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ABSTRACT

Context. The observed spatial scale of the radio continuum emission from star-forming galaxies can be used to investigate the spatial
extent of active star formation, constrain the importance of cosmic-ray transport, and examine the effects of galaxy interactions.
Aims. We determine the radio size distribution of a large sample of 152 submillimetre galaxies (SMGs) in the COSMOS field that were
pre-selected at 1.1 mm, and later detected with the Atacama Large Millimetre/submillimetre Array (ALMA) in the observed-frame
1.3 mm dust continuum emission at a signal-to-noise (S/N) ratio of ≥ 5.
Methods. We used the deep, subarcsecond-resolution (1σ = 2.3 µJy beam−1; 0′′.75) centimetre radio continuum observations taken
by the Karl G. Jansky Very Large Array (VLA)-COSMOS 3 GHz Large Project.
Results. One hundred and fifteen of the 152 target SMGs (76%±7%) were found to have a 3 GHz counterpart (≥ 4.2σ), which renders
the radio detection rate notably high. The median value of the deconvolved major axis full width at half maximum (FWHM) size at
3 GHz is derived to be 0′′.59 ± 0′′.05, or 4.6 ± 0.4 kpc in physical units, where the median redshift of the sources is z = 2.23 ± 0.13
(23% are spectroscopic and 77% are photometric values). The radio sizes are roughly log-normally distributed, and they show no
evolutionary trend with redshift, or difference between different galaxy morphologies. We also derived the spectral indices between
1.4 and 3 GHz, and 3 GHz brightness temperatures for the sources, and the median values were found to be α3 GHz

1.4 GHz = −0.67 (S ν ∝ να)
and TB = 12.6 ± 2 K. Three of the target SMGs, which are also detected with the Very Long Baseline Array (VLBA) at 1.4 GHz
(AzTEC/C24b, 61, and 77a), show clearly higher brightness temperatures than the typical values, reaching TB(3 GHz) > 104.03 K for
AzTEC/C61.
Conclusions. The derived median radio spectral index agrees with a value expected for optically thin non-thermal synchrotron radi-
ation, and the low median 3 GHz brightness temperature shows that the observed radio emission is predominantly powered by star
formation and supernova activity. However, our results provide a strong indication of the presence of an active galactic nucleus in the
VLBA and X-ray-detected SMG AzTEC/C61 (high TB and an inverted radio spectrum). The median radio-emitting size we have de-
rived is ∼ 1.5−3 times larger than the typical far-infrared dust-emitting sizes of SMGs, but similar to that of the SMGs’ molecular gas
component traced through mid-J line emission of carbon monoxide. The physical conditions of SMGs probably render the diffusion
of cosmic-ray electrons inefficient, and hence an unlikely process to lead to the observed extended radio sizes. Instead, our results
point towards a scenario where SMGs are driven by galaxy interactions and mergers. Besides triggering vigorous starbursts, galaxy
collisions can also pull out the magnetised fluids from the interacting disks, and give rise to a taffy-like synchrotron-emitting bridge.
This provides an explanation for the spatially extended radio emission of SMGs, and can also cause a deviation from the well-known
infrared-radio correlation owing to an excess radio emission. Nevertheless, further high-resolution observations are required to exam-
ine the other potential reasons for the very compact dust-emitting sizes of SMGs, such as the radial dust temperature and metallicity
gradients.

Key words. Galaxies: evolution – Galaxies: formation – Galaxies: starburst – Galaxies: star formation – Radio continuum: galaxies
– Submillimetre: galaxies

1. Introduction

Radio continuum imaging of extragalactic fields in the centime-
tre wavebands can be used as an efficient, dust-unbiased tool to

⋆ Based on observations with the Karl G. Jansky Very Large Array
(VLA) of the National Radio Astronomy Observatory (NRAO). The
National Radio Astronomy Observatory is a facility of the National Sci-
ence Foundation operated under cooperative agreement by Associated
Universities, Inc.

search for star-forming galaxies and to probe their recent and
ongoing star formation activity. The underlying physical rea-
son for this is that the radio emission in question predominantly
arises from two radiation mechanisms that are linked to the evo-
lution of short-lived high-mass (M & 8 M⊙) stars (see e.g.
Condon 1992 for a review). First, the non-thermal synchrotron
emission arises via radiative losses of ultrarelativistic electrons
(with Lorentz factors γ ≫ 1) that are gyrating in magnetic fields
and accelerated in shock fronts of Type II and Ib core-collapse
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supernova (SN; e.g. Weiler et al. 1986) ejecta and the shells
of their expanding remnants (e.g. Blandford & Ostriker 1980;
Bogdan & Völk 1983). Secondly, the thermal free-free radiation
arises from the electron-ion Coulomb interactions in regions
of ionised hydrogen atoms, that is H ii regions. Besides these
two phenomena that are linked to the formation and explosive
death of high-mass stars (H ii regions and SNe, respectively),
the ultraviolet (UV)-optical photons emitted by the young, mas-
sive stars heat the dust grains mixed with the more abun-
dant gas component of the galactic interstellar medium (ISM;
e.g. Mathis et al. 1983). The energy absorbed by dust grains is
then re–radiated as thermal emission in the infrared (IR; e.g.
Devereux & Young 1990). On the basis of this connection, the
spatial extent or distribution of the rest-frame (far-)IR dust con-
tinuum emission is expected to be fairly similar to that of ra-
dio continuum emission. This expectation is strongly supported
by the remarkably tight correlation between the (far-)IR and
radio continuum emissions observed in star-forming galaxies
(e.g. van der Kruit 1971; de Jong et al. 1985; Helou et al. 1985;
Condon et al. 1991; Yun et al. 2001; Basu et al. 2015).

However, high angular resolution (0′′.16 − 0′′.30) (sub-
)millimetre continuum imaging of submillimetre galaxies
(SMGs) with the Atacama Large Millimetre/submillimetre Ar-
ray (ALMA) have shown their rest-frame FIR-emitting sizes to
be very compact with median diameters (full width at half max-
imum or FWHM) of only ∼ 1.4 − 3.1 kpc (Simpson et al. 2015,
hereafter S15; Ikarashi et al. 2015; Hodge et al. 2016;
Simpson et al. 2016; see also Bussmann et al. 2015). When
compared to the median major axis FWHM sizes of the ra-
dio emission from SMGs as measured through observations
with the Very Large Array (VLA; Thompson et al. 1980;
Perley et al. 2011) at 1.4 GHz (Biggs & Ivison 2008; see
also Chapman et al. 2004) and 3 GHz (Miettinen et al. 2015,
hereafter M15), the aforementioned FIR sizes appear to be
∼ 1.4 − 4.4 times smaller. As a physical cause of this potential
spatial decoupling, S15 suggested that the diffusion of cosmic-
ray (CR) electrons in the galactic magnetic field away from their
sites of origin leads to a more extended size scale of the observed
radio emission than that of FIR dust emission. However, this
scenario is challenged by the rapid cooling (a few times 105 yr
or less) of CR electrons in strongly star-forming galaxies, which
renders their diffusion scale length in a magneto-ionic medium
very short, only . 100 pc (see M15, and references therein).
In contrast, less extreme, main-sequence star-forming galaxies
with stellar masses of M⋆ ≃ 2 × 1010 − 1.6 × 1011 M⊙ and star
formation rates of SFR ≃ 40 − 330 M⊙ yr−1 at z = 1.3 − 3 are
found to have similar spatial extents of VLA radio and ALMA
dust continuum emissions (average 〈rradio/rdust〉 = 0.96 ± 0.14;
Rujopakarn et al. 2016). On the other hand, using very deep
(1σ = 572 nJy beam−1), high-resolution (0′′.22 FWHM)
observations with the VLA at 10 GHz, Murphy et al. (2017)
measured extremely compact radio sizes for their z ∼ 0.3 − 3.2
star-forming galaxies in the Great Observatories Origins Deep
Survey-North (GOODS-N) field, the median major axis FWHM
size being only 1.2 kpc, which is comparable to the median
FIR-emitting size derived by Ikarashi et al. (2015) for their
SMGs. Nevertheless, on the basis of the Rujopakarn et al.
(2016) results, it seems that the dust-radio spatial decoupling
could be a characteristic of more extreme SMGs.

A possible alternative explanation for a more extended radio
emission is a population of relativistic CR electrons radiating
in magnetic fields pulled out of the disks of gravitationally in-
teracting galaxies (e.g. Condon et al. 1993; Drzazga et al. 2011;
M15). Besides this effect, galaxy interactions and mergers,

which are expected to be more frequent at high redshifts, can
also lead to the vigorous SFRs observed in SMGs, which can
sometimes reach values as high as thousands of solar masses per
year (e.g. Tacconi et al. 2008; Engel et al. 2010).

On the other hand, the spatial extent of the molecular gas
component in SMGs, as probed through observations of the mid-
J transitions of the 12C16O main isotopologue (3 ≤ Jup ≤ 7,
where Jup is the upper rotational energy level), is found to have
a typical major axis FWHM of ∼ 4 kpc (Tacconi et al. 2006;
Engel et al. 2010), and hence rather similar to the size scale
of radio emission (M15). The mid-J CO lines are probing the
denser and warmer molecular gas component than the lower ex-
citation Jup ≤ 2 lines, and the full molecular gas reservoir is ex-
pected to occupy a larger galactic area. This was indeed demon-
strated by the CO(J = 1 − 0) observations of z = 2.490 − 3.408
SMGs with the VLA by Riechers et al. (2011a,b), where the spa-
tial scale of the emission (∼ 6−15 kpc in diameter) was found to
be ∼ 1.6−3 times larger than that probed by higher J (3−2, 4−3,
and 6 − 5) CO transitions for the same SMGs by Tacconi et al.
(2006) and Engel et al. (2010). A similar conclusion was reached
by Ivison et al. (2011) for their sample of z = 2.202 − 2.486
SMGs that were observed in both the J = 1 − 0 and J = 3 − 2
lines of CO (see also Swinbank et al. 2011; Sharon et al. 2015;
Spilker et al. 2015). Besides CO, also the spatial scale of the
λrest = 158 µm [C ii] fine-structure line emission of SMGs is
found to be more extended than the dust continuum emission
(e.g. Riechers et al. 2013, 2014; Oteo et al. 2016).

If the molecular gas disk of an SMG traced by mid-J CO
line emission exhibits a lower dust temperature than the com-
pact, starbursting central region, then the latter could outshine
the more extended dust zone, and hence dominate the rest-frame
FIR dust continuum size measurements. A radial dust temper-
ature gradient could then lead to the aforementioned size mis-
match between dust and radio emissions. Another candidate cul-
prit for the highly centrally concentrated dust-emitting regions
of SMGs, and hence for the dust-radio size discrepancy could be
a strong radial metallicity gradient in the galactic disk. Because
the dust and gas contents are linked to each other through metal-
licity (the dust-to-gas mass ratio increases with the gas-phase
metallicity; e.g. Draine et al. 2007), a radial dust emission gradi-
ent can arise from a gradient in metallicity. Finally, it remains a
possibility that the FIR-radio size difference is just illusory if the
low-surface brightness outer parts of SMGs have been missed,
and hence the corresponding FIR FWHM sizes have been corre-
spondingly underestimated.

To gain further insight into the characteristic radio emis-
sion sizes of SMGs, here we present a study of radio sizes of
a large, well selected sample of SMGs in the deeply observed
Cosmic Evolution Survey (COSMOS; Scoville et al. 2007) field
using radio data from the Karl G. Jansky VLA-COSMOS 3 GHz
Large Project, which is a sensitive (1σ noise of 2.3 µJy beam−1),
subarcsecond resolution (0′′.75) survey (Smolčić et al. 2017). In
Sect. 2, we describe our SMG sample, and the employed radio
data. The analysis and results are presented in Sect. 3. The re-
sults are discussed in Sect. 4, and we summarise the results and
recapitulate our conclusions in Sect. 5.

The cosmology adopted in the present work corresponds to
a spatially flat ΛCDM (Lambda cold dark matter) universe with
the present-day dark energy density parameter ΩΛ = 0.7, to-
tal (baryonic plus non-baryonic) matter density parameter Ωm =

0.3, and a Hubble constant of H0 = 70 km s−1 Mpc−1.
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2. Data

2.1. Source sample: The ASTE/AzTEC 1.1 mm selected
sources followed up with ALMA at 1.3 mm

The target SMGs of the present study were first uncovered by
the λobs = 1.1 mm blank-field continuum survey over an area
of 0.72 deg2 or 37.5% of the full 2 deg2 COSMOS field carried
out with the AzTEC bolometer array on the 10 m Atacama Sub-
millimetre Telescope Experiment (ASTE; Ezawa et al. 2004) by
Aretxaga et al. (2011). The angular resolution of these ob-
servations was 34′′ FWHM, and the 1σ rms noise level was
1.26 mJy beam−1. Of the 189 SMG candidates with signal-to-
noise (S/N) ratios of at least 3.5 that Aretxaga et al. (2011) found
(see their Table 1), the 129 brightest sources (S/N1.1 mm ≥ 4.0)
were followed up with ALMA at λobs = 1.3 mm and ∼ 1′′.6×0′′.9
resolution by M. Aravena et al. (in prep.) (Cycle 2 ALMA
project 2013.1.00118.S; PI: M. Aravena). Altogether, 152 SMG
candidates at an S/N1.3 mm ≥ 5 (1σ1.3 mm ∼ 0.1 mJy beam−1)
were uncovered by our ALMA survey; this detection S/N1.3 mm
threshold yields a sample reliability of about 100%, that is, with
no contamination by spurious sources (M. Aravena et al., in
prep.). The number of target single-dish AzTEC sources that
were resolved into more than one ALMA component (33) yields
a multiplicity percentage of 26% ± 4% (at the ∼ 1′′.6 × 0′′.9 res-
olution of our ALMA data, and above the AzTEC flux density
limit of S 1.1 mm & 3.5 mJy), where the uncertainty represents
the Poisson error on counting statistics. Under the assumption
that the dust emissivity index is β = 1.5, the 1.3 mm flux den-
sities of our ALMA sources suggest that S 850 µm & 2 mJy, and
hence all of them fulfil a definition of SMGs as galaxies having
S 850 µm ≥ 1 mJy (Coppin et al. 2015; Simpson et al. 2016). The
ALMA observations, which together with the source catalogue
are described in detail by M. Aravena et al. (in prep.), allowed
us to accurately pinpoint the position of the actual SMGs giving
rise to the millimetre continuum emission seen in the single-dish
AzTEC map, and hence we could reliably identify the correct
radio (and other wavelength) counterparts of the target SMGs
(Brisbin et al. 2017).

An important aspect regarding the present work is that
three of the identified SMGs, AzTEC/C24b, 61, and 77a, were
detected with the Very Long Baseline Array (VLBA) at a
high, 16.2 × 7.3 square milliarcsecond resolution at νobs =

1.4 GHz with flux densities of S 1.4 GHz = 134.2 µJy (C24b),
11.1 mJy (C61), and 332.6 µJy (C77a) (N. Herrera Ruiz et
al., in prep.), which indicates the presence of either a radio-
emitting active galactic nucleus (AGN) or a very compact nu-
clear starburst, or both (cf. Casey et al. 2009). One of these
three SMGs, AzTEC/C61, was also detected in the X-rays
with Chandra (the 1.8 Ms Chandra COSMOS Survey (C-
COSMOS; Elvis et al. 2009; Civano et al. 2012) and the Chan-
dra COSMOS Legacy Survey (Civano et al. 2016)). The source
is identified as CID-1787 in the Chandra COSMOS Legacy Sur-
vey (0′′.25 south-west from the ALMA position), and its flux
density in the 0.5–2 keV (soft), 2–10 keV (hard), and 0.5–
10 keV (full) bands is S X = 1.60 × 10−15, 4.24 × 10−15, and
6.54 × 10−15 erg cm−2 s−1, respectively (Civano et al. 2016).
The absorption-corrected, rest-frame 2–10 keV luminosity of
AzTEC/C61 is L2−10 keV = 1.7 × 1044 erg s−1 (scaled from the
photometric redshift of zphot = 1.56 reported in the catalogue to
zspec = 3.2671; Brisbin et al. 2017), which is too high to arise
only from stellar processes, and hence AzTEC/C61 very likely
harbours an AGN.

Seven additional, VLBA-non-detected SMGs in our sample,
AzTEC/C11, 44b, 45, 56, 71b, 86, and 118, were also detected

in the Chandra X-ray imaging. The angular offsets of these X-
ray sources (as reported in the Legacy Survey catalogue) from
the ALMA positions range from 0′′.15 for AzTEC/C86 to 0′′.95
for AzTEC/C11. By using the source redshifts from Brisbin et
al. (2017), we derived the absorption-corrected, rest-frame 2–
10 keV luminosities of these sources to range from L2−10 keV =

7.3 × 1042 erg s−1 for AzTEC/C71b to < 1.9 × 1044 erg s−1 for
AzTEC/C11 (C11 and C56 were not detected in the hard band)
with a mean and its standard error (σ/

√
N, where σ is the stan-

dard deviation and N the sample size) of (4.0±1.3)×1043 erg s−1

(based on the survival analysis technique described in Sect. 3.2).

2.2. Very Large Array 3 GHz radio continuum data

The radio observations used in the present paper were taken by
the VLA-COSMOS 3 GHz Large Project (Smolčić et al. 2017).
The project, data reduction, and imaging are fully described
in Smolčić et al. (2017), and a brief summary can be found
in M15 (Sect. 2.2 therein). The final radio mosaic was re-
stored with a circular synthesised beam size of 0′′.75 (FWHM),
and the typical final 1σ root mean square (rms) noise level is
1σ = 2.3 µJy beam−1. As we already discussed in M15, the
effect of bandwidth smearing in the 3 GHz mosaic is negligi-
ble, and hence does not affect the radio size measurements (see
Smolčić et al. 2017 for more details).

3. Analysis and results

3.1. Identification of the 3 GHz counterparts

The 3 GHz counterparts of our SMGs were identified using a
two-step process. First, we identified all the 3 GHz sources in
each of the 129 ALMA target field by eye inspection, and cre-
ated a custom 3 GHz source catalogue. Secondly, our ALMA
≥ 5σ source catalogue was cross-matched with the aforemen-
tioned 3 GHz source catalogue using a 1′′ matching radius. Al-
together, 115 out of the 152 SMGs having a S/N1.3 mm ≥ 5 were
found to be associated with a 3 GHz source. This makes the
percentage of the 3 GHz-detected SMGs in our sample to be
76% ± 7%, where the uncertainty refers to the Poisson error.
The other way round, the radio non-detection rate is about 24%.
The VLA 3 GHz contour maps of the 3 GHz detected SMGs
are shown in Fig. A.1, selected sources are discussed in Ap-
pendix B, and the basic 3 GHz radio source properties (e.g. peak
position, peak surface brightness, and flux density) are listed in
Table C.1. We note that 106 out of our 115 radio sources are
common with the VLA-COSMOS 3 GHz Large Project cata-
logue (0′′.4 matching radius), which is composed of≥ 5σ sources
(Smolčić et al. 2017). The present 3 GHz flux densities are in
good agreement with the catalogue values, the ratio between the
two ranging from S this work

3 GHz /S
cat.
3 GHz = 0.9 to 2.7 with a median of

1.1.
The projected separation between the ALMA 1.3 mm peak

position and that of the VLA 3 GHz emission was found to range
from 3.9 milliarcseconds to 0′′.6 with a mean (median) separation
of 0′′.144 (0′′.116) (see column (11) in Table C.1, and Fig. 1). The
S/N ratios of the 3 GHz sources associated with our SMGs are
in the range of S/N3 GHz = 4.2 − 2 712.7, where AzTEC/C61,
an SMG hosting a radio-loud AGN (Sects. 2.1 and 4.1), is the
most significant detection. The detection S/N ratio with ALMA
at 1.3 mm of these 3 GHz detected SMGs was found to be
in the range of S/N1.3 mm = 5.1 − 73.0 with a mean (median)
of 〈S/N1.3 mm〉 = 16.0 (12.7), while those of the 3 GHz non-
detected SMGs are S/N1.3 mm = 5.1−25.1 with a mean (median)
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of 〈S/N1.3 mm〉 = 9.0 (7.3) (M. Aravena et al., in prep.). Hence,
the 3 GHz detected SMGs are brighter dust emitters on average
than their radio non-detected counterparts as expected on the ba-
sis of the IR-radio correlation.

