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ABSTRACT

We study the dust concentration and emission in protoplanetary disks vortices. We extend the Lyra-

Lin solution for the dust concentration of a single grain size to a power-law distribution of grain sizes

n(a) ∝ a−p. Assuming dust conservation in the disk, we find an analytic dust surface density as a

function of the grain radius. We calculate the increase of the dust to gas mass ratio ε and the slope

p of the dust size distribution due to grain segregation within the vortex. We apply this model to

a numerical simulation of a disk containing a persistent vortex. Due to the accumulation of large

grains towards the vortex center, ε increases by a factor of 10 from the background disk value, and

p decreases from 3.5 to 3.0. We find the disk emission at millimeter wavelengths corresponding to

synthetic observations with ALMA and VLA. The simulated maps at 7 mm and 1 cm show a strong

azimuthal asymmetry. This happens because, at these wavelengths, the disk becomes optically thin

while the vortex remains optically thick. The large vortex opacity is mainly due to an increase in the

dust to gas mass ratio. In addition, the change in the slope of the dust size distribution increases the

opacity by a factor of 2. We also show that the inclusion of the dust scattering opacity substantially

changes the disks images.

Keywords: accretion disks — opacity — protoplanetary disks — radiative transfer — scattering

1. INTRODUCTION

There is not yet a full theory that successfully ex-

plains the formation of solid planet that starts with the

concentration and growth of dust particles in protoplan-

etary disks from millimeter to planetesimal sizes. One

of the main problems is the fast radial migration of mil-

limeter and micrometer dust particles toward the central

star, which prevents the formation of large bodies dur-

ing the disk lifetime (e.g., Testi et al. 2014; Johansen

et al. 2014). This inward drift is due to the collisions

of the dust grains (which tend to rotate at the Keple-

rian speed) with the gas molecules (which flow at sub-

Keplerian speed), causing the loss of the dust angular

momentum and, thus, dust radial migration. A nat-

ural way to prevent the fast migration is growth, be-

cause the inward radial velocity is a function of the dust

grain size. For example, in the minimum mass solar neb-

ula (MMSN) model, the inward radial migration has a

maximum speed for 1 m objects (Weidenschilling 1977).

Thus, the dust particles should grow to sizes larger than

1 m in order to prevent their fast radial migration. How-

ever, to build meter-sized bodies (or larger) via dust col-

lisions is not very effective, because the typical collision

velocities are so violent that the final result is dust frag-

mentation instead of coagulation (Brauer et al. 2008).

These two obstacles are known as the radial drift bar-

rier and the fragmentation barrier, respectively.

One of the ideas proposed in order to avoid this prob-

lem is dust trapping in pressure bumps. Barge & Som-

meria (1995) found that persistent gaseous vortices can

effectively concentrate and segregate large amounts of

solid particles via pressure gradients, possibly starting

the formation of planetesimals. The dynamics of large

scale vortices has been studied using 2D (Surville &

Barge 2015) and 3D (Richard et al. 2013) hydrodynami-

cal simulations in protoplanetary disks; these azimuthal

asymmetries naturally arise due to the Rossby wave in-

stability (Li et al. 2000) or the baroclinic instability (e.g.

Barge et al. 2016) in the outer edge of the dead zone,

where turbulence due to the Magneto Rotational In-

stability (MRI) is depressed due to the low ionization

state of the disk material. These structures can survive

over a hundred rotation periods (measured at the ra-

dius of the center of the vortex) and increase the dust

to gas mass ratio one order of magnitude (Inaba & Barge

2006). This large concentration of dust mass could be-

come gravitationally unstable, and start the formation

of planetesimals.

In the last years, high angular resolution mm observa-

tions with ALMA and VLA, and infrared observations

with SPHERE on the VLT have found large scale struc-

tures in several sources that could be the signatures of
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vortices in the disk. Some examples are the disks around

the young stars Oph IRS 48 (van der Marel et al. 2013),

HD 142527 (Casassus et al. 2013), LkHα (Isella et al.

2013), MWC 758 (Marino et al. 2015), SAO 206462,

and SR 21 (Pérez et al. 2014). Spiral arms structures

have also been found in the dust emission, e.g., around

MWC 758 and Elias 2-24 (Benisty et al. (2015); Pérez et

al. (2016)). These observations are important to under-

stand the physical processes suffered by the dust during

the formation of planetesimals and the gas dynamics in

protoplanetary disks; they also set important constrains

to the parameters used in the theoretical models.

