x ≤ x(t) ≤ x y ≤ y(t) ≤ y z ≤ z(t) ≤ z, ∀t ≥ t0. (4)

In order to obtain a better-suited representation of these constrained relative trajectories, another

variable change [35, 43] is performed, which defines the so-called vector of parameters:

D(ν) = [d0(ν), d1(ν), d2(ν), d3(ν), d4(ν), d5(ν)]T . (5)

The idea is to obtain parametric expressions for the spacecraft relative positions by expanding the terms
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in equation (2) and then factoring out the terms related to the independent variable ν:

x̃(ν) = d1(ν0)(2 + e cν) sν − d2(ν0)(2 + e cν) cν + d3(ν0) + 3 (1 + e cν)2 d0(ν0)Jν0(ν),

ỹ(ν) = d4(ν0) cν + d5(ν0) sν ,

z̃(ν) = d1(ν0) (1 + e cν) cν + d2(ν0) (1 + e cν) sν − 3 e sν (1 + e cν) d0(ν0)Jν0(ν) + 2 d0(ν0),

(6)

where sν = sin(ν), cν = cos(ν) and Jν0(ν) is the only nonperiodic term, given by:

Jν0(ν) :=
∫ ν

ν0

dτ

ρ(τ)2 =

 2 e tan
(
x
2
)

(e2 − 1)
(

(1− e) tan
(
x
2
)2 + e+ 1

) − 2 arctanh
(

tan( x2 )√e−1
√
e+1

)
(e2 − 1)

3
2


ν

ν0

. (7)

This integral term also has a close-form expression with respect to the elapsed time t− t0 in seconds,

Jν0(ν) :=
√

µ

a3
t− t0

(1− e2)3/2 . (8)

The main advantage of the parametric expression (6) is that a periodic relative trajectory can be obtained

by requiring the parameter d0 to be zero, which cancels the effect of the drifting term Jν0(ν). The other

parameters also provide some physical description of the relative orbits (e.g., d3 represents a constant

offset on the x axis), but a formal link between their values and the shape of the resulting spacecraft

relative trajectory is not easy to establish.

Analogously, D(ν) can also be split into two vectors representing respectively the in-plane and the

out-of-plane motion: Dxz(ν) = [d0(ν), d1(ν), d2(ν), d3(ν)]T and Dy(ν) = [d4(ν), d5(ν)]T .

This state can be expressed in function of X̃ as follows:

Dxz(ν)= 1
e2 − 1



0 −(3 ecν+e2+2) ρ2
ν −esνρν

0 3(e+ cν) −(2cν+ec2ν+e) sνρν

0 3sν(ρν+e2)
ρν

−sν(2+ecν) 2e− cνρν

1 −3 esν(2+ecν)
ρν

esν(2+ecν) ecνρν−2


︸ ︷︷ ︸

Cxz(ν)

X̃xz(ν), Dy(ν)=

cν −sν

sν cν


︸ ︷︷ ︸

Cy(ν)

X̃y(ν).

(9)

A concise form of (9) is given by D(ν) = C(ν)X̃(ν). By noting that

det(C(ν)) = 1
1− e2 6= 0, for 0 ≤ e < 1,

one can conclude that matrix C(ν) defines a similar transformation and D is a proper state vector.

By manipulating equations (1) and (9) (see [43] for details), one can obtain the following dynamical
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system representing the evolution of state D:

D′xz(ν) =



0 0 0 0

0 0 0 0

− 3e
ρ2
ν

0 0 0

3
ρ2
ν

0 0 0


︸ ︷︷ ︸

ADxz (ν)

Dxz(ν), D′y(ν) =

0 0

0 0


︸ ︷︷ ︸
ADy (ν)

Dy(ν),
(10)

which can also be described by its transition matrix:

Dxz(ν) =



1 0 0 0

0 1 0 0

−3eJν0(ν) 0 1 0

3Jν0(ν) 0 0 1


︸ ︷︷ ︸

ΦDxz (ν,ν0)

Dxz(ν0), Dy(ν) =

1 0

0 1


︸ ︷︷ ︸
ΦDy (ν,ν0)

Dy(ν0).
(11)

Remark 2.1. Hereafter we use the notation C(ν), AD(ν) and ΦD(νN , νi) to refer to the concatenation

of the respective in-plane and out-of-plane matrices.

2.2 Impulsive control framework

In this work, impulsive control of the relative motion is considered. In fact, the chaser spacecraft is

moved by chemical engines that provide high level of thrust during a short time with respect to the

target orbital period. This leads to an extremely rapid change of velocity, which can be modeled as a

jump in the velocity history at time ti:

X+(ti) = X(ti) +B∆V (ti), (12)

where X+(ti) = limt→t+
i
X(t), B = [03 I3] and ∆V (ti) = [∆Vx(ti),∆Vy(ti),∆Vz(ti)]T . Applying the

changes of variable (3) and (9), an impulse at time νi produces a jump in the D state trajectory:

D+(νi) = D(νi) + C(νi)T (νi)B︸ ︷︷ ︸
BD

∆V (νi), (13)

where D+(νi) = limν→ν+
i
D(ν). Equation (13) also shows that a given impulsive control ∆V will have a

different impact, depending on the time of application, due to the time dependence of the input matrix

BD.

Finally, the controlled system can be described following the impulsive system formalism presented
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in [7, chapter 1]. This consists of: (i) a continuous-time differential equation that governs the motion

between impulses; (ii) a difference equation that states the instantaneous change when an impulsive

control occurs; (iii) a prescribed sequence of impulsive times:


D′(ν) = AD(ν)D(ν) ν 6= νi, i = 1, 2, . . .

D+(νi) = D(νi) +BD(νi)∆V (νi) ν = νi, i = 1, 2, . . .
(14)

Note that, if the impulsive system framework in the sense of [2, chapter 1] is adopted, the system (14)

can be viewed as a special case in the more general frame of hybrid dynamical systems [7]. Moreover, the

analytic transition matrix of the system (11) is exploited in the design of the model predictive controller.

Specifically, the state D right after a given a sequence of N impulses applied at ν1 . . . νN−1, νN , becomes:

D+(νN ) = ΦD(νN , ν1)D(ν1) +
N∑
i=1

ΦD(νN , νi)C(νi)T (νi)B︸ ︷︷ ︸
BD(νN ,νi)

∆V (νi), (15)

or, similarly, by splitting the dynamics into out-of-plane and in-plane motion, we obtain:

D+
xz(νN ) = ΦDxz (νN , ν1)Dxz(ν1) +

∑N
i=1BDxz (νN , νi) ∆Vxz(νi),

D+
y (νN ) = ΦDy (νN , ν1)Dy(ν1) +

∑N
i=1BDy (νN , νi) ∆Vy(νi),

(16)

where ∆Vxz(νi) = [∆Vx(νi), ∆Vz(νi)]T ,

BDxz (νN , ν) = 1
k2(e2 − 1)ρν



ρ2
ν −esνρν

−(2cν + ec2ν + e) sνρν

−sν(2 + ecν)− 3eJν(νN ) 2e− cνρν + 3e2sνρνJν(νN )

esν(2 + ecν) + 3Jν(νN ) ecνρν−2− 3esνρνJν(νN )


,

BDy (νN , ν) = 1
k2ρν

−sν
cν

 .

