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Abstract Pore structures have a major impact on the transport and electrical
properties of electrochemical devices, such as batteries and electric double-layer
capacitors (EDLCs). In this work we are concerned with the prediction of the elec-
trical conductivity, ion diffusivity and volumetric capacitance of EDLC electrodes,
manufactured from hierarchically porous carbons. To investigate the dependence
of the effective properties on the pore structures, we use a structurally resolved
parametric model of a random medium. Our approach starts from 3D FIB-SEM
imaging, combined with automatic segmentation. Then, a random set model is
fitted to the segmented structures and the effective transport properties are pre-
dicted using full field simulations by iterations of FFT on 3D pore space images
and calculations based on the geometric properties of the structure model. A pa-
rameter study of the model is used to investigate the sensitivity of the effective
conductivity and diffusivity to changes in the model parameters. Finally, we inves-
tigate the volumetric capacitance of the EDLC electrodes with a geometric model,
make a comparison with experimental measurements and do a parameter study
to suggest improved microstructures.

Keywords Porous electrodes · Double-layer Capacitor · FIB-SEM nanotomog-
raphy · Stochastic modeling

1 Introduction

Porous carbon materials are widely used as electrode materials in energy storage
devices, such as electrical double-layer capacitors (EDLCs)(Conway, 2013). These
devices are used as alternatives or in combination with batteries. Yet, in general,
they have a lower specific capacitance per volume and per weight and a higher
specific power. In EDLCs, the electric energy is stored in a thin layer on the
surface of the porous electrode which makes micro- or nanoporous materials with
their large specific surface area especially suitable, since this results in a very
high capacitance. Yet, the performance, measure in specific power and capacitance
depends on the specific pore shape and size of the electrode materials. Hence, to
predict the performance of an electrode material, knowledge and modeling of the
morphology of the pore space is necessary, aside from the electrochemical modeling.

To this end, two nanoporous carbon-based materials, used in electrodes of
EDLCs, are investigated. The two samples are imaged with FIB-SEM and the im-
ages are segmented using a new segmentation algorithm using mathematical mor-
phology as in (Prill et al, 2013). Using the segmented microstructures, a stochastic
model is defined for a two-phase heterogeneous material. The first part of the mod-
eling consists of defining a random set model depending on a set of free parameters.
Then the best fit parameters are identified by matching the morphological charac-
teristics of the observed microstructures to model realizations. The second part of
the paper consists of a model for the effective transport properties of the modeled
microstructures. Using the model, the specific conductivity and diffusion resistance
of both materials are predicted by simulations using FFT-based methods. Then,
we performed a parameter study to estimate the sensitivity of the effective prop-
erties with respect to the model parameters. Finally, we use geometric properties
of the random set model to predict the volumetric capacitance of the electrodes
and make a comparison with measurements.
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2 State of the Art

2.1 Image Analysis and Segmentation

Reconstruction of highly porous three-dimensional pore spaces from FIB-SEM
imaging is still in general an unsolved problem. Different methods have been tried,
such as thresholding approaches as in (Nanjundappa et al, 2013) or surface evo-
lution as in (Jørgensen et al, 2010). Other methods include the ones shown in
(Salzer et al, 2012), such as threshold backpropagation or valley detection. In this
study we use the method presented in (Prill et al, 2013), based on mathematical
morphology. Since it has been shown, that even accurately segmented FIB-SEM
data can lead to false transport properties, we combine the automatic segmenta-
tion with stochastic modeling, as in (Hutzenlaub et al, 2013). Hence, we define a
parametric stochastic model, which visually resembles the investigated materials.
This allows for a better estimation of the transport propertied as well as a system-
atic alteration of the model parameters and the optimization of the model with
respect to performance measures, such as capacitance and diffusion resistance.

2.2 Physical Modeling

Electrochemical double-layer capacitors are devices for the storage of electrical en-
ergy by means of an electrical double-layer forming on the surface of the electrode.
Physically, energy is stored when charge carriers adsorb to the surface of the elec-
trode and induce a strong electric field across the boundary. This constitutes the
so called electrical double layer. The earliest theory of the formation of the double
layer was developed by Helmholz in 1879. Later the theory was amended by Stern
and then Guy and Chapman. An historical overview can be found in (Conway,
2013). Modern approaches for modeling the double layer include the theories by
Bazant, starting with (Bazant et al, 2004).

As the capacitance of the electrode increases with the specific surface area
of the electrode, micro- or nanoporous electrodes lend themselves as electrode
materials. Different models for porous electrodes for EDLCs have been developed.
The simplest ones are based on equivalent circuits, where an overview can be found
in (Barsoukov and Macdonald, 2005). A more detailed treatment of the porous
electrode has been given in macrohomogeneous models pioneered by de Levie
(1963), and extended e.g. in (Paasch et al, 1993) and (Roßberg et al, 1998). A
spatially resolving model is given, e.g., in (Wang and Pilon, 2012).

In the present paper we will restrict ourselves to the most basic treatment of
the double layer as an areal capacitance and focus on the geometrical aspects of
the porous electrode. To this end we are using a stochastic model to represent the
morphology of the pore space. The model is based on a Boolean Model of spheres
combined with a convolution to achieve a smoothing effect on the geometry.