In this paper we consider the millimeter emission of

a dust vortex in a protoplanetary disk obtained from

the gas numerical simulation performed by Barge et al.

(2017) (hereafter B17). We extend the Lyra-Lin dust

vortex model (Lyra & Lin 2013) for a single grain size to

a power-law distribution of grain sizes. To calculate the

dust millimeter emission we compute dust opacities in

different regions of the vortex according to the size seg-

regation, which changes the dust to gas mass ratio and

the slope in the particle size distribution. We include the

dust opacity due to both scattering and true absorption.

The dust surface density model (Section §2) allows us

to calculate the local dust properties (particle size dis-

tribution and dust to gas mass ratio) as a function of

the position in the disk vortex . The Section §3 presents

the simulated disk observations at mm wavelengths and

their Spectral Energy Distribution (SED). In the Section

§4 we compare with the emission of a model without

dust segregation (§4.1), and without scattering (§4.2).

In subsection §4.3, we discuss the maximum dust to gas

mass ratio obtained in the vortex with the expected val-

ues in numerical simulations. And finally, in §4.4, we

discuss the case when the maximum grain radius in the

dust particle size distribution is 1 cm. The conclusions

are presented in the Section §5.

2. DISK MODEL

2.1. Gas Disk Model

For the disk and the vortex, we use the result of nu-

merical simulations of B17 performed over 100 rotations

of the vortex around a 2M� star. The vortex is lo-

cated at 60 AU from the star. The disk has a mass

Md = 0.14M� and a disk radius Rd = 100 AU, which

mimic the disk around the Oph IRS 48 young star. Fig-

ure 1 shows the gas surface density Σg and the gas tem-

perature T of the disk as a function of the cartesian

coordinates (x, y). In the vertical direction (z), the disk

is assumed to be isothermal and in hydrostatic equilib-

rium. We assume a distance d = 120 pc, similar to the

distance to Oph IRS 48.

2.2. Dust Disk Model

In a gaseous vortex, the dust particles tend to drift

toward the pressure maximum at a rate that depends

on their coupling with the gas, measured by the Stokes

number

St =
π

2

ρma

Σg
, (1)

where a is the radius of spherical dust particles, ρm = 3

g cm−3 is the material density and Σg is the gas surface

density. Lyra & Lin (2013) found an analytic formula-

tion for the dust concentration in a vortex as a function

of the normalized Stokes number (S = St/α), where α is

the turbulent viscosity parameter in the vortex (Shakura

& Sunyaev 1973). In their model, the surface density of

the gas and dust depends on the semi minor axis coor-

dinate b that defines concentric ellipses with an aspect

ratio χ, such that the semi major axis is χb. For each

ellipse, the gas and dust surface density are given by

Σg,V(b) = Σg,max exp

(
− b2

2H2
v

)
, (2)

Σd,V(b, a) =
Σd,max(a)√
Sv + 1

exp

(
− b2

2H2
v

(Sv + 1)

)
, (3)

where Σg,max, Σd,max(a) are the gas and dust maximum

surface densities, Hv = H/f is the vortex scale length,

where f < 1 multiplies the isothermal scale height H,

this factor depends on the aspect ratio of the vortex χ.

The normalized Stokes number

Sv =
πρma

2αΣg,max
, (4)

is evaluated in the vortex center, since the vortex is small

compared with the disk size, and the gas surface density

does not vary much over its area.

For a given position in the vortex with polar coordi-

nates ($, θ), the corresponding ellipse has a coordinate

b =

√
($ −$0)

2
+
$2

0

χ2
(θ − θ0)

2
, (5)

where (θ0, $0) are the coordinates of the vortex center.

The total gas surface density and the dust surface den-

sity of grains with radius a can be written as

Σg = Σg,V(b) + Σg,back($), (6)

Σd(a) = Σd,V(b, a) + Σd,back($, a), (7)

where Σg,back($),Σd,back($, a) are the background disk

gas and dust surface densities, respectively.

Since Σd(a) is a function of the grain size, the total

surface density of the dust depends on the particle size

distribution, n(a)da ∝ a−pda, that gives the number of

dust particles per unit volume with a radius between a

and a+ da. A typical value for the slope in protoplane-

tary disk is p = 3.5 (Mathis et al. 1977).
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Figure 1. Gas surface density (left) and gas temperature (right) of a disk containing a large scale vortex (after 100 vortex
rotations) .