(17)

By introducing the matrices:

M(ν1, . . . , νN ) :=
[
BD(νN , ν1), . . . , BD(νN , νN )

]
,

Mxz(ν1, . . . , νN ) := [BDxz (νN , ν1), . . . , BDxz (νN , νN )],

My(ν1, . . . , νN ) := [BDy (νN , ν1), . . . , BDy (νN , νN )],
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and the vectors:

∆V :=
[
∆V (ν1), . . . ∆V (νN )

]T
,

∆Vxz :=
[
∆Vx(ν1), ∆Vz(ν1) . . . ∆Vx(νN ), ∆Vz(νN )

]T
,

∆Vy :=
[
∆Vy(ν1), . . . ∆Vy(νN )

]T
,

expressions (15) and (16) can be further simplified:

D+(νN ) = ΦD(νN , ν1)D(ν1) + M(ν1, . . . , νN ) ∆V,

D+
xz(νN ) = ΦDxz (νN , ν1)Dxz(ν1) + Mxz(ν1, . . . , νN ) ∆Vxz,

D+
y (νN ) = ΦDy (νN , ν1)Dy(ν1) + My(ν1, . . . , νN ) ∆Vy.

(18)

In what follows, the problem constraints are presented. They intervene in the constrained fuel-optimal

control problem that is to be solved at each call of the model predictive controller.

2.3 Thrusters, fuel-consumption and saturation

We suppose that the follower spacecraft has six identical thrusters, one pair symmetrically and oppositely

disposed by axis, as indicated in Fig. 2.

Figure 2: Thrusters arrangement

The fuel consumption for N instantaneous impulsive velocity corrections is then modeled as the sum

of the absolute value of the thrusts applied in each direction:

J(∆V ) =
N∑
i=1
‖∆V (νi)‖1=

N∑
i=1
|∆Vx(νi)|+|∆Vy(νi)|+|∆Vz(νi)|, (19)

and assuming that the saturation threshold for each thruster is ∆V > 0, this constraint is written as:

|∆Vx(νi)|≤ ∆V , |∆Vy(νi)|≤ ∆V , |∆Vz(νi)|≤ ∆V . (20)

10



2.4 Space constrained periodic relative trajectories

One is interested in obtaining periodic trajectories that is, X̃(ν + 2π) = X̃(ν), ∀ν, since this guarantees

that the relative motion remains bounded in absence of disturbances. Since the only non-periodic and

divergent term Jν0(ν) in the relative motion equations (6) always appears multiplied by d0, one can

deduce that a necessary and sufficient condition for this constraint to be satisfied is:

d0(ν0) = 0. (21)

Remark 2.2. Periodic trajectories produce no drift. A notable property of periodic trajectories is

that the corresponding state vector D(ν) remains constant for any value of ν since its dynamic matrix

AD(ν) has non-zero values only in its first column (see (10)).

By imposing d0 = 0 (periodicity condition) and using (3) and (9), the inequalities in (4) are rewritten

as:

x ≤ Fx(ν)T Dxz ≤ x

y ≤ Fy(ν)T Dy ≤ y, ∀ν,

z ≤ Fz(ν)T Dxz ≤ z

Fx(ν) = [ 0, (2+e cν)sν
1+e cν , −(2+e cν)cν

1+e cν , 1
1+e cν ]T

Fz(ν) = [ 0, cν , sν , 0 ]T

Fy(ν) = [ cν
1+e cν ,

sν
1+e cν ]T

(22)

The admissible set i.e. the set of states D (points in R6) that correspond to periodic relative trajec-

tories satisfying the inequalities in (22), is then defined as:

SD :=

D ∈ R6

∣∣∣∣∣∣∣∣∣∣
d0 = 0,

x ≤ Fx(ν)TDxz ≤ x

y ≤ Fy(ν)TDy ≤ y

z ≤ Fz(ν)TDxz ≤ z

,∀ν

 , (23)

and since the out-of-plane and in-plane dynamics can be decoupled, we also define:

SDy =
{
Dy ∈ R2 ∣∣ y ≤ Fy(ν)TDy ≤ y,∀ν

}
, (24)

SDxz =

Dxz ∈ R4

∣∣∣∣∣∣∣ d0 = 0,
x ≤ Fx(ν)TDxz ≤ x

z ≤ Fz(ν)TDxz ≤ z
,∀ν

 . (25)

Proposition 2.1. The admissible set SD is compact and convex.

Proof. The detailed proof is presented in Appendix A.1. �

The description of the admissible set previously presented consists in the evaluation of infinitely

many affine inequalities on the state D, which depends on ν. Although theoretically interesting, this
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description is not practical from a numerical point of view, since the infinitely many constraints are hard

to be accounted for, when employed in the formulation of optimization problems. In Sections 2.6 and

2.7, alternative finite descriptions1 are presented.

2.5 Fuel-optimal impulsive control problem

Once the mathematical models for the evolution of the D state and for the constraints are obtained

(Sections 2.3 and 2.4), we can formulate the fuel-optimal impulsive control problem that is solved at

each call of the MPC algorithm:

Problem 1. Given N ≥ 3, ν1 < . . . < νN ∈ R>0, D(ν1) ∈ R6, e ∈ R[0,1], a, µ ∈ R>0, find ∆V ∗ ∈ R3N

such that:

∆V ∗ = argmin
∆V

J(∆V )

s.t.


D(ν1) = D1

D+(νN ) = ΦD(νN , ν1)D(ν1) +M(ν1, . . . , νN ) ∆V

D+(νN ) ∈ SD

(P)

Problem P accounts for both the in-plane and out-of-plane dynamics, even though they can be

solved separately (in Section 3, these dynamics are split and represented by the functions γxz and γy

respectively). Moreover, one can remark that the control actions are not saturated in the formulation of

Problem P; an ad hoc function γ∆V is employed to take these constraints into account in Section 3.

Hereafter, we present two different finite descriptions for the admissible set and the respective methods

employed on the resolution of their associated fuel-optimal impulsive optimization problems.

2.6 Semi-definite programming description of periodic space-constrained rel-

ative trajectories

A finite mathematical description of the periodic relative trajectories respecting polytopic space con-

straints is presented in [29, 35, 43]. This description is obtained by performing a variable change that

converts each one of the ”belonging to one side of the plane” constraints into one polynomial non-negative

constraint; then a certificate of positivity demonstrated by Nesterov in [44] is applied. This result links

the univariate polynomial non-negativity to the existence of a semi-definite positive matrix whose entries

are related to the coefficients of the polynomial. By performing variable changes, the space-constraints

inequalities in (4) can then be reformulated as:

Γx(s) ≥ 0, Γx(s) ≥ 0, Γy(s) ≥ 0, Γy(s) ≥ 0, Γz(s) ≥ 0, Γz(s) ≥ 0, ∀s ∈ R. (26)

1descriptions in which a finite number of free variables satisfy a finite number of constraints
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Let γw be the vector of coefficients of the polynomial Γw in (26), where w replaces the upper and lower

bounds
{
x, x, y, y, z, z

}
. Applying Nesterov results [44, Theorem 17.10], we finally obtain the following

description for the admissible set:

SD =
{
D ∈ R6 ∣∣ d0 = 0, ∃Yw � 0 s.t γw = Λ∗(Yw), w ∈

{
x, x, y, y, z, z

}}
(27)

where the operator Λ∗ is defined by:

Λ∗(Y )(j) = tr(Y Hm,j), j = 1, . . . , 2m+ 1 (28)

and Hm,j ∈ R(m+1)×(m+1) are the Hankel matrices that contain ones on the j-th anti-diagonal and zeros

elsewhere. The associated fuel-optimal impulsive optimization problem is formulated as follows:

Problem 2. Given N ≥ 3, ν1 < . . . < νN ∈ R>0, D(ν1) ∈ R6, e ∈ R[0,1], a, µ ∈ R>0, find ∆V ∗ ∈ R3N

such that:

∆V ∗ = argmin
∆V

J(∆V )

s.t.