3.2. Redshift distribution of the 3 GHz detected and
non-detected submillimetre galaxies

In Fig. 2, we show the redshift distributions of both the 3 GHz
detected SMGs and the 37 SMGs that were not detected at
3 GHz. For details of the redshift determination, we refer to Bris-
bin et al. (2017). The sample of 3 GHz detections is composed
of 66 photometric redshifts, 27 spectroscopic redshifts, ten red-
shifts constrained through synthetic redshift likelihood function
by convolving the photo-z likelihood function with a redshift
likelihood function derived from the dust and radio indicators
(the so-called synthetic redshifts in Brisbin et al. 2017), two red-
shifts derived through AGN template fitting, five redshifts based
on the 3 GHz and submm flux density comparison, and five red-
shifts based on the peak wavelength of the FIR dust SED. The
sample of 3 GHz non-detections contains 22 photometric red-
shifts, nine lower z limits based on the upper limit to the 1.4 GHz
flux density and the Carilli & Yun (1999, 2000) method, three
spectroscopic redshifts, one synthetic redshift, and two redshifts
based on the peak position of the FIR dust spectral energy distri-
bution (SED).

The mean (median) redshift of the 3 GHz detected SMGs is
〈z〉 = 2.60 ± 0.10 (z̃ = 2.23 ± 0.13), while that of the 3 GHz
non-detections is 〈z〉 = 2.99 ± 0.22 (z̃ = 2.49 ± 0.27), where the
quoted ± uncertainties represent the standard errors of the mean
and median values (the latter is estimated as

√
π/2 ≃ 1.253 times

the standard error of the mean, which is strictly valid for a large
sample and a normal distribution). To calculate the mean and me-
dian of the latter distribution, we applied survival analysis to take
the lower redshift limits into account. We assumed that the right-
censored data follow the same distribution as the uncensored val-
ues, and we used the Kaplan-Meier (K-M) method to construct a
model of the input data. For this purpose, we used the Nondetects
And Data Analysis for environmental data (NADA; Helsel 2005)
package for R. As expected, the radio non-detected sources have
a higher average redshift than the 3 GHz detections. A two-sided
Kolmogorov–Smirnov (K-S) test between these two redshift dis-
tributions (and where the lower z limits, or right-censored data
were excluded) yields a K-S test statistic of DKS = 0.16 (the
maximum separation between the two cumulative distribution
functions) and a K-S probability of pKS = 0.61 (a quantitative
measure of the significance level of DKS) under the null hypoth-
esis that the two samples are drawn from the same distribution.
Owing to a fairly high pKS value, we cannot reject the hypothesis
that the redshift distributions are drawn from a common underly-
ing parent distribution. However, the aforementioned pKS value
should be interpreted as an upper limit because the lower z limits
in the sample of 3 GHz non-detections were excluded in the K-S
test (they are assumed to follow the distribution of uncensored
data in our survival analysis). Indeed, on the basis of the positive
K correction at radio wavelengths, and negative K correction in
the (sub-)mm, one could expect a difference in the redshift dis-
tributions. As mentioned in Sect. 3.1, the 3 GHz non-detections
are weaker ALMA sources on average compared to those that
have a 3 GHz counterpart. We also note that the apparent excess
of 3 GHz non-detections at z ∼ 1 − 2 in Fig. 2 is the result of
placing the nine lower redshift limits in the histogram bins cor-
responding to those values.
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Fig. 1. Distribution of the projected angular separations between the
ALMA 1.3 mm and VLA 3 GHz peak positions. The bin size is 0′′.02.
The x-axis extends to 1′′, which corresponds to the search radius used
in the 3 GHz radio counterpart identification. The largest offset found is
0′′.6. The vertical dashed line marks the median separation of 0′′.116.
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Fig. 2. Redshift distributions of our 3 GHz detected ALMA SMGs (blue
histogram) and SMGs not detected at 3 GHz (red histogram). The red-
shift bins have a width of ∆z = 0.3. The lower redshift limits in the red
histogram were placed in the bins corresponding to those values. The
vertical dashed lines indicate the sample medians (blue: z̃ = 2.23±0.13;
red: z̃ = 2.49 ± 0.27).

3.3. Measurement of the size of the observed-frame 3 GHz
radio emission

Following the approach of M15, the 3 GHz radio sizes of
the sources were measured using the NRAO Astronomical Im-
age Processing System (AIPS) software package.1 To deter-
mine the beam-deconvolved (intrinsic) sizes, we performed two-
dimensional elliptical Gaussian fits to the image plane data us-
ing the AIPS task JMFIT. The fitting was performed inside a box
containing the source, and the fit was restricted to the pixel val-
ues of ≥ 2.5σ. The results are listed in Table C.1.

The size measurement simulations by M15 (Appendix D
therein) suggest that the sizes provided by JMFIT can be consid-
ered reliable because they were found to be consistent with the
input sizes of the mock sources within the uncertainties assigned
by the fitting task. Following M15 (and references therein), we
considered a source to be resolved if its deconvolved FWHM

1 http://www.aips.nrao.edu.
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size is larger than one-half the synthesised beam FWHM.2 The
upper size limit for unresolved sources was set to one-half the
synthesised beam FWHM (< 0′′.38).

In the subsequent size analysis, we will use the deconvolved
major axis FWHM as the diameter of the source (again following
M15). Under the assumption of a simplified disk-like geometry,
the major axis represents the physical extent of a disk galaxy,
while the minor axis would be given by θmin = θmaj × cos(i),
where i is the inclination angle defined so that for a disk viewed
face-on (i = 0◦), θmin = θmaj.

To calculate the statistical parameters of the derived radio
size distribution, we applied a similar K-M survival analysis as
in Sect. 3.2 to take the upper size limits (left-censored data) into
account. The mean, median, standard deviation, 95% confidence
interval for the mean, and the interquartile range (IQR) of the
deconvolved major axis FWHMs are given in Table 1. For exam-
ple, the median value of the angular deconvolved θmaj among the
115 SMGs detected at 3 GHz is 0′′.59 ± 0′′.05, where the quoted
± uncertainty represents the standard error of the median. The
median major axis FWHM in linear units is 4.6 ± 0.4 kpc.

The mean (median) value of the angular radio sizes of our
eight X-ray detected SMGs is 0′′.70± 0′′.09 (0′′.54± 0′′.11), while
that of their linear sizes is 5.3 ± 0.7 kpc (4.4 ± 0.9 kpc). Hence,
these X-ray detected, potentially AGN-hosting SMGs do not
stand out from the 3 GHz radio size distribution of our other
SMGs, but rather have very similar sizes on average. We thus
conclude that inclusion of the X-ray detected SMGs does not
introduce any biases in the subsequent radio size analysis.

The distribution of the linear major axis FWHM sizes is
shown in Fig. 3. The data are presented as a normalised his-
togram, while the overlaid solid black curve represents a fit to
a log-normal size distribution. The mean and standard deviation
of the underlying normal distribution of this probability density
function (PDF) are µ = 5.0 kpc and σ = 2.9 kpc. If the PDF
is fit only to the uncensored data, these values are µ = 5.6 kpc
and σ = 2.7 kpc. For comparison, we also show a PDF with the
values of µ and σ tuned to those calculated using a survival anal-
ysis (µ = 5.5 kpc and σ = 3.2 kpc). This comparison suggests
that the observed radio sizes are fairly closely log-normally dis-
tributed. We note that the peak near∼ 3 kpc in Fig. 3 results from
the unresolved sources being placed in the bins corresponding to
the the upper size limits, while those upper limits were taken into
account in the calculation of the sample mean and median in our
survival analysis.

In Fig. 4, we plot the deconvolved major axis FWHM sizes as
a function of the VLA 3 GHz flux density (top panel) and ALMA
1.3 mm flux density (bottom panel). The binned data show that
there is no correlation between the radio-emitting size and the
radio or millimetre flux density, which agrees with the results

2 In the VLA-COSMOS 3 GHz Large Project catalogue, a source
is taken to be resolved if it lies above the total flux density-to-peak
surface brightness ratio given by S 3 GHz/I3 GHz = 1 + 6 × (S/N)−1.44

(Smolčić et al. 2017). Seventy-seven of our sources satisfy this crite-
rion, which is only a factor of 1.19 less than the number of sources
(92) we consider resolved in the present study. For the remaining
92 − 77 = 15 sources, our S 3 GHz/I3 GHz ratios are very close to the
3 GHz Large Project criterion, the median ratio between the two val-
ues being 0.9. Hence, the two definitions of resolved sources are in
fairly good agreement despite the fact that the Large Project catalogue
is based on a different source extraction and flux density measurement
method (BLOBCAT; Hales et al. 2012) than used in the present work
(AIPS JMFIT). However, BLOBCAT does not provide parametric source
sizes for a quantitative analysis, which is the main purpose of the present
work.

Table 1. 3 GHz major axis size (FWHM) distribution statistics.

Parameter Valuea

Mean 0′′.72 ± 0′′.04 (5.5 ± 0.3 kpc)
Median 0′′.59 ± 0′′.05 (4.6 ± 0.4 kpc)

Standard deviation 0′′.42 (3.2 kpc)
95% confidence intervalb 0′′.64 − 0′′.80 (5.0–6.1 kpc)

IQRc 0′′.41 − 0′′.92 (3.2–6.7 kpc)

Notes. (a) The sample size of the deconvolved major axis FWHM sizes
is 115. The linear size values in kpc are given in parentheses. (b) A two-
sided 95% confidence interval for the mean value computed using the
K-M method. (c) The interquartile range or the values that fall between
the 25th and 75th percentiles (the first and third quartiles, respectively).

presented by M15. To quantify this absence of correlation, we fit
the binned data points using a linear regression line, and derived
the relationships of the form θmaj

3 GHz ∝ (0.001 ± 0.003) × S 3 GHz

and θmaj
3 GHz ∝ (0.007 ± 0.024) × S 1.3 mm, where the uncertainty in

the slope is based on the standard errors of the average major
axis FWHM data points.

In Fig. 5, we plot the 3 GHz radio sizes as a function of
the 3 GHz source S/N ratio. As expected, the sources with the
lowest S/N ratios (the lowest S/N bin has an average value
of S/N3 GHz = 4.9) appear larger on average than the more
significant detections. However, the weakest sources also have
large uncertainties in their size, and for example there are also
three sources whose sizes (0′′.51, 0′′.62, and 0′′.70) are smaller
than the average size of the fourth highest S/N bin (0′′.72,
S/N3 GHz = 9.7). Hence, the observed S/N-size trend is not ex-
pected to significantly bias our statistical analysis. We note that
nine out of 16 sources in the lowest S/N bin can be found in
the VLA-COSMOS 3 GHz Large Project catalogue (comprised
of ≥ 5σ detections; Smolčić et al. 2017), but only two of them
(AzTEC/C2b and C10b) were classified as resolved on the basis
of their (S/I)3 GHz ratio (see footnote 2 above). Were we to cut
our sample at an S/N ratio of ≥ 5, the mean and median major
axis FWMH sizes would be 0′′.67±0′′.03 and 0′′.56±0′′.04, which
are consistent with the full sample values within the quoted stan-
dard errors.

3.4. Spectral index between the observed frequencies of
1.4 GHz and 3 GHz, and 3 GHz brightness temperature

Besides the radio-emitting sizes, we also derived the two-point
radio spectral indices between the observed-frame 1.4 GHz and
3 GHz frequencies (α3 GHz

1.4 GHz, where we use the convention S ν ∝
να), and the observed-frame 3 GHz brightness temperatures (TB)
for our sources to constrain the nature of the energy source (high-
mass star formation and SN activity versus AGN) of the ob-
served radio emission. The 1.4 GHz flux densities were taken
from the final catalogue of the VLA-COSMOS Deep project
(Schinnerer et al. 2010), which was merged with the revised and
updated version of the VLA-COSMOS Large project catalogue
(Schinnerer et al. 2007; Bondi et al. 2008). The source proper-
ties listed in this Joint 1.4 GHz catalogue were derived using the
2′′.5 resolution Deep project data. This angular resolution is 3.3
times coarser than that of the new 3 GHz radio mosaic. The four
exceptions were AzTEC/C2a, C5, C22a, and C22b, for which
we adopted the 1.4 GHz flux densities from M15 (the SMGs
AzTEC 8, 1, 11-S, and 11-N therein, respectively) because ei-
ther the source was not included in the 1.4 GHz catalogue or
the catalogue value was inconsistent with the image flux den-
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Fig. 3. Distribution of the major axis FWHM sizes at 3 GHz shown as
a normalised histogram. The upper size limits were placed in the bins
corresponding to those values, and the bin width is 0.5 kpc. The solid
black curve represents a best-fit PDF to a log-normal size distribution
(µ = 5.0 kpc and σ = 2.9 kpc). The PDF shown by the red solid curve
was obtained by fixing the values of µ and σ to those derived from a
survival analysis (µ = 5.5 kpc and σ = 3.2 kpc).

sity (for details, see M15; Table 4 and references therein). A
1.4 GHz counterpart was found for 54 or 47% of our 3 GHz de-
tected SMGs (see also Brisbin et al. 2017). We note that two of
the 3 GHz non-detected SMGs, AzTEC/C97a and C100a, were
found to have a significant 1.4 GHz counterpart in the Joint cata-
logue (6.5σ and 5.8σ, respectively). A 3σ upper limit (typically
< 36 µJy beam−1) to the 1.4 GHz flux density was placed for
non-detections (61 sources). We did not correct for the afore-
mentioned mismatch between the 1.4 GHz and 3 GHz angular
resolutions because our compact radio sources are not resolved
in the 2′′.5 resolution 1.4 GHz data, which is shown by the (near)
equality of the 1.4 GHz catalogue peak surface brightnesses and
flux densities. As a sanity check, we cross-matched our 3 GHz
source catalogue with a source catalogue created with BLOBCAT
from the 3 GHz mosaic of about 2′′.5 angular resolution (3 722
sources at a S/N ≥ 5). We found 47 common sources within
a 1′′ matching radius. We then cross-matched these 47 source
positions with the aforementioned 1.4 GHz Joint catalogue, and
found 38 matches within 1′′. The spectral indices derived for
these sources at a common angular resolution were found to be
in good agreement on average with those based on the 0′′.75 reso-
lution 3 GHz data; the mean (median) ratio between the spectral
indices derived from different resolution data and those based on
the matched-resolution data was found to be 1.03 (0.91).

The derived α3 GHz
1.4 GHz indices are listed in Col. (12) in Ta-

ble C.1, where the quoted uncertainties were propagated from
those of the flux densities. The distribution of the spectral in-
dices is shown in the top panel in Fig. 6, and the corresponding
statistical parameters are given in Table 2.

The observed 3 GHz flux densities were converted into a
brightness temperature defined via the Rayleigh-Jeans approx-
imation, that is

TB =
c2

2kBν2
S ν

Ω
= 1.22 ×

(

ν

GHz

)−2
(

S ν

µJy

) (

θmaj

′′

)−2

K , (1)

where c is the speed of light, kB is the Boltzmann constant, and
the solid angle subtended by the Gaussian source was derived
from Ω = πθ2maj/(4 ln 2) = 1.133 × θ2maj. The derived values of
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Fig. 4. Top: Angular major axis FWHM size distribution of the 3 GHz
emission as a function of the 3 GHz flux density. AzTEC/C61 and
C77a, which have 3 GHz flux densities of S 3 GHz = 11.5 mJy and
S 3 GHz = 261 µJy, respectively, are omitted from the plot for legibil-
ity purposes. The horizontal dashed line marks the median major axis
FWHM of 0′′.59. The upper size limits are indicated by red, downwards
pointing triangles. The green filled circles represent the mean values
of the binned data (each bin is equally populated by 16 SMGs, except
the highest flux density bin, which contains 17 SMGs, and where C61
and C77a have not been taken into account), with the error bars show-
ing the standard errors of the mean values. Bottom: Same as above
but as a function of the ALMA 1.3 mm flux density. Again, the green
filled circles represent the binned averages, where each bin contains 19
SMGs, except the highest flux density bin, which contains 20 SMGs
(all the sources, including AzTEC/C61 and C77a, have been taken into
account).

TB are listed in Col. (13) in Table C.1. The uncertainties in TB
were derived from those associated with S 3 GHz and the average
of the ± error of the 3 GHz major axis FWHM size. The distri-
bution of the TB values is shown in the bottom panel in Fig. 6,
while the statistical parameters are given in Table 2. To convert
the observed-frame TB to the source rest frame, a value obtained
from Eq. (1) should be multiplied by the inverse of the cosmo-
logical scale factor, a−1(t) = (1 + z). The spectral indices and
brightness temprature properties of our SMGs are discussed fur-
ther in Sect. 4.1.

Article number, page 6 of 32



Miettinen et al.: 3 GHz radio sizes of the ALMA detected ASTE/AzTEC SMGs in COSMOS

0 10 20 30 40 50

S/N3 GHz

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
F
W
H
M

m
a
j
[a
rc
se
c]

Fig. 5. Angular major axis FWHM at 3 GHz plotted against the S/N
ratio of the 3 GHz detection. AzTEC/C61 and C77a, which have S/N
ratios of 2 713 and 115, respectively, are omitted from the plot for legi-
bility purposes. The horizontal dashed line marks the median major axis
FWHM of 0′′.59. The upper size limits are indicated by red, downwards
pointing triangles. The green filled circles represent the mean values of
the binned data (each bin contains 16 SMGs, except the highest S/N
bin, which contains 17 SMGs, and where C61 and C77a have not been
taken into account), with the error bars showing the standard errors of
the mean values.

Table 2. 1.4–3 GHz radio spectral index and 3 GHz brightness temper-
ature statistics.

Parameter α3 GHz
1.4 GHz TB [K]

Mean . . . a 23.2 ± 1.6 (20.4 ± 1.5)
Median −0.67 (−0.67)b 12.6 ± 2.0 (12.3 ± 1.9)

Standard deviation 0.51 (0.31) 16.8 (15.7)
95% confidence interval . . . a 20.1–26.3 (17.5–23.3)

IQR −0.94c [−0.94 − (−0.26)] 5.4–31.0 (5.1–28.3)

Notes. For each parameter, we give a full sample value (based on 115
sources), while the values given in parentheses refer to a sample from
which the three VLBA-detections were omitted.(a) The value could not
be determined owing to a large number of right-censored data points
(61, i.e. 53% of the whole sample). (b) The standard error of the me-
dian, which is proportional to the standard error of the mean (see
Sect. 3.2), could not be determined owing to a large number of censored
data points. (c) Only the 25th percentile could be determined, while the
third quartile could not be calculated owing to a large amount of right-
censored data.

4. Discussion

4.1. Radio spectral indices between 1.4 GHz and 3 GHz,
and 3 GHz brightness temperatures of the ASTE/AzTEC
1.1 mm selected submillimetre galaxies

4.1.1. Spectral indices

At the redshifts of our sources, which range from zspec = 0.829
for AzTEC/C71b to zFIR = 5.63 for AzTEC/C106, the 3 GHz
observations are probing the rest-frame frequencies of νrest =

5.5− 19.9 GHz (λrest = 1.5− 5.5 cm). These rest-frame frequen-
cies are expected to be dominated by non-thermal synchrotron
emission with the contribution from thermal p+e− free-free emis-
sion becoming increasingly important at higher frequencies, and
starting to dominate at νrest ≃ 30 GHz (e.g. Condon 1992;
Murphy et al. 2012b; Marvil et al. 2015; Miettinen et al. 2017).

The median 1.4–3 GHz spectral index we derived for our
SMG sample, α3 GHz

1.4 GHz = −0.67, is consistent with a value ex-
pected for an optically thin (τν ≪ 1) non-thermal synchrotron ra-
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Fig. 6. Top: Distribution of the 1.4–3 GHz radio spectral indices. The
distributions of the uncensored values and the lower limits (placed in
the bins corresponding to those values) are shown separately by the blue
and red histograms, respectively. In both cases, the histogram bin size is
0.1. The sample median, shown by the vertical dashed line, is α3 GHz

1.4 GHz =

−0.67 (same for the full sample and a sample from which the three
VLBA-detected sources were removed; Table 2). Bottom: Distribution
of the νobs = 3 GHz brightness temperatures, where the VLBA-detected
sources with high TB values are omitted for legibility purposes. Again,
the uncensored values and the lower limits are plotted separately. The
bin size is 3 K. The median values, TB = 12.6 K for the full sample
and TB = 12.3 K for a sample from which the VLBA-detected sources
were removed, are marked by the vertical dashed lines (the two lines
are nearly indistinguishable owing to a minute, 0.3 K difference in the
medians).

diation from an ensemble of CR electrons whose energy distribu-
tion has a power-law form of N(Ee) ∝ E

p
e with p = 2α−1 ≃ −2.4

(see e.g. Reynolds & Ellison 1992; Deeg et al. 1993;
Achterberg et al. 2001; and e.g. Leroy et al. 2011 and
Marvil et al. 2015 for observational data). This is a reas-
suring result given that more than half (53%) of our α3 GHz

1.4 GHz
values are lower limits, which hampers our survival analysis to
estimate the sample median.

The spectral indices for our VLBA-detected SMGs are
α3 GHz

1.4 GHz = −1.15 ± 0.14 (C24b), 0.11 ± 0.01 (C61), and −0.99 ±
0.03 (C77a). The spectral index for AzTEC/C24b and C77a is
steeper than the classic synchrotron spectral index, which sug-
gests that CR electrons in these sources have cooled through
different energy-loss mechanisms (see Appendix D). On the
other hand, AzTEC/C61 exhibits a mildly inverted radio spec-
trum, which is yet another indication of the presence of an
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Fig. 7. Radio spectral index between the observed-frame frequencies
of 1.4 GHz and 3 GHz plotted as a function of redshift. The red up-
pointing triangles show the lower α3 GHz

1.4 GHz limits. The cyan filled circles
represent the median values of the binned data with the error bars show-
ing the corresponding standard errors. The lower redshift bin contains
57 SMGs, while the higher redshift bin contains 58 SMGs. The large
number of censored α3 GHz

1.4 GHz values allowed us to only halve the sample
to apply survival analysis. The horizontal dashed line marks the median
spectral index of α3 GHz

1.4 GHz = −0.67, which was calculated using a survival
analysis technique.

AGN; a rising radio spectrum is a characteristic of self-absorbed,
black hole accretion-driven synchrotron jet component (e.g.
Blandford & Königl 1979; Falcke 1996; Nagar et al. 2000).