Integrating the eqs. (6, 7) in all the disk, the mass of

gas and the mass of dust with grain radius a are

Mg = 2πχH2
vΣg,max +Mg,back, (8)

Md(a) =
2πχH2

vΣd,max(a)

(Sv + 1)
3/2

+Md,back(a), (9)

where Mg,back is the gas mass of the background disk

and Md,back(a) is the background disk mass of dust with

radius a.

We define the global dust to gas mass ratio ε(a) of

particles with size a as

ε(a) ≡ Md(a)

Mg
=

2πχH2
vΣd,max(a)

(Sv+1)3/2
+Md,back(a)

2πχH2
vΣg,max +Mg,back

. (10)

We assume that ε(a) is conserved in the disk,

i.e. the background disk also satisfies ε(a) =

Md,back(a)/Mg,back. This implies that the dust is re-

distributed in the vortex but does not coagulate and/or

fragment. Therefore, the dust maximum surface density

for a size a is

Σd,max(a) = ε(a)Σg,max (Sv + 1)
3/2

. (11)

For a particle size distribution in the background disk

with p = 3.5, the mass is dominated by the large grains.

If M c
d(a) is the cumulative dust mass from the minimum

grain size amin to a size a, then, the ratio between the

cumulative mass and the total dust mass in the disk

(MT
d ) is

M c
d(a)

MT
d

=

∫ a
amin

a3a−3.5da∫ amax

amin
a3a−3.5da

≈
√

a

amax
, (12)

where we have assumed that amax >> amin. Further-

more, because the dust mass is dominated by the large

dust particles, we approximate the dust mass of the

grain population with size a by the cumulative mass, i.e.,

Md(a) ∼ M c
d(a). Thus, equation (12) can be rewritten

as
ε(a)

ε
=

√
a

amax
, (13)

where ε = MT
d /Mg is the total dust to gas mass ratio

taking into account all the dust grain sizes.

Then, using the eqs. (7, 11, 13), the dust surface

density for grains with size a is

Σd(a) = ε

√
a

amax

[
Σg,max(Sv + 1) exp

(
− b2

2H2
v

(Sv + 1)

)
+Σg,back($)

]
. (14)

In this equation, we have written the background dust

surface density as Σd,back($, a) = ε(a)Σg,back($).

For the hydrodynamic simulation of B17, the center

of the vortex is located at θ0 = 0.37 rad and $0 = 59.16

AU. We fit the gas surface density by using a function

of the form

Σg = A1 exp

(
− b2

2σ2
b

)
+A2

( $

60AU

)−q
, (15)

where the first term represents the vortex structure (see

eqs. 2, 5) and the second term is the background surface

density. The best fit of the numerical data leads to:

A1 = 30.34 g cm−2, σb = 5.14 AU, χ = 9.4, A2 = 28.9

g cm−2, q = 1.1. Note that A1 = Σg,max and σb = Hv

in eq. (2).

For a disk in hydrostatic equilibrium, the dust particle

size distribution is related with the dust surface density

(see eq. B5), as

n(a) = c

[
a−3 dΣd(a)

da

]
, (16)
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where c = 3/(25/2π3/2Hdρm) and Hd is the dust scale

height. Then, from eq. (14), the dust particle size dis-

tribution is

n(a)

εc
=

(
a−3.5

a
1/2
max

){
Σg,max (Sv + 1) exp

(
− b2

2H2
v

(Sv + 1)

)
×
[

Sv

Sv + 1
− b2Sv

2H2
v

+
1

2

]
+

Σg,back($)

2

}
. (17)

The first term of this equation represents the con-

centration of the dust particles within the vortex, it

is only important for b . Hv. We approximate eq.

(17) with a simple power law function of the form

log n(a) = −p log(a) + k. The left and middle panels

of Figure 2 show the slope p, the fractional standard de-

viation (∆p/p). The slope p decreases in the vortex and

reaches a minimum value p ∼ 3.0 at the vortex center.

The fit is very good as shown by the low values of the

fractional standard deviation.

