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CNRS, Heudiasyc UMR 7253, CS 60319, 60203 Compiègne cedex, France.
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Abstract

Hyperspectral image classification by means of Deep Learn-
ing techniques is now a widespread practice. Its success comes
from the abstract features learned by the deep architecture that
are ultimately well separated in the feature space. The great
amount of parameters to be learned requires the training data
set to be very large, otherwise the risk of overfitting appears.
Alternatively, one can resort to features selection in order to
decrease the architecture’s number of parameters to be learnt.
For that purpose, this work proposes a simple feature selection
method, based on single-layer neural networks, which select
the most distinguishing features for each class. Then, the data
will be classified by a deep neural network. The accuracy re-
sults for the testing data are higher for the lower dimensional
data set when compared to the full data set, indicating less over-
fitting for the reduced data. Besides, a metric based on scatter
matrices shows that the classes are better separated in the re-
duced feature space.

1 Introduction

Deep Learning (DL) approaches are undoubtedly a power-
ful tool for hyperspectral image classification [12][13][7]. Its
strength comes from its deep architecture, which enables differ-
ent levels of features abstraction. Besides, the fact that both the
feature extractor and the classifier are embedded in the same
architecture renders DL very powerful.

One should, however, be cautious when using a deep ar-
chitecture. Considering, for instance, a deep neural network
(DNN) —which will be the basis of our analysis —, the deeper
the architecture, the more free parameters are needed. It is ad-
visable that the ratio between training patterns and free clas-
sifier parameters be, at least, 10 [15]. For ratios bellow that
threshold, the occurrence of overfitting is more likely.

One way to avoid this problem is to reduce the input data
dimensionality. This would cause, as a direct consequence,
the decrease on amount of the classifier parameters. Thus,
the above-cited ratio would be smaller, when keeping the same
training data amount.

There are two ways of reducing the data dimensionality: i)
Feature extraction, and ii) feature selection. The former per-
forms combination amongst features, generating new ones as
the Principal Components Analysis does, for example. The lat-
ter creates a new feature set by choosing the original features
that meet a certain criterion [15].

One positive aspect of feature selection is that it keeps the
original information of data [5]. This can be valuable for some
applications, especially the ones dealing with hyperspectral im-
ages, whose bands depict specific regions of electromagnetic
spectra. Maintaining the original physical information provides
a better model readability and interpretation [6].

In [8], the authors proceeded to feature selection by using
a perceptron neural net with step function. After the train-
ing phase of the network, they discarded the features with
the smallest interconnection weights. They claim that this ap-
proach reduces the processing time, compared to support vec-
tor machine-based features selection. It also avoids the evalua-
tion of multiple feature subset combinations, what is common
on wrapper approaches. In [2], the author lists some pros and
cons of wrapper and filter methods for feature selection. They
proposed a filter-based forward selection algorithm, which in-
corporates some aspects of wrapper method. More precisely,
the proposed method uses boosted decision stumps1. In a suc-
cessive processing, the features that correctly predicts the class
label that other features could not are selected to be part of the
reduced feature set. In [10], an embedded feature selection of
hyperspectral bands with boosted decision trees is proposed.
This method generated several decision trees, and the features
most used by those trees are selected to be part of the reduced
feature set.

This paper proposes a novel method for feature selection
using a single-layer neural network, aiming at designing a re-
duced deep architecture less susceptible to overfitting. For each
class, the features linked to the biggest weights of the network
are selected. It is a filter-based method, which defines automat-
ically the quantity of features to be selected.

The rest of the paper is organized as follows: In Section
2 some basic concepts of feature selection are presented. The
proposed method is described in Section 3. The data set and
the results are shown in Section 4. Finally, the Conclusion is

1A one-level decision tree.



Figure 1. All possible combinations of a 4-feature search.
Black boxes indicate the included features, whereas the white
ones stand for the features not included [9].

found in Section 5.