4.1.2. Brightness temperatures

The median observed-frame 3 GHz brightness temperature we
derived is TB = 12.6±2.0 K for the full source sample, and TB =

12.3 ± 1.9 K for the sample from which the VLBA-detections
were removed. However, the VLBA-detections stand out as hav-
ing much higher brightness temperatures than the typical val-
ues found here, that is TB = 75.2 ± 10.4 K (AzTEC/C24b), >
10 832 K (C61), and > 243.9 K (C77a). Because of the interme-
diate angular resolution of our 3 GHz observations, that is 0′′.75,
the TB values we derived should be interpreted as beam-averaged
quantities, and the presence of a faint radio AGN in a low-TB
source cannot be excluded. However, it is likely that the observed
3 GHz radio emission from our SMGs is predominantly powered
by SN activity (hence linked to star formation) with the excep-
tion of the VLBA and X-ray detected SMG AzTEC/C61, where
the very high observed (rest-frame) brightness temperature of
> 104.03 K (> 104.66 K) together with a positive spectral index be-
tween the rest-frame frequencies of 6.0 GHz and 12.8 GHz sug-
gest an AGN-powered radio emission (e.g. Condon et al. 1991;
Murphy et al. 2013; Barcos-Muñoz et al. 2015).

4.1.3. Searching for correlations

In Fig. 7, we plot the 1.4–3 GHz radio spectral indices as a func-
tion of redshift. The cyan filled circles shown in the plot rep-
resent the binned version of the data. Because of the large per-
centage of lower spectral index limits (53%), we could split the
full sample into only two parts, and compute the corresponding
median values using a method of survival analysis described in
Sect. 3.2. In the lower redshift bin (z = 1.91 ± 0.06), the me-
dian spectral index is α3 GHz

1.4 GHz = −0.67 ± 0.06, which equals
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Fig. 8. Top: Linear major axis FWHM size at 3 GHz plotted against
the radio spectral index between the observed frequencies of 1.4 GHz
and 3 GHz. The green right-pointing triangles indicate the lower α3 GHz

1.4 GHz
limits, while the red down-pointing triangles show the upper size limits.
The cyan filled circles represent the median values of the binned data
with the error bars showing the standard errors of the median values.
The steeper spectral index bin contains 57 SMGs, while the flatter one
contains 58 SMGs. The large number of censored data points allowed
us to only halve the sample to apply survival analysis. The horizon-
tal dashed line marks the median major axis FWHM size of our SMGs
(4.6 kpc), and the vertical dashed line marks the sample median spectral
index of α3 GHz

1.4 GHz = −0.67. For reference, the yellow shaded band shows
the radio spectral index range of αsynch ∈ [−0.8, −0.7], which is typical
of the non-thermal synchrotron radio emission from star-forming galax-
ies. Bottom: 3 GHz brightness temperature as a function of α3 GHz

1.4 GHz. The
symbols are as in the top panel, except that the red triangles pointing
up indicate the lower TB limits. The two partly overlapping horizontal
dashed lines mark the median TB values for the full sample (12.6 K)
and for a sample from which the VLBA detected sources were removed
(12.3 K). The VLBA detected high-TB sources are not shown for the
sake of clarity, but they are included in the binned data.

the full sample median (and the one purified from VLBA de-
tections), and in the higher redshift bin (z = 3.15 ± 0.15) the
value is very similar, namely α3 GHz

1.4 GHz = −0.69 ± 0.08. The lat-
ter value remains practically unchanged if the flat spectral in-
dex source AzTEC/C61 is excluded from the analysis (α3 GHz

1.4 GHz =

−0.70±0.03). Hence, we see no evolution in the median spectral
index as a function of redshift. In part, this absence of evolution
in the spectral index might reflect the fact that the redshift in-
terval between the two binned data points is fairly narrow, only
∆z = 3.15 − 1.91 = 1.24, where no significant evolution is ex-
pected at these redshifts. We note, however, that because the rest-
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frame frequency probed is higher at higher redshifts, the contri-
bution of the thermal free-free emission to the observed radio
emission is expected to be higher (causing flattening of the spec-
tral index). On the other hand, this effect could be competing
with a boosted CR cooling at high redshifts (steepening of the
spectral index; see Appendix D.2), which can lead to an appar-
ent flat trend between the radio spectral index and redshift.

Local luminous (LIR > 1011 L⊙ in the rest-frame 8 −
1 000 µm) and ultraluminous (LIR > 1012 L⊙) infrared galax-
ies, or (U)LIRGs, exhibit a trend of more compact radio emit-
ters having a flatter radio spectral index (Condon et al. 1991;
Murphy et al. 2013). The physical interpretation of this trend in
these studies was that an increased photon absorption by free
electrons, that is free-free absorption, becomes more important
in more compact sources. For a given mass of ionised gas, this
can be understood as an increasing free-free optical thickness,
τffν ∝ n2

e, where ne is the number density of free thermal elec-
trons.

To see if our SMGs exhibit the aforementioned trend, we
plot the 3 GHz linear major axis FWHM sizes as a function of
α3 GHz

1.4 GHz in the top panel in Fig. 8. No correlation is visible in
the plot, and the binned censored data suggest that, on average,
the radio size remains constant over the observed spectral index
range.

Moreover, in the bottom panel in Fig. 8 we plot the 3 GHz TB
values as a function of α3 GHz

1.4 GHz. Because TB ∝ Ω−1 (see Eq. (1)),
one would expect to see flatter spectral indices for sources with
higher brightness temperature as has been seen among local
(U)LIRGs in accordance with their radio size-spectral index an-
ticorrelation (Murphy et al. 2013). Although this is not clearly
discernible in our data, the binned data exhibit a hint that the
flattest α3 GHz

1.4 GHz values are found among sources with elevated
TB. We note that this is not driven by the high-TB and inverted-
spectrum VLBA source AzTEC/C61; the median TB value of
the flatter α3 GHz

1.4 GHz bin is 17.3± 2.2 K whether AzTEC/C61 is in-
cluded or not. The steeper α3 GHz

1.4 GHz bin has a median TB value of
9.7 ± 3.6 K, and hence close to the flatter α3 GHz

1.4 GHz bin’s TB value
within the 1σ ranges. This statistically non-significant (or only
marginally significant) behaviour is consistent with the finding
that we do not see an anticorrelation between the radio size and
α3 GHz

1.4 GHz in the upper panel in Fig. 8. Although the calculation of
the median bins suffers from the large amount of censored data,
the lack of clear correlations in Fig. 8 is consistent with the M15
study of 1.1 mm selected AzTEC SMGs in COSMOS.

4.2. Radio-emitting sizes of submillimetre galaxies, and
comparison with the spatial extent of dust, molecular
gas, and stellar emission

The median 3 GHz radio-emitting size (deconvolved major axis
FWHM) we derived is 4.6 ± 0.4 kpc. This is consistent with the
median 3 GHz radio size of 4.1 ± 0.8 kpc derived by M15 for
a much smaller (by a factor of 7.7), but partly overlapping sam-
ple of AzTEC SMGs in COSMOS (the quoted median size was
scaled to the present cosmology and the revised redshifts from
Brisbin et al. 2017).

In Fig. 9, we show the derived 3 GHz radio size distribu-
tion of our 1.1 mm selected, ALMA 1.3 mm detected SMGs
(cf. Fig. 6 in M15). For comparison, we plot the 1.4 GHz ra-
dio size distribution of the SMGs from Biggs & Ivison (2008),
1.1 mm and 870 µm dust emission sizes from Ikarashi et al.
(2015), Hodge et al. (2016), and Simpson et al. (2016), the CO-
emitting sizes from Tacconi et al. (2006), and the stellar emis-

sion sizes from Chen et al. (2015). As illustrated in Fig. 9, the
present SMG sample size is significantly larger than those in the
aforementioned previous works (by factors of 1.5 to 16). In the
following subsections, we compare the derived radio sizes with
those determined at other wavelengths and for other types of
emissions in the previous studies.

4.2.1. Comparison with the 1.4 GHz radio sizes from Biggs &
Ivison (2008)

As described in more detail in M15, Biggs & Ivison (2008)
based their radio size study on 1.4 GHz observations taken with
the VLA and the Multi-Element Radio Linked Interferometer
Network (MERLIN). The angular resolution of their combined
VLA plus MERLIN data set was about 0′′.52 × 0′′.48. The me-
dian 1.4 GHz radio size for the Biggs & Ivison (2008) SMG
sample is 6.1 ± 1.1 kpc, which is 1.3 ± 0.3 times larger than our
3 GHz median size. This discrepancy is not statistically signif-
icant owing to the standard errors of the sample medians. The
Biggs & Ivison (2008) SMGs lie at spectroscopic redshifts of
zspec = 1.147 − 2.689, and have single-dish 1.1 mm flux den-
sities of S 1.1 mm = 1.4+0.6

−0.7 − 6.0+1.4
−1.4 mJy (computed by assum-

ing β = 1.5; see M15). The deboosted ASTE/AzTEC 1.1 mm
flux densities of our target SMGs lie in the range of S 1.1 mm =

3.5+1.1
−1.1−13.0+1.1

−1.0 mJy (Aretxaga et al. 2011), and the majority of
them (109/129 or 84.5%) fall in the flux density range studied by
Biggs & Ivison (2008). Moreover, because the average radio size
does not appear to depend on the millimetre flux density (Fig. 4,
bottom panel), the aforementioned size comparison is justified
in terms of source brightness. If we limit our SMG sample to the
redshift range examined by Biggs & Ivison (2008), we end up
with a subsample of 65 SMGs with a median 3 GHz radio size
of 4.6 ± 0.4 kpc, which is identical to that of our full sample.

A two-sided K-S test between our uncensored and Biggs &
Ivison (2008) radio size distributions in a common redshift inter-
val yields a K-S test statistic of DKS = 0.25 and a K-S probability
of pKS = 0.71 (cf. Sect. 3.2). Hence, it seems possible that the
two size distributions share a common underlying parent distri-
bution.

4.2.2. Comparison with the rest-frame far-infrared
dust-emitting sizes revealed by ALMA

The distribution of the ALMA 1.1 mm sizes of SMGs derived
by Ikarashi et al. (2015) has a median FWHM value of only
1.4 ± 0.3 kpc, which is 3.3 ± 0.8 times smaller than our me-
dian radio size. As we already described in M15, Ikarashi et
al. (2015) studied sources with ALMA 1.1 mm flux densities
in the range of S 1.1 mm = (1.23 ± 0.07) − (3.45 ± 0.10) mJy.
Assuming that β = 1.5, this corresponds to a 1.3 mm flux den-
sity range of S 1.3 mm = (0.69 ± 0.04) − (1.92 ± 0.06) mJy, while
that of our 3 GHz detected SMGs is S 1.3 mm = (0.54 ± 0.10) −
(7.24±0.10) mJy. Seventy, or 61%, of our 3 GHz detected SMGs
have a ALMA millimetre flux density in the range examined by
Ikarashi et al. (2015), and hence most of the sources are com-
parably bright. This, together with the finding that the average
radio size does not depend on the ALMA millimetre flux den-
sity (Fig. 4, bottom panel), makes the aforementioned size com-
parison meaningful. Of the 13 SMGs studied by Ikarashi et al.
(2015), only three have a photometric redshift available, while
for the remaining ten sources the authors derived a lower redshift
limit by assuming a uniform redshift probability at z = 3−6 (see
their Table 1). For this reason, the λobs = 1.1 mm physical sizes
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of these sources should be taken as approximate values. Ikarashi
et al. (2017) revisited the 1.1 mm sizes of two of the SMGs from
Ikarashi et al. (2015) by employing additional ALMA observa-
tions that covered baselines up to 1 500 kλ. The sizes measured
in the uv-plane were found to be consistent with their previous
measurements. Moreover, for the source that was consistent with
a single symmetric Gaussian model, the size measured in the im-
age plane was found to be consistent with that measured from the
visibility data.

For comparison, González-López et al. (2017) detected 12
dusty star-forming galaxies at a S/N ≥ 5 with ALMA at 1.1 mm
towards three strong-lensing galaxy clusters from the Frontier
Fields Survey. The demagnified (intrinsic) flux densities of these
ALMA sources determined through two-dimensional elliptical
Gaussian model fits in the uv-plane were found to be about
S

demag
1.1 mm = 0.14 − 1.63 mJy (S demag

1.3 mm = 0.08 − 0.91 mJy for
β = 1.5), and hence they are generally fainter than our SMGs
(only 11 of our 3 GHz detected SMGs lie in the aforementioned
flux density interval). From the intrinsic effective radii and the
axial ratios reported by the authors in their Table 5, we calcu-
lated the angular major axis sizes of 0′′.04−0′′.41 with a median of
0′′.23 ± 0′′.05. This is very similar to the median angular FWHM
size at 1.1 mm from Ikarashi et al. (2015), that is 0′′.22 ± 0′′.03.

Simpson et al. (2015) based their study of the dust-emitting
sizes of SCUBA-2 (Submillimetre Common User Bolometer Ar-
ray 2) 850 µm selected SMGs in the Ultra Deep Survey (UDS)
field on high-resolution (0′′.35 × 0′′.25) 870 µm ALMA obser-
vations. Their target SMGs have single-dish 1.1 mm flux densi-
ties of S 1.1 mm = 3.2 − 6.5 mJy (assuming β = 1.5; see M15).
The vast majority of our target SMGs (113 or 88% out of the
129 single-dish AzTEC detections) lie within this flux density
range, and hence our full, flux-limited sample is well-suited for
a comparison with the S15 SMGs. For a subsample of their most
significant ALMA detections (23 of the AS2UDS SMGs with
S/N870 µm > 10), S15 derived a median deconvolved major axis
FWHM of 0′′.30±0′′.04. Simpson et al. (2016) derived photomet-
ric redshifts for 18 of these sources, and using a survival analysis
(to take the upper size limit for UDS392.0 into account) we de-
rived a median deconvolved major axis FWHM of 2.7± 0.4 kpc.
This is 1.9± 0.5 times larger than the Ikarashi et al. (2015) sam-
ple median size, but still 1.7± 0.3 times smaller than our median
radio size.

Hodge et al. (2016) investigated the dust-emitting sizes of
the ALMA 870 µm detected SMGs in the Extended Chandra
Deep Field South (ECDFS), that is the so-called ALESS SMGs
(Hodge et al. 2013; Karim et al. 2013). The authors employed
very high resolution (0′′.17 × 0′′.15) ALMA Band 7 (λobs =

870 µm) follow-up observations. For the 16 sources that they
detected at a S/N870µm > 10, the median major axis FWHM size
derived through two-dimensional Gaussian fitting in the image
plane is 3.1±0.3 kpc (scaled to our cosmology). This is 1.5±0.2
times smaller than our median radio size, but very similar to
the aforementioned median FWHM size of the 870 µm detected
AS2UDS SMGs (the ratio between the two is 1.1 ± 0.2). Hodge
et al. (2016) also measured the source sizes in the uv-plane, and
on the basis of this they concluded that the image plane sizes
can be considered robust (also no evidence of emission being re-
solved out was found). For comparison, Lindroos et al. (2016)
stacked the u − v visibility data of the ALESS SMGs, and de-
rived an average FWHM size of 0′′.40±0′′.06 through a Gaussian
model fit. At the median redshift of the ALESS SMGs, z = 2.3
(Simpson et al. 2014), this corresponds to 3.3±0.5 kpc, which is
in excellent agreement with the Hodge et al. (2016) results, re-
gardless of the fact that Lindroos et al. (2016) used the original

ALESS data of 1′′.6 × 1′′.2 angular resolution, which is sufficient
to only marginally resolve the largest sources.

To allow us to make a fairer comparison with the ALESS
sample from Hodge et al. (2016), we limit their sample to
those SMGs that have 870 µm flux densities corresponding to
our AzTEC 1.1 mm flux density range in the parent sample
(AzTEC/C1–C129; 3.5 mJy ≤ S 1.1 mm ≤ 13.0 mJy). Under the
assumption that β = 1.5, this flux density range is 8.0 mJy ≤
S 870µm ≤ 29.5 mJy. The original Large APEX BOlometer CAm-
era (LABOCA) 870 µm detected SMGs, or the so-called LESS
SMGs (Weiß et al. 2009) that fall in this flux density range are
LESS 1–16, 22, 23, 30, and 35, where LESS 1, 2, 3, 7, 15, 22,
23, and 35 were resolved into multiple components with ALMA
(Hodge et al. 2013; Karim et al. 2013). Hodge et al. (2016) de-
rived a dust-emitting size for seven of these sources, and the
median size for these is 2.9 ± 0.6 kpc, which is consistent with
their full sample and 1.6 ± 0.4 times smaller than our median
radio size. Moreover, the observed 1.4 GHz flux densities of the
Hodge et al. (2016) target sources, which range from S 1.4 GHz <

24 µJy to 90 µJy (see Thomson et al. 2014; Table 3 therein), fall
within the 1.4 GHz flux density range of our 3 GHz detections
(S 1.4 GHz < 36 µJy–10.59 mJy, or up to 554.5 µJy if AzTEC/C61
is not considered). Also from this standpoint, together with the
finding that the average size at 3 GHz does not depend on the
3 GHz flux density (Fig. 4, top panel), a direct size compari-
son with the ALESS sources appears to be justified. Finally, we
point out that four of the ALESS SMGs studied by Hodge et al.
(2016) are associated with an X-ray source (ALESS 17.1, 45.1,
67.1, and 73.1; Wang et al. 2013), and their dust-emitting sizes
were found to be similar to the other sources, which is similar
to our conclusion concerning the radio sizes of AGN-host SMGs
and their pure star-forming counterparts (Sect. 3.3).

4.2.3. Comparison with the CO-emitting sizes from Tacconi
et al. (2006)

As can be seen in Fig. 9, the CO-emitting sizes of SMGs de-
rived through observations of the J = 3 − 2 and J = 7 − 6
rotational lines by Tacconi et al. (2006) have a median value
(4.0 ± 1.0 kpc) that is fairly similar to that of our radio sizes;
the ratio between the two is 0.9 ± 0.2, that is consistent with
unity. As we described in M15, the single-dish 1.1 mm flux den-
sities of the Tacconi et al. (2006) SMGs, again assuming that
β = 1.5, are S 1.1 mm ≃ 3.3 − 4.3 mJy. Half (64/129 or 49.6%) of
our target AzTEC detections lie within this flux density range.
However, as explained in Sect. 1, the CO lines employed by
Tacconi et al. (2006) are probing the dense, warm phase of the
molecular gas component, while lower excitation Jup ≤ 2 tran-
sitions have revealed more extended, diffuse, and less actively
star-forming molecular gas reservoirs in SMGs. Another indica-
tion of different molecular gas phases in SMGs is provided by
the finding that the Jup ≥ 2 CO lines are subthermally excited
(see Bothwell et al. 2013). That the spatial scales of radio emis-
sion and warm CO gas appear to be similar on average might be
an indication that the dense gas, which is shielded from the inter-
stellar UV radiation field, is heated by the hadronic component
of CRs (protons) via ionisation (e.g. Goldsmith & Langer 1978),
while the dust heating by radiation from young stars is restricted
to the more compact central parts of the galaxy.
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4.2.4. Comparison with the size scale of the rest-frame
ultraviolet stellar emission

To investigate how the 3 GHz radio sizes of our SMGs com-
pare with their stellar emission sizes, we retrieved the Hub-
ble/Advanced Camera for Surveys (ACS) I-band sizes from
the publicly available COSMOS morphological catalogues3. We
made use of all the five available catalogues, namely the Cas-
sata morphological catalogue, which contains 232 022 galaxies
down to IAB(ACS) = 25 mag (Cassata et al. 2007); the Tasca
morphological catalogue, which contains 237 914 galaxies with
IAB(ACS) < 24.5 mag (Tasca et al. 2009); the COSMOS/ACS
morphological catalogue from the Columbia University group
(Zamojski morphology catalogue; Zamojski et al. 2007), which
contains 40 666 galaxies with IAB(ACS) < 23 mag; the
Zürich structure & morphology catalogue v1.0, which con-
tains 131 532 galaxies (measurements down to IAB =

24 mag (Scarlata et al. 2007), and to IAB = 22.5 mag
(Sargent et al. 2007)); and the COSMOS 2005 morphology cat-
alogue, which contains 157 610 galaxies, and where the faintest
galaxy has a peak surface brightness of IAB = 23.9 mag.