3 Materials and Imaging

The starting point for the study in this paper is segmented FIB-SEM images of
two samples of porous carbon electrodes.
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3.1 Materials

In this work, there are two samples of different electrode materials under investi-
gation, denoted S12 and S14. Both have been synthesized by the same production
process, yet with a slightly different composition, leading to a difference in pore
sizes. Both materials have a hierarchical pore space, with mesopores, with a typi-
cal pore size of 2nm− 50nm and micropores, with a typical pore size smaller than
2nm.

The samples have been produced by carbonization of resorcinol-formaldehyde
(RF) gels at 800◦C in the presence of a cationic surfactant, cetyltrimethylammo-
nium bromide (CTAB), used as a pore stabilizer. As the RF nanoparticles are sin-
tered together during carbonization process, a pore stabilizer is added in order to
avoid the collapse of the pores, leading to the formation of a well-connected meso-
pore network (Balach et al, 2013). The samples S12 and S14 have been produced
using a CTAB to resorcinol molar ratio of, respectively, 0.12 and 0.14, leading to
a difference in the morphology of the mesopore network. Based on (Balach et al,
2013), in this study it is assumed that the micropore morphology is the same for
both samples.

3.2 Imaging and Segmentation

The two samples were imaged by FIB-SEM Nanotomography (Balach et al, 2012),
using the secondary electron signal. The resolution of the SEM image stack of S12
was 3.57nm ×3.57nm and the slicing with the focused ion beam was carried out
with 10 nm thickness. Additionally, the tilting of the sample by 52◦ leads to a
larger resolution in y-direction. This leads to a resulting voxel size in the three-
dimensional image of 3.57nm ×3.62nm ×10nm. A subwindow of the dimension
411× 311× 181 voxels was cropped from the original image stack for the analysis.
To improve the segmentation result, the image was magnified by a factor of 1.5
yielding a data set of dimension 616×496×271 voxels with a voxel size of 2.38nm
×2.41nm ×6.67nm.

The sample S14 was imaged with a lateral resolution of 5nm ×5nm, with a
10nm slicing thickness, leading to a voxel size of 5nm ×6.27nm ×10nm. Analo-
gously to S12, a subwindow of dimension 611× 293× 123voxels was cropped from
the image stack. Fig. 1 shows two slice views of the cropped FIB-SEM image stack
of S12 (on the left) and S14 (right).

After imaging and cropping, the images stacks were segmented using the mor-
phological algorithm presented in (Prill et al, 2013), which uses the shading effect
present in the SEM images, as the result of the large depth of field of the in-
strument. The segmentation parameters were chosen manually to optimize the
visual impression of the segmentation. Slice views through the segmented images
are shown in Fig. 2. The morphology of the porous network shows two tortuous
components of a bipercolating medium, requiring the choice of adequate random
textures models to generate a faithful description.

Finally, the images were scaled to yield an isotropic voxel edge length of
2.38 nm for S12 and 5 nm for S14.
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Fig. 1 Slice views of the FIB-SEM image stacks for the samples S12 (left) and S14 (right).

Fig. 2 Slice views of the segmentations of the images of samples S12 (left) and S14 (right).

4 Modeling the Morphology Nanoporous Carbon Electrodes

Since it has been shown, that computations of transport properties based on seg-
mented FIB-SEM images can lead to large errors in the estimated properties re-
sulting from the lack of spatial resolution in the z direction (Hutzenlaub et al,
2013), it was decided to use a model of random set for the generation of 3D com-
putational domains used as input data for estimation of the transport properties.
This allows for correcting errors in the segmentation by, e.g., modeling an isotropic
structure, and to explore systematic modifications of the microstructure. Starting
from the segmented images, morphological measurements were made to estimate
some probabilistic properties of the samples. This is the first step to generate rep-
resentative domains matching the material morphology as best as possible. The
random set model depends on a set of free parameters, which have to be deter-
mined by model fitting. Since both samples are fitted to the same model, this
results in two sets of parameters representing the respective microstructures of
the samples. It opens the possibility to make a systematic study of the impact of
the morphology of the mesopores on the transport properties of electrodes.
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4.1 Principle of Random Set Modeling

A random set A is completely known and identified from a functional, its Choquet
capacity, defined on compact sets K in (Matheron, 1967), (Matheron, 1975; Serra,
1982; Jeulin, 2000) defined by

T (K) = P (K ∩A 6= ∅)

where P is a probability. If we denote Kx the compact set K after translation to
point x, we get

T (Kx) = P (Kx ∩A 6= ∅) = P{x ∈ A⊕ Ǩ}

where A⊕ Ǩ is the result of the dilation of set A by K:

A⊕ Ǩ = {x,Kx ∩A 6= ∅} = ∪y∈KA−y = ∪x∈A,y∈K{x− y}

Similarly, we can define the erosion by K, A	 Ǩ, from

A	 Ǩ = {x,Kx ⊂ A} = ∩y∈KA−y = (Ac ⊕ Ǩ)c

where Ac is the complementary set of A. In principle, all types of compact
sets should be used for a complete characterization of A. In what follows, we
will use pair of points (K = {x, x + h}) and approximation of spheres in 3D by
rhombo-cuboctaedra.