2 Feature Selection

2.1 Definition

Feature Selection (FS) is the process of selecting a relevant sub-
set of the original features. Concerning a classification prob-
lem, the aim of the chosen subset is twofold: i) To reduce the
data dimensionality and ii) To retain as much information for
class separability [15].

More formally, let A be the original set of features, with
cardinality |A| = m. The feature selection is the assignment
of weights wi to each feature ai ∈ A, defining their rela-
tive importance. Ultimately, the objective of FS is to identify
relevant features according to a definition of relevance. Let
F = F1 × F2 × ... × Fm be the feature space defined by unit
vectors Fi, with 1 ≤ i ≤ m. One seeks to define the function
f : F −→ L, according to its relevant features, where L is
the set of labels. Lastly, one definition for relevance could be:
A feature ai ∈ A is relevant to a function f if there are two
elements α and β in space F with distinct labels such that α
and β are distinct only with respect to ai, and, consequently,
f(α) 6= f(β) . That is, instances α and β can be distinguished
only thanks to ai [9].

2.2 Characterization

A FS method can be characterized under four aspects: i) Search
organization; ii) Generation of features subset; iii) General
schemes for feature selection ; and iv) Evaluation measure.

2.2.1 Search organization

The proposed algorithm is supposed to conduct the FS process
using a specific strategy. Each state S in the search space de-
termines the weights for the features ai ∈ A. Figure 1 shows
an example of feature search space, where each set with four
squares is considered as an instance Si.

In relation to the number of instances, a method can handle
at a given instant, three possibilities: i) Exponential search: It
can evaluate more than one state at a time. It achieves the op-
timal solution due to the exhaustive search. Sometimes, how-
ever, if the evaluation measure is monotonic, not all the possi-
ble combinations need be visited. In this case, a Branch and
Bound algorithm [11] may be employed [15]. ii) Sequential
search: This method selects one amongst all the candidates to

the current state. It is an iterative procedure and, once one state
is chosen, it is not possible to go back. iii) Random search:
The intention is to use the randomness in order to avoid get-
ting trapped in local minimum solution, and also to allow some
movements towards states with worse results.

2.2.2 Generation of features subset

The output of a FS algorithm is the subset A′ ⊂ A, containing
the chosen features.

One can start with the original set A with m elements, and,
at each step, one feature is dropped out fromA until the desired
number of features is achieved. This method is called sequen-
tial backward selection.

Another method, which is the reverse of the preceding pro-
cedure, is called sequential forward selection. It starts from
an empty set, and the best feature —according to a specified
criterion—is added to the set after each step.

The two afore-mentioned methods suffer from the nesting
effect. That is, once a feature is discarded or chosen, depending
on the method, it cannot be undone [15]. So, in compound
method the idea is to use both forward and backward methods.

2.2.3 General schemes for features selection

The relationship between the FS method and the subsequent
classifier can normally have two forms : i) Wrapper; and ii)
Filter [15].

Wrapper : In this scheme, the FS method is used during the
training phase of the classifier. For each feature ai added to A′

or discarded from it, the classifier should be trained again in
order to assess the features subset A′. Thus, the main disad-
vantage is the heavy computational cost. Its advantage is the
good overall classifier’s accuracy [14] [9].

Filter: The FS method is used as a data preprocessing step.
In this case, the feature selection method is independent of the
classifier. The advantage of this scheme is its speed in relation
to wrapper method. Its disadvantage is that the feature selection
is not conducted by the classifier, yielding suboptimal results
[14] [9].

2.2.4 Evaluation measures

There are some ways to assess how good a feature subset A′

is. Most evaluation measures such as Divergence and Chernoff
Bound and Bhattacharyya Distance take into account the prob-
ability distribution of the classes [9]. However, they are not
easily computed.

Thus, in this work we will adopt a non-parametric measure
called Scatter Matrices [15].