D(ν1) = D1

D+(νN ) = ΦD(νN , ν1)D(ν1) +M(ν1, . . . , νN ) ∆V

d+
0 (νN ) = 0

∃Yw � 0 s.t. γw(D+(νN )) = Λ∗(Yw) , w ∈
{
x, x, y, y, z, z

}
(P.SDP)

This problem can be solved by dedicated semi-definite program (SDP) solvers (SDPA, SeDuMi,

SDPT3, CSDP, etc).

2.7 Envelope description of periodic space-constrained relative trajectories

In [36] a redefinition of the set of states corresponding to periodic space-constrained trajectories is

provided. This consists in finding the envelope of the curves which define the boundary of the admissible

set, which boils down to the evaluation of several convex semi-algebraic functions. Therein, the periodic

vectors of parameters D ∈ R6, s.t. d0 = 0 respecting the space-constraints inequalities (4) are such that:

gx(D) ≤ 0, gx(D) ≤ 0, gy(D) ≤ 0, gy(D) ≤ 0, gz(D) ≤ 0, gz(D) ≤ 0, (29)

where the functions gw(D) are convex but non-differentiable functions. Hence the admissible set can be

redefined as:

SD =
{
D ∈ R6

∣∣∣∣ d0 = 0, gw(D) ≤ 0, w ∈
{
x, x, y, y, z, z

} } (30)

and the associated fuel-optimal impulsive optimization problem:
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Problem 3. Given N ≥ 3, ν1 < . . . < νN ∈ R>0, D(ν1) ∈ R6, e ∈ R[0,1], a, µ ∈ R>0, find ∆V ∗ ∈ R3N

such that:

∆V ∗ = argmin
∆V

J(∆V )

s.t.



D(ν1) = D1

D+(νN ) = ΦD(νN , ν1)D(ν1) +M(ν1, . . . , νN ) ∆V

d+
0 (νN ) = 0

gw(D+(νN )) ≤ 0, w ∈
{
x, x, y, y, z, z

}
(P.ENV)

This problem is characterized by convex but non-differentiable functions in its criterion and in the

description of its feasible set. It can be converted into an unconstrained optimization problem via penalty

methods and the resulting problem can be solved by sub-gradient methods (see [36] for details).

2.8 Systematical satisfaction of the periodicity constraint

Hereafter, we show that the periodicity equality constraint d+
0 (νN ) = 0 can be systematically satisfied by

considering only sequences of impulsive velocity corrections that produce periodic relative trajectories.

Proceeding this way, the previous mentioned equality constraint need not be taken into account by the

numerical solvers while solving Problems P, P.SDP or P.ENV.

The idea consists in building a basis for the affine subspace to which the vectors of impulsive velocity

corrections such that d+
0 (νN ) = 0 belong. In order to do so, let us recall the first line of (15):

d+
0 (νN ) = d0(ν1) +

∑N
i=1

1
k2(e2 − 1)

[
ρνi −esνi

]
∆Vxz(νi). (31)

By defining the row vector

M0(ν1, . . . , νN ) := 1
k2(e2 − 1)

[
ρν1 , −esν1 , . . . ρνN , −esνN

]
,

we can rewrite the equation (31) as:

d+
0 (νN ) = d0(ν1) +M0(ν1, . . . , νN )∆Vxz. (32)

Then we express ∆Vxz as:

∆Vxz(λ) =


| |

v1 . . . v2N−1

| |


︸ ︷︷ ︸

M⊥0 (ν1, ..., νN )

λ+ ∆V0, (33)
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whereM⊥0 (ν1, . . . , νN ) ∈ R2N×2N−1, λ ∈ R2N−1 and ∆V0 ∈ R2N . The vector ∆V0 ∈ R2N is an arbitrary

sequence of in-plane impulses producing a periodic relative trajectory and M⊥0 (ν1, . . . , νN )λ represents

a linear combination of the vi vectors belonging to the kernel of the row vector M0(ν1, . . . , νN ), given

by:

vi := [ 0, . . . 0︸ ︷︷ ︸
(i−1) zeros

, ai+1, − ai, 0, . . . 0︸ ︷︷ ︸
(2N−1−i) zeros

]T , (34)

where ai is the i-th entry of M0(ν1, . . . , νN ).

The idea is a generalization of the developments presented in [38, Section IV.A], where a control law

that forces the relative motion between spacecraft to evolve along periodic orbits is described. In this

work, we opt to not to constrain the relative motion during the application of the intermediary velocity

corrections of a sequence of impulses, only at the final instant. This choice provides more freedom for

the research of solutions during the resolution of the optimization problem P.

3 Model Predictive Control Strategy

In this section we present a model predictive control algorithm which computes a sequence of satura-

tion constrained impulses, such that the state D converges to a point belonging to a given non-empty

admissible set SD.

The proposed strategy relies on the following properties, which hold in absence of saturation con-

straints:

(i) One impulse is sufficient to reach the space of periodic orbits i.e., d0 = 0. Moreover, since periodic

trajectories produce no drift (cf. Remark 2.2), the state vector D does not evolve if d0 = 0.

These points correspond to the equilibrium points in the D state space.

(ii) Problem P is always feasible i.e., three impulses separated by a true anomaly interval τI 6= kπ, k ∈

N are sufficient for reaching SD.

One key contribution is to effectively combine these properties in order to also account for saturation

constraints and formally prove the stability and invariance of the proposed method.

For that, an important intermediary result proved in Prop. 3.4 is that one can obtain a sequence

of possibly saturated impulses which bring the D state closer to the admissible set, once periodicity is

achieved. In sum, the key steps are the following (they are formally summarized in Algorithm 1):

1. Solve Problem P (in the absence of saturation constraints). If the obtained solution complies with

the saturation constraints, the convergence is directly obtained. Otherwise, proceed to next step.

2. Check whether the system is already on a periodic orbit (d0 = 0). If so, apply the sequence of

impulses obtained at Step 1, with a scaling of the solution. Otherwise, steer the system towards

the set of periodic orbits, using (i), with a possible scaling of the solution in case of saturation.
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3. Recursively call Steps 1 and 2 until the state D reaches SD.

This is illustrated in Fig. 3: the admissible set SD is unreachable at Step 1 due to saturation. In

Step 2, the algorithm proceeds by driving d0 towards 0 (red triangles). Once d0 = 0 (green triangles),

one applies the impulses obtained at Step 1 (with possible scaling). The iteration of Step 1–Step 2 stops

when the admissible set is reached.

Admissible set

Periodic states (d0=0)

States before impulses

State after impulses

Natural drift (continuous propagation)

Impulsive control

Initial state

Figure 3: Generation of an admissible periodic trajectory.

This strategy is described in Algorithm 1. It takes as input a relative state in the LVLH framework

Algorithm 1: Model predictive control strategy
Require: X(ν1), ∆V , SD, τS , τP , τI ∈ R>0 s.t. ∀k ∈ Z>0, τI 6= kπ, N ≥ 3, ν1, . . . , νN s.t. νk+1 = νk + τI

1: D(ν1)← C(ν1)T (ν1)X(ν1);
2: ∆V ∗xz ← γxz(Dxz(ν1), ν1, . . . , νN );
3: ∆V ∗y ← γy(Dy(ν1), ν1, . . . , νN );

// If the saturation is violated by the in-plane impulses
4: if ‖∆V ∗xz‖∞> ∆V then

// If the trajectory is periodic
5: if d0xz (ν1) == 0 then
6: ∆V ∗xz ← γ∆V

(∆V ∗xz);
// If the trajectory is not periodic

7: else
8: ∆V ∗y ← 0;
9: ∆V ∗xz ← γp(d0xz (ν1), ν1);

10: if ‖∆V ∗xz‖∞> ∆V then
11: ∆V ∗xz ← γ∆V

(∆V ∗xz);
12: apply impulse ∆V ∗xz and ∆V ∗y at ν1;
13: ν1 ← ν1 + τP ; // wait τP before call algorithm again
14: call Algorithm 1 with updated inputs ; // recursive call of algorithm

// If the saturation is violated by the out-of-plane impulses
15: if ‖∆V ∗y ‖∞> ∆V then
16: ∆V ∗y ← γ∆V

(∆V ∗y );
17: apply impulses ∆V ∗xz and ∆V ∗y at ν1 . . . νN

18: ν1 ← νN + τS ; // wait τS before call algorithm again
19: call Algorithm 1 with updated inputs ; // recursive call of algorithm
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X(ν1), a saturation threshold ∆V , a non-empty admissible set SD described by x, x, y, y, z, z, a number

of impulses N , an initial true anomaly instant ν1, and the true anomaly intervals τP , τI , and τS .