In addition to the Choquet capacity, size distributions of a random set can be
accessed through the use of the opening transformation by convex compact sets
(like a sphere with radius r, B(r)). This transformation starts from an erosion of
the set by B(r), and is followed by a dilation by B(r):

γB(r)(A) = (A	B(r))⊕B(r)

Alternatively, the size distribution of Ac is accessed from the closing transfor-
mation of A by convex sets. For spheres B(r) the transformation starts from a
dilation of A by B(r) and is followed by an erosion by B(r):

φB(r)(A) = (A⊕B(r))	B(r)

It turns out that opening operations with spheres of increasing radius r progres-
sively removes details of the random set A until its complete suppression. Voxels
disappeared for size r correspond to details in A with size less than r, so that
a cumulative size distribution can be easily obtained from the estimation of the
probability for a point x to belong to γB(r)(A), obtained by its volume fraction.
Similarly, closing operations by spheres of increasing radius progressively fill the
space, and removes details of Ac, giving access to a cumulative size distribution of
Ac, estimated from the measurement of the volume fraction of φB(r)(A). Applied
to the segmented binary images of the nanoporous carbon electrodes of this study,
both size distributions of the carbon phase and of the mesopores are estimated in
3D.

A typical size of A, namely a median radius rM , is obtained for

P{x ∈ γB(rM )(A)}/P{x ∈ A} = 0.5
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. Similarly, a typical size of Ac, is obtained for

P{x ∈ φB(rM )(A)} − P{x ∈ A}/(1− P{x ∈ A}) = 0.5

.
The same operations and measurements are implemented on the 3D images

of materials and of 3D realizations of parametric random sets in an iterative pro-
cess aiming to minimize some distance between real and virtual specimens, as
illustrated later.

4.2 Random Set Model

As a starting point for the modeling we use a Boolean model (Matheron, 1967,
1975; Serra, 1982; Jeulin, 2000). It is built in two steps: a Poisson point process
with intensity parameter θ (average number of points per unit volume) generates
random germs in the 3D space; independent realizations of a random primary
grains A′ are located on the Poisson points xk. The random set A is obtained by
the union of A′xk :

A =
⋃
k

A′xk (1)

For this model the Choquet capacity is known in closed form. In the 3D space,
we have, denoting V the mathematical expectation of the volume:

T (K) = 1− exp(−θV (A′ ⊕ Ǩ) (2)

In the present case, we can use a monodisperse Boolean Model of Spheres (BSM)
for the mesopores, the primary grain being a sphere of radius r, B(r). It turns out
that for a volume fraction of spheres larger than 0.3 and less than 0.95, this model
is bipercolating (Jeulin and Moreaud, 2005), which is required for the present
materials.

A slice view through a realization of the Boolean model used for the modeling
is shown in Fig. 3a.

Yet, clearly the segmented sample images do not resemble the morphology of
the Boolean model, as the union of two spheres produces corners, which are not
present in the segmented images. Hence, it was decided to modify the BSM by
smoothing its boundary. This is done by using the indicator function of the BSM
defined as

1A(x) =

{
1 if x ∈ A
0 if x ∈ Ac

. (3)

To generate realizations of the modified model, the indicator function is con-
volved by a centered Gaussian kernel with width σ and integral 1 over the 3D
space,

N(0, σ)(x) =
1√

2πσ2
e−

x2

2σ2 . (4)

This yields a random function Z(x), with values in the interval [0, 1]:
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Fig. 3 Realizations of a Boolean model of spheres (a), a smoothed indicator function Z(x) of
the BSM (b) and a random set A1 obtained by thresholding Z(x) (c).

Z(x) = 1A ∗N(0, σ). (5)

A realization of Z(x) is shown on Fig. 3b. To obtain the indicator function of a
random set A1, a threshold C is applied, as shown on Fig. 3c:

A1 = {x, Z(x) ≥ C} (6)

The ”convolution-thresholding” approach (Grzhibovskis and Heintz, 2005) gives
a good approximation of the evolution of the boundaries of the initial random set
A by motion with a local velocity proportional to the local mean curvature in the
present case. It has the effect to smoothen the irregularities of the boundary, as
would be the case for some reaction-diffusion process.

In the present case, this sequence yields a random set depending on four pa-
rameters θ, r, σ and C.

The intensity θ can vary between zero and infinity but shows very small
changes, when the volume fraction is close to zero or to unity. This hampers
the optimization involved in the identification of parameters, which is based in a
gradient descent. Hence, the parameter θ is replaced by the volume fraction of the
BSM p using the relation derived from Eq. 2:

p = 1− exp(−θ 4

3
πr3). (7)

The parameter p varies only between zero and unity and is hence more stable
during the identification. To further simplify the fitting, the threshold C is chosen
such that the volume fraction of the set A1 is equal to the volume fraction of
the BSM on each realization. This can be achieved by analyzing the histogram of
realizations of the random function Z(x). This eliminates C as a free parameter,
the parameter p being directly estimated from the volume fraction of segmented
images.

4.3 Fitting Free Parameters to Images

To estimate the free model parameters giving the best match to the segmented
images, a distance was defined, in order to measure the morphological similar-
ity between model realizations and the segmented images. The distance Y is the
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sum of the squared difference of three morphological measurements (Serra, 1982)
performed on the segmented images and on realizations of the model. These mor-
phological measurements are the set covariance, the opening curve and the closing
curve.