Scatter Matrices: Scatter Matrices are related to the way the
samples are scattered in the feature space. Thus, the following
three matrices should be defined:

Within-class scatter matrix:



Mw =
q∑

i=1
PiΣi,

where q is the quantity of classes, Σi stands for the covariance
matrix for class Li, and Pi is the a priori probability of class
Li.

Between-class scatter matrix:

Mb =
q∑

i=1
Pi(µi − µ0)(µi − µ0)T ,

where µi is the mean vector of class Li, and µ0 is the mean
vector of the whole data.

Mixture scatter matrix: it can be expressed as

Mm = Mw +Mb.

The trace of Mm is the sum of variances of the features
around their respective global mean. This way, the metric

J = trace(Mm)
trace(Mw)

has large values when the data are well clustered inside their
respective classes, and the clusters of different classes are well
separated [15].

Finally, J will be used in this work to assess the validity of
a subset of selected features.

3 Proposed method

The FS method proposed in this paper can be categorized as
sequential forward selection, with sequential search, and the
evaluation criterion used for assessing it is scatter matrix. It
is also a filter method, meaning that the features are selected
before the employment of the classification algorithm.

The objective is to find a features subset A′ ⊂ A, which
will be used by the subsequent classifier. At first, A′ is empty.
After each iteration of the method, chosen features are added
into A′ until a stopping criterion is met.

3.1 Stopping criterion

In many approaches, the stopping criterion is user-defined.
Normally, it is associated with the quantity of features the al-
gorithms should find. For experienced users, it would pose no
problem at all, however it is not always the case. Thus, in order
to avoid such situations, the proposed method defines automat-
ically the number of features to be retained.

Keeping in mind that the classifier to be used is a deep neu-
ral network (DNN), it is possible to define a deep architecture
with the following restrictions: i) The amount of its learning
parameters should be, at least, ten times smaller than the train-
ing data cardinality [15], in order to decrease the chances of
having overfitting; and ii) the architecture should take a funnel-
like disposition —to follow the encoding process of stacked
autoencoders [16]. Therefore, knowing the output layer size
and the number of hidden layers2, one can easily come up with

Figure 2. A funnel-shaped neural net, with one neuron in the
output layer.

an architecture. One example of architecture is displayed in
Figure 2.

Let l be the quantity of hidden layers of the classifier, d
the input layer size, and o the output layer size. The architec-
ture used by the networks of this paper is defined according to
Algorithm 1.

Algorithm 1 Funnel-shaped deep neural network architecture.
1: input : (d, o, l)
2: input layer: d neurons
3: jth hidden layer: d−j∗r neurons, with r = (d−o)/(l+1)
4: output layer: o neurons
5: return: Neural net architecture

When taking into account the whole data without feature
selection, the input layer size is d = |A|. After the feature
selection process, d = |A′|.

By using the method described in Algorithm 2, one can
determine the biggest —in terms of neurons quantity —archi-
tecture γ whose amount of parameters is less than |X|

10 , where
|X| is the cardinality of the training data X .

Algorithm 2 Creation of an architecture with limited number
of parameters.

1: k = |A|+ 1
2: do
3: k = k − 1
4: Create architecture γk according to Algorithm 1, using

as input (k, o, l)
5: quantity parameters = amount of parameters of γk

6: while quantity parameters > |X|
10

7: return: γk

Finally, the input layer size of the architecture γ is the quan-
tity of features to be selected by the proposed FS method. In
reality, this quantity is the stopping criterion.

3.2 Feature selection

Partially based on the concept of Boosting [3], the proposed
method gives the partitioning of the training data X into sev-
eral subsetsX ′

i of equal cardinality. This approach was already
used in [10], but in our work the novelty is the use of single-
layer neural networks for feature selection.

2A user-defined hyperparameter.



Figure 3. Pavia University image. (a) Pavia university. (b)
Ground-truth map [4].