We used a search radius of 1′′ with respect to the ALMA
1.3 mm source positions, and found 28, 29, 4, 15, and 18 matches
with the Cassata, Tasca, Zamojski, Zürich, and COSMOS cata-
logues, respectively. The adopted ACS/I-band sizes were those
corresponding to the half-light radii, and the catalogue val-
ues in pixels were converted to arcseconds (0′′.03 pixel−1 or
0′′.05 pixel−1 depending on the catalogue). Following Zahid et
al. (2015), from the Zürich catalogue, we took the semi-major
axis length of an ellipse encompassing 50% of total light (a50),
and circularised it to obtain the half-light radius using the for-
mula

R1/2 = a50 ×
√

b

a
, (2)

where b/a is the minor-to-major axis ratio. On average, the cir-
cularised half-light radii were found to be 1.43 times smaller
than the values of a50.

The catalogue-based angular half-light radii are tabulated in
Table 3. In the case a given source was found in more than one
of the aforementioned catalogues, we adopted the average value
of the reported half-light radii. At the redshifts of the 33 ACS/I-
band detected sources listed in Table 3, z = 1.06 − 4.68, the
observed mean wavelength of λobs = 814 nm corresponds to the
rest-frame wavelengths of λrest ≃ 143−395 nm, that is far-UV to
near-UV radiation. For six additional SMGs, AzTEC/C2a, C4,
C5, C10b, C17, and C42, we could obtain the observed-frame
near-IR sizes derived by Toft et al. (2014; see also M15). For
AzTEC/C42, the authors used the Hubble/Wide Field Camera 3
(WFC3) H160-band (mean λobs = 1.54 µm) observations, which
probe the rest-frame near-UV (λrest ≃ 333 nm) at the source red-
shift. For the other five sources they employed the stacked Y, J,
H, and Ks-band images from the UltraVISTA survey (mean ob-
served central wavelength of λobs = 1.52 µm), which are prob-
ing the rest-frame mid-UV to near-UV radiation at the source
redshifts of z = 2.9 − 5.3.

In Fig. 10, we plot the rest-frame UV sizes (parameterised
as FWHM = 2 × R1/2) against the 3 GHz radio size (major axis
FWHM). As illustrated by this plot, we see both the cases of
radio emission being more extended (16/36 = 44.4%) or more

3 The catalogues are available through the NASA/IPAC Infrared Sci-
ence Archive (IRSA) at http://irsa.ipac.caltech.edu .

compact (20/36 = 55.6%) than the spatial scale of stellar emis-
sion. One caveat to this size comparison is that the assumed re-
lationship of FWHM = C(n) × R1/2 with C(n) = 2 is strictly
valid only for a circular Gaussian profile with a Sérsic index
of n = 0.5, while the numerical factor is C(n) = 0.83 for an
exponential profile (n = 1) and only C(n) = 1.33 × 10−4 for
the de Vaucouleurs n = 4 profile (e.g. Voigt & Bridle 2010). Be-
cause the Sérsic index values of the rest-frame UV size measure-
ments reported in Table 3 are generally not available (only for
AzTEC/C52, 59, and 66 the values n = 6.4+0.9

−0.7, n = 0.4+0.2
−0.2, and

n = 1.0+0.2
−0.3 were reported in the Zürich catalogue), we restricted

our calculation to the simplified assumption that C(n) = 2.

In Fig. 9, we also plot the rest-frame UV-optical stellar
emission sizes of the so-called MAIN ALESS SMGs derived
by Chen et al. (2015) using the Hubble/WFC3 H160-band ob-
servations. Instead of all the 75 H160-band sources listed by
Chen et al. (2015) in their Table 1, we only considered the
35 resolved main H160-band components because they are most
clearly associated with the ALESS SMGs (the H1 components
in Chen et al. 2015; see their Fig. 10). The FWHM sizes plot-
ted in Fig. 9 were calculated by using the effective, semi-major
axis lengths (half-light radii) and the Sérsic indices reported by
Chen et al. (2015; Table 1 therein), and following the method
outlined in Voight & Bridle (2010). We found a wide range of
the C(n) = FWHM/R1/2 values for these sources, ranging from
1.2× 10−4 to 2.9 with a mean (median) of 0.98 (0.83), where the
median Sérsic index was derived to be n = 1. The median stel-
lar emission FWHM extent we derived is 2.8 ± 0.9 kpc, which
is 1.6 ± 0.5 times smaller than our median radio size. We note
that for one of the analysed ALESS sources, ALESS 039.1, the
Sérsic index was too small (n = 0.1) to yield a physical FWHM
size solutions (FWHM ∝ k−n, where k = 1.9992 × n − 0.3271;
Voigt & Bridle 2010), and hence the effective sample size con-
sidered here is 34. Among the ALESS SMGs that were de-
tected towards those LESS sources that are equally bright to our
AzTEC 1.1 mm sources (see above), Chen et al. (2015) derived
stellar sizes for seven main H160-band sources. For these sources,
the median H160-band FWHM size is 1.7 ± 1.0 kpc, which is
2.7 ± 1.6 times smaller than our median radio size. Consistent
with our aforementioned source-by-source radio-UV size com-
parison, the stellar emission sizes of the ALESS SMGs span
a wide range of FWHM values, from only 0.2 pc to 16.1 kpc
(1.1 pc to 5.0 kpc for the flux-limited sample), and can be either
larger or smaller than the radio-emitting region.

Although the median H160-band FWHM size of the Chen et
al. (2015) sample is comparable to the typical size of the dust-
emitting region, in some cases the size scale of stellar emission
appears to be more extended than the dust-emitting region, sim-
ilar to that found for the radio emission. The latter situation can
be explained by a pre-existing, older stellar component, which
extends beyond the (central) region of active, obscured star for-
mation. For example, a merger remnant system is expected to
host a central starburst region, surrounded by a more extended
distribution of stars (e.g. Wuyts et al. 2010). However, measure-
ments of the spatial scale of stellar emission of SMGs can be
hampered by a strong, and possibly differential dust extinction
in the rest-frame UV regime (e.g. Swinbank et al. 2010), which
is also sensitive to the viewing angle and source geometry. In
addition, the stellar population effects can influence the appar-
ent stellar emission size scale (e.g. older stars are redder than
hot, young stars; e.g. Searle et al. 1973), and depending on the
source redshift the observed wavelength can fall either blueward
or redward of the Balmer break at 3 646 Å or the 4 000 Å break.
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If a galaxy exhibits a colour gradient, its apparent size depends
on the wavelength of the observations, and for example a galaxy
with a redder central region than the surrounding disk would ap-
pear more compact at longer (redder) observed wavelengths (e.g.
Wellons et al. 2015).

4.3. Size evolution over cosmic time

In Fig. 11, we plot our radio major axis FWHM sizes as a
function of redshift. For comparison, we also show the ALMA
870 µm based rest-frame FIR sizes from Hodge et al. (2016) and
Simpson et al. (2016).

The derived 3 GHz radio sizes exhibit a large scatter in
Fig. 11, but the binned data (the cyan filled circles) show that
the average radio size is fairly constant as a function of redshift,
with the exception of the lowest redshift bin (〈z〉 = 1.32 ± 0.07),
which shows the largest nominal radio size (6.8±1.0 kpc). How-
ever, owing to its large standard error of the mean radio size,
the lowest redshift bin is not a statistically significant outlier.
Based on a much smaller (by a factor of 7.7) sample of 3 GHz
detected COSMOS SMGs with available redshifts, M15 found
a hint of larger 3 GHz radio sizes at redshifts of z ∼ 2.5 − 5
than those outside this redshift interval (Fig. 7 therein). Curi-
ously, a comparable increase in rest-frame FIR sizes was recog-
nised among the Ikarashi et al. (2015) SMGs at z ∼ 3.5 − 5,
but as mentioned in Sect. 4.2.2 most of their sources had only
lower redshift limits available. However, our new, large sam-
ple of SMGs shows that the more extended radio sizes seen at
z ∼ 2.5− 5 by M15 was merely a result of a small number statis-
tics. A linear regression through all the binned data points yields
θ

maj
3 GHz[kpc] ∝ −(0.04 ± 0.24) × z with a Pearson correlation co-

efficient of r = −0.35 (r ranges from −1 to 1, and r = 0 implies
no (linear) correlation). Hence, because we could improve upon
our earlier work, we can now conclude that the average radio size
of an SMG does not appear to evolve as a function of redshift.
This is consistent with Murphy et al. (2017), who found that the
10 GHz radio sizes of their sample of star-forming galaxies in
GOODS-N do not exhibit any obvious evolution with redshift.

We found that the FIR sizes of the z = 1.51 − 4.76 SMGs
from Hodge et al. (2016) exhibit a trend of sources being more
compact at higher redshifts; a linear fit to this sample yields
θ

maj
870µm[kpc] ∝ −(0.46 ± 0.13) × z (r = −0.76). We also checked

if the FIR sizes from Simpson et al. (2016) show a similar trend,
but this was not the case. Instead, a linear fit to their data yields
θ

maj
870µm[kpc] ∝ (0.10 ± 0.37) × z (r = −0.21), where the one

upper size limit was omitted from the fit. Because Hodge et
al. (2016) and Simpson et al. (2016) both used observations
at 870 µm, and the redshifts of the Simpson et al. (2016) tar-
get sources, z = 1.68 − 4.91, are similar to those from Hodge
et al. (2016), the rest-frame wavelengths probed in these two
studies are comparable. Hence, we augmented the data set by
combining their data to see whether the FIR size shows any
trend as a function of redshift. A linear fit to the full combined
sample yields θmaj

870µm[kpc] ∝ −(0.36 ± 0.13) × z (r = −0.49),
while that to the combined, binned data shown in Fig. 11 yields
θ

maj
870 µm[kpc] ∝ −(0.53± 0.16)× z (r = −0.77). This suggests that

contrary to our radio sizes, the rest-frame FIR dust-emitting sizes
of SMGs might be more compact at higher redshifts. Hence,
besides the different spatial extents of radio and dust continua,
their relative evolution over cosmic time might also be differ-
ent. However, if the observed-frame 870 µm emission is dom-
inated by the cold dust component (see Sect. 4.5.2 and Ap-

pendix E), it is possible that the diminishing intensity contrast
against the cosmic microwave background (CMB) radiation af-
fects the dust emission size measurements at high redshifts (e.g.
da Cunha et al. 2013; Zhang et al. 2016). If this is the case, there
is a possible observational bias towards smaller dust-emitting
FWHM sizes at higher redshifts, which might explain the anti-
correlation seen in Fig. 11.

We also checked whether the rest-frame UV sizes tabulated
in Table 3 exhibit any trend with redshift. We divided the 39
data points into four redshift bins (three bins of ten sources
plus one bin composed of nine sources), and applied a survival
analysis to calculate the average half-light radii. Over the red-
shift range thus obtained, 〈z〉 = 1.47 − 3.95, a linear fit yielded
rUV[kpc] ∝ −(0.42 ± 0.03) × z (r = −0.995), which implies a
size growth towards lower redshifts (from rUV = 1.86± 0.42 kpc
to 2.86 ± 0.38 kpc for our average redshift interval). Because
the rest-frame UV radiation is a tracer of unobscured high-mass
star formation, one might expect that also the radio size evolves
with redshift in a similar fashion as the galaxy size in the UV.
However, similarly to our full sample of 3 GHz detections, the
average radio size of the sources listed in Table 3 shows a flat
trend as a function of redshift (the 36 radio detected sources
from Table 3 were split into four bins of nine sources, and a
linear fit over the redshift range 〈z〉 = 1.49 − 3.75 yielded
θ

maj
870 µm[kpc] ∝ (0.04±0.38)×z with r = 0.05). The non-evolution

of the average radio size of our SMG sample as a function of red-
shift is discussed further in Sect. 4.5.4.
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Fig. 9. Distributions of the SMG sizes (major axis FWHM) measured in
radio, dust, CO, and stellar emissions. The black histogram shows the
sizes of our COSMOS ASTE/AzTEC SMGs as seen at νobs = 3 GHz.
The red, green, blue, yellow, magenta, and cyan histograms show the
1.4 GHz sizes from Biggs & Ivison (2008), 1.1 mm (rest-frame FIR)
sizes from Ikarashi et al. (2015), 870 µm sizes from Hodge et al. (2016)
and Simpson et al. (2016), CO-emitting sizes from Tacconi et al. (2006),
and the stellar emission sizes from Chen et al. (2015). The bin size is
1 kpc. The upper size limits were placed in the bins corresponding to
those values, which is causing the apparent peak in our radio size distri-
bution. The vertical dashed lines show the corresponding median sizes
(4.6 kpc for our SMGs, 6.1 kpc for the Biggs & Ivison (2008) SMGs,
1.4 kpc for the Ikarashi et al. (2015) SMGs, 3.1 kpc and 2.7 kpc for
the Hodge et al. (2016) and Simpson et al. (2016) SMGs, respectively,
4.0 kpc for the CO sizes from Tacconi et al. (2006), and 2.8 kpc for the
stellar sizes from Chen et al. (2015); survival analysis was used to take
the upper size limits into account when calculating the median sizes).
See text for details.
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Table 3. Radii in the rest-frame UV for a subset of 39 target SMGs.

ID CCa TCb ZCc ZSMCd C2005e T14f rUV
g rradio/rUV

h

R1/2 [′′] R1/2 [′′] R1/2 [′′] R1/2 [′′] R1/2 [′′] R1/2 [′′] [′′]
C2a . . . . . . . . . . . . . . . < 0.39 < 0.39 > 0.31

C4 . . . . . . . . . . . . . . . < 0.39 < 0.39 > 1.71

C5 . . . . . . . . . . . . . . . < 0.38 < 0.38 > 0.62

C9b 0.37 0.17 . . . . . . . . . . . . 0.27 ± 0.10 3.19+2.46
−1.05

C10b . . . . . . . . . . . . . . . 0.64+0.11
−0.10 0.64+0.11

−0.10 0.95+0.44
−0.36

C12 0.40 0.32 . . . . . . . . . . . . 0.36 ± 0.04 0.78+0.31
−0.28

C17 . . . . . . . . . . . . . . . 0.55 ± 0.03 0.55 ± 0.03 0.64+0.22
−0.24

C18 0.28 . . . . . . . . . . . . . . . 0.28 1.13+0.53
−0.54

C19 0.65 0.34 0.34 0.36 0.35 . . . 0.41 ± 0.06 0.68+0.25
−0.20

C22a 0.43 0.26 . . . 0.25 0.28 . . . 0.30 ± 0.04 0.80+0.20
−0.17

C23 0.28 0.36 . . . . . . . . . . . . 0.32 ± 0.04 0.92+0.24
−0.20

C25 . . . 0.22 . . . . . . . . . . . . 0.22 2.55+0.34
−0.37

C28a 0.25 0.11 . . . . . . . . . . . . 0.18 ± 0.07 2.64+1.36
−0.84

C33a . . . . . . . . . . . . 0.16 . . . 0.16 1.38+0.28
−0.35

C36 0.67 0.22 . . . 0.46 0.38 . . . 0.43 ± 0.09 0.48+0.23
−0.15

C42 . . . . . . . . . . . . . . . 0.06 ± 0.05 0.06 ± 0.05 7.92+43.08
−3.92

C44b 0.11 0.08 . . . . . . i 0.08 . . . 0.09 ± 0.01 4.11+1.95
−1.81

C45 0.27 0.14 . . . 0.17 0.21 . . . 0.20 ± 0.03 1.53+0.76
−0.66

C47 0.54 0.11 . . . . . . 0.22 . . . 0.29 ± 0.13 < 1.19

C48a 0.40 0.15 . . . . . . . . . . . . 0.28 ± 0.13 0.80+1.13
−0.48

C51b 0.67 0.36 . . . 0.29 0.44 . . . 0.44 ± 0.08 . . . j

C52 0.98 0.16 0.57 0.60 0.39 . . . 0.54 ± 0.14 0.86+0.44
−0.27

C56 0.15 0.10 . . . . . . . . . . . . 0.13 ± 0.02 3.85+1.42
−1.08

C59 0.67 0.28 . . . 0.42 0.39 . . . 0.44 ± 0.08 < 0.53

C65 0.56 0.30 . . . 0.28 0.31 . . . 0.36 ± 0.07 0.65+0.26
−0.17

C66 0.57 0.32 . . . 0.42 0.54 . . . 0.46 ± 0.06 0.64+0.22
−0.17

C67 0.27 0.28 . . . 0.31 0.16 . . . 0.26 ± 0.03 < 0.83

C84b 0.72 0.32 . . . 0.69 0.15 . . . 0.47 ± 0.14 1.05+0.66
−0.36

C86 0.13 0.08 . . . . . . i 0.08 . . . 0.10 ± 0.02 < 2.38

C90c . . . 0.18 . . . . . . . . . . . . 0.18 2.08+0.50
−0.58

C95 . . . . . . . . . . . . 0.34 . . . 0.34 1.74+0.35
−0.39

C97a 0.48 0.19 . . . 0.31 0.32 . . . 0.33 ± 0.06 . . . j

C101b 0.44 0.22 . . . . . . . . . . . . 0.33 ± 0.11 1.79+1.64
−0.86

C105 0.32 0.16 . . . . . . . . . . . . 0.24 ± 0.08 1.56+1.25
−0.86

C112 0.51 0.27 . . . . . . . . . . . . 0.39 ± 0.12 0.85+0.50
−0.27

C113 . . . . . . 0.42 . . . . . . . . . 0.42 < 0.45

C122a 0.69 0.23 0.45 0.37 0.48 . . . 0.44 ± 0.08 0.61+0.47
−0.46

C126 0.37 0.35 . . . . . . . . . . . . 0.36 ± 0.01 . . . j

C127 0.23 0.26 . . . . . . . . . . . . 0.25 ± 0.01 < 0.79

Notes. Unless otherwise stated, an ellipsis means that the source was not found in the catalogue (within a search radius of 1′′).(a) Half-
light radius from the Cassata’s morphological catalogue (Cassata et al. 2007). (b) Half-light radius from the Tasca’s morphological catalogue
v1.0 (Tasca et al. 2009). (c) Half-light radius from the COSMOS/ACS morphological catalogue from the Columbia University group v1.0
(Zamojski et al. 2007). (d) Circularised half-light radius calculated from the semi-major axis length of an ellipse encompassing 50% of total
light from the Zürich structure & morphology catalogue v1.0 (Scarlata et al. 2007; Sargent et al. 2007). (e) Half-light radius from the COSMOS
2005 Morphology Catalogue. (f) Effective radius from Toft et al. (2014). (g) The mean of the quoted rest-frame UV radii, where the quoted
uncertainty represents the standard error of the mean. (h) The ratio between the 3 GHz radio size and the average UV size tabulated in column
(8).i The source was found in the Zürich catalogue, but no size was available (value= −99).(j) The source was not detected at 3 GHz.