4.3.1 Set Covariance

The set covariance is given by the probability of two points, separated by a distance
h, to be included in the random set A:

Cov(h) = P (x ∈ A, x+ h ∈ A) (8)

For a stationary random set with finite scale, the covariance reaches its sill
(Cov(0))2 for a finite length a, called its range. For the studied materials, the co-
variance is invariant by rotation of vector h, so that their morphology is isotropic
in 3D.

4.3.2 Opening curve

The opening curve Γ (r) is given by the volume fraction VV of the random set after
a morphological opening by the spheres B(r)

Γ (r) = VV [γB(r)(A)] (9)

4.3.3 Closing Curve

Analogously, the closing curve Φ(r) is defined by the volume fraction of the random
set after closing by the spheres B(r)

Φ(r) = VV [φB(r)(A)] (10)

For the identification, these functions were sampled at several distances hi and
radii ri yielding the distance Y , defined as (the subscripts d and m stating for
experimental data and for simulated model)

Y =
∑
hi

[Covd(hi)− Covm(hi)]
2

+
∑
li

[Γd(ri)− Γm(ri)]
2

+
∑
li

[Φd(ri)− Φm(ri)]
2.

(11)

The covariance was sampled on 37 equidistant points, spanning the interval hi =
[0, 76] voxels. Each of the other two curves were sampled on 15 points covering the
radii [0, 30] voxels. This gives the covariance roughly twice the weight of the other
data.

It is assumed that the best parameter fit is reached for a minimum of the
distance Y . Since, the measurements on the model are made on realizations, Y
is prone to noise, and therefore a stochastic minimization algorithm was used, the
SPSA algorithm in (Spall, 1992) in the present study.
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The algorithm starts with a given set of parameters

θ0 = (r0, σ0). (12)

Then a random sequence of computed according to the update rule

θk+1 = θk − akgk(θk), (13)

with the stochastic gradient

gk(θk) =


Y (θk+ck∆k)−Y (θk−ck∆k)

2ck∆k,1
...

Y (θk+ck∆k)−Y (θk−ck∆k)
2ck∆k,i

 . (14)

The sequences (ak) and (ck) control the convergence of the sequence, while the
sequence (∆k) leads to a perturbation in parameter space, with the components
of (∆k) following a Bernoulli distribution, i.e., P (∆k,i = ±1) = 0.5.

In the present study, the sequences

ak =
a

(k + 1)α
, a = 0.1, α = 0.101

ck =
c

(k + 1)γ
, c = 0.03, γ = 0.602

(15)

have been used. This, leads to a slow but steady convergence to the minimum of
the objective function Y (θ).

4.4 Experimental Results

The main 3D morphological properties are summarized in Table 1, clearly showing
the differences in the scales of the two mesostructures.

4.5 Optimal Model Fit

For the model fitting, the stochastic optimization method presented in (Spall,
1992) was performed with the distance given in Eq. 11. The realizations of the
modified BSM described in Sect. 4.2 for the fitting were generated on a voxel
grid with dimension 256× 256× 256. The stochastic optimization converged to a
minimum for each of the samples, leading to the respective best fit parameters.
Overall, the model fitting yielded the following results.

Table 1 Basic morphological properties of the two samples: solid volume fraction (p); range
of covariance (rc); median radius solid (med(rs)); median pore radius (med(rp))

Sample p rc med(rs) med(rp)

S12 67% 47.6 nm 23.8 nm 14.28 nm
S14 52% 150 nm 50 nm 60 nm
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Table 2 Optimal parameters obtained by fitting to the observed structure of S12

Parameter Optimal value (voxel) Optimal value (nm)

p 0.67 0.67
r 7 16.7
σ 10 23.8

Fig. 4 Comparison between the observed structure (left) and the fitted model (right) of
dataset S12.

4.5.1 Fitting S12

Optimal parameters for a model representing the sample S12 are shown in Table
2.

A comparison between the segmented image and a microstructure realization
is shown in Fig. 4. As can be seen, the model reproduces the shape of the pores
and the solid phase quite well. A slight difference can be observed in that the
boundary of the model is slightly coarser, yet this might be due to noise induced
by errors in the segmentation.

To quantify the similarity, the curves for the morphological measurements on
the segmentation and on the model realizations are shown in Figs 5-7. As shown
in Fig. 5 the covariance of the model realization is in good agreement with the one
measured on the segmented image. Also, the opening curves in Fig. 6 are in good
agreement. Yet, a small deviation can be observed in that the opening curve on the
model shows a slightly lower probability to find larger details in the solid phase.
The closing curves of the model and the segmentation (Fig. 7) virtually coincide,
meaning that the size distribution of pores is recovered in the simulations of the
model.

4.5.2 Fitting S14

Applying the same fitting procedure to the micrograph of sample S14, results in
the parameters given in Tab. 3. A visual comparison of model and segmented
image is shown in Fig. 8.
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Fig. 5 Comparison between the covariance of the fitted model (red) and the observed structure
(green) of dataset S12.
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Fig. 6 Comparison between the opening curve of the fitted model (red) and the observed
structure (green) of dataset S12.

Table 3 Optimal parameters obtained by fitting to the observed structure of S14

Parameter Optimal value (voxel) Optimal value (nm)

p 0.52 0.52
r 10 50
σ 14 70
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Fig. 7 Comparison between the closing curve of the fitted model (red) and the observed
structure (green) of dataset S12.