For the first subset X ′
1, a single-layer neural network per-

forms a binary classification using all the original features of
the set A. The output layer has only one neuron, and its activa-
tion function is the sigmoid. After the training, the two features
associated to the biggest and the smallest weights are added to
the set A′, which was initially empty. In the sequel, another
single-layer neural network will perform a binary classification
on the subset X ′

2, but this time the features set will lack the
two features previously chosen. This process repeats until the
the cardinality of A′ equals the input layer size of the reduced
architecture γ calculated in Section 3.1.

In a classification problem with q classes, the method
should be run q times. This way, it is possible to select the
features that are more appropriate for each class.

4 Experiments

This section will show some results of the proposed method.
For the training of the deep architectures used in this work,
20000 training epochs were used for both architectures.
Theano library has been employed [1]. The data are composed
of hyperspectral images.

4.1 Data set

The data used in this work are composed of two hyperspectral
images. They were acquired by the ROSIS sensor, over Pavia,
Italy. Pavia University is an image with 1096 × 1096 pixels,
103 spectral bands and 1.3m of spatial resolution. It is used as
training data. Figure 3 shows Pavia University image and its
ground-truth map.

The testing data is the Pavia Centre image. With 102 spec-
tral bands, 610 × 610 pixels and 1.3m of spatial resolution.
Figure 4 shows the image and its ground-truth.

According to Figures 3 and 4, each image has 9 classes.
From those, 7 are present in both images. And among those
7, a total of 4 classes are considered here: bare soil, meadows,
self-blocking bricks and trees. This choice was based on sim-
ilarities of the class spectral signatures between training and
testing data. Table 1 shows the classes and their respective car-
dinality. Both training and testing data are of the same size.

Figure 4. Pavia Centre image. (a) Pavia centre. (b) Ground-
truth map [4].

Table 1. Classes and their cardinalities.
class number of elements

bare soil 2863
meadows 3500

self-blocking bricks 2685
trees 3064
total 12112

4.2 Results

The main objective is the selection of features that will be used
by a classifier, as shown in Figur 5.

Here, there are 4 classes to be classified, thus the proposed
method should be run four times, as prescribed in Section 3.2.

At each execution, the algorithm selects the features for a
class in particular. At the end, all the selected features compose
the feature subset A′, which will be used by the classifier.

4.2.1 Feature selection for each class

According to Table 1, there are in total 12112 instances for
training the deep neural network. Thus, in order to be con-
sistent with our pursuit of avoiding overfitting, the reduced ar-
chitecture should have, at most, one-tenth of that amount as
parameters quantity, i.e., 1211 weights and biases. By using
Algorithm 2, the calculated architecture γreduced is 24 : 20 :
16 : 12 : 8 : 4 : 4, where 24 is the quantity of neurons of
the input layer. Thus, the amount of features to be selected is
24. For each one of the 4 classes its correspondent feature se-
lection is tackled as a binary problem. Each class is supposed
to contribute equally to the selected features set A′. Therefore,
each class will provide A′ with 6 features. At each run of the
FS method, 2 features are selected. Thus, 3 executions for each
class will be necessary.

Bare soil: For the bare soil class, the single-layer neural net-
work described in Section 3.2 is trained to classify the fol-

Figure 5. Flowchart for the proposed method.



Table 2. Overall results for both architectures.
architecture training acc. testing acc. J

γfull 96.15% 51.57% 1.29
γreduced 95.84% 53.19% 1.36

lowing binary problem: bare soil, with 2863 instances, and
non-bare soil, with 9249 instances. The selected features —or
bands—for bare soil are 73, 81, 82, 83, 84 and 85.

Meadows: For this class, the same procedure used for bare
soil class is adopted. The resulting selected features are: 40,
65, 68, 88, 96 and 102.

Self-blocking bricks: For the self-blocking bricks class, the
selected features are: 28, 32, 55, 77, 87 and 100.