While the trajectory is not periodic, the state D evolves within time. In order to generate a peri-

odic trajectory and eliminate this ‘drift’ effect, some impulses computed by the function γp (defined in

Prop. 3.1) are initially applied with the only goal of reducing the absolute value of d0. The interval

between these impulses is the above mentioned τP , which should be as small as possible in order to

provide a fast convergence to a periodic relative trajectory.

Once periodicity is reached, at each call of the control algorithm, the functions γy and γxz (defined

in Prop. 3.2) compute a sequence of a N impulses separated by a true anomaly interval τI . This interval

should not be too small in order to avoid the columns of the matrix M(ν1, . . . , νN ) of being numerically

close to each other, which could possibly demand higher control effort in order to generate admissible

relative trajectories (this is confirmed by the simulations presented in the Section 4).

While the admissible set is not reached, sequences of N impulses are consecutively computed and

applied. A new sequence can be applied right after the last applied impulse or within some true anomaly

interval, given by τS . A study of the impact of the choice of this interval on the fuel-consumption is

carried out in Section 4.

Consecutive calls of this algorithm produce a pattern of impulsive velocity corrections similar to the

one presented in Fig. 4.

Figure 4: Pattern of impulsive velocity corrections along the true anomaly for a number of impulses N = 3.

3.1 Recursive feasibility

We now prove the recursive feasibility of the optimization problems solved in Algorithm 1 by demon-

strating that the functions γp, γy and γxz (defined in the sequel), always return an output for any set of

inputs.

Firstly, the function γp computes an `1-optimal in-plane thrust generating a periodic relative trajec-

tory.
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Proposition 3.1 (Optimal periodic impulse). Consider the function:

γp : R× R → R2

d0xz (ν1), ν1 7→ argmin∆Vxz ‖∆Vxz‖1

s.t. d+
0xz (ν1) = d0xz (ν1) +M0(ν1)∆Vxz(ν1) = 0

(35)

Then, for any set of inputs, the function γp is well-defined in the sense that the feasible set of the

minimization problem is not empty.

Proof. The line vector M0(ν1) has the following expression:

M0(ν1) = (k2(e2 − 1))−1
[
1 + e cos(ν1) −e sin(ν1)

]

and since the term 1 + e cos(ν1) 6= 0, ∀ν1 (because 0 < e < 1), it is always possible to set:

∆Vxz = k2(e2 − 1)
[
− d0xz (ν1)

1+e cos(ν1) 0
]T

satisfying the equation 0 = d0xz (ν1) +M0(ν1)∆Vxz. �

Remark 3.1. Since the minimization problem in (35) contains `1-norm criteria (which are not strictly

convex), infinitely many solutions may exist. In order to enforce uniqueness, we could have taken the

solution with minimal `2-norm (which is strictly convex), but for the sake of brevity, we consider in the

sequel that in these special cases only one minimum is arbitrarily chosen.

Secondly, the functions γy and respectively γxz compute an `1-optimal out-of-plane and respectively

in-plane sequence of thrusts which solves Problem P.

Proposition 3.2 (Optimal in- and out-of-plane impulses). Given N ≥ 3, τI ∈ R>0 s.t. ∀k ∈ Z>0, τI 6=

kπ, and ν1, . . . , νN s.t. νk+1 = νk + τI , let

γy : R2 × R× . . .× R → RN

Dy(ν1), ν1, . . . , νN 7→ argmin
∆Vy

‖∆Vy‖1

s.t. D+
y (νN ) = Dy(ν1) +My(ν1, . . . , νN )∆Vy ∈ SDy

(36)

and

γxz : R4 × R× . . .× R → R2N

Dxz(ν1), ν1, . . . , νN 7→ argmin
∆Vxz

‖∆Vxz‖1

s.t. D+
xz(νN ) = Dxz(ν1) +Mxz(ν1, . . . , νN )∆Vxz ∈ SDxz

(37)
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Then, the functions γy and γxz are well-defined in the sense that the feasible set of (36) and respec-

tively (37) is not empty.

Proof. The detailed proof is given in Appendix A.2. For γy, it suffices to note My(ν1, . . . , νN ) has

rank 2 and that ∀Dy, D
∗
y ∈ R2 the vector ∆Vy = (MT

y My)−1MT
y (D∗y −Dy) is well-defined and satisfies

D∗y = Dy +My(ν1, . . . , νN )∆Vy.

For γxz, let Dxz, D
∗
xz ∈ R4. We prove that it is always possible to choose λ and ∆V0 such that

∆Vxz(λ) = M⊥0 (ν1, . . . , νN )λ+ ∆V0 (see eq. (33)) satisfies D∗xz = Dxz +Mxz(ν1, . . . , νN )∆Vxz(λ). This

is based on Prop. 3.1, which allows to set the first entry of D∗xz −Dxz to any arbitrary value and on the

fact that the matrix Mxz(ν1, . . . , νN )M⊥0 (ν1, . . . , νN ) has rank 3, which allows to set the other 3 entries

of D∗xz −Dxz. �

Remark 3.2. Similarly, in the minimization problems (36) and (37), one arbitrary minimum is chosen

when the problem is not strictly convex.

3.2 Convergence and invariance

In this section we prove the stability of the previously described control strategy by demonstrating

that the iterative application of the command actions computed in Algorithm 1 produces a sequence

of states (Dk)k∈N that converges to an element of SD. We also show that the admissible set is proved

to be invariant under the action of the proposed controller, which guarantees that the state remains

in the admissible set once the convergence is established. In Algorithm 1, if no saturation occurs, the

convergence of the state D to the admissible set SD is trivial. However, for the cases in which the

magnitude of the computed impulses goes beyond the saturation threshold, the following ad hoc function

is employed to scale-down the sequences of impulses computed either by γp or by γy and respectively

γxz in Algorithm 1:
γ∆V : Rn\

{
~0
}
→ Rn

v 7→ ∆V
‖v‖∞

v.
(38)

Whence, we split the proof of convergence in two parts: first we show that Algorithm 1 produces a

periodic relative trajectory; then, once periodicity is obtained, we prove that the algorithm produces a

sequence of trajectories that converges to element of SD (in the presence of saturation constraints).

3.2.1 Convergence

Let us begin by studying the case in which the sequence of impulses computed at line 2 of Algorithm

1 does not respect the saturation threshold and the initial state Dxz is not periodic. In this case, the

sequence described in lines 7-14 is executed with the goal of generating a periodic trajectory. In the

following proposition, we demonstrate that the sequence (θk)k∈N, representing the evolution of the first
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entry of the state vector Dxz (in-plane motion), during recursive calls of Algorithm 1 in the previously

described context, converges to zero:

Proposition 3.3 (Convergence to a periodic trajectory). Let be d0xz ∈ R, ν ∈ R, τP ∈ R>0. Then, the

sequence (θk)k∈N defined by:

(θk)k∈N :=


θ0 = d0xz ,

θk = θk−1 +M0(νk)∆Vxzk , if ‖∆Vxzk‖∞≤ ∆V

θk = θk−1 +M0(νk)γ∆V (∆Vxzk), if ‖∆Vxzk‖∞> ∆V

,

where ∆Vxzk = γp(θk−1, νk) and νk = ν + (k − 1)τP , converges to 0.