Fig. 8 Comparison between the observed structure (left) and the fitted model (right) of
dataset S14.

The fitted model to S14 shows even better agreement in the measured char-
acteristics. The covariances plotted in Fig. 9 and the opening curves plotted in
Fig. 10 coincide almost perfectly, while a small deviation can be observed in the
closing curves (Fig. 11), this time the model tending to less larger pore sizes.

Overall, as previously mentioned, the microstructure of S14 is much coarser
than the S12s, as the fitted radii of the initial spheres as well as the width of the
filter mask is about a factor 2 − 3 times larger. Although the volume fraction is
larger in S12, the amount of coarsening necessary to reproduce the microstructure
for both samples is similar. This is indicated by the fact that the ratio between the
initial radii and the width of the filter mask is about σ

r = 1.4, for both materials.
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Fig. 9 Comparison between the covariance of the fitted model (red) and the observed structure
(green) of dataset S14.
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Fig. 10 Comparison between the opening curve of the fitted model (red) and the observed
structure (green) of dataset S14.

Finally, the surface area of both samples has been measured on the segmented
images, as well as on the modeled microstructures. This is an important feature
since the surface area of the mesopores plays an important role in capacitance
of the materials. The resulting values are shown in Table 4. As can be seen, the
values differ by up to 18% for the sample S14. This discrepancy is attributed to
errors in the segmentation, since it is known that the segmentation algorithm does
not reconstruct the surface of objects perfectly.
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Fig. 11 Comparison between the closing curve of the fitted model (red) and the observed
structure (green) of dataset S14.

5 Estimating the Effective Transport Properties

5.1 Method of Numerical Homogenization

In order to predict the transport properties of the different mesopore structures,
the effective conductivity and the effective diffusivity of the samples were estimated
by numerical homogenization (Papanicolau et al, 1978; Sánchez-Palencia, 1980),
starting from model realizations of the modified BSM described in Sect. 4.2. In this
study, the porous material is modeled as a two-phase heterogeneous material as
shown in Fig. 12. The main difficulty concerns the contrast between the properties
of components, which is infinite in the present case. Therefore, other estimation
techniques like bounds derived from variational techniques can only provide an
upper bound, the lower bound being equal to zero.

It is assumed that the local material properties are given by a constant conduc-
tivity σ1 in the solid phase and a zero conductivity in the pore space. To estimate
the effective conductivity of the material, we have to compute the electric field
E(x) deriving from the potential Φ(x) in realizations of the medium, by solving

Table 4 Specific surface area measurement on the segmented images and the modeled struc-
tures.

Sample aseg [ cm2

cm3 ] amod [ cm2

cm3 ]

S12 3.1 × 105 3.28 × 105

S14 7.15 × 104 6.02 × 104



16 Torben Prill et al.

Fig. 12 A sample domain on which the effective conductivity and diffusivity are computed.

the problem

∇ · [σ(x)∇Φ(x)] =0, (16)

∇× E(x) =0, (17)

with periodic boundary conditions on the domain boundaries and the condition
〈E(x)〉 = E, 〈E(x)〉 meaning the space average of the electric field. The problem
is numerically solved using the “accelerated” Fourier scheme (Eyre and Milton,
1999). It is an efficient method, which directly applies to images and does not
require any meshing of the microstructure. The method is based on rewriting
Eq. 16 as the implicit integral equation

E(x) = E −
∫
Γ (x′)P (x− x′)dx′, (18)

where Γ is the (second-rank, periodic) Green operator associated to the homoge-
neous conductivity σ0 (Duffy, 2001) and P (x) = J(x)−σ0E(x) is the polarization
field associated to σ0.

In the accelerated FFT method, (18) is solved by a Neumann series, which
is computed by an iterative fixed-point algorithm. Using explicit formula for the
Green operator, the convolution product in the right-hand-side of (18) is deter-
mined in the Fourier domain. The use of fast Fourier transforms greatly reduces
computation times. Additionally, for the Green operator, use is made of the “finite-
difference” discretization proposed in (Willot et al, 2014), which improves the
convergence rate and also leads to more precise local fields. In FFT algorithms,
the convergence rate generally depends on the reference conductivity σ0. In the
present method, its optimal value is unknown. Based on numerical experiments,

we set
∣∣∣σ0

σ1

∣∣∣ = 0.36 for all computations. We stress that this value is not necessarily

optimal.
The effective conductivity σeff is estimated using:

σeff〈Ei(x)〉 = 〈σ(x)Ei(x)〉 = 〈Ji(x)〉, (19)
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where a macroscopic potential gradient 〈∇φ(x)〉 is applied along the direction ei.
The diffusivity is estimated by the same approach, since we consider a steady

state for the diffusion, so that the time derivative of the concentration is equal to
zero. For this problem, the diffusivity of the solid phase is equal to zero, while the
diffusivity of pores, filled with some electrolyte, is set to one. Therefore, the conduc-
tivity problem and the diffusivity problems are solved on the same mesostructure,
after exchanging the roles of pores and of the solid phase.

5.2 Predicting Effective Transport Properties

5.2.1 Bounds of effective properties

As a first estimate for the effective transport properties, the Wiener, Hashin-
Shtrikman, and third-order upper bounds are computed for the effective conduc-
tivity as well as the effective diffusivity. Since one component has a vanishing
transport property, the lower Wiener, Hashin-Shtrikman and third-order bounds
vanish.