Article number, page 13 of 32



A&A proofs: manuscript no. AA_2017_30443

0.0 0.5 1.0 1.5 2.0
3 GHz radio FWHM [arcsec]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
R
e
st
-f
ra
m
e
 U
V
 F
W
H
M
 [
a
rc
se
c]

Toft+ 2014
Line of equality
ACS I-band

Fig. 10. Rest-frame UV size (FWHM, which was assumed to be
two times the half-light radius) plotted against the 3 GHz major axis
FWHM. The UV sizes were derived from the morphology catalogues
(see text for details) except those indicated by red data points, which
were derived by Toft et al. (2014). The downwards pointing triangles
indicate upper limits to the UV sizes, while the left-pointing triangles
indicate the upper radio size limits. The red dashed line is the one-to-
one relationship.
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This work: 3 GHz
Hodge+ 2016 & Simpson+ 2016: 0.87 mm

Fig. 11. Linear major axis FWHM sizes [kpc] of our SMGs at 3 GHz
plotted as a function of redshift (black points). The upper size limits are
indicated by downwards pointing arrows. Those AzTEC SMGs from
M15 that are common with the present sample are highlighted by red
star symbols. The cyan filled circles represent the mean values of the
binned version of the data (each bin contains 19 SMGs, except the high-
est redshift bin that contains 20 sources). For the sake of clarity, individ-
ual error bars are not shown for our data, but a representative (median)
error bar is shown in the top left corner. Also shown are the 870 µm
sizes from Hodge et al. (2016) and Simpson et al. (2016) discussed
in Sect. 4.2.2; the green filled circles represent the binned averages of
their combined data sets. The horizontal black and green dashed lines
show the corresponding full sample median major axis FWHM values
of 4.6 kpc and 2.9 kpc, respectively.

4.4. Does the radio-emitting size depend on the galaxy
morphology ?

In this subsection, we explore the 3 GHz radio size dependence
on the galaxy morphology as seen in the rest-frame UV. As de-
scribed in Sect. 4.2.4, the COSMOS field benefits from multi-
ple publicly available morphological catalogues. Here, we make
use of three of them, each of which provides a morphological
classification into different types of galaxies (rather than just
morphology-related parameters). These are the Cassata, Tasca,
and Zürich catalogues. The morphological classification of the
sources found in these catalogues (1′′ search radius; Sect. 4.2.4)
is summarised in Table 4.

To assess a morphological type for each of our sources, we
used a ladder approach; for example, if the source is classified as
a disk in each of the three catalogues, we classified the source as
a disk (e.g. AzTEC/C19), and if two out of the three catalogues
gives the same morphology, this most common class is adopted
as the source morphology (e.g. AzTEC/C36 is classified as an
irregular in both the Cassata and Tasca catalogues but as a disk
in the Zürich catalogue), and so on. This approach had the ad-
vantage of increasing the number of galaxies for which a mor-
phological classifcation is available (30 in total). However, the
sources AzTEC/C12, 47, 56, 101b, and 105 could not be clas-
sified this way owing to the number of different classifications
(e.g. C12 was classified as an irregular galaxy in the Cassata cat-
alogue, and as a disk in the Tasca catalogue, while the source was
not found in the Zürich catalogue). Hence, we performed visual
inspection of these galaxies on the Hubble/ACS I-band images
to try to determine their morphological types (see Fig. 12). In
the case of C12, C101b, and C105, the angular offset between
the SMG position and the I-band source, and the fairly irregular
shape of the latter one, led us to classify these sources as irreg-
ular galaxies. AzTEC/C47 shows two components in the I-band
image separated by 0′′.5 in projection, which might indicate an
interacting galaxy pair, and hence we classified it as an irregu-
lar as well. In general, if an SMG is a merger system, its op-
tical appearance can be expected to be asymmetric or clumpy,
in which case the source is likely to be classified as an irreg-
ular (cf. Conselice 2003). Finally, a visual inspection of the I-
band image of C56 suggests that this source could be a compact
disk (the Cassata classification), rather than an early-type galaxy
(ETG) as classified in the Tasca catalogue.

Out of the aforementioned 30 sources, three (C51b, C97a,
and C126) were not detected at 3 GHz, and hence these sources
were left out from the physical radio size comparison. Among
the remaining 27 sources, we classified 14 sources as disks
(52%), 11 as irregulars (41%), and two as ETGs (7%). The
3 GHz radio size distributions of these sources are shown in
the top panel in Fig. 13, and the same information as a func-
tion of redshift is depicted in the bottom panel. The first two
classes have survival analysis-based median (mean) radio sizes
of 4.9± 0.9 kpc (5.8± 0.7 kpc) and 4.8± 0.9 kpc (5.7± 0.7 kpc),
while no median size could be computed for the two ETGs (the
other ETG is unresolved). However, the radio sizes of these two
ETGs are similar to those of most of the disks and irregulars.
Hence, we found no evidence for a statistically significant differ-
ence in the radio size between different galaxy morphologies, or
any redshift trend among different morphological types, but our
analysis can be subject to small number statistics. Another caveat
in this analysis is that besides the aforementioned five sources,
AzTEC/C12, C47, C56, C101b, and C105, there are seven addi-
tional sources whose true morphology is uncertain as described
below.
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C12 C22a C47 C52 C56 C65

C66 C67 C90c C101b C105 C127

Fig. 12. Hubble/ACS I-band images of the 3 GHz detected SMGs whose morphological classification in the rest-frame UV is uncertain as discussed
in Sect. 4.4. The greyscale is inverted, and displayed using a power-law stretch to better show the low and high surface brightness features. The
black contours show the 3 GHz radio emission as in Fig. A.1. Each image is centred on the ALMA 1.3 mm peak position, is 2′′ × 2′′ in size, and
displayed with north up and east left. The red plus signs mark the positions of the optical-NIR counterparts for which the photometric redshifts
were derived by Brisbin et al. (2017), except towards C66 where the plus sign marks the ALMA position from which the optical-NIR photometry
was manually extracted owing to blending issues.

While C22a is classified as a disk in all three catalogues we
employed, the ACS I-band emission appears clumpy, is offset
from the 3 GHz emission maximum by 0′′.34 to the south-east
(the brightest I-band peak), and the SMG system is likely driven
by a galaxy merger (Sect. 4.5.4). Hence, the source could be
deemed irregular. The source AzTEC/C52 was taken to be a
disk following the Tasca and Zürich catalogues, but the ACS I-
band image shown in Fig. 12 shows multiple low-surface bright-
ness features, which explains why the source was classified as
irregular in the Cassata catalogue. Hence, this SMG could be
a clumpy disk or an irregular galaxy, and possibly associated
with a merger. The 3 GHz emission extended towards north-west
could be an indication of galaxy interaction (Sect. 4.5.4). We
also took AzTEC/C65 to be disk-like, but the ACS I-band image
shows two bright sources with the 3 GHz emission peaking in
between them. Hence, this source could also be a merger system,
and the irregular morphology from the Cassata catalogue might
be more appropriate. The source AzTEC/C66 shows only faint
ACS I-band emission, and hence it is difficult to say whether the
source is irregular (Cassata) or disk-like (Tasca and Zürich). The
source AzTEC/C67 is also classified as a disk in all three cata-
logues, but the I-band image shows the presence of two sources
offset from the radio peak, and hence it could actually be an ir-
regular. The I-band source seen towards AzTEC/C90c lies 0′′.78
to the south-east of the radio peak, and this large offset makes it
unclear whether the observed-frame optical source is physically
associated with the SMG. Similarly, the I-band source seen to-
wards C101b lies 1′′.02 (0′′.75) to the north-west of the 3 GHz
(ALMA) peak position, and hence the physical association is un-
certain, but this I-band source is coincident with the optical-NIR
counterpart from Brisbin et al. (2017). Finally, AzTEC/C127 is
classified as a disk in both the Cassata and Tasca catalogues (not
found in the Zürich one), but the I-band image reveals the pres-
ence of two sources, and the source could actually be an irreg-
ular merger system. Hence, besides the small number statistics
mentioned above, we conclude that the radio size comparison
between different source morphologies presented in this section
can also be affected by misclassified morphologies on an in-
dividual basis. For instance, a clumpy disk can be difficult to
distinguish from an ongoing merger if only continuum imaging
observations are available (Immeli et al. 2004), and spectral line

observations would be required to probe the gas kinematics and
dynamics.

4.5. Why does the radio emission from submillimetre
galaxies appear to be more spatially extended than the
dust-emitting region ?

4.5.1. The importance of cosmic-ray electron diffusion

As already discussed in M15, the diffusion of CR electrons in
the galactic magnetic field, which was suggested by S15 to lead
to a more spatially extended radio emission than the rest-frame
FIR emission, appears unlikely to be an important process in
SMGs. In Appendix D, we derive the CR electron cooling time
and diffusion length scale in five of our SMGs that benefit from
both sub-arcsecond resolution submm interferometric imaging
and the physical parameters needed in the analysis. Most no-
tably, a typical diffusion length is found to be only of the order
of ten parsecs (mean ∼ 11 pc and median ∼ 9 pc), which is not
sufficient by orders of magnitude to explain the discrepancy be-
tween the radio and dust-emitting sizes.

Considering the nominal values of the median sizes of the
dust-emitting regions from Ikarashi et al. (2015), Hodge et
al. (2016), and Simpson et al. (2016), that is, 1.4 ± 0.3 kpc,
3.1 ± 0.3 kpc, and 2.7 ± 0.4 kpc, respectively, a (projected) dif-
fusion length of ∼ 0.75 − 1.6 kpc from the outskirts of the dust-
emitting region would be required to explain the median 3 GHz
radio size we derived (4.6 ± 0.4 kpc). A more quantitative com-
parison could be performed for our sources AzTEC/C4, C5, C17,
and C42, where the radio emission appears more extended than
the dust emission, and where the required CR electron diffusion
lengths are 3.4 kpc, 1.0 kpc, 1.2 kpc, and 2.3 kpc, respectively,
but the estimated diffusion length scales are 243, 111, 150, and
329 times shorter (Appendix D, and Table D.1 therein). Hence,
the extended radio-emitting sizes of SMGs appear to necessitate
some other physical mechanism(s) than the diffusion of CR elec-
trons. Yet, the higher the CR electron energy is, the more rapid
will be its energy loss due to synchrotron radiation and inverse
Compton cooling (τ ∝ E−1

e for both processes). Put differently,
lower energy electrons can emit non-thermal radio emission for
a longer period, and travel further away from their injection sites
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Table 4. Morphological classification of a subset of 30 target SMGs.

ID CCa TCb ZSMCc Morphologyd

C9b disk disk . . . disk

C12 Irr disk . . . Irre

C18 Irr . . . . . . Irr

C19 disk disk disk disk

C22a disk disk disk disk

C23 disk disk . . . disk

C25 . . . Irr . . . Irr

C28a disk disk . . . disk

C36 Irr Irr disk Irr

C44b ETG ETG xf ETG

C45 disk Irr disk disk

C47 Irr disk . . . Irre

C48a disk disk . . . disk

C51bg Irr disk disk disk

C52 Irr disk disk disk

C56 disk ETG . . . diske

C59 Irr Irr disk Irr

C65 Irr disk disk disk

C66 Irr disk disk disk

C67 disk disk disk disk

C84b Irr disk Irr Irr

C86 ETG ETG xf ETG

C90c . . . disk . . . disk

C97ag Irr Irr disk Irr

C101b Irr disk . . . Irre

C105 Irr disk . . . Irre

C112 Irr Irr . . . Irr

C122a Irr Irr disk Irr

C126g Irr Irr . . . Irr

C127 disk disk . . . disk

Notes. In the Cassata and Tasca catalogues the term spiral is used in-
stead of disk, the term used in the Zürich catalogue; we adopt the term
disk. The term Irr refers to an irregular galaxy, while ETG stands for an
early-type galaxy. An ellipsis means that the source was not found in the
catalogue (within a search radius of 1′′).(a) Cassata’s morphological cat-
alogue (Cassata et al. 2007). (b) Tasca’s morphological catalogue v1.0
(Tasca et al. 2009). This catalogue provides three different morpholog-
ical classifications, but following the Tasca et al. preference, we em-
ployed the class named class−int. (c) Zürich structure & morphology cat-
alogue v1.0 (Scarlata et al. 2007; Sargent et al. 2007). (d) The adopted
morphological classification. (e) See text for details on how the mor-
phology was chosen among the different classifications. (f) The source
was found in the Zürich catalogue, but no morphological classification
was given. (g) The source was not detected at 3 GHz.

(e.g. Clemens et al. 2010). Another complicating factor is that,
besides diffusion, relativistic electrons in highly star-forming
galaxies such as SMGs can be transported out of the galactic
disk into the halo by advection in the large-scale galactic winds
(e.g. Zirakashvili & Völk 2006; Yoast-Hull et al. 2013). Shocks
associated with galactic outflows or superwinds can also (re-
)accelerate CRs, in which case radio synchrotron emission can
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Fig. 13. Top: Radio size (physical major axis FWHM at νobs = 3 GHz)
distributions of our SMGs that are classified as disks (red histogram),
irregular galaxies (green histogram), or early-type galaxies (blue his-
togram). The bin size is 1.0 kpc, and the upper size limits were placed
in the bins corresponding to those values. The vertical dashed lines mark
the median values of 4.9 ± 0.9 kpc for disks, and 4.8 ± 0.9 kpc for ir-
regulars; survival analysis was used to take the upper size limits into
account when calculating the median sizes. Bottom: Same as above but
as a function of redshift. The upper size limits are indicated by down-
wards pointing arrows, and the horizontal dashed lines show the afore-
mentioned median sizes.

be detected further away from the central parts of the galaxy (e.g.
Varenius et al. 2016).

4.5.2. Bias caused by a radial dust temperature gradient

As a working hypothesis, an SMG can be thought to be com-
posed of a warm, central starburst region superposed on a colder,
more extended disk. Such a configuration would exhibit a ra-
dial, negative dust temperature gradient (Tdust decreasing inside-
out). In principle, a Tdust gradient could cause the rest-frame
FIR size measurements of SMGs to be biased towards the warm
central region, and hence yield the compact sizes found in
the ALMA studies (Ikarashi et al. 2015; S15; Hodge et al. 2016;
Simpson et al. 2016).

To test the aforementioned scenario, in Appendix E we inves-
tigate the dust temperature gradient in AzTEC/C5, which is the
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best-studied SMG in our sample. Under the premise that β = 1.5
across the galaxy, we find that the angular Tdust profile derived
using circular annuli can be well fitted by a Plummer-like func-
tion (Plummer 1911) of the form

Tdust(r) =
24.3 K

1 +
(

r
0′′.436

)2.378
. (3)

A fundamental minimum value to the dust temperature at all
redshifts is set by the CMB radiation (e.g. da Cunha et al. 2013).
The CMB temperature at the redshift of AzTEC/C5 is TCMB(z =
4.3415) ≃ 14.6 K. Equation (3) suggests that the temperature
of the cold dust component drops to the CMB temperature level
at r = 0′′.367, which corresponds to 2.46 kpc. This is compa-
rable to the radius of the radio-emitting region (half the ma-
jor axis FWHM), namely 0′′.335 or 2.25 kpc. Undoubtedly, the
monochromatic (λobs = 870 µm) analysis of the intrinsic dust
emission and transmitted CMB presented in Appendix E, com-
bined with the assumptions of uniform dust optical thickness,
emissivity, and opacity (i.e. no radial dependence), is too sim-
plistic to yield truly physical Tdust values. The formal Tdust values
derived through panchromatic SED fits are typically dominated
by the warm dust component, which is related to the peak of the
SED. In contrast, the observed-frame (sub-)mm flux densities
are dominated by the colder, less optically thick dust component
(out to z . 4), which does not contribute much to the peak of
the source SED. Nevertheless, if the radial dust temperature pro-
file follows Eq. (3), that is the temperature drops from ∼ 24 K
in the nuclear region to a value comparable to the CMB tem-
perature at a radius of about 2.5 kpc, then the effective Tdust(r)
gradient would be ∼ 4 K kpc−1. Because the CMB temperature
appears to be reached within the so-called flat inner region (i.e.
r = 0′′.367 < r0 = 0′′.436 in Eq. (3)), our Tdust(r) analysis sug-
gests that the rest-frame FIR-emitting region is likely to be phys-
ically compact, rather than an observational bias caused by a
temperature gradient. However, high-resolution rest-frame FIR
or submm continuum imaging at least at one additional wave-
length would be required to construct a spatially resolved Tdust
map, and explore the temperature gradient in more detail (e.g.
Shetty et al. 2009).

There is at least one important supporting argument against
Tdust gradient being the cause for compact dust-emitting sizes
of SMGs: if the outskirts of an SMG, which are emitting in ra-
dio but not strongly in the rest-frame FIR, are characterised by
very cold dust and gas (as compared to TCMB(z) at the source
redshift), one would not expect those parts to exhibit emission
from relatively high-excitation CO transitions (e.g. J = 7 − 6
with Eup/kB = 154.87 K), unless the rotational levels are signifi-
cantly sub-thermally populated. This is in contradiction with the
observation that the median CO-emitting size from Tacconi et al.
(2006) is comparable to our median radio size. Hence, the radio-
emitting parts outside the central (starburst) region are expected
to have fairly high gas temperatures, and hence also warm dust if
the collisional gas-dust coupling is strong enough. On the other
hand, the very extended CO(1− 0) emission sizes of SMGs (e.g.
Riechers et al. 2011a,b) reveal the presence of spatially more ex-
tended, colder ISM reservoirs in the outermost parts.

Considering the dust temperature, it is noteworthy that the
compact FIR-emitting sizes of SMGs found in the ALMA stud-
ies discussed in Sect. 4.2.2 are fully consistent with the LIR−Tdust
relationship seen among dusty starbursts, which from a theoret-
ical point of view suggests a maximum radius of only ∼ 2 kpc
for the starburst region (Yan & Ma 2016). To give an illustra-
tive example, we can use the Stefan-Boltzmann law to connect

the IR luminosities and luminosity-weighted dust temperatures
of AzTEC/C5 and C17 (LIR = (1.4+0.1

−0.0) × 1013 L⊙ and Tdust =

42.8+2.0
−2.1 K, and LIR = (7.8+2.4

−2.2) × 1012 L⊙ and Tdust = 38.1+9.9
−3.7 K,

respectively; O. Miettinen et al., in prep.; Appendix D herein) to
their size (radius R) given by

R =

√

LIR

4πσSBT 4
dust

, (4)

where σSB is the Stefan-Boltzmann constant (very similar to the
generalised modified blackbody (β = 1.5) equivalent; see Eq. (5)
in Yan & Ma 2016). For AzTEC/C5, we obtain R ≃ 1.5+0.3

−0.1 kpc,
and for AzTEC/C17, R ≃ 1.4 ± 0.6 kpc. The radius of the
dust-emitting region based on this simple analysis of a spher-
ical blackbody agrees within the uncertainties with the obser-
vationally determined rest-frame FIR size (RFIR = 1.3 kpc
for C5 and RFIR = 1.2 kpc for C17; Appendix D); see also
Hodge et al. 2016. For comparison, the radius (half the major
axis FWHM) of the radio-emitting region of AzTEC/C5 is about
2.3 kpc, and 2.4 kpc for C17. The cases of AzTEC/C5 and C17
demonstrate how the LIR − Tdust relationship of starbursts is inti-
mately linked to their FIR-emitting sizes.

4.5.3. Metallicity gradient bias

In principle, another factor behind the dust emission gradient
(and dust-radio size discrepancy) could be a large radial metal-
licity gradient in the galactic disk. This is based on the posi-
tive correlation between the dust-to-gas mass ratio and the gas-
phase metallicity (e.g. Franco & Cox 1986; Draine et al. 2007).
A metallicity gradient can arise from a differential chemical en-
richment of the ISM through SNe, stellar winds, and planetary
nebulae, and hence is related to the star formation history of the
galaxy. On top of this, the dynamical processes, such as gas infall
or accretion from the (pristine) circumgalactic and intergalac-
tic medium, outflow activity (e.g. metal-enriched superwind),
galaxy interactions, and gas stripping can contribute to the metal-
licity gradient of a galaxy. The other way round, if the dust-to-
gas ratio is constant across the galaxy, then the dust distribution
would be expected to follow that of the gas, which is in tension
with observations.

A strong radial metallicity gradient in SMGs might be dis-
favoured by their large CO(1 − 0)-emitting sizes (see Sect. 1,
and references therein). This is because in the case of a
strong metallicity gradient, one would expect a steep ra-
dial gradient in the CO-to-H2 conversion factor as well (the
conversion factor increases with decreasing metallicity; e.g.
Narayanan et al. 2012; see Bolatto et al. 2013 for a review).
However, one potential observational support for SMGs hav-
ing a radial metallicity gradient is that local and low to
intermediate-redshift (z . 1) elliptical galaxies are found
to exhibit colour gradients, which can be attributed to stel-
lar metallicity gradients (the metallicity being higher in the
central parts; e.g. Franx & Illingworth 1990; Peletier et al. 1990;
Tamura et al. 2000). If SMGs are indeed the early precursors of
the present-day gas-poor ellipticals (e.g. Swinbank et al. 2006;
Fu et al. 2013; Toft et al. 2014; Simpson et al. 2014), then the
observed colour gradients in ellipticals could be (in part) an im-
print of a metallicity gradient in the early SMG stage of this
evolutionary pathway. A potential caveat is that if SMGs tend
to show gravitational disk instabilities, which could also trigger
their high observed SFRs (e.g. Dekel et al. 2009), the associated
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turbulent radial metal mixing can flatten or smooth out the metal-
licity gradient in the disk (e.g. Ceverino et al. 2016). Galaxy in-
teractions can also redistribute the gas component in such a way
that the metallicity gradient becomes flattened. Moreover, if the
present-day ellipticals were formed through minor mergers from
z ∼ 2 compact, quiescent galaxies, which themselves might be
the descendants of z & 3 SMGs (Toft et al. 2014), then the differ-
ence in stellar metallicities in nearby ellipticals could just be the
result of an inside-out size growth through accretion of differ-
ent stellar populations via minor mergers (Bezanson et al. 2009;
Forbes et al. 2011).