Proof. Similar to Proof of Prop. 3.5 given in Appendix A.3. �

Now we study the convergence of the generated periodic state to the admissible set. Firstly, a

preliminary result states that once the periodicity is achieved, a sequence of N ≥ 3 saturated impulses

solution of Problem P drives the state D closer (and closer) to the admissible set.

Proposition 3.4. Given N ≥ 3, τI ∈ R>0 s.t. ∀k ∈ Z>0, τI 6= kπ, and ν1, . . . , νN s.t. νk+1 = νk+τI , and

D(ν1) a vector representing an arbitrary periodic relative trajectory, let ∆V ∗ be a solution of Problem P

producing a final state D∗(νN ) ∈ SD. Let ∆V be a saturation threshold and D◦(νN ) be the final state

obtained after a sequence of scaled-down γ∆V (∆V ∗) impulses. Then,

(a). The state D◦(νN ) represents a periodic orbit;

(b). The state D◦(νN ) is closer to the admissible trajectory D∗(νN ) than the original D(ν1) i.e.,

‖D∗(νN )−D◦(νN )‖2< ‖D∗(νN )−D(ν1)‖2.

Proof. Since the states D representing periodic orbits do not freely evolve within time,

D∗(νN ) = ΦD(νN , ν1)D(ν1) +M(ν1, . . . , νN )∆V ∗ = D(ν1) +M(ν1, . . . , νN )∆V ∗,

and similarly, D◦(νN ) = D(ν1) + ηM(ν1, . . . , νN )∆V ∗, with the scaling factor η = ∆V
‖∆V ∗‖∞

, 0 < η ≤ 1.

From equation (33), any sequence of impulses generating a periodic trajectory can be expressed as:

∆V = M⊥0 (ν1, . . . , νN )λ + ∆V0, where ∆V0 represents the part of the impulses generating a periodic

orbit and M⊥(ν1, . . . , νN )λ represents the part of the impulses that has no influence on d0. Since ∆V ∗

generates a periodic orbit D∗(νN ) from another periodic orbit D(ν1), ∆V ∗0 = 0, whence:

D∗(νN ) = D(ν1) +M(ν1, . . . , νN )M⊥0 (ν1, . . . , νN )λ∗,
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D◦(νN ) = D(ν1) + ηM(ν1, . . . , νN )M⊥0 (ν1, . . . , νN )λ∗.

This proves (a) by construction and (b) follows from simple computation. �

Remark 3.3. Although for general MPC strategies one single control action is applied by iteration,

our method employs the iterative application of a sequence of at least 3 impulsive velocity corrections,

separated by a true anomaly interval that is not a multiple of π. This choice is justified by Proposition 3.4

stated above.

In the sequel, it is proven that, the sequence (φk)k∈N, representing the iterative application of the

control Algorithm 1 on the state D, converges to the admissible set:

Proposition 3.5 (Convergence to the admissible set). Let be D ∈ R6 such that d0 = 0, ν, τI , τS ∈ R>0

such that ∀k ∈ Z>0, τI 6= kπ, N ≥ 3 and SD 6= ∅. Then, the following sequence:

(φk)k∈N :=


φ0 = D,

φk = φk−1 +M(ν(1)
k , . . . , ν

(N)
k )∆Vk, if ‖∆Vyk‖∞≤ ∆V

φk = φk−1 +M(ν(1)
k , . . . , ν

(N)
k )γ∆V (∆Vk), if ‖∆Vyk‖∞> ∆V

,

where ν(i)
k = ν+ (i− 1)τI + (k− 1)τS and ∆Vk is the concatenation of ∆Vxzk = γxz(φk−1, ν

(1)
k , . . . , ν

(N)
k )

∆Vyk = γy(φk−1, ν
(1)
k , . . . , ν

(N)
k ), converges to an element of SD.

Proof. The detailed proof is given in Appendix A.3. The main idea is to show that the distance between

φk and SD converges to zero. In order to do so, two cases are studied: in the first case, we suppose that,

for a certain k∗, the computed sequence of impulses satisfies the saturation constraint, generating an

admissible periodic orbit right after its application; in the second case, we suppose that all the sequence of

impulses must be scaled-down to comply with the saturation constraint. In this case, we show that there

exists a constant 0 < α < 1 such that dist
SDy

(φk) < α dist
SD

(φk−1) and, consequently, dist
SD

(φk) →
k→∞

0. �

3.2.2 Invariance

So far we established the convergence of the state D to an element of the admissible set. In this section

we demonstrate that, since the set SD is naturally invariant as a subset of the invariant set of states

representing periodic orbits, it can also be proved to be an invariant set for the evolution of the state D

under the actions of the proposed control law. Conversely, once an admissible trajectory is obtained, it

is preserved by the model predictive control algorithm.

Proposition 3.6 (Invariance). The set SD is invariant under the action of the instructions defined in

Algorithm 1.
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Proof. This is evident: since D ∈ SD ⇒ d0 = 0 (periodicity), the function γp is never called; more-

over, the functions γy and γxz compute the fuel-optimal sequence of impulses that generates a tra-

jectory respecting the out-of-plane and the in-plane space constraints respectively. However, since

D ∈ SD ⇒ x ≤ x(ν) ≤ x, y ≤ y(ν) ≤ y, z ≤ z(ν) ≤ z, ∀ν, these functions will return a null sequence

of impulses. �

4 Simulations and Results

Hereafter we present the simulations and results obtained by employing the proposed MPC algorithm to

control the relative motion between spacecraft during the rendezvous hovering phases. The simulations

performed in this section are divided in two parts, with different goals: the first part is dedicated to

the evaluation of general aspects of the proposed MPC algorithm, such as robustness, convergence time,

fuel-consumption and the on-board running time of the algorithm during the resolution of optimization

problems; in the second part, we aim to study the impact of the eccentricity, number of impulses, initial

true anomaly and the three true anomaly intervals τP , τI , τS on the total fuel-consumption.

4.1 Hardware-in-the-loop simulations

The tests are performed in a hardware-in-the-loop environment: each call of the MPC algorithm is

executed on a board dedicated to space application; the computed control actions are sent via user

datagram protocol (UDP) to a computer running a Matlab/Simulink model that simulates the relative

dynamics between spacecraft (see Fig. 5).

Figure 5: Hardware-in-the-loop environment: network connection scheme between board and simulator.

4.1.1 Software

Both the SDP and the envelope (hereafter we use the abbreviation ENV) approaches are adopted to

model the fuel-optimal control problem. The SDP problems are solved via the CSDP solver [45], using

the standard options and parameters. The envelope problems are solved by a combination of penalty

method with iterative optimization algorithms based on sub-gradients: the constraints are weighted by a
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coefficient equivalent to 108 and added to the objective function and the resulting unconstrained problem

is solved by performing (at most) 50 iterations of the BFGS method2 presented by Lewis and Overton

[46, Algorithm 2.1], followed by 500 iterations of the sub-gradient method presented by Shor et al. [47,

Theorem 2.2] (see [36] for details). All embedded programs are coded in C.

4.1.2 Hardware

The board is an AEROFLEX GAISLER GR-XC6S that contains a synthesized LEON3 microprocessor

[48] and supports a IEEE-754 compliant floating-point unit with single and double precision (32 and

64-bit floats). It has a 128 Mbyte DDR2 RAM, a 8 Mbyte PROM and a 8 Mbyte SPI PROM memories

and runs a Linux 2.6 environment that simulates the performance of devices usually employed in space

applications [49]. The embedded libraries occupy 12 Mbyte and the C binary executables have 44 Kbyte

(ENV) and 148 Kbyte (SDP).