Since the dust mass is dominated by the large grains,

the local dust to gas mass ratio (εl) reduces to

εl ≈
Σd(amax)

Σg
. (18)

This function is shown in the right panel of Figure 2,

normalized to the total dust to gas mass ratio (ε). The

maximum dust to gas mass ratio (εl,max) is quite large

at the vortex center, reaching a value εl,max/ε ∼ 10.5.

Note that the increase of the dust to gas mass ratio

in the vortex center is due to the accumulation of dust

grains from a small region around the vortex, while the

rest of the disk remains with the standard ε value.

3. DUST EMISSION

Now we solve the radiative transfer equation to obtain

the SED and the dust emission maps of the face-on disk

at different wavelengths. The disk images are convolved

with ALMA and VLA beams to simulate high angular

resolution observations that are able to reveal the vortex

structure.

3.1. Methodology

We use a grid of 1040 × 1040 pixels in the plane of

the sky and solve the radiative transfer equation along

the line of sight in order to obtain the emergent specific

intensity Iν ,

dIν
dτν

= −Iν + Sν . (19)

The dust optical depth along the line of sight is given

by

dτν = χνρgdZ, (20)

where Z is the coordinate in the line of sight, ρg is the

volumetric gas density, and the total monochromatic

mass opacity is χν = κν + σν , where the scattering and

absorption mass opacity coefficients are σν and κν , re-

spectively. The source function is given by (Mihalas

1978)

Sν = ωνJν + (1− ων)Bν(T ), (21)

where the albedo is ων = σν/(κν + σν), Bν(T ) is the

Planck function, and Jν is the zeroth order moment of

the specific intensity, Jν = 1
2

∫ +1

−1
Iνdµ, where µ is the

cosine of the angle between the direction perpendicular

to the disk plane and the direction of Iν . We use the

analytical solution of Jν for a plane-parallel isotropically

scattering medium found by Miyake & Nakagawa (1993)

Jν(τν)

Bν(T )
= 1 +

e−
√

3εντν + e
√

3εν(τν−τdν )

e−
√

3εντdν (
√
εν − 1)− (

√
εν + 1)

, (22)

where εν = 1 − ων , and τdν is the total optical depth of

the disk measured perpendicular to plane of the disk.

The total monochromatic opacity χν is computed with

the code from D’Alessio et al. (2001). For the dust

composition, we adopt a mixture of silicates, organ-

ics and ice with a mass fractional abundance relative

to the gas εsil = 3.4 × 10−3, εorg = 4.1 × 10−3, and

εice = 5.6× 10−3. This implies a total dust to gas mass

ratio ε = 0.0131. The material densities are ρsil = 3.3

g cm−3, ρorg = 1.5 g cm−3, and ρice = 0.92 g cm−3

(e.g. Pollack et al. 1994). We assume a dust particle

size distribution n(a)da ∝ a−pda, where p varies ac-

cording to the disk region; the minimum and maximum

dust radii are amin = 0.05µm and amax = 1 mm. The

maximum grain radius is larger in protoplanetary disks

than in the ISM due to grain growth. Grain growth

occurs due to coagulation during collisions induced by
Brownian motions (important only for µm particles),

radial drift, vertical settling and turbulent mixing; it is,

however, counteracted by fragmentation and bouncing

of the mm-cm particles, which collide at high velocities

(e.g. Brauer et al. 2008; Zsom et al. 2010). Recent radio

observations of protoplanetary disks also infer a radial

dust size gradient with dust grains of centimeter sizes in

the inner disk regions and millimeter sizes in the outer

disk regions (e.g. Pérez et al. 2015).

3.2. Images and SED

We use CASA (v 4.7.0) 1 to simulate ALMA observa-

tions of the disk model shown in Figure 1 with the dust

properties of Figure 2. We calculate the images at 1

1 CASA, the Common Astronomy Software Applications pack-
age, is a software developed to support data processing of radio
astronomical telescopes.
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Figure 2. Dust particle accumulation within the vortex. Left panel: Slope p of the power law fit to the dust particle size
distribution n(a)da ∝ a−pda (see text). Middle panel: fractional standard deviation

∆p/p. Right panel: Map of the local dust to gas mass ratio (normalized to ε).

and 3 mm for the configurations C4-6 (Band 7) and C4-

8 (Band 4). The precipitable water vapor (PWV) was

set to 1.3 and 1.5 mm in the Band 7 and Band 4 con-

figuration, respectively. These antenna arrays provide a

similar angular resolution θB ∼ 0.′′10, which corresponds

to 12 AU at the assumed distance of 120 pc.