The upper Wiener bound is valid for any microstructure of a heterogeneous
material, while the upper Hashin-Shtrikman bound are valid for isotropic mi-
crostructures. Both depend only on the volume fractions of the phases p1 and p2

and the bulk properties of the respective phases, σ1 and σ2. The upper Wiener
bounds for a two-phase material with vanishing property for σ2 are given by

σuW = p1σ1 (20)

For a two-phase material, the upper Hashin-Shtrikman bounds are given by:

σuHS = σ1

(
1 +

p2

1 + p2
3

)
. (21)

The third-order bounds (Beran, 1965) make use of the 3-points probability
functions P{x ∈ A, x + h1 ∈ A, x + h2} and are generally model-dependent. For
practical applications to two-components media with an isotropic geometry, they
depend separately on a function calculated by some integral of the 3-points prob-
ability and on the property of each component (Milton, 1982). This probability is
not known in a closed form for the present ”convolution-thresholding” model, but
it can be approximated by the corresponding function for the BSM model:

P{x ∈ A,x+ h1 ∈ A, x+ h2} =

exp (−θV (B(r) ∪B(r)−h1
∪B(r)−h2

))

This expression was used to estimate the function involved in the calculation
of the third-order upper and lower bounds σuBSM and σlBSM of the BSM (Torquato
and Stell, 1985), which depends linearly on the volume fraction of spheres p. Many
other models of random media show a similar behavior (Jeulin, 2005).

For the upper Wiener, Hashin Shtrikman, and third order bounds for the ef-
fective conductivity and diffusivity of the modeled microstructures are shown in
Tables 5 and 6, respectively.
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Table 5 Upper Wiener, Hashin-Shtrikman and third-order bounds of the conductivity of the
two samples

sample σuW σuHS σuBSM

S12 0.67 0.629 0. 557
S14 0.52 0.428 0.3914

Table 6 Upper Wiener, Hashin-Shtrikman and third-order bounds of the diffusivity of the
two samples

sample DuW DuHS DuBSM

S12 0.33 0.137 0.117
S14 0.48 0.37 0.244

5.2.2 Effective Conductivity

The effective conductivities were predicted by solving the problem in Eqs. 16-19
with the software morphhom (Willot et al, 2014). Hence, the conductivities are
computed for the electrostatic case (i.e., at frequency ω = 0). This is justified, by
the low frequency the capacitances being measured in the EIS measurement.

For the determination of the effective conductivities, 20 model realizations with
different dimensions between 1283-5123 voxels were generated for each of the pa-
rameter sets in Tables 2 and 3. Then, the effective conductivities were computed
for each realization. From the statistical dispersion of conductivities, it is possible
to estimate the representativeness of the computed values with respect to varia-
tions in the model realizations. A study on the statistical representative volume
element (as defined in Kanit et al (2003)) for S12’s model is shown in Fig. 13.
To characterize the statistical dispersion of the conductivity, the mean and the
empirical standard deviation were computed for the 20 realizations of the model
for each edge length of the volume. Fig. 13 shows the mean and twice the stan-
dard deviation of the effective conductivity as error bars. Hence, the error bars
correspond to the 95% confidence interval of the individual realizations. As can be
seen, the realizations with edge length greater than 256 voxel, corresponding to a
physical volume with edge length of about l ≈ 0.6µm, show no bias (there is no
edge effect for this size) and have a relative precision of less than ±2%.

When combining the 20 realizations with the largest edge length of 512 vox-
els, the confidence interval of the effective conductivity for the model for S12 is
estimated as (

σeff,S12

σbulk

)
= 0.4976± 0.0034 (22)

where the errors indicate the ≈ 95% confidence interval of the average given by the
sample mean ±2 SD√

n
, where both quantities were estimated form the 20 realizations

with edge length 512.
The corresponding study for the sample S14 is shown in Figure 14. Due to the

larger structure size, the RVE for S14 is slightly larger, yet for an edge length for
about 384 voxel corresponding to a physical volume with edge length ≈ 1, 9µm,
the edge effects are negligible and the relative precision on 20 realizations is about
±2%.
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RVE study for the effective conductivity for S12

Fig. 13 Study on the RVE of the conductivity the model with parameters for S12. The error
bars corresponding to the 95% confidence interval for the individual realizations.

100 150 200 250 300 350 400 450 500 550

edge length [voxel]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

e
ff

e
c
ti
v
e
 c

o
n
d
u
c
ti
v
it
y
 [

e
ff

/
b
u
lk

]

RVE study for the effective conductivity for S14

Fig. 14 Study on the RVE of the conductivity the model with parameters for S14. The error
bars corresponding to the 95% confidence interval for the individual realizations.
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The average effective conductivity for S14 estimated from a volume of 5123

voxels is (
σeff,S14

σbulk

)
= 0.308± 0.0044. (23)

With the error again being the ≈ 95% confidence interval of the average.

The estimated conductivities of the two samples are much lower than their
upper Wiener and Hashin-Shtrikman bounds (Table 5), which would provide poor
estimates. Third-order bounds provide better estimates, but still with an overes-
timation of the conductivity.