4.1.3 Simulating the relative dynamics

Two types of simulators are used: a linear simulator computing the evolution of the relative motion

via the propagation of the state D presented in equation 18; and a nonlinear simulator [41] based on

the Gauss planetary equations for the relative motion [50, 51] that takes into account the effects of

disturbances, such as the atmospheric drag, Earth’s oblateness, uncertainties on the measurement of the

relative state (we consider a white noise on position and velocity characterized by the following standard

deviation: dp = 10−2 m, dv = 10−5 m/s), execution errors on the orientation and magnitude of applied

impulsive velocity corrections (we consider a mismatch of ±1◦ in orientation and ±1% in magnitude).

The linear simulations are performed in order to verify the theoretical results about the stability of the

proposed algorithm. The nonlinear simulations assess the robustness of the proposed algorithm under

disturbances and nonlinearities that are not taken into account by the linear model.

4.1.4 Scenarios

In order to compare the obtained results to those presented in [38], the same scenarios (based on the

PRISMA mission [52]) are studied: Earth’s gravitational constant: µ = 3.986004418.1014 m3s−2; leader’s

orbital parameters: e = 0.004, a = 7011 km, i = 98◦, Ω = 0◦, ω = 0◦; leader’s initial true anomaly

ν0 = 0◦; number of impulses adopted is N = 3; true anomaly interval between impulses τI = 120◦; true

anomaly interval between sequence of impulses τS = 120◦; true anomaly interval to achieve periodicity

τP = 3, 6◦; space constraints: x = 50 m, x = 150 m, y = −25 m, y = 25 m, z = −25 m, z = 25 m;
2A version of the algorithm HANSO v2.2 translated to C is used (http://www.cs.nyu.edu/overton/software/hanso/).
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thrusters saturation threshold: 0.5 m/s; duration of simulation: 10 orbital periods; initial relative state:

X01 = [ 400, 300, −40, 0, 0, 0]T

X02 = [ −800, 600, 200, 0, 0, 0]T

X03 = [ −1500, 1300, 150, 0, 0, 0]T

X04 = [ 5000, 1300, 500, 0, 0, 0]T

,

where the first three components of each vector represent the relative LVLH positions (in meters) and

the last three, the relative LVLH velocities (in meters per second);

4.2 Results analysis

4.2.1 Convergence definition

To evaluate the convergence, we extend the use the mismatch ratio η presented in [38]. The mismatch

ratio is given by:

η(ν) =
dist
SD

D(ν)

dist
SD

D(ν0) =
dist
SD

C(ν)T (ν)X(ν)

dist
SD

C(ν0)T (ν0)X(ν0) , (39)

which is the ratio between the distance to the admissible set of the current and initial state. For a given

δ ∈ [0, 1] the convergence time Tc is defined as:

Tc(δ) ∈ R>0 s.t. ∀ν ≥ Tc, η(ν) ≤ δ, (40)

In the results presented hereafter, δ is set to 5% and the convergence time is normalized by the orbital

period of the leader spacecraft, providing an idea of the number of orbits needed to achieve convergence.

4.2.2 Consumption, convergence time and running time

Convergence (δ < 5%) and hovering are obtained for all performed simulations. Table 1, present the

obtained fuel-consumption J . From this point of view, the SDP-based controller is the most performing

with respect to the ENV-based controller. This is due to the fact that the limited number of iterations

of the BFGS and sub-gradient algorithms generate suboptimal solutions of Problem P.ENV, while the

SDP approach always returns the optimal solution of Problem P.SDP. Nevertheless, both approaches

engender fuel-consumptions that are approximatively half of the lower values produced by any of the

three control laws proposed in [38].

Convergence times Tc for each simulations are reported in Table 2. The non linear simulation envi-

ronment has little impact on convergence performances except for the initial condition X04. Comparing

with the hybrid controller developed in [38], the proposed approaches are not generally the best. For

instance, for X01 the control law B in [38] generates a convergence time equal to 0.34 orbits, while the

24



proposed SDP and ENV approaches take twice as much time to converge. This indicates that the strat-

egy that we propose gives more emphasis to reducing the consumption than producing short convergence

times. Besides, when the initial condition recede from the hovering zone, the MPC controller abilities

to account for input constraints permit to ensure the convergence and limit the convergence time. On

the other hand, the behavior of hybrid controllers is degraded in terms of convergence and consumption

due to the presence of the saturation (one of the examples of application of the hybrid controller even

diverges).
Table 1: Consumption J (m/s)

Initial SDP ENV
condition LIN NLIN LIN NLIN
X01 0.45 0.47 0.53 0.58
X02 1.20 1.25 1.31 1.32
X03 2.21 2.26 2.31 2.38
X04 4.75 4.71 5.41 6.69

Table 2: Convergence time Tc (number of orbits)

Initial SDP ENV
condition LIN NLIN LIN NLIN
X01 0.66 0.66 0.64 0.69
X02 0.66 0.66 0.64 0.69
X03 1.65 1.65 1.65 1.65
X04 2.69 1.70 1.67 2.66

Table 3 and 4 permit to compare the numerical performance both SDP and ENV based controllers.

For both approaches, the average time to compute a sequence of N = 3 impulses is lower than 3.0 seconds

and the maximal running time is never longer than 4.0 seconds (this time is negligible when compared

to the orbital period T = 2π
√
a3/µ ≈ 5842 seconds). Moreover, the amount of memory allocated by the

execution of the binaries are 5056 Kbyte for the SDP approach and 5584 Kbyte for the ENV approach

- these are reasonable values compared to the available memory of approximatively 90 Mbyte.

Table 3: Average running time (s)

Initial SDP ENV
condition LIN NLIN LIN NLIN
X01 2.82 2.94 0.30 2.71
X02 2.82 2.86 0.31 2.68
X03 2.83 2.87 0.41 2.52
X04 2.70 2.89 1.54 2.81

Table 4: Maximal running time (s)

Initial SDP ENV
condition LIN NLIN LIN NLIN
X01 2.93 3.31 3.05 2.91
X02 2.96 3.23 3.07 3.09
X03 2.93 3.05 3.23 3.12
X04 2.79 3.54 3.29 3.37

4.2.3 Relative trajectories, impulses and distance to the admissible set

In Figures 6 - 9, we show the resulting 3D relative trajectories (we zoom into the hovering region),

the computed and applied impulses for the nonlinear simulations and the evolution of the mismatching

ratio η(ν) for the initial conditions X03 and X04. By observing the relative trajectories obtained for the

linear simulations, we notice that the relative movement converges to a periodic trajectory included in

the hovering zone and, once this trajectory is reached, it remains unchanged - this fact illustrates the

convergence and invariance results demonstrated in Prop. 3.5 - 3.6. The same behavior, however, is not

observed for nonlinear simulations: due to the presence of disturbances and uncertainties, the control

actions are not able to produce perfect periodic orbits. This is also observed in Fig. 10a where for

25



the nonlinear simulation, the mismatch ratio oscillates close to zero, but never reaches it. Moreover,

although some impulses are saturated (Fig. 6b, 7b, 8b and 9b), the convergence is achieved for both

linear and nonlinear simulations.

In Fig. 10b we show in details the four initial impulses applied in order to reduce the absolute value

of d0 (these impulses are computed via γp and are separated by true anomaly intervals of τP , indicated

in the figure; for nonlinear simulations, due to the disturbances, the condition d0 = 0 is never reached,

being therefore replaced by another condition |d0|< threshold). In Fig. 11 we show that after each

sequence of N = 3 impulses, the distance to the admissible set decreases (indicated by the dotted lines).