We also simulate VLA observations at 7 mm and 1

cm with CASA in the A configuration (the highest res-

olution). The FWHM beam of these configurations are

θB ∼ 0.′′043 and 0.′′19, respectively. In both simulations

the PWV was set to 1.5 mm.

Figure 3 shows the ALMA simulated maps in the up-

per panels (left: 1 mm, right: 3 mm). Lower panels

show the VLA maps (left: 7 mm, right: 1 cm). The

vortex emission starts to show at 3 mm and becomes

very evident at larger wavelengths, in the VLA images.

The left panel of Figure 4 shows the SED of the disk

(yellow solid line). We also include the SED of an ax-

isymmetric disk (black dashed line) and the contribution

of a 2M� star (blue dotted line). Note that the SED is

not modified by the emission associated to the vortex,

except at mm wavelengths where the disk becomes opti-

cally thin. The right panel shows the ratio between the

flux from the vortex disk and the axisymmetric disk.

The ratio has a maximum value of 1.25 at λ ∼ 7 mm.

The reason for this behaviour is that the numerical sim-

ulation of B17 uses an adiabatic equation of state, thus,

the disk temperature increases with the surface density;

therefore, the flux associated to vortex is larger than the

flux from the same region in the axisymmetric disk.

4. DISCUSSION

4.1. Effect of the Dust Concentration

Strong azimuthal asymmetries at mm wavelengths, as

observed, e.g, in the OpH IRS 48 disk (van der Marel et

al. 2013), are obtained in the disk models with a con-

centration of the dust particles around the vortex center,

as shown in the Figure 3. The strong disk asymmetry

comes from the enhancement of the dust to gas mass ra-

tio due to size segregation inside the vortex, the opacity

is increased by a factor of 10 at the vortex center. The

smaller slope of the size distribution p within the vortex

also increases the opacity at mm wavelengths (see Ap-

pendix A). For example, for p = 3 and λ = 7 mm, the

opacity increases by a factor of ∼ 1.8 compared with the

case p = 3.5. Both effects (higher dust to gas mass ratio

and lower slope of the size distribution) are responsible

for the increase of the opacity by a factor of 18 at the

vortex center.

In order to explore the effect of dust concentration in

the vortex, we made maps of the disk model at 1, 3,

7 mm and 1 cm assuming a constant dust to gas mass

ratio of ε = 0.0131 and a fixed slope of the dust particle

size distribution p = 3.5 throughout the disk. These

maps are shown in Figure 5 with the same observational

parameters described in the subsection §3.2.

The ALMA maps at 1 and 3 mm do not change much

from those in Figure 3 where segregation is taken into

account. However, there is a dramatic change for the

VLA observations at 7 mm and 1 cm. If the dust seg-

regation is not included, the high contrast between the

vortex and the disk vanishes.

In the model with dust segregation, the vortex domi-

nates the emission at long wavelengths. For those wave-

lengths the disk becomes optically thin while the vortex

remains optically thick due to the increase of the dust

opacity in this region. Figure 6 shows the logarithm of

the optical depth at 3, 7 mm and 1 cm. At 3 mm, all

the disk is optically thick (log τ3mm > 0). At 7 mm,

the vortex is optically thick, but the rest of the disk be-

comes optically thin (log τ7mm < 0). At 1 cm, the vortex

still remains optically thick, while the background disk

is optically thin. Therefore, dust segregation is a crucial
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Figure 3. Upper panels: Simulated ALMA images at 1 mm (left) and 3 mm (right). Lower panels: Simulated VLA images at
7 mm (left) and 1 cm (right). The beam is shown in the left bottom corner of each image.

ingredient to produce strong azimuthal asymmetries in

the dust thermal emission at 7 mm and 1 cm. Note,

however, that jets and photoevaporated disk winds will

also contribute to the 1 cm emission. Thus, high reso-

lution images are necessary to distinguish the vortex at

this wavelength (e.g. Maćıas et al. (2016)).

4.2. Absorption and Scattering

The contribution of the scattering coefficient to the

total opacity is important at mm wavelengths, where

the albedo is close to 1. In particular, for large grains

with amax = 1 mm, σν > κν for mm wavelengths; thus,

scattering increases the total opacity and the albedo is

large ων > 0.8 (see Figure A2).