Trees: For trees, the selected features are: 23, 24, 26, 78, 79
and 80.

4.2.2 Reduced and full architectures results

In order to show the validity of our method, it is necessary to
compare results between the full and reduced architectures. It
is expected that the full architecture achieve a better accuracy
in training data and worse accuracy in testing data, when com-
pared to the reduced architecture.

The full architecture γfull takes the original data set with-
out reduction, that is, with 102 spectral bands. Its output layer
size is 4 and in this work the number of hidden layers is al-
ways 5. According to Algorithm 1, the architecture of γfull

is 102 : 85 : 68 : 51 : 34 : 17 : 4, where 102 and 4 are,
respectively, the amount of input and output neurons.

Table 2 shows the overall results for both architectures.
Considering the full architecture γfull, its accuracy for the

training data was 96.15%. The accuracy for the testing data
was 51.57%.

As for the reduced architecture γreduced, the accuracy for
the training data was 95.84%, and the accuracy for the testing
data was 53.19%.

Negative remarks: i) In both cases, the accuracy for the test-
ing data was not good. There is a considerable difference be-
tween it and the accuracy for the training data. Maybe other
architectures with different quantity of hidden layers and neu-
rons may yield better results, however it is not the main con-
cern of this paper. ii) The selected features, or bands, shown
in Section 4.2.1 are, in many cases, contiguous. For a hyper-
spectral image, it means that they are strongly correlated, and
strong correlation amongst selected features should be avoided
by a FS method. According to the proposed method, the fea-
ture selection for any two classes Li and Lj , with i 6= j, is
independent, therefore, the inclusion of a same feature ak in
both A′

i and A′
j is perfectly possible, but undesirable. One way

to solve this issue could the inclusion of one processing step
after the feature selection operation, in order to discard repet-
itive and strongly correlated features. For this, our stopping
criterion should be increased, permitting the selection of more
features.

Positive remarks: i) Concerning the training data, the accu-
racy for γfull was bigger than that for γreduced. In fact, it is
expected, because the model with more parameters can learn
finer details of the training data. However, getting excessively
good at predicting the training data may degrade the prediction
with other data sets, that is, its generalization power. In our
experiments, it is very clear. Contrary to the training data, the
testing data accuracy for the γreduced architecture was better
than that of the full architecture γfull. The reduced architec-
ture γreduced uses less information from the data set than γfull,
and yet the former achieves better accuracy for the testing data.
From this, we may conclude that there was less overfitting for
the reduced architecture γreduced. ii) The metric J for γreduced

is bigger than that for γfull, indicating that the classes are bet-
ter separated in the reduced feature space F ′ induced by A′.
Therefore, the proposed method is valid.

5 Conclusion

Deep Learning architectures have a large number of parameters
to be learned. This fact per se represents no problem at all.
The source of complications is the scarceness of the training
data set, in terms of not possessing enough instances, creating
a scenario where overfitting may arise.

One possible way to avoid this situation is decreasing the
number of classifier’s parameters. In a deep neural network,
it may be achieved by decreasing the input layer size. Thus,
feature selection methods enter the scene.

This work proposed a feature selection method based on
single-layer neural networks. The selected features are the ones
associated with the biggest network’s absolute weights. Each
class gives its contribution in order to compose the final subset
of selected features. After the feature selection, the data were
classified by two funnel-shaped deep neural networks. The re-
duced architecture, having as input data the selected features,
achieved a better accuracy with the testing data when compared
to the full architecture. Bearing in mind that in the reduced
feature space the classes are better separated, this difference in
performance may be credited to the presence of overfitting in
the bigger architecture, whose accuracy for the training data
was higher than that of the reduced architecture.

The problem of selecting correlated features is an issue that
shall be addressed in further works. This way, it is possible to
avoid the choice of bands bearing nearly the same information.

For the time being, the results indicate the validity of the
proposed method.
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