5.2.3 Effective Diffusivity

The other important transport property considered in this work is the effective
diffusivity in the pore space. Since the charge carriers in the electrolyte are trans-
ported by diffusion in the electrolyte, which in turn is filling the pore space, the
effective diffusivity has a major impact on the charging speed of the EDLC elec-
trode. The effective diffusivity is estimated using the same procedure as for the
effective conductivity. In the model, it was assumed, that the solid phase is im-
pregnable for charge carriers and hence the diffusivity of the solid phase vanishes.
The diffusivity of the pore space was set to one. RVE studies for the effective
diffusivity for both samples are shown in Fig. 15 and 16. Both studies show, that
for edge lengths of the computational domain of more than 256 Voxels, edge ef-
fects essentially vanish and the relative precision reduces to less than ±1%. This
corresponds to a representative volume with an edge length of about l ≈ 0.6µm
for S12 and l ≈ 1.2µm for S14, respectively.

For the parameter set representing the model for S12, the effective diffusivity
was estimated from 20 realization with edge length of 512 Voxels to

(
Deff,S12

Dbulk

)
= 0.097± 0.0048. (24)

For the parameter set representing S14 the effective diffusivity was estimated
to (

Deff,S14

Dbulk

)
= 0.24± 0.0042. (25)

In both cases, the errors represent the ≈ 95% confidence interval of the average,
computed as for the effective conductivity.

Comparison to the bounds in Table 6 shows that the simulated values are
closest to the BSM bounds.

Additionally, the diffusivities of the samples have been measured by elec-
troimpedance spectroscopy resulting in the values in Table 7. A comparison shows
that the qualitative behavior of the two samples is reproduced, yet quantitatively
the level of agreement is low.
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RVE study for the effective diffusivity for S12

Fig. 15 Study on the RVE of the effective diffusivity of the model with parameters for S12.
The error bars corresponding to the 95% confidence interval for the individual realizations.
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RVE study for the effective diffusivity for S14

Fig. 16 Study on the RVE of the effective diffusivity of the model with parameters for S14.
The error bars corresponding to the 95% confidence interval for the individual realizations.
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Table 7 Measured and simulated diffusivities of the two samples, assuming a bulk diffusivity

of Dbulk = 1.08 × 10−6 cm2

s .

Sample DExp DSim

S12 1.07 × 10−6 cm2

s 0.097 cm2

s
S14 4.89 × 10−6 cm2

s 0.24 cm2

s
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Fig. 17 Parameter study of the effective conductivity of the model described in Section 4.2.

6 Parametric Study

Finally, a parametric study was performed, to assess the impact of the different
model parameters on the effective conductivity and diffusivity of the resulting
microstructures. To this end, the realizations of the model were generated with
pore volume fractions ranging from 10% to 90%. Due to the linear nature of
the conductivity problem, the absolute size of the radii and filter masks do not
affect the effective properties. Thus, we limited the study to the estimation of the
influence of the ratio between the radii of the spheres of the Boolean model and
the size of the filter mask. The resulting effective conductivity and diffusivity are
shown in Fig. 17 and 18.

As can be seen, the ratio between the initial sphere radius and size of the filter
mask has only a minute influence on the effective conductivity. Hence, it should
in most cases be sufficient, to fit a Boolean model of spheres to the microstructure
and estimate the effective conductivity and diffusivity on its realizations.
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Fig. 18 Parameter study of the effective diffusivity of the model described in Section 4.2.

7 Comparison with Experiment

Experimentally, the gravimetric capacitance for both materials were measured
using electroimpedance-spectroscopy. The corresponding capacitance values for
both materials are:

CG,S12 = 157
F

g
, (26)

CG,S14 = 113
F

g
. (27)

To compare the measurements with the calculated values, we calculate the
ratio of the volumetric capacitances of the two samples through

CV,S12 = CG,S12pS12ρ, (28)

CV,S14 = CG,S14pS14ρ, (29)

where pS12 and pS14 are the volume fractions and ρ is the density of the microp-
orous phase of the two samples in g

cm3 .
Since, the density of the microporous phase (ρ) is not known, only the ratio of

the volumetric capacitances of the two materials can be compared. The ratio of
the measured volumetric capacitances is given by

CV,S12

CV,S14
=
CG,S12pS12ρ

CG,S12pS14ρ
= 1.79, (30)

where the density ρ cancels out. By comparison, the ratio between the capacitances
of the modeled structures is

pS12

pS14
= 1.288.
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Table 8 Specific surface of the samples measured on the segmented images aseg as well as on
the modeled microstructures amod.

Sample aseg amod

S12 3.1 × 105 cm2

cm3 3.18 × 105 cm2

cm3

S14 7.1 × 104 cm2

cm3 6.02 × 104 cm2

cm3

If the charge was stored only on the micropore surface, these ratios should be
the same. Possible reasons for this discrepancy are that a double layer is form-
ing on the mesopore surface, which has not been considered in the simulation.
Also, the bulk volumetric capacitances of the solid phase might differ between
the two samples, due to the possible presence of micropores with different volume
fractions, unresolved by the FIB-SEM images. Since the sample S12 has a larger
measured capacitance relative to S14 and also a larger surface area of the meso-
pores, which would explain a larger discrepancy if a double layer would be formed
on the mesopore surface, the first possibility is further explored in this study.