In this section we produce synthetic images without

scattering to compare them with the results of the pre-

vious section §3.2, i.e., we set σν = 0, ων = 0 in the eqs.

(20), (21), and (22).

Figure 7 shows the simulated ALMA maps at 1 and

3 mm and the simulated VLA maps at 7 mm and 1

cm when only the monochromatic absorption mass co-
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Figure 4. Left panel: SED of the vortex disk (yellow solid line), an axisymmetric disk (black dashed line), and a 2M� star
(blue dotted line). Right panel: Ratio between the flux of the vortex disk and the axisymmetric disk.

efficient is included in the opacity. An important effect

of ignoring scattering is that the emission at all wave-

lengths is higher than the emission of the maps in Fig-

ure 3. In addition, the 3 mm map shows a stronger

azimuthal asymmetry compared with the 3 mm map

of Figure 3. This happens because the optical depth

decreases by an order of magnitude making the back-

ground disk optically thin at 3 mm, 7 mm and 1 cm,

while the vortex remains optically thick.

Recently, Kataoka et al. (2015) found that self-

scattering of thermal dust emission in protoplanetary

disks produces polarized emission at millimeter wave-

lengths. The highest degree of polarization occurs for

amax ∼ λ/2π, where λ is the observing wavelength.

Also, in the disk inner region, the direction of the polar-

ization vectors tend to align with the disk minor axis.

This property could help to discriminate scattered emis-

sion from direct emission from elongated grains aligned

perpendicular to the magnetic field, which is used to de-

termine the magnetic field morphology, e.g, Rao et al.

(2014). Yang et al. (2016) studied the relative impor-

tance of both scattering and direct emission from mag-

netically aligned grains as a function of the inclination of

the disk in the plane of the sky i. They found that the

scattering polarization dominates for edge-on (i → 90

deg) disks. Kataoka et al. (2016) and Yang et al. (2016)

argue that millimeter emission from the disk around HL

Tau can be explained by dust self-scattering, while in

the case of the disk around NGC 1333 IRAS 4A1, it

can be explained as a combination of direct emission by

aligned grains and scattering (Yang et al. 2016).

4.3. Dust to Gas Mass Ratio

Surville et al. (2016) propose a model to follow the
evolution of the dust population in the gas vortex during

the linear capture regime that has an invariant

I = εl(1 + βΩ/2) + |Ro|, (23)

where Ro is the Rossby number and βΩ = d ln Ω/d ln$

is the slope of the angular velocity of the background

disk. This equation is a good approximation for the first

hundred rotations of the disk (measured at the vortex

orbit). As a function of the time, the Rossby number

tends to zero at the center of the vortex (Surville et

al. 2016), so, for a Keplerian disk with βΩ = −3/2,

the maximum dust to gas mass ratio (εl,max) is only

a function of the initial Rossby number and the initial

dust to gas mass ratio ε

εl,max = 4|Ro|t=0 + ε. (24)

Surville & Barge (2015) obtained appropriate values of

the Rossby number for 300 simulations by varying tem-

perature, surface density and scale height of the disks;

they found that most of the vortices have −0.17 < Ro <

−0.11. With this range of values, the expected dust to

gas mass ratio in the vortex center is εl,max ∼ 0.44−0.68.

The dust to gas mass ratio found at the vortex center

in section §2.2 is εl,max/ε ∼ 10.4. For a standard value

ε = 0.01, the dust to gas mass ratio predicted in this

work is lower by a factor of ∼ 4 than the value given

by eq. (24). It would be important to follow the dust

evolution in the vortex disk simulation of B17 used in

this work.

4.4. Maximum grain size

In the previous sections amax was set up to 1 mm;

however, observational evidences suggest that the max-

imum grain size could reach amax ∼ 1 cm (e.g., Pérez

et al. 2015). Figure 8 shows the dust properties when

amax = 1 cm. The slope p does not change significantly
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Figure 5. Upper panels: Simulated ALMA images at 1 mm (left) and 3 mm (right). Lower panels: Simulated VLA images at
7 mm (left) and 1 cm (right). These models do not include dust segregation inside the vortex (see text). The beam is shown in
the left bottom corner of each image.

compared to the previous model (amax = 1 mm). How-

ever, the maximum dust to gas mass ratio within the

vortex is 7 times larger. This happens because 1 cm

grains are more concentrated toward the vortex center

since they have a Stokes number 10 times larger than 1

mm grains (eq. 3).