Furthermore, during the interval between sequences of impulses (indicated by τS and the shaded zones),

the mismatch ratio remains constant.

4.2.4 Impact of parameters on fuel-consumption

Hereafter we study the effect of some parameters (eccentricity, number of impulses, initial true anomaly

and the three true anomaly intervals τP , τI , τS) on the total fuel-consumption. We perform linear

simulations using the SDP approach for the four initial states X01 − X04; one single parameter varies

at time and the others are kept at the same values employed in the previous simulations. The obtained

results are presented in Fig. 13 - 17.

Fig. 12 indicates that a small number of impulses should be chosen, since the fuel-consumption

increases with the growth of this parameter. The augmentation of the fuel-consumption with the increase

of the eccentricity (Fig. 13) or with the reduction of the interval between impulses (Fig. 14) are

consistent with results previously presented in the literature [43, Section 6.4]. Different choices of initial

true anomaly produce a sinusoidal profile for the fuel-consumption, which implies the existence of a

fuel-optimal choice for the initial firing instant ν0 (Fig. 15). In Fig. 16, the consumption increases until

it reaches its maximum around τp = 2.4◦ or 0.042 rad, then starts to decrease; in order to minimize

consumption and convergence time, this parameter should be set to the smallest value possible, which is

defined by the physical limitations of the spacecraft thrusters. The profile of consumption obtained by

varying the interval between sequences of impulses does not present a particular shape or behavior and

therefore no general conclusion can be obtained from it (Fig. 17). Remark: in Fig. 15 - 17, for each

initial state, the fuel-consumptions are normalized between 0 and 1.

5 Conclusions

In this article, a new model predictive control strategy is proposed for the impulsive spacecraft rendezvous

hovering phases. A theoretical stability proof is provided, demonstrating that, even when the saturation

of the thrusters is taken into account, the proposed strategy produces a sequence of control actions
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(a) 3D Relative Trajectory.

(b) Computed and applied impulses during nonlinear simulation.

(c) Convergence to admissible set.

Figure 6: Results for trajectory X03 (SDP approach).

27



(a) 3D Relative Trajectory.

(b) Computed and applied impulses during nonlinear simulation.

(c) Convergence to admissible set.

Figure 7: Results for trajectory X04 (SDP approach).
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(a) 3D Relative Trajectory.

(b) Computed and applied impulses during nonlinear simulation.

(c) Convergence to admissible set.

Figure 8: Results for trajectory X03 (ENV approach).
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(a) 3D Relative Trajectory.

(b) Computed and applied impulses during nonlinear simulation.

(c) Convergence to admissible set.

Figure 9: Results for trajectory X04 (ENV approach).
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(a) Effect of disturbances in nonlinear simulations.

(b) Impulses producing a periodic trajectory.

Figure 10: Details of results obtained for trajectory X04 (SDP approach).

Figure 11: Decrease of the mismatch ratio after each sequence of 3 impulses (X04, linear simulation, SDP).
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Figure 12: Impact of number of impulses N on the fuel-consumption J(∆V ).

Figure 13: Impact of eccentricity e on the fuel-consumption J(∆V ).

Figure 14: Impact of the interval τI on the fuel-consumption J(∆V ).
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Figure 15: Impact of the interval initial true anomaly ν0 on the normalized fuel-consumption J(∆V ).

Figure 16: Impact of the interval τp on the normalized fuel-consumption J(∆V )

Figure 17: Impact of the interval τS on the normalized fuel-consumption J(∆V ).
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generating a periodic relative trajectory included in the hovering region.

Hardware-in-the-loop simulations using a LEON3 synthesized microprocessor reveal that although

the proposed approach may produce greater convergence times, it is more efficient with respect to fuel-

consumption than other methods proposed in the literature. Moreover, the timings obtained during

these tests bring out the fact that this approach can be efficiently embedded in space dedicated devices.

Finally, an analysis of the impact of the parameters rendezvous scenarios on the fuel-consumption is also

presented.

Future works should focus in investigating the robustness of the proposed controller from a theoretical

point of view, providing, for example, an idea of the influence of the nonlinearities, disturbances and

scenario parameters on the stability of the method.

An extension of this work could combine safety requirements such as collision avoidance, passive

safety or visibility, with our proposed station-keeping algorithm. This is due to the fact that existing

guidance algorithms [35] which handle these constraints have the same mathematical formalism as the

constrained optimization presented in this work. This can be done by considering time-varying path

constraints, but this would imply revisiting the stability analysis while accounting for such time-varying

constraints.

Appendix A: Proofs

A.1 Proof of Proposition 2.1

Proof. The convexity can be straightforwardly proven by showing that any convex combination of two

elements of SD also belongs to SD. In order to prove the boundedness of the set, we evaluate the

inequalities in (23) at specific values:

Computing the bounds for d1 and d2: by evaluating the z inequalities at ν = 0 and ν = π
2 , we obtain:

z ≤ d1 ≤ z (41)

z ≤ d2 ≤ z (42)

Computing the bounds for d3: by evaluating the x inequalities at ν = 0, ν = 2π
3 and ν = 4π

3 and

manipulating the produced inequalities, we obtain:

x
(

4+e−e2

4+e

)
≤ d3 ≤ x

(
4+e−e2

4+e

)
(43)
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Computing the bounds for d4 and d5: by evaluating the y inequalities at ν = 0 and ν = π
2 , we obtain:

y(1 + e) ≤ d4 ≤ y(1 + e) (44)

y ≤ d5 ≤ y (45)

Then, since any element of SD is entry-wise bounded, the set SD is itself bounded.

The closeness of SD can be proved by demonstrating that its boundary is contained in it. In order

to do so, it suffices to show that the boundary of SD is the set of elements for which at least one of the

inequalities in (23) is strictly satisfied for some ν:

(⇒) Let D be an element in the boundary of SD. Then, for any ε > 0, there exists a ball of radius

ε around D containing elements that do not belong to SD, i.e. elements for which at least one of the

inequalities in (23) are not satisfied for some ν. When the radius ε of the ball around D tends to zero,

by continuity of the functions Fx, Fy and Fz on ν and D, the elements in this ball around D tend to

strictly satisfy at least one of the above cited inequalities for some ν. This proves that, if D belongs to

the boundary of SD, then it strictly satisfies at least one of the inequalities in (23) for some ν.

(⇐) Let D be an element of SD for which at least one of the inequalities of (23) is satisfied strictly for

some ν∗. Without any loss of generality, suppose that the vector D satisfies:

Fz(ν∗)D = cos(ν∗) d1 + sin(ν∗)d2 = z.

Now, consider the ball of radius ε > 0 aroundD. For any value of ε, this ball contains elements that do not

belong to SD (one example is the vector D∗ with same entries as D, except for d∗1 = d1 + sgn(cos(ν∗)) ε

and d∗2 = d2 + sgn(sin(ν∗)) ε). This proves that D belongs to the boundary of SD.

From the closeness and boundedness of SD, we can conclude that it is also compact. �

A.2 Proof of Proposition 3.2

Proof. The matrix My(ν1, . . . , νN ) has the following expression:

My(ν1, . . . , νN ) = k−2

− sin(ν1)
ρ(ν1) . . . − sin(νN )

ρ(νN )
cos(ν1)
ρ(ν1) . . . cos(νN )

ρ(νN )

 .
This matrix has rank 2, since det(My(ν1, ν2)) = sin(ν2−ν1)

ρ(ν1)ρ(ν2) 6= 0 because of the hypothesis on ν1, . . . , νN .

Then, ∀Dy, D
∗
y ∈ R2 the vector ∆Vy = (MT

y My)−1MT
y (D∗y − Dy) is well-defined and satisfies D∗y =

Dy +My(ν1, . . . , νN )∆Vy. This is also particularly true if D∗y ∈ SDy 6= ∅.