In the case of a negative metallicity gradient, the opacity of
the dust grains is expected to be lower in the outer parts of the
galactic disk (e.g. Bate 2014, and references therein). Hence, the
reprocessing of the UV-optical radiation from high-mass stars
into the IR regime would be less efficient than in the inner parts
which, in concordance with observations, which would cause the
FIR-emitting region to be confined in the central area.

High-resolution imaging of forbidden nebular line emission
(e.g. [O ii], [O iii], and [N ii]) from SMGs would be helpful to
quantitatively investigate the spatial distribution of the gas-phase
metallicity, and to compare it with the dust emission size scale.
Although very difficult in practice (e.g. Troncoso et al. 2014),
the future metallicity measurements with the James Webb Space
Telescope (JWST; see Gardner et al. 2006 for a review)4 will be
very useful for these types of studies.

4.5.4. The role of interacting galaxy pairs: Is a typical
submillimetre galaxy a Taffy-like system ?

In M15, we discussed a scenario where the spatially extended
radio emission from SMGs might be the result of a dynam-
ical interaction between two disk galaxies. Such a process
has the potential to drag out the magnetic fields and CRs
from the interacting, and ultimately interpenetrating disks (e.g.
Condon et al. 1993; Murphy 2013). As a result, and as has been
observed in the Taffy systems UGC 12914/5 and UGC 813/6
(Condon et al. 1993, 2002), a synchrotron-emitting bridge can
be formed between the two galaxies. Because this non-thermal
radio emission is not linked to SNe (and hence to high-mass star
formation), but rather is produced via the shock acceleration of
CR electrons in the supersonic galaxy collision, its spatial scale
is naturally different (larger) than that of active star formation
which is bright in the rest-frame FIR continuum.

Interestingly, Braine et al. (2003) and Zhu et al. (2007) found
that the bridge region in the after-head-on-collision Taffy sys-
tem UGC 12914/5 is very rich in molecular gas through their
CO line observations (though the bridge gas is predominantly
atomic). The origin of this dense gas might be in the disks of the
colliding galaxies, from which the giant molecular clouds were
being pulled out during the interaction (Zhu et al. 2007). At least
qualitatively, this is consistent with our median radio size to be
comparable to the median mid-J CO-emitting size from Tacconi
et al. (2006).

Among our target SMGs, AzTEC/C22 and AzTEC/C42 are
good candidates for Taffy-like systems, as illustrated in Fig. 14.
The ALMA 1.3 mm image of AzTEC/C22 shows the presence
of two dust-emitting bodies separated by 13.8 kpc in projection,
both associated with 3 GHz radio emission with a radio-emitting
bridge connecting them. The SMG AzTEC/C42 is unresolved
in our ALMA 1.3 mm image, but was resolved into two compo-
nents with ALMA at about three times higher resolution at λobs =

4 http://www.jwst.nasa.gov .

994 µm (Cycle 1 ALMA project 2012.1.00978.S; PI: A. Karim).
The detected 3 GHz radio emission encompasses both the dust-
emitting components, which are separated by 5.3 kpc. A well-
separated binary nature of AzTEC/C22 and C42 suggests an in-
complete, or an early-stage SMG-SMG merger, and part of the
radio emission from these systems is likely to arise from a mag-
netised medium between them.

Iono et al. (2016) found that AzTEC/C4 is resolved into
two components at 0′′.064 × 0′′.057 resolution with ALMA at
λobs = 860 µm, which indicates a mid-stage major merger with
a projected separation of ∼ 1.5 kpc. At still higher resolutions
of 0′′.017 × 0′′.014 and 0′′.026 × 0′′.018, the authors found that
AzTEC/C2a and C5 both exhibit a double nucleus structure with
a separation of ∼ 200 pc and ∼ 150 pc between the nuclei,
respectively. This suggests that the latter two SMGs are ob-
served near the final stages of merging. For AzTEC/C2a, C4,
and C5, we found that the radio-emitting size is 0.7+0.6

−0.4, 2.9+2.3
−1.2,

and 1.7+0.5
−0.5 times the rest-frame FIR-emitting size (Appendix D),

which might reflect the different merger stages.
For his sample of 31 local starbursts with LIR ∼ 1.6 × 1011 −

3.7 × 1012 L⊙, Murphy (2013) found that the sources classified
as ongoing mergers or post-merger systems exhibit spectral in-
dex flattening at ν < 10 GHz as a result of high free-free opti-
cal thickness. Among the aforementioned systems, we derived
a flat rest-frame spectral index of α7.8 GHz

3.6 GHz = −0.37 ± 0.27 for
AzTEC/C22a (the northern component), and a fairly flat value
of α13.9 GHz

6.5 GHz = −0.50± 0.24 for AzTEC/C42. For AzTEC/C4, we
derived a lower limit of α18.9 GHz

8.8 GHz > −0.91. For AzTEC/C2a and
C5, where Iono et al. (2016) found two closely separated nuclei,
we found no evidence of spectral index flattening (α12.5 GHz

5.9 GHz =

−0.95± 0.32 and α16.0 GHz
7.5 GHz = −0.69± 0.61, respectively). Hence,

our candidate Taffy systems, AzTEC/C22 and C42, could po-
tentially be high-redshift manifestations of the trend found by
Murphy (2013). However, Murphy (2013) also found that those
starbursts that exhibit the steepest spectral indices at high fre-
quencies (defined as ν > 4 GHz; ∼ 12 GHz on average) are
found among the ongoing-merger systems in which the two com-
ponents are separable and they either share a common radio-
continuum envelope or display strong stellar tidal features (or
both), that is in Taffy-like systems.

Owing to the excess radio emission from a synchrotron
bridge, a dynamically interacting galaxy pair is expected to show
a lowered IR-to-radio luminosity ratio with respect to the IR-
radio correlation of star-forming galaxies (e.g. Murphy 2013;
Donevski & Prodanović 2015). This is possibly exemplified
by AzTEC/C22a and C42 for which the total-IR-radio cor-
relation parameters are qTIR = 2.19 ± 0.19 and qTIR =

2.49±0.09, respectively (revised from Miettinen et al. 2017 (see
Eqs. (1) and (2) therein) owing to the updated redshift for C42
(Brisbin et al. 2017) and improved LIR and S 325 MHz estimates
for both sources from O. Miettinen et al., in prep.). Although
these values are only 1.21 ± 0.10 and 1.06 ± 0.04 times lower
than the local universe median value of qTIR = 2.64 (Bell 2003;
Sargent et al. 2010), this could be an indication of a weak excess
radio emission not related to star formation and SN activity. For
AzTEC/C2a, C4, and C5, which show a mismatch between the
radio and rest-frame FIR-emitting sizes (see above), the qTIR val-
ues revised from Miettinen et al. (2017) are 2.37 ± 0.07, < 2.32,
and 2.24±0.13, respectively. These lower than local qTIR param-
eters could also be potential indications of radio excess emission
caused by process(es) not linked to the evolution of high-mass
stars (there is also no evidence for a buried AGN in these SMGs).
Curiously, the highest qTIR source among these three sources is
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AzTEC/C2a, which appears to have a smaller radio size com-
pared to its dust-emitting region, but this is not a significant out-
lier owing to the measurement uncertainties.

Because the aforementioned low-qTIR SMGs lie at high red-
shifts (C2a at zspec = 3.179, C4 at z = 5.30+0.70

−1.10, C5 at zspec =

4.3415, C22a at zspec = 1.599, and C42 at zphot = 3.63+0.37
−0.56),

their low qTIR values might reflect a possible decreasing evo-
lution of qTIR as a function of redshift (e.g. Ivison et al. 2010;
Magnelli et al. 2015; Delhaize et al. 2017). If the evolution has a
functional form of qTIR(z) = (2.88±0.03)×(1+z)−0.19±0.01 derived
for star-forming galaxies in COSMOS (Delhaize et al. 2017), the
expected values at the nominal redshifts of AzTEC/C2a, C4, C5,
C22a, and C42 would be qTIR = 2.19+0.06

−0.05, qTIR = 2.03+0.06
−0.06,

qTIR = 2.09+0.06
−0.05, qTIR = 2.40+0.05

−0.05, and qTIR = 2.15+0.06
−0.05.

The observed qTIR values for these SMGs are mostly in fairly
good agreement with the aforementioned redshift evolution
(qobs

TIR/q
predicted
TIR = 1.08+0.06

−0.06 for C2a, < 1.18 for C4, 1.07+0.09
−0.09 for

C5, 0.91+0.10
−0.09 for C22a, and 1.16+0.07

−0.07 for C42). If the observed
redshift dependence of qTIR is physical, one possible physical
explanation for this is an excess radio emission arising from a
process(es) not linked to star formation; it is tempting to asso-
ciate a decreasing qTIR(z) trend with an enhanced galaxy inter-
action rate, and hence a higher synchrotron radio bridge occur-
rence at higher redshifts. The finding that most of our qTIR val-
ues appear to be slightly higher than predicted by the Delhaize
et al. (2017) relationship could simply reflect the fact that SMGs
are very bright IR emitters (i.e. they exhibit an IR excess emis-
sion), but also a relative radio deficit is possible if the magnetic
field strength is enhanced as a result of galaxy interaction (as
opposed to a radio excess emission from the bridge in Taffy-like
systems), which would cause the CR electrons to cool faster via
synchrotron emission (see Appendix D.2).

Similarly, one might think of a scenario where galaxy in-
teractions lead to expanded radio-emitting regions of SMGs,
and hence erase the potential radio size evolution over cos-
mic time, yielding an apparent flat trend between the aver-
age radio size and redshift we see in Fig. 11. However, it
is unclear whether the merger rate among our SMGs is high
enough to account for the required radio size growth of the high
redshift sources. Considering the merger systems discussed in
this section, the number of irregular sources tabulated in Ta-
ble 4, and the occurrence of disturbed or clumpy morphologies
based on visual inspection of multiwavelength images of our
target SMGs (see Brisbin et al. 2017), we obtain a rough esti-
mate of the merger percentage among our 152 target SMGs of
∼ 25% ± 4%. The latter percentage is likely a lower limit be-
cause it is based on morphological information only, while kine-
matic analysis could reveal a larger number of potential mergers
(e.g. Engel et al. 2010). We note that the percentage of starbursts
among our target SMGs is ∼ 40% (defined as sources, which lie
above the main sequence by a factor of > 3; O. Miettinen et al.,
in prep.), and if starbursts tend to be driven by mergers, we might
expect the merger percentage to be closer to 40%. Nevertheless,
even if the merger occurrence among our SMGs were relatively
high, it is unlikely that every merger event or stage would be as-
sociated with an increased radio-emitting size. In fact, the 3 GHz
radio size of our starburst SMGs (be they mergers or not) appears
to be somewhat smaller on average than the radio-emitting re-
gion of the main-sequence SMGs (O. Miettinen et al., in prep.).
Hence, it remains to be established what is the possible physical
reason(s) behind the non-evolution of the average radio size of
our SMGs shown in Fig. 11.

To conclude, our present results point towards the possibil-
ity that some of the extended radio-emitting sizes of SMGs are
the result of galaxy interactions that can also eventually lead
to a merger. This conforms to the observed high rates of dust-
enshrouded star formation in our SMGs (Miettinen et al. 2017;
O. Miettinen et al., in prep.), which can be powered by such grav-
itational interactions. Although Taffy-type systems are rare in the
local universe, collisions between gas-rich galaxies are believed
to be much more frequent at high redshifts (where the gas frac-
tion is higher and intergalaxy distances are shorter), and hence
the appearance of Taffies is expected to be more common among
high-redshift star-forming galaxies (Gao et al. 2003). That we
found no dependence of the radio-emitting size on the source
flux density (Fig. 4) might, however, be at odds with the afore-
mentioned galaxy interaction scenario if brighter SMGs are
more strongly clustered than their fainter counterparts (e.g.
Williams et al. 2011; Shimizu et al. 2012). Hence, sources like
AzTEC/C22 and C42 could also be unique SMG systems. The
galaxy environments of our ALMA SMGs, including the possi-
ble trends with source brightness, will be investigated in a dedi-
cated forthcoming paper.

1" = 8.47 kpc

b

a

AzTEC/C22

1" = 7.22 kpc

AzTEC/C42

Fig. 14. Left: ALMA 1.3 mm image of AzTEC/C22, overlaid with
contours of 3 GHz radio emission. The ALMA image has an angu-
lar resolution of 1′′.58 × 0′′.93 (FWHM). Right: ALMA 994 µm image
of AzTEC/C42, overlaid with contours of 3 GHz radio emission. The
ALMA image has an angular resolution of 0′′.52 × 0′′.30 (FWHM). In
both panels, the contours start at 3σ, and are incremented in 2σ steps.
A scale bar of 1′′ projected length is shown in both panels.

5. Summary and conclusions

We explored the νobs = 3 GHz radio-emitting sizes of a large,
flux density-limited sample of SMGs in the COSMOS field. The
target SMGs were originally uncovered in a 1.1 mm continuum
survey carried out with the AzTEC bolometer, and followed up
with ALMA continuum imaging at λobs = 1.3 mm. Our main
results are summarised as follows:

1. The radio detection rate is high: out of the 152 SMGs de-
tected with ALMA at a S/N1.3 mm ratio of ≥ 5, 115 (∼ 76%)
were found to have a ≥ 4.2σ radio counterpart at 3 GHz. The
redshift distribution of the 3 GHz detected SMGs appears to
be fairly similar to that of 3 GHz non-detections.

2. In angular units, the median major axis (deconvolved
FWHM) of the radio-emitting size was found to be 0′′.59 ±
0′′.05, while that of the linear major axis FWHM was derived
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to be 4.6 ± 0.4 kpc. The linear radio sizes appear to roughly
follow a log-normal distribution. On average, the radio size
shows no statistically significant evolutionary trend with red-
shift or galaxy morphology.

3. The median radio spectral index between the observed-frame
1.4 GHz and 3 GHz was found to be α3 GHz

1.4 GHz = −0.67,
which is consistent with optically thin non-thermal syn-
chrotron emission. The full sample median 3 GHz bright-
ness temperature was found to be only 12.6 ± 2 K, which
shows that the observed radio emission is predominantly
powered by star formation and supernova activity. How-
ever, three of our SMGs that have been detected with the
VLBA at 1.4 GHz (AzTEC/C24b, 61, and 77a) exhibit el-
evated brightness temperatures. Most notably, AzTEC/C61
has TB(3 GHz) > 104.03 K, which is an indication of the pres-
ence of a compact AGN core in this X-ray detected SMG.

4. The median radio size we have derived is ∼ 1.5 − 3 times
larger than the typical rest-frame FIR dust-emitting regions
of SMGs found in high-resolution ALMA studies. On the
other hand, a typical radio-emitting region of an SMG ap-
pears to extend over similar physical scales as the molecular
gas component giving rise to mid-J (J = 3 − 2, 7 − 6) CO
rotational line emission. The observed spatial scale of stellar
emission from SMGs shows a broad range of values, either
larger or smaller than the radio-emitting region, which can be
attributed to pre-existing stellar populations and differential
dust obscuration.

5. The diffusion of cosmic-ray electrons in an SMG-type,
strongly star-forming galaxy appears to be unable to explain
the observed extended radio sizes as compared with the com-
pact, dusty star-forming nuclear portions. Our case study
of AzTEC/C5 suggests that the mean radial dust tempera-
ture profile can be fitted by a Plummer-like function with
Tdust(r) ∝ r−2.38, but the importance of Tdust(r) gradient in
AzTEC/C5 as being the root physical cause of the compact
FIR-emitting size seems unlikely on the basis of its SED
properties (LIR and Tdust), although this remains inconclusive
owing to the simplistic monochromatic analysis allowed by
the currently available data. Instead, our results bolster a sce-
nario where SMG starbursts are triggered by galaxy interac-
tions and mergers, because a supersonic galaxy-galaxy colli-
sion can create an extended, synchrotron-emitting bridge be-
tween the interacting pair. As the radio emission from such
a dynamically interacting system is not solely arising from
processes related to star formation, a deviation (radio excess)
from the well-established IR-radio correlation can be under-
stood, while simultaneously providing an explanation for the
spatially extended radio emission with respect to that of the
active star formation.
Our ALMA Cycle 4 observations of 870 µm emission to-
wards a significant subsample of the present target SMGs
will allow us to make the dust and radio size comparison in
a source-by-source fashion, and to reach better statistics and
understanding of the occurrence of extended radio emission
associated with compact dust-emitting SMGs.
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Appendix A: 3 GHz maps

The VLA 3 GHz contour maps of our 3 GHz detected SMGs are
shown in Fig. A.1.

Appendix B: Notes on additional 3 GHz sources

seen near the ALMA detected submillimetre

galaxies

The following 12 3 GHz detected SMGs have an additional
3 GHz source (≥ 3σ) within the area shown in Fig. A.1:
AzTEC/C1a, C2a, C3a, C17, C56, C62, C71b, C80a, C92a,
C92b, C101a, and C118. We found a potential or possible coun-
terpart for eight of these sources, and briefly describe them be-
low.

AzTEC/C1a: A counterpart was found from the COS-
MOS2015 catalogue (ID 761831; Laigle et al. 2016), with an an-
gular offset of 0′′.58 to the north-east from the 3 GHz position. It
has a stellar mass of M⋆ = 1.2× 108 M⊙ as reported in the COS-
MOS2015 catalogue, and a very secure spectroscopic redshift of
zspec = 0.17236 derived from a high quality spectrum (quality
flag 4; M. Salvato et al., in prep.). Hence, it is likely to be a fore-
ground galaxy with respect to the zspec = 4.7 SMG AzTEC/C1a.
The very low stellar mass of the foreground galaxy suggests only
a minimal lensing effect on our target SMG.

AzTEC/C2a: As we already discussed in M15, the addi-
tional radio source seen 2′′.67 to the north-east of AzTEC/C2a
(=AzTEC 8) is associated with the X-ray detected galaxy
CXOC J095959.5+023441 (Salvato et al. 2011). This source has
an ID of CID-1787 in the Chandra COSMOS Legacy Survey
(Civano et al. 2016), and its position is indicated by a red cross in
Fig. A.1 (0′′.26 offset from the 3 GHz position). The source was
also detected with the VLBA at 1.4 GHz (S 1.4 GHz = 83.8 µJy;
N. Herrera Ruiz et al., in prep.). The COSMOS2015 catalogue
(Laigle et al. 2016) gives a redshift of zphot = 2.40+0.16

−0.10 for this
source (ID 842595; 0′′.14 offset from the 3 GHz position), and a
CO-based spectroscopic redshift of zspec = 1.950 was derived by
M. S. Yun et al. (in prep.; see Iono et al. 2016). Hence, the source
in question appears to be a foreground galaxy with respect to the
zspec = 3.179 SMG AzTEC/C2a.

AzTEC/C3a: The additional 3 GHz source lies 0′′.24
away from the zphot = 0.45 galaxy COSMOS 2006577
(Capak et al. 2007), and could therefore be associated with
a foreground galaxy if the SMG AzTEC/C3a (=AzTEC 2)
lies at zspec = 1.125; the redshift of AzTEC/C3a is uncer-
tain, and it could lie at a considerably higher redshift (see
Miettinen et al. 2017; E. F. Jiménez Andrade, in prep.). In M15,
we also mentioned the possibility that the radio feature in ques-
tion is related to a jet emanating from the SMG (i.e. a radio lobe).

AzTEC/C17: The COSMOS2015 catalogue contains a source
(ID 841161; Laigle et al. 2016) that lies 0′′.77 north-west from
the additional 3 GHz source, and 1′′.10 south-west from the
SMG’s 3 GHz position. The redshift of this source is zphot =

0.60+0.03
−0.07, and if related to the additional 3 GHz source, it is likely

to be a foreground galaxy with respect to the zspec = 4.542 SMG
AzTEC/C17. The 3 GHz source configuration appears similar to
that seen towards AzTEC/C3a, and a radio jetted SMG could be
another explanation.