Dust opacity also depends on amax (see Appendix A).

For amax = 1 cm the opacity at 1, 3, 7 mm, and 1 cm

is modified by a factor of 0.40, 0.55, 5.6, 20, respectively,

compared with the case of amax = 1 mm. This means

that at 7 mm and 1 cm the vortex emission will dominate

the disk emission, but will have a small spatial extent,

due to the strong dust concentration. At 1, 3 mm, the

increase of the dust to gas mass ratio can overcome the

decrease of the opacity; however, the background disk

remains optically thick, thus, one expects maps similar

to those in Figure 3.
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Figure 6. Logarithm of the optical depth of the disk at 3 mm (left), 7 mm (middle), and 1 cm (right).

5. CONCLUSIONS

Dust emission of vortices in protoplanetary disks is

studied using the Lyra-Lin model for the concentration

of dust grains towards the vortex center. Their analytic

model gives the dust surface density for a single particle

size. We have extended this model to the case of a dust

size distribution n(a) ∝ a−p. To extend the model, we

assume that the dust mass for each grain size is con-

served in the disk, i.e., the dust grains can change their

spatial distribution and segregate in the vortex but can-

not change their size. With this assumption we obtain

the dust surface density as a function of the grain radius

and the gas surface density. We have applied this model

to the disk vortex obtained in the numerical simulations

of Barge et al. (2017). Due to dust segregation inside

the vortex, the local dust to gas mass ratio εl increases

significantly and the slope of the size distribution p de-

creases. We find that dust segregation and the inclusion

of the scattering opacity are crucial to describe the az-

imuthal asymmetry in disk emission at mm wavelengths.

Our main results are summarized as follows:

1. Dust segregation and concentration inside the vor-

tex significantly increases the local dust to gas mass ratio

εl inside the vortex (Figure 2, right panel); the maxi-

mum εl,max/ε ∼ 10 is reached near the vortex center.

This high value is due to concentration of sub-mm and

mm particles that dominate the mass distribution at the

vortex center.

2. Dust segregation also changes the slope of the dust

particle size distribution. In our disk model (eq. 17),

the slope of the dust size distribution is found to be less

than the standard value (p = 3.5); the slope has a mini-

mum close to the vortex center with p ∼ 3. This change

of slope affects both the absorption and scattering coef-

ficients of the dust population. At mm wavelengths, the

ratio between the opacities corresponding to the slopes

p = 3.0 and 3.5 is 1.8 times larger (Fig. A1).

3. The change of the dust properties due to the segre-

gation of dust particles in the vortex (dust to gas mass

ratio and the slope of the dust size distribution) has an

important effect: it tends to enhance azimuthal asym-

metries in the mm emission (see the simulated maps at

λ = 7 mm and 1 cm in Fig. 3). If one only considers the

effect of an increase of the dust surface density within

the vortex using a constant dust to gas mass ratio ε, the

vortex region does not dominate the emission of the disk

at mm wavelengths (see Fig. 5). The main difference

is that when dust segregation is included, the vortex re-

mains optically thick even at long wavelengths, but the

rest of the disk becomes optically thin. Instead, for a

uniform dust to gas mass ratio, the vortex is optically

thin.

4. For amax = 1 mm, dust scattering affects the disk

image at millimeter wavelengths: the scattering mass

coefficient increases the opacity of the disk by almost

one order of magnitude. If scattering is not included in

the monochromatic opacity, the optically thick vortex

region appears as a dominant structure at λ = 3, 7 mm

and 1 cm, due to smaller optical depth of the background

disk.

Finally, the dust concentration model we developed

extending the work of Lyra & Lin (2013) allows us to

predict the disk emission at millimeter wavelengths with

high angular resolution observations. It will be interest-

ing to study the dust concentration and its emission in

other large scale structures like ring gaps and/or spiral

arms.
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Figure 7. Upper panels: Simulated ALMA images at 1 mm (left) and 3 mm(right). Lower panels: Simulated VLA images at 7
mm (left) and 1 cm (right). For these maps the monochromatic scattering coefficient is σν = 0.