Let us choose ∆Vxz as in (33). As demonstrated in Proposition 3.1 it is always possible to set d+
0xz

to any arbitrary value with a single impulse. Since M⊥0 (ν1, . . . , νN )λ has no influence on the first entry
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of D∗xz −Dxz, we conclude that ∆V0 can be chosen to set the first entry of D∗xz −Dxz to any arbitrary

value.

Now, let us demonstrate that it is always possible to choose λ that allow us to set the other three

entries of D∗xz −Dxz to any arbitrary values. Computing MxzM
⊥
0 (ν1, . . . , νN ), we obtain:

MxzM
⊥
0 (ν1, . . . , νN ) = (k6(e2 − 1)2)−1



0 0 0 0 0 . . . 0 0
sin(ν1)
ρ(ν1) ? sin(ν2)

ρ(ν2) ? sin(ν3)
ρ(ν3) . . . ? sin(νN )

ρ(νN )

− cos(ν1)
ρ(ν1) ? − cos(ν2)

ρ(ν2) ? − cos(ν3)
ρ(ν3) . . . ? − cos(νN )

ρ(νN )
1+ρ(ν1)
ρ(ν1) ? 1+ρ(ν2)

ρ(ν2) ? 1+ρ(ν3)
ρ(ν3) . . . ? 1+ρ(νN )

ρ(νN )


.

and this matrix has rank 3, since:

det




sin(ν1)
ρ(ν1)

sin(ν2)
ρ(ν2)

sin(ν3)
ρ(ν3)

− cos(ν1)
ρ(ν1) − cos(ν2)

ρ(ν2) − cos(ν3)
ρ(ν3)

1+ρ(ν1)
ρ(ν1)

1+ρ(ν2)
ρ(ν2)

1+ρ(ν3)
ρ(ν3)


 = −2sin(ν2 − ν1) + sin(ν3 − ν2)− sin(ν3 − ν1)

k18(e2 − 1)6ρ(ν1)ρ(ν2)ρ(ν3) (46)

= −8
sin ν2−ν1

2 sin ν3−ν2
2 sin ν3−ν1

2
k18(e2 − 1)6ρ(ν1)ρ(ν2)ρ(ν3) 6= 0, (47)

because of the hypothesis on ν1, . . . , νN .

This implies that ∀Dxz, D
∗
xz ∈ R4 it is possible to chose λ and ∆V0 in such a manner that ∆Vxz(λ) =

M⊥0 (ν1, . . . , νN )λ + ∆V0 satisfies D∗xz = Dxz + Mxz(ν1, . . . , νN )∆Vxz. This is also particularly true if

D∗xz ∈ SDxz 6= ∅. �

A.3 Proof of Proposition 3.5

In order to prove Prop. 3.5, we introduce the following preliminary result:

Proposition A.1. Let K ⊂ Rn be a convex set, A,C ∈ Rn, A /∈ K and C ∈ K. Let B be the projection

of A onto K, defined as B = proj
K

A := argmin
X∈K

‖X − A‖2. Consider also the points A′ = C + λ(A − C)

for 0 < λ < 1 and B′ the projection of A′ onto K. Then, the distance between A′ and K is less than the

distance between A and K i.e., inf
X∈K
‖X − A′‖2< inf

X∈K
‖X − A‖2. (dist

K
A
′ := inf

X∈K
‖X − A′‖2< dist

K
A :=

inf
X∈K
‖X −A‖2).

Proof. Consider the point B′′ = C +λ(B−C) (see Figure 18). Since K is convex and B′′ belongs to the

segment BC, B′′ is a point of K. By developing the difference B′′ −A′ :

B
′′
−A

′
= λ(B −A)⇒ ‖B

′′
−A

′
‖2= λ‖B −A‖2.
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Figure 18: Illustration of points A, A
′
, B, B

′′
, C and convex K

But since B′ is the projection of A′ onto K:

‖B
′
−A

′
‖2≤ ‖B

′′
−A

′
‖2= λ‖B −A‖2⇒ ‖B

′
−A

′
‖2< ‖B −A‖2.

�

Now we proceed with the proof of Prop. 3.5:

Proof. From Prop. 3.2, the functions γy and γxz returns a sequence of impulses that generates an

admissible trajectory, i.e. φk = φk−1 + M(ν(1)
k , . . . , ν

(N)
k )∆Vk ∈ SD. Then, if for some k∗ the impulse

∆Vk∗ respects the saturation constraint, we have that ∀k ≥ k∗, φk ∈ SD.

However, suppose that the saturation is always violated for any k ∈ N (worst case scenario). By

writing the expressions of φk considering the non-scaled and the scaled sequence of impulses, we obtain:

φ̄k = φk−1 +M(ν(1)
k , . . . , ν

(N)
k )∆Vk

φk = φk−1 +M(ν(1)
k , . . . , ν

(N)
k )∆Vk∆V /‖∆Vk‖∞

By manipulating the previous equations, we obtain the following expression:

φ̄k − φk = (1−∆V /‖∆Vk‖∞)(φ̄k − φk−1)

From the saturation hypothesis we have that ∆V < ‖∆Vk‖∞ and consequently:

‖φ̄k − φk‖2 = (1−∆V /‖∆Vk‖∞)‖φ̄k − φk−1‖2< ‖φ̄k − φk−1‖2

Since φ̄k belongs to SD, which is a convex set, from Prop. A.1 we conclude that:

dist
SD

(φk) ≤ (1−∆V /‖∆Vk‖∞) dist
SD

(φk−1) < dist
SD

(φk−1)
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We then define the following sets:

Pk :=
{
D ∈ R2

∣∣∣∣ dist
SD

(D) ≤ dist
SD

(φk−1)
}
,

Qyk :=
{

∆Vy ∈ R2 ∣∣ ∃ ν ∈ R, ∃D ∈ Pk s.t. ∆Vy = γy(D, ν, . . . , ν + (N − 1)τI)
}
,

Qxzk :=
{

∆Vxz ∈ R2 ∣∣ ∃ ν ∈ R, ∃D ∈ Pk s.t. ∆Vxz = γxz(D, ν, . . . , ν + (N − 1)τI)
}
,

and ∆V ?k := max
{

max
∆Vy∈Qyk

‖∆Vy‖∞, max
∆Vxz∈Qxzk

‖∆Vxz‖∞
}

. Since dist
SD

(φk) < dist
SD

(φk−1), the sets Qk

form a sequence of inclusions Qk+1 ⊆ Qk and, consequently, ∆V ?k+1 ≤ ∆V ?k . Now let us define the

following two sequences:

(ak)k∈N :=


a0 = dist

SD
(φ0),

ak = αak−1

and (bk)k∈N :=


b0 = dist

SD
(φ0)

bk = dist
SD

(φk−1)

where α = (1 − ∆V /∆V ?1 ). The sequence (ak)k∈N has a general term of the form ak = αk a0 and

converges to zero when k tends to infinite: 0 < α < 1⇒ ak →
k→∞

0. The second sequence represents the

distance of the terms of the sequence φk to the admissible set SD. Since we suppose that the saturation

is always violated, we have the following inequalities:

∆V < ‖∆Vk‖∞< ∆V ?k ≤ ∆V ?1 , ∀k ∈ N

Then, since dist
SD

(φk) ≤ (1−∆V /‖∆Vk‖∞) dist
SD

(φk−1) and ∀k ∈ N, (1−∆V /‖∆Vk‖∞) < α, by com-

paring the sequences (ak)k∈N and (bk)k∈N we prove that bk →
k→∞

0, which is equivalent to dist
SD

(φk) →
k→∞

0.

�
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