AzTEC/C56: The additional 3 GHz feature lies 0′′.47 to
the north-east of the Chandra COSMOS Legacy Survey X-
ray source CID-2518, which has a reported redshift of zphot =

3.45+0.08
−0.10 (Civano et al. 2016; see also Salvato et al. 2011 for the

source CXOC J095905.0+022157), and which we have assumed
to be associated with our SMG (the X-ray source lies 0′′.86 north
of the SMG’s 3 GHz position). Hence, the nature of the addi-
tional 3 GHz feature remains uncertain.

AzTEC/C62: The additional 3 GHz feature lies 0′′.72 north
from the COSMOS2015 catalogue source ID 879292, which has
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C1a C2a C2b C3a C3c C4 C5 C6a C7

C8 C9a C9b C9c C10a C10b C11 C12 C13a

C14 C15 C16a C16b C17 C18 C19 C20 C21

C22a C22b C23 C24a C24b C25 C26 C27 C28a

C29 C30a C31a C32 C33a C33b C35 C36 C37

C38 C39 C40 C41 C42 C43a C43b C44a C44b
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C55b C56 C58 C59 C60a C61 C62 C64 C65

C66 C67 C70 C71b C72 C74a C76 C77a C77b

Fig. A.1. VLA 3 GHz contour maps of our 3 GHz detected SMGs. Each image is centred on the ALMA 1.3 mm peak position, is 5′′ × 5′′ in size,
and displayed with north up and east left. The contour levels start from 3σ, and progress in steps of 2σ except for AzTEC/C61 where the level
step is 15σ. The dashed contours show the negative features at the −3σ level. The blue plus signs and red crosses mark, respectively, the positions
of the optical-NIR and X-ray sources seen towards those 3 GHz sources that are discussed in Appendix B and Sect. 2.1. The black filled circle in
the first panel (AzTEC/C1a) shows the synthesised beam size of 0′′.75 (FWHM). The projected angular offset between the ALMA source position
(i.e. the image centre position) and the 3 GHz peak position is given in column (11) in Table C.1.

a redshift of zphot = 4.42+1.07
−1.34 (Laigle et al. 2016). If these two

sources are physically related, it could be a background galaxy
seen towards the zFIR = 3.36+0.97

−0.97 SMG AzTEC/C62, but the

large redshift uncertainties do not allow any firm conclusions to
be drawn.

AzTEC/C71b: The additional 3 GHz feature lies 1′′.73 (1′′.61)
to the south-east of the 3 GHz (1.3 mm) peak position of
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Fig. A.1. continued.

AzTEC/C71b. Although the additional 3 GHz feature has an an-
gular offset of 0′′.32 from the COSMOS2015 catalogue source
669348 (zphot = 0.85± 0.01; Laigle et al. 2016), the latter source
was associated with our SMG that lies 1′′.26 to the north-west
of this optical-NIR source (Brisbin et al. 2017). A spectroscopic
redshift of zspec = 0.8521 has been measured for this source,
which is in excellent agreement with the COSMOS2015 photo-
metric value (M. Salvato et al., in prep.). The Chandra COS-
MOS Legacy Survey X-ray source CID-1522 (zspec = 0.829;
Civano et al. 2016; see also Salvato et al. 2011 for the source
CXOC J095953.8+021854), which can be associated with our
SMG (0′′.25 from the ALMA position), lies 1′′.51 to the north-
west of the additional 3 GHz feature. The nature of the latter
source remains unclear, but it is possible that it is associated
with the aforementioned COSMOS2015 source, and physically
linked to the SMG.

AzTEC/C118: The additional 3 GHz feature has a nearby
(0′′.33 offset) counterpart in the COSMOS2015 catalogue,
with a reported photo-z of zphot = 0.94 ± 0.02 (ID
531461; Laigle et al. 2016). The projected offset of the addi-
tional 3 GHz feature from the Chandra COSMOS Legacy
Survey X-ray source CID-838 (Civano et al. 2016; see also
Salvato et al. 2011 for the source CXOC J095959.9+020633,
and Civano et al. 2012; Johnson et al. 2013) we have associated
with the SMG is 0′′.83. Because the redshift of the SMG is
zspec = 2.2341, the additional radio feature could belong to a
foreground galaxy.

Appendix C: Radio properties of the target

submillimetre galaxies at the observed

frequency of 3 GHz

The radio emission parameters derived in Sect. 3 are listed in
Table C.1.
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Table C.1. Radio continuum characteristics of the 3 GHz sources.

Source ID za α2000.0 δ2000.0 I3 GHz
b S 3 GHz

b S/N FWHM sizec P.A.c Offset α3 GHz
1.4 GHz

d TB
d Commentse

[h:m:s] [◦:′:′′] [µJy beam−1] [µJy] [′′] [kpc] [◦] [′′] [K]
AzTEC/C1ae zspec = 4.7 10 01 41.75 +02 27 12.92 13.7 ± 2.2 13.7 ± 2.2 6.2 < 0.38 < 2.5 . . . 0.06 > −1.76 > 10.8

AzTEC/C2a zspec = 3.179 09 59 59.33 +02 34 41.05 38.8 ± 2.4 49.4 ± 4.8 16.2 0.41+0.10
−0.17× < 0.38 3.1+0.8

−1.3× < 2.9 46.4+0
−0 0.12 −0.95 ± 0.32 40.0 ± 26.6 AzTEC8

AzTEC/C2b zsynth = 1.10+2.60
−1.10 09 59 58.80 +02 34 57.90 10.0 ± 2.1 51.1 ± 12.6 4.8 2.51+0.57

−0.58 × 0.81+0.29
−0.37 20.5+4.6

−4.7 × 6.6+2.4
−4.7 164.3+8.6

−8.6 0.08 > −0.28 1.1 ± 0.6

AzTEC/C3a zspec = 1.125 10 00 08.04 +02 26 12.26 15.0 ± 2.4 18.9 ± 2.4 6.3 0.54+0.22
−0.21× < 0.38 4.4+1.8

−1.7× < 3.1 170.9+32.6
−32.7 0.09 −1.83 ± 0.77 8.8 ± 7.4 AzTEC2

AzTEC/C3c z3 GHz = 2.03+1.19
−0.31 10 00 08.01 +02 26 10.81 10.0 ± 2.4 14.0 ± 5.0 4.2 0.72+0.31

−0.44× < 0.38 10.3+3.1
−3.4× < 6.8 72.6+28.8

−28.8 0.63 > −1.28 2.4 ± 1.7

AzTEC/C4 zsynth = 5.30+0.70
−1.10 09 59 31.70 +02 30 43.96 11.4 ± 2.3 31.5 ± 7.7 5.0 1.72+0.37

−0.39× < 0.38 10.5+2.3
−2.4× < 2.3 150.6+8.3

−8.3 0.10 > −0.91 1.4 ± 0.7 AzTEC4

AzTEC/C5 zspec = 4.3415 09 59 42.86 +02 29 38.20 18.3 ± 2.4 28.3 ± 5.2 7.6 0.67+0.17
−0.20 × 0.43+0.19

−0.30 4.5+1.1
−1.3 × 2.9+1.3

−1.3 118.1+31.8
−31.8 0.03 −0.69 ± 0.61 8.9 ± 5.0 AzTEC1

AzTEC/C6a zspec = 2.494 10 00 56.95 +02 20 17.31 29.5 ± 2.3 43.6 ± 5.2 12.8 0.63+0.11
−0.13 × 0.41+0.12

−0.17 5.1+0.9
−1.0 × 3.3+1.0

−1.0 125.2+22.9
−23.0 0.11 −0.76 ± 0.39 15.2 ± 6.0 Cosbo-3

AzTEC/C7 3.06+1.88
−1.76 10 00 15.62 +02 15 48.99 19.4 ± 2.4 19.4 ± 2.4 8.1 < 0.38 < 2.9 91.6+41.3

−41.2 0.08 > −1.18 > 16.0 Cosbo-1

AzTEC/C8b zsynth = 1.10+0.30
−0.20 10 00 13.85 +01 56 39.10 9.7 ± 2.1 42.8 ± 11.3 4.6 1.70+0.43

−0.46 × 1.10+0.34
−0.38 13.9+3.6

−3.7 × 9.0+2.8
−3.7 178.6+26.4

−26.5 0.41 > −0.57 2.0 ± 1.2 COSLA9-S

AzTEC/C9a 2.68+0.24
−0.51 10 01 22.96 +02 20 05.92 34.3 ± 2.3 39.1 ± 4.4 14.9 0.48+0.10

−0.13× < 0.38 3.8+0.8
−1.0× < 3.0 178.4+13.0

−13.1 0.004 −0.89 ± 0.39 23.4 ± 11.4

AzTEC/C9b zspec = 2.8837 10 01 22.36 +02 20 02.73 25.4 ± 2.1 83.8 ± 8.9 12.0 1.75+0.17
−0.17 × 0.62+0.12

−0.14 13.6+1.3
−1.4 × 4.8+0.9

−1.4 85.2+4.7
−4.7 0.06 −0.70 ± 0.33 3.7 ± 0.8

AzTEC/C9c zspec = 2.9219 10 01 23.18 +02 20 05.64 33.1 ± 2.3 40.3 ± 4.5 14.5 0.53+0.11
−0.12× < 0.38 4.1+0.8

−0.9× < 2.9 55.0+13.1
−13.1 0.18 > −0.19 19.3 ± 8.3

AzTEC/C10a z3 GHz = 3.40+3.60
−0.59 10 00 13.52 +02 34 23.78 10.2 ± 2.3 11.4 ± 4.4 4.4 0.51+0.32

−0.51× < 0.38 3.8+2.3
−3.8× < 2.8 159.7+34.4

−34.4 0.16 > −2.66 6.0 ± 9.9

AzTEC/C10b zsynth = 2.90+0.30
−0.90 10 00 12.95 +02 34 34.92 12.2 ± 2.4 27.9 ± 6.9 5.1 1.21+0.29

−0.32 × 0.50+0.26
−0.50 9.4+2.3

−2.5 × 3.9+2.0
−2.5 146.3+31.0

−15.5 0.21 > −0.93 2.6 ± 1.5 AzTEC15

AzTEC/C11 4.30+0.07
−3.33 10 01 41.04 +02 04 04.97 32.3 ± 2.3 37.6 ± 4.4 14.0 0.54+0.11

−0.12× < 0.38 3.7+0.7
−0.8× < 2.6 116.2+10.5

−10.5 0.02 > −0.30 17.3 ± 7.5 X-ray

AzTEC/C12 3.25+0.16
−0.51 10 01 36.82 +02 11 10.06 23.4 ± 2.3 28.7 ± 4.5 10.2 0.56+0.14

−0.16× < 0.38 4.2+1.1
−1.3× < 2.9 125.8+16.0

−16.0 0.16 > −0.77 12.3 ± 7.0 COSLA17-N

AzTEC/C13a 2.01+0.15
−0.49 09 58 37.97 +02 14 08.43 82.9 ± 2.4 82.9 ± 2.4 34.5 < 0.38 < 3.2 . . . 0.07 −0.73 ± 0.13 > 75.8

AzTEC/C14 4.58+0.25
−0.68 09 59 57.29 +02 27 30.54 29.4 ± 2.2 33.3 ± 4.3 13.4 0.40+0.13

−0.17× < 0.38 2.6+0.9
−1.1× < 2.5 33.2+24.1

−24.1 0.04 −0.94 ± 0.44 28.3 ± 21.5 AzTEC9

AzTEC/C15 3.91+0.28
−2.35 10 01 31.55 +02 25 16.15 13.9 ± 2.3 20.6 ± 5.2 6.1 0.84+0.23

−0.28× < 0.38 5.9+1.7
−1.9× < 2.7 75.3+15.7

−15.7 0.03 > −1.50 4.0 ± 2.6

AzTEC/C16a 3.15+0.62
−1.54 09 58 53.69 +02 16 52.88 12.6 ± 2.2 23.6 ± 5.9 5.8 0.95+0.25

−0.28 × 0.44+0.25
−0.44 7.2+1.9

−2.2 × 3.4+1.9
−2.2 150.8+21.0

−21.0 0.16 > −1.31 3.6 ± 2.2

AzTEC/C16b 2.39+0.27
−0.56 09 58 54.19 +02 16 45.95 30.7 ± 2.3 38.5 ± 4.6 13.6 0.59+0.11

−0.12× < 0.38 4.8+0.9
−1.0× < 3.1 40.3+11.4

−11.4 0.18 −0.99 ± 0.40 15.0 ± 6.1

AzTEC/C17 zspec = 4.542 10 00 54.49 +02 34 36.24 16.0 ± 2.2 21.9 ± 4.8 7.2 0.70+0.19
−0.24× < 0.38 4.6+1.3

−1.5× < 2.5 54.0+17.7
−17.7 0.08 > −1.31 6.1 ± 4.0

AzTEC/C18 3.15+0.13
−0.44 10 00 35.30 +02 43 53.27 36.5 ± 2.5 52.5 ± 5.2 14.6 0.63+0.10

−0.10× < 0.38 4.8+0.8
−0.8× < 2.9 78.1+14.8

−14.8 0.05 −0.82 ± 0.34 18.0 ± 6.0 AzTEC12

AzTEC/C19 2.87+0.11
−0.41 09 59 50.28 +01 53 36.35 34.0 ± 2.2 47.0 ± 4.8 15.3 0.56+0.09

−0.11× < 0.38 4.3+0.8
−0.9× < 3.0 22.9+22.6

−22.6 0.18 > 0.04 20.6 ± 7.9

AzTEC/C20 3.06+0.13
−0.54 10 01 14.54 +02 27 05.34 19.1 ± 2.2 27.6 ± 4.9 8.7 0.72+0.17

−0.18× < 0.38 5.5+1.3
−1.4× < 2.9 64.2+16.0

−15.9 0.16 > −0.88 7.2 ± 3.7

AzTEC/C21 zsynth = 2.70+1.30
−0.40 09 59 21.43 +02 22 40.05 20.9 ± 2.3 31.7 ± 5.2 9.3 0.64+0.15

−0.18 × 0.44+0.16
−0.25 5.1+1.2

−1.4 × 3.5+1.3
−1.4 82.0+34.2

−34.3 0.08 > −0.66 10.6 ± 5.8

AzTEC/C22a zspec = 1.599 10 00 08.94 +02 40 10.90 77.5 ± 2.3 99.6 ± 4.8 33.7 0.48+0.04
−0.05× < 0.38 4.1+0.3

−0.4× < 3.2 163.2+14.1
−14.1 0.04 −0.37 ± 0.27 58.8 ± 11.4 AzTEC11-S

AzTEC/C22b zspec = 1.599 10 00 08.90 +02 40 09.52 57.0 ± 2.3 67.5 ± 4.6 24.8 0.40+0.07
−0.08× < 0.38 3.4+0.6

−0.7× < 3.2 31.3+20.5
−20.5 0.44 −0.94 ± 0.30 57.4 ± 21.9 AzTEC11-N

AzTEC/C23 2.10+0.46
−0.41 10 01 42.36 +02 18 35.88 53.0 ± 2.2 71.5 ± 4.6 24.4 0.59+0.06

−0.07× < 0.38 4.9+0.5
−0.5× < 3.2 155.4+9.1

−9.2 0.06 −0.73 ± 0.22 28.0 ± 6.3

AzTEC/C24a 2.01+0.19
−0.46 10 00 10.36 +02 22 24.42 32.7 ± 2.4 43.9 ± 5.1 13.7 0.61+0.11

−0.12× < 0.38 5.1+0.9
−1.0× < 3.2 164.8+13.8

−13.8 0.06 −1.07 ± 0.37 16.0 ± 6.2

AzTEC/C24b 2.10+0.08
−0.63 10 00 09.49 +02 22 19.49 114.3 ± 2.4 142.9 ± 4.9 47.4 0.51+0.03

−0.04× < 0.38 4.2+0.3
−0.3× < 3.2 80.2+5.5

−5.4 0.03 −1.15 ± 0.14 75.2 ± 10.4 VLBA-det.
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Table C.1. continued.

Source ID za α2000.0 δ2000.0 I3 GHz
b S 3 GHz

b S/N FWHM sizec P.A.c Offset α3 GHz
1.4 GHz

d TB
d Commentse

[h:m:s] [◦:′:′′] [µJy beam−1] [µJy] [′′] [kpc] [◦] [′′] [K]
AzTEC/C25 zspec = 2.51 10 01 21.95 +01 56 43.97 22.0 ± 2.1 46.7 ± 6.3 10.4 1.12+0.15

−0.16 × 0.48+0.14
−0.19 9.0+1.2

−1.3 × 3.8+1.2
−1.3 80.7+9.0

−9.1 0.06 −0.53 ± 0.44 5.1 ± 1.6

AzTEC/C26 5.06+0.08
−0.90 10 01 32.30 +02 32 09.14 16.4 ± 2.3 16.9 ± 4.12 7.1 0.43+0.21

−0.43× < 0.38 2.7+1.3
−2.7× < 2.4 78.8+22.5

−22.7 0.17 > −1.73 12.3 ± 18.6

AzTEC/C27 2.77+0.88
−0.47 09 59 38.07 +02 06 56.28 15.1 ± 2.2 27.1 ± 5.7 6.8 0.76+0.20

−0.46 × 0.57+0.39
−0.27 6.0+1.6

−3.6 × 4.5+3.1
−3.6 122.7+41.1

−41.0 0.18 > −1.01 6.4 ± 5.8

AzTEC/C28a zspec = 2.319 09 58 49.28 +02 13 01.64 76.4 ± 2.3 128.3 ± 5.8 33.2 0.95+0.04
−0.05× < 0.38 7.7+0.4

−0.4× < 3.1 79.3+1.8
−2.8 0.08 −1.43 ± 0.19 19.5 ± 2.1

AzTEC/C29 1.82+0.35
−0.54 09 59 18.38 +02 01 07.13 60.5 ± 2.3 60.5 ± 2.3 26.3 < 0.38 < 3.2 . . . 0.05 −1.03 ± 0.14 > 54.8

AzTEC/C30a z3 GHz = 2.01+1.16
−0.31 10 00 26.67 +02 31 26.22 11.7 ± 2.1 25.1 ± 6.3 5.6 1.49+0.33

−0.35× < 0.38 12.5+2.8
−2.9× < 3.2 75.5+7.9

−7.9 0.24 > −1.24 1.5 ± 0.8

AzTEC/C31a zsynth = 2.10+3.20
−0.10 10 01 47.30 +02 24 49.32 16.2 ± 2.3 16.2 ± 2.3 7.0 < 0.38 < 3.2 . . . 0.24 > −1.47 > 13.1

AzTEC/C32 1.63+0.20
−0.47 10 00 12.53 +02 01 24.22 21.9 ± 2.2 145.3 ± 6.5 10.0 0.92+0.15

−0.16 × 0.63+0.14
−0.17 7.8+1.4

−1.3 × 5.3+1.2
−1.4 91.4+21.0

−21.0 0.10 −0.28 ± 0.47 7.2 ± 2.7 Cosbo-33

AzTEC/C33a 2.30+0.16
−0.46 10 00 27.14 +02 31 40.77 41.1 ± 2.4 46.4 ± 4.4 17.1 0.44+0.09

−0.11× < 0.38 3.6+0.8
−0.9× < 3.1 166.5+13.0

−13.1 0.17 −0.49 ± 0.34 32.3 ± 15.0

AzTEC/C33b z3 GHz = 2.38+1.68
−0.35 10 00 26.67 +02 31 26.22 12.9 ± 2.3 17.6 ± 5.0 5.6 0.65+0.25

−0.33× < 0.38 5.3+2.0
−2.7× < 3.1 42.3+28.3

−28.3 0.20 > −1.79 5.7 ± 5.3

AzTEC/C35 3.91+0.18
−0.50 10 00 08.97 +02 20 26.69 30.4 ± 2.3 30.4 ± 2.3 13.2 < 0.38 < 2.7 . . . 0.14 −0.93 ± 0.30 > 26.5

AzTEC/C36 zspec = 2.415 09 58 40.29 +02 05 14.58 66.3 ± 2.5 179.1 ± 5.0 26.5 0.41+0.07
−0.07× < 0.38 3.4+0.5

−0.6× < 3.1 126.3+17.4
−17.4 0.09 −0.99 ± 0.21 63.0 ± 21.3

AzTEC/C37 zsynth = 1.70+0.70
−0.30 10 01 21.82 +02 31 29.44 21.0 ± 2.3 42.6 ± 6.5 9.1 1.23+0.18