APPENDIX

A. OPACITY

Using the code from D’Alessio et al. (2001), where the Mie theory and the dielectric constants of the dust components

are used, we construct the total opacity (absorption + scattering) of the dust particles within the disk as a function

of wavelength for the dust abundances described in Pollack et al. (1994). The opacity is not only a function of the

wavelength, but also a function of the local pressure and temperature. The temperature dependence can be stronger

than the pressure dependence when sublimation of different dust species occurs. For example, the ice grains sublimate

at a temperature around 150 K for typical disk pressures, which causes a significant decrease of the total opacity.

The dust distribution also plays an important role in the magnitude of the opacity. For a given dust particle size

distribution n(a)da ∝ a−pda that gives the number of particles with sizes between a and a+ da per volume unit, the

total mean opacity coefficient is

χν =

∫
n(a)a3χν(a)da∫
n(a)a3da

, (A1)
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Figure 8. Dust particle accumulation within the vortex for amax = 1 cm. Left panel: Slope p of the power law fit to the dust
particle size distribution n(a)da ∝ a−pda (see text). Middle panel: fractional standard deviation ∆p/p. Right panel: Map of
the local dust to gas mass ratio (normalized to ε).

where χν(a) is the monochromatic opacity associated to a single particle with dust size a. The total opacity is

given by χν = κν + σν , where κν and σν are the monochromatic absorption and scattering coefficients, respectively.

The albedo is defined as ων = σν/χν . The left panels of Figure A1 shows the opacity χν , and the albedo ων for

different dust size distributions with slopes p = 3.5 − 2.9 in steps of 0.1, and for the dust composition discussed

in §3.1. In all the cases the opacity units are cm2 per gram of gas. We define a standard opacity given by a size

distribution with a slope p = 3.5. The right panels show the normalized opacity and albedo normalized to the

standard case. Note that for short wavelengths, the opacity is lower than the standard value, however, for large

wavelengths, the opacity is larger than the standard value. The maximum increase (a factor of 1.8) occurs at λ ≈ 7 mm.

The opacity and albedo curves are also a function of the maximum grain radius in the dust particle size distribution.

The left panels of the Figure (A2) shows the opacity and albedo as a function of the maximum grain radius. The

right panels show the normalized opacity and the albedo normalized with the case amax = 1 mm. The albedo becomes

important at mm wavelengths for big grains, amax = 1 mm and 1 cm. Although the albedo are similar for these grain

sizes, the opacity for amax = 1 cm at 1, 3, 7 mm, and 1 cm is a factor of 0.40, 0.55, 5.6, 20 times the opacity for amax = 1

mm (respectively).

B. DUST PARTICLE SIZE DISTRIBUTION

In an isothermal disk, the vertical dust volume density distribution is given by ρd(z) = ρd,0 exp(−z2/2H2
d), where

Hd is the scale height of the dust disk, and ρd,0 is the dust volume density at the midplane. The midplane volume

density can be obtained by adding the mass of all the dust particles with material density ρm and radius a as

ρd,0 =
4πρm

3

∫ amax

amin

a3n(a)da, (B2)

where ρm is the material density, and the dust particle size distribution n(a)da. The total dust surface density for the

isothermal disk is given by

Σd =
√

2πHdρd,0, (B3)

and it can also be obtained as the sum of the surface densities of all the dust particles with different sizes

Σd =

∫ amax

amin

dΣd(a)

da
da. (B4)

Comparing eqs. (B2) and (B4), the dust particle size distribution can be written as

n(a)da = c

[
a−3 dΣd(a)

da

]
da, with c =

3

25/2π3/2Hdρm
. (B5)

For example, when the dust surface density increases with the dust size as Σd ∝ a1/2, one obtains the typical dust
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Figure A1. Upper panels: dust opacity as a function of wavelength for T = 100 K. The left panel shows the monochromatic
opacity curves (χν) for dust particle size distributions with different slopes p. The right panel shows the monochromatic opacity
normalized to the opacity of the standard distribution with slope p = 3.5. Lower panels: albedo as a function of wavelength.
The left panel shows the monochromatic albedo (ων) for dust particle size distributions with different slopes p. The right panel
shows the albedo normalized to the albedo of the standard distribution with p = 3.5. A maximum grain radius of amax = 1 mm
is assumed in all the cases. The color code is shown in the upper left panel.

particle size distribution with a slope p = 3.5.
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