8 Prediction of the Volumetric Capacitance Including a Double Layer
on the Mesopore Surface

It is assumed, that the total volumetric capacitance is a linear combination of the
volumetric capacitance and the areal capacitance of the mesopore double layer
multiplied by the specific surface area of the mesopores

CV,S12 =pS12CV + aS12CA,

CV,S14 =pS14CV + aS14CA.
(31)

The specific surface areas were measured on the segmented images as well as
on the modeled microstructures. The resulting values are given in table 8.

Since the volumetric capacitances are known, only up to a factor ρ, Eqs. 31,
28 and 29 can be solved for the ratio of bulk volumetric capacitance coming from
the micropores and volumetric surface capacitance coming from the mesopores.
Using the measured surface area of the modeled microstructures, this leads to the
following areal capacitance and volumetric capacitances depending on ρ

CV =99.3ρ
F

g
,

CA =1.12 ∗ 10−4ρ
Fcm

g
.

(32)

For the sample S12 this yields the following contributions to the capacitance:

CV,S12 = CV pS12 = 66.6ρ, (33)

CAV,S12 = CAaS12 = 38.6ρ. (34)

Hence, in the sample S12 with a total capacitance of CS12 = 105.9ρ F
cm3 , 36%

of the total volumetric capacitance arises from the double layer on the mesopore
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Fig. 19 Parameter study of the effective surface area of the model described in Section 4.2
with spheres of radius one.

surface and the remaining 66.6% from the micropores. For the sample S14 the
corresponding relations are:

CV,S12 = CV pS12 = 51.7ρ, (35)

CAV,S12 = CAaS12 = 7.09ρ. (36)

Hence, in the sample S14, 12% of the capacitance of CS14 = 58.76ρ F
cm3 comes

from the mesopores and 87.9% comes from the microspores.
In order to estimate the optimal properties of the mesopore morphology, a

parameter study was done to estimate the dependence of specific surface area on
the model parameters. For the parameter study ten realizations with dimension
256× 256× 256 voxels were generated of the model for the same parameter values
as in Sect. 6, i.e. with r + σ = 30 voxels. Then the surface area has been rescaled
for a model with unit spheres of radius one, i.e. the expected surface area within
a unit cube. The resulting specific surface areas are shown in Fig. 19.

For physical structures, the specific surface area for the radius r can be derived
by the scaling law:

A(r) =
A(r = 1)

r
(37)

Hence, for a sphere radius of 20nm the maximal specific surface area is

SA ≈
1 voxel2

voxel3

20 ∗ 10−9m
= 0.05 ∗ 109 m2

m3
= 5 ∗ 105 cm2

cm3
(38)

To improve the microstructural properties using the model, we use Eqs. 31, 32,
37 and the computed data in Fig. 19 for a ratio of r

σ = 1.5, which is close to the
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fitted value for both microstructures of r
σ ≈ 1.4. We then compute the volumetric

capacitance depending on d = r + σ between 10 nm and 50nm and the volume
fraction p between 0.1 and 0.9. The resulting capacitances are shown in Fig. 20.

As can be seen, the largest capacitance is reached for the smallest radius, i.e.,
the smallest structure size of the model. This is due to the scaling in Eq. 37. For
larger structures, the specific surface area is small, meaning that the volumetric
term is dominant. Hence in the large structure regime, the maximal capacitance
is computed for the largest volume fraction p. Yet, for smaller structures, the
surface term dominates. This means, that the maximal capacitance is reached for
a maximal surface area.

As shown in Fig. 19, the maximal surface area is reached for a volume fraction
of p = 0.6 and minimal to no smoothing. For these parameters, the specific surface
area peaks at around a(p = 0.6, rσ →∞) ≈ 1.

9 Conclusion

In this paper, nanoporous materials for EDLC electrodes are investigated using
FIB-SEM Nanotomography imaging, combined with automatic segmentation and
random set modeling. It could be shown that transport properties could be pre-
dicted combining the structural model with simulation using the FFT method. The
results agree qualitatively with experimental measurements. Furthermore, it could
be shown that the capacitance values can be predicted when combining the men-
tioned techniques modeling based on the geometrical characteristics of the model.
In this case, the experimental values do coincide very well with the experimental
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results. Finally, by varying the parameters of the structural model, improvements
to the microstructure could be suggested. In conclusion, it was shown that by
combining techniques of microimaging, image processing, stochastic modeling and
simulations, material properties of EDLC electrodes could be predicted theoreti-
cally.

10 Outlook

The research presented in this paper focuses on the context of energy storage in
EDLC’s but can similarly be applied to lithium ion batteries or other nanoporous
materials. In both cases, batteries as well as EDLC’s the electrodes comprise
mostly of a micro- or nanoporous carbon structure filled with an electrolyte. Fur-
thermore, the techniques demonstrated here can be amended and improved indi-
vidually. As the FIB technology improves, the image quality of finer structures
like the ones investigated here can be improved, yielding a better segmentation.
Also, since automatic segmentation for FIB-SEM images is a relatively new field,
improved algorithms can improve the accuracy of the segmentation. Concerning
the structural modeling, replacing the Boolean model, which serves as a basis for
the modified model by a cherry-pit model, can improve the modeling of the sphere
packing. Finally, improved physical simulations as mentioned in the introduction
can be used to further enhance the prediction of the capacitance.
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