−0.19× < 0.38 10.4+1.5
−1.6× < 3.2 79.0+6.9

−6.9 0.35 −0.26 ± 0.49 3.8 ± 1.3

AzTEC/C38 1.91+0.53
−0.46 10 00 23.65 +02 21 55.34 15.8 ± 2.3 15.8 ± 2.3 6.9 < 0.38 < 3.2 . . . 0.13 −1.32 ± 0.52 > 12.7 COSLA35

AzTEC/C39 zsynth = 2.00+0.20
−0.40 10 01 26.53 +02 00 05.97 38.8 ± 2.2 45.5 ± 4.3 17.6 0.40+0.10

−0.11× < 0.38 3.4+0.8
−1.0× < 3.2 54.6+24.0

−24.0 0.13 > 0.02 38.2 ± 20.3

AzTEC/C40 zFIR = 5.25+1.11
−1.11 09 59 35.36 +02 19 20.14 21.3 ± 2.2 28.5 ± 4.7 9.7 0.66+0.15

−0.17× < 0.38 4.0+0.9
−1.1× < 2.3 17.7+15.1

−15.0 0.07 −1.05 ± 0.53 9.0 ± 4.6

AzTEC/C41 1.25+0.18
−0.34 10 01 48.20 +02 21 32.34 21.5 ± 2.3 27.8 ± 4.7 9.3 0.55+0.15

−0.19× < 0.38 4.6+1.3
−1.6× < 3.2 21.1+24.9

−24.9 0.09 > −0.85 12.6 ± 8.2

AzTEC/C42 3.63+0.37
−0.56 10 00 19.75 +02 32 04.29 49.2 ± 2.4 85.8 ± 5.8 20.5 0.95+0.07

−0.07× < 0.38 6.9+0.5
−0.5× < 2.7 41.3+4.5

−4.5 0.06 −0.50 ± 0.24 12.9 ± 2.1 AzTEC5

AzTEC/C43a 2.01+0.23
−0.47 10 00 03.12 +02 02 01.53 37.0 ± 2.4 37.0 ± 2.4 15.4 < 0.38 < 3.2 . . . 0.12 −2.15 ± 0.32 > 32.7 Cosbo-4

AzTEC/C43b 1.82+0.29
−0.36 10 00 03.41 +02 02 04.24 16.4 ± 2.3 20.7 ± 4.7 7.1 0.48+0.04

−0.48× < 0.38 4.0+1.7
−4.0× < 3.2 149.4+36.8

−36.8 0.11 > −1.42 12.3 ± 17.8

AzTEC/C44a 2.01+0.29
−0.44 10 00 34.25 +01 48 57.64 26.8 ± 2.3 33.1 ± 4.7 11.7 0.38+0.14

−0.32× < 0.38 3.2+1.2
−2.7× < 3.2 78.2+0

−0 0.13 > −0.54 31.0 ± 38.2

AzTEC/C44b zspec = 1.192 10 00 33.89 +01 49 10.89 14.0 ± 2.3 22.0 ± 5.4 6.1 0.74+0.23
−0.28× < 0.38 6.1+1.9

−2.3× < 3.1 127.5+29.0
−29.0 0.26 > −1.39 5.5 ± 4.0 X-ray

AzTEC/C45 zspec = 2.330 10 00 06.57 +02 32 59.79 19.2 ± 2.3 27.2 ± 5.1 8.3 0.61+0.17
−0.21× < 0.38 5.0+1.4

−1.7× < 3.1 78.2+31.2
−31.2 0.16 > −0.93 10.0 ± 6.5 X-ray

AzTEC/C46 1.06+1.07
−0.41 10 01 14.71 +02 35 18.26 56.5 ± 2.3 56.5 ± 2.3 24.6 < 0.38 < 3.1 . . . 0.04 −1.01 ± 0.16 > 51.1

AzTEC/C47 zspec = 2.0468 09 59 40.87 +02 01 13.25 105.7 ± 2.3 105.7 ± 2.3 46.0 < 0.38 < 3.2 . . . 0.27 −1.49 ± 0.12 > 97.4

AzTEC/C48a 1.91+0.18
−0.42 10 00 39.28 +02 38 45.14 28.0 ± 2.2 37.6 ± 4.7 12.7 0.45+0.13

−0.19 × 0.43+0.15
−0.17 3.8+1.1

−1.6 × 3.6+1.3
−1.6 61.3+0

−0 0.27 −0.67 ± 0.43 25.3 ± 18.2 AzTEC24b

AzTEC/C50 3.15+0.78
−1.32 09 59 33.29 +02 08 32.71 25.5 ± 2.3 25.5 ± 2.3 11.1 < 0.38 < 2.9 . . . 0.04 > −0.72 > 21.8

AzTEC/C52 zspec = 1.1484 10 01 56.57 +02 21 00.93 27.7 ± 2.2 58.9 ± 6.5 12.6 0.93+0.11
−0.13 × 0.67+0.11

−0.13 7.6+1.0
−1.0 × 5.5+0.9

−1.0 142.6+18.8
−18.8 0.07 −0.92 ± 0.36 9.4 ± 2.7

AzTEC/C53 zsynth = 2.20+0.60
−0.70 10 01 22.63 +02 12 14.79 11.0 ± 2.3 15.8 ± 5.0 4.8 0.62+0.29

−0.62× < 0.38 5.2+2.3
−5.2× < 3.1 69.0+40.3

−40.2 0.60 > −2.04 5.5 ± 8.2

AzTEC/C54 3.25+0.04
−0.52 10 01 26.02 +01 57 51.32 15.8 ± 2.2 30.0 ± 5.8 7.2 0.99+0.20

−0.22 × 0.42+0.20
−0.42 7.4+1.5

−1.7 × 3.2+1.5
−1.7 135.8+14.6

−14.7 0.09 > −0.83 4.2 ± 2.0

AzTEC/C55a 2.49+0.33
−0.45 10 00 05.09 +01 55 18.17 20.5 ± 2.2 31.2 ± 5.1 9.3 0.64+0.15

−0.18 × 0.44+0.16
−0.24 5.2+1.2

−1.4 × 3.6+1.3
−1.4 99.4+34.7

−34.8 0.06 > −0.68 10.4 ± 5.7

AzTEC/C55b 2.77+0.32
−0.41 10 00 04.40 +01 55 15.75 18.1 ± 2.2 27.1 ± 5.0 8.2 0.67+0.17

−0.21× < 0.38 5.2+1.4
−1.6× < 3.0 69.7+27.5

−27.4 0.27 −1.15 ± 0.58 8.3 ± 4.9

AzTEC/C56 zAGN = 3.45+0.08
−0.10 09 59 05.05 +02 21 56.74 21.1 ± 2.2 39.6 ± 6.0 9.6 1.00+0.16

−0.17× < 0.38 7.4+1.2
−1.2× < 2.9 32.0+10.4

−10.5 0.13 > −0.33 5.4 ± 1.9 X-ray

AzTEC/C58 4.10+0.32
−0.79 10 00 20.05 +01 45 02.64 28.7 ± 2.3 34.1 ± 4.5 12.5 0.48+0.12

−0.15× < 0.38 3.3+0.8
−1.0× < 2.6 151.4+18.9

−18.9 0.09 −0.72 ± 0.45 20.1 ± 11.7
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Table C.1. continued.

Source ID za α2000.0 δ2000.0 I3 GHz
b S 3 GHz

b S/N FWHM sizec P.A.c Offset α3 GHz
1.4 GHz

d TB
d Commentse

[h:m:s] [◦:′:′′] [µJy beam−1] [µJy] [′′] [kpc] [◦] [′′] [K]
AzTEC/C59 zspec = 1.2802 10 00 30.14 +02 37 16.76 65.2 ± 2.4 65.2 ± 2.4 27.2 < 0.38 < 3.2 . . . 0.15 −1.19 ± 0.14 > 59.2

AzTEC/C60a 0.96+0.14
−0.40 10 01 28.39 +02 21 27.49 18.2 ± 2.2 27.6 ± 5.2 8.3 0.87+0.18

−0.20× < 0.38 6.9+1.4
−1.6× < 3.0 2.1+11.1

−9.0 0.09 > −0.91 5.0 ± 2.3

AzTEC/C61 zspec = 3.2671 10 01 20.06 +02 34 43.68 11 502.0 ± 4.2 11 502.0 ± 4.2 2 738.6 < 0.38 < 2.8 . . . 0.11 0.11 ± 0.01 > 10 832 VLBA-det.,

X-ray

AzTEC/C62 zFIR = 3.36+0.97
−0.97 10 01 00.46 +02 38 05.88 10.9 ± 2.1 30.4 ± 7.8 5.2 1.48+0.36

−0.37 × 0.58+0.27
−0.45 11.0+2.7

−2.8 × 4.3+2.0
−2.8 135.0+13.4

−13.3 0.46 > −1.00 1.9 ± 1.1

AzTEC/C64 2.58+0.79
−0.63 10 01 39.35 +02 23 41.43 31.6 ± 2.2 39.7 ± 4.4 14.4 0.43+0.11

−0.29× < 0.38 3.4+0.9
−2.3× < 3.0 10.1+36.7

−26.6 0.07 > −0.21 29.8 ± 28.1

AzTEC/C65 zspec = 1.798 09 59 42.94 +02 21 44.91 61.5 ± 2.3 76.9 ± 4.6 26.7 0.47+0.06
−0.06× < 0.38 4.0+0.5

−0.6× < 3.2 152.2+13.8
−13.7 0.14 −0.91 ± 0.20 47.0 ± 12.8

AzTEC/C66 2.01+0.27
−0.50 10 01 04.64 +02 26 33.98 35.6 ± 2.3 52.2 ± 5.1 15.5 0.59+0.10

−0.10 × 0.43+0.10
−0.13 5.0+0.8

−0.9 × 3.6+0.9
−0.9 3.0+25.0

−22.1 0.10 −0.66 ± 0.32 20.2 ± 7.0

AzTEC/C67 zspec = 2.9342 10 01 19.53 +02 09 44.67 34.7 ± 2.3 34.7 ± 2.3 15.1 < 0.38 < 2.9 . . . 0.25 −0.92 ± 0.26 > 30.5

AzTEC/C70 4.01+0.09
−0.66 10 00 25.50 +02 03 12.66 12.8 ± 2.2 21.9 ± 5.6 5.8 0.84+0.24

−0.29 × 0.41+0.25
−0.41 5.8+1.7

−2.0 × 2.8+1.8
−2.0 103.1+25.2

−25.3 0.07 −1.06 ± 0.81 4.3 ± 2.9

AzTEC/C71b zspec = 0.829 09 59 53.85 +02 18 54.14 13.6 ± 2.2 32.3 ± 7.1 6.2 1.14+0.26
−0.28 × 0.63+0.22

−0.30 8.7+2.0
−2.1 × 4.8+1.7

−2.1 126.3+19.4
−19.4 0.18 −1.16 ± 0.68 3.4 ± 1.8 X-ray,

Cosbo-36

AzTEC/C72 1.72+0.38
−0.45 10 01 58.99 +02 04 57.67 39.6 ± 2.3 50.2 ± 4.8 17.2 0.56+0.09

−0.09× < 0.38 4.8+0.7
−0.8× < 3.2 102.1+11.4

−11.3 0.14 −0.84 ± 0.32 21.6 ± 7.4

AzTEC/C74a 2.10+0.20
−0.67 10 01 05.08 +02 21 52.44 19.2 ± 2.3 19.2 ± 2.3 8.3 < 0.38 < 3.2 . . . 0.20 > −1.19 > 15.9

AzTEC/C76 4.01+0.07
−0.57 10 00 12.93 +02 12 11.51 10.9 ± 2.3 32.6 ± 8.7 4.7 1.69+0.41

−0.43 × 0.51+0.29
−0.51 11.8+2.9

−3.0 × 3.6+2.0
−3.0 109.7+10.9

−10.8 0.17 > −0.94 1.6 ± 0.9

AzTEC/C77a 3.53+0.58
−1.29 09 59 35.73 +01 58 05.41 261.1 ± 2.3 261.1 ± 2.3 113.5 < 0.38 < 2.8 . . . 0.18 −0.99 ± 0.03 > 243.9 VLBA-det.

AzTEC/C77b 3.06+0.59
−1.19 09 59 35.30 +01 57 59.20 26.8 ± 2.3 26.8 ± 2.3 11.7 < 0.38 < 2.9 . . . 0.05 −1.24 ± 0.30 > 23.1

AzTEC/C79 2.20+0.33
−0.96 09 59 43.66 +02 13 40.18 16.8 ± 2.1 30.1 ± 5.6 8.0 0.81+0.18

−0.21 × 0.52+0.18
−0.25 6.7+1.5

−1.7 × 4.3+1.7
−1.5 72.5+27.2

−27.2 0.13 > −0.80 6.3 ± 3.2

AzTEC/C80a 2.10+0.66
−0.43 10 00 33.35 +02 26 01.64 33.7 ± 2.3 39.8 ± 4.5 14.7 0.39+0.11

−0.15× < 0.38 3.2+0.9
−1.2× < 3.2 9.1+38.3

−29.3 0.08 > −0.21 36.0 ± 24.7 COSLA47

AzTEC/C81 zFIR = 4.62+1.48
−1.48 10 00 06.28 +01 52 48.03 11.6 ± 2.2 23.2 ± 6.3 5.3 0.98+0.28

−0.33 × 0.52+0.27
−0.52 6.4+2.1

−1.9 × 3.4+1.8
−2.1 152.9+25.8

−25.7 0.03 > −1.40 3.3 ± 2.3

AzTEC/C84b zspec = 1.959 09 59 42.58 +01 55 01.49 22.7 ± 2.1 50.3 ± 6.4 10.8 0.99+0.14
−0.15 × 0.66+0.14

−0.15 8.3+1.2
−1.3 × 5.6+1.1

−1.3 21.9+17.3
−17.2 0.13 −0.65 ± 0.41 7.0 ± 2.2

AzTEC/C86 zAGN = 1.69+0.02
−0.02 10 01 09.91 +02 17 27.63 25.7 ± 2.5 25.7 ± 2.5 10.3 < 0.38 < 3.2 . . . 0.05 > −0.74 > 21.8 X-ray

AzTEC/C87 2.39+0.20
−0.45 10 02 04.93 +02 17 01.26 15.5 ± 2.2 41.4 ± 7.8 7.0 1.30+0.24

−0.25 × 0.66+0.20
−0.24 10.6+2.0

−2.1 × 5.4+1.6
−2.1 73.6+13.7

−13.7 0.33 > −0.38 3.3 ± 1.4

AzTEC/C88 1.82+0.38
−0.47 09 59 37.48 +02 04 24.19 27.5 ± 2.3 34.6 ± 4.7 12.0 0.50+0.13

−0.15× < 0.38 4.3+1.1
−1.3× < 3.2 34.7+24.2

−24.2 0.21 > −0.47 18.5 ± 10.7

AzTEC/C90c 2.20+0.23
−0.42 10 01 35.21 +02 16 49.20 16.6 ± 2.2 28.6 ± 5.4 7.5 0.75+0.18

−0.21 × 0.52+0.19
−0.26 6.2+1.5

−1.7 × 4.3+1.5
−1.7 145.9+33.2

−35.0 0.33 > −0.88 6.9 ± 3.9

AzTEC/C91 1.63+0.29
−0.41 10 01 28.49 +02 23 44.88 33.2 ± 2.3 37.1 ± 4.2 14.4 0.45+0.10

−0.14× < 0.38 3.8+0.9
−1.1× < 3.2 73.4+14.3

−14.2 0.24 > −0.30 25.4 ± 13.9

AzTEC/C92a 2.58+2.67
−0.46 10 01 40.44 +02 30 10.43 11.2 ± 2.2 16.1 ± 5.0 5.1 0.70+0.28

−0.34× < 0.38 5.6+2.2
−2.9× < 3.0 162.1+5.3

−30.6 0.14 > −1.98 4.5 ± 4.3

AzTEC/C92b 4.87+0.22
−0.98 10 01 39.17 +02 30 19.24 13.9 ± 2.2 25.9 ± 5.9 6.3 0.95+0.26

−0.25 × 0.43+0.23
−0.43 6.1+1.5

−1.6 × 2.7+1.5
−2.7 14.1+18.3

−9.8 0.11 > −1.12 3.9 ± 2.2

AzTEC/C93 1.63+1.10
−0.53 10 01 31.88 +02 11 38.77 38.8 ± 2.3 38.8 ± 2.3 16.9 < 0.38 < 3.2 . . . 0.06 −0.57 ± 0.26 > 34.4

AzTEC/C95 zspec = 2.1021 10 00 18.23 +02 12 42.52 14.5 ± 2.1 39.9 ± 7.7 6.9 1.18+0.24
−0.26 × 0.81+0.21

−0.24 9.8+2.0
−2.1 × 6.8+1.8

−2.1 70.4+25.4
−25.5 0.07 > −0.44 3.9 ± 1.8

AzTEC/C97b 2.01+0.08
−0.48 10 02 14.50 +02 19 42.84 14.0 ± 2.2 24.5 ± 5.6 6.4 0.78+0.22

−0.26 × 0.51+0.23
−0.35 6.6+1.9

−2.2 × 4.3+1.9
−2.2 33.6+35.7

−31.5 0.18 −1.06 ± 0.75 5.4 ± 3.6

AzTEC/C98 1.82+0.60
−0.46 10 00 43.18 +02 05 19.03 30.8 ± 2.3 41.3 ± 4.9 13.4 0.60+0.11

−0.12× < 0.38 5.1+0.9
−1.0× < 3.2 74.1+14.7

−14.6 0.08 −0.83 ± 0.40 15.4 ± 6.2 COSLA18

AzTEC/C99 2.68+1.37
−0.92 10 00 06.99 +01 59 57.55 18.4 ± 2.3 22.5 ± 4.6 8.0 0.56+0.18

−0.23× < 0.38 4.5+1.4
−1.9× < 3.0 133.6+20.4

−20.5 0.03 > −1.24 9.7 ± 7.4

AzTEC/C101a 1.53+0.31
−0.51 09 59 45.33 +02 30 16.81 11.1 ± 2.2 25.4 ± 6.8 5.0 1.18+0.31

−0.34 × 0.54+0.27
−0.54 10.0+2.6

−2.9 × 4.5+2.3
−2.9 132.9+18.5

−18.5 0.16 > −1.26 2.5 ± 1.5

AzTEC/C101b z3 GHz = 1.74+0.98
−0.27 09 59 45.87 +02 30 24.80 10.5 ± 2.2 23.4 ± 6.7 4.8 1.18+0.33

−0.36 × 0.50+0.29
−0.50 10.0+2.8

−3.1 × 4.2+2.4
−3.1 106.7+18.5

−18.5 0.33 > −1.42 2.3 ± 1.5
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Table C.1. continued.

Source ID za α2000.0 δ2000.0 I3 GHz
b S 3 GHz

b S/N FWHM sizec P.A.c Offset α3 GHz
1.4 GHz

d TB
d Commentse

[h:m:s] [◦:′:′′] [µJy beam−1] [µJy] [′′] [kpc] [◦] [′′] [K]
AzTEC/C103 2.10+0.33

−0.57 10 01 24.48 +01 56 15.74 12.7 ± 2.2 22.4 ± 5.8 5.8 1.20+0.29
−0.30 × 0.62+0.24

−0.33 10.0+2.4
−2.5 × 5.2+2.0

−2.5 28.4+18.4
−18.3 0.31 > −0.90 2.9 ± 1.6

AzTEC/C105 2.20+0.08
−0.54 09 58 45.12 +02 14 30.84 21.8 ± 2.3 40.3 ± 6.0 9.5 0.75+0.15

−0.30 × 0.63+0.27
−0.18 6.2+1.2

−2.5 × 5.2+2.3
−2.5 167.5+15.4

−40.4 0.07 > −0.30 9.6 ± 5.9

AzTEC/C106 zFIR = 5.63+1.37
−2.77 10 00 06.49 +02 38 37.40 12.3 ± 2.3 22.4 ± 5.8 5.3 0.92+0.26

−0.30 × 0.43+0.26
−0.00 5.4+1.5

−1.8 × 2.5+1.5
−0 154.3+22.5

−22.6 0.32 > −1.48 3.6 ± 2.4 AzTEC6

AzTEC/C107 5.15+0.93
−1.40 09 59 39.87 +02 22 33.54 16.9 ± 2.4 18.9 ± 4.5 7.0 0.47+0.21

−0.34× < 0.38 2.9+1.3
−2.1× < 2.4 68.7+26.4

−26.4 0.24 > −1.55 11.7 ± 13.9

AzTEC/C109 2.20+0.28
−0.41 10 01 11.56 +02 28 40.89 14.0 ± 2.2 19.9 ± 4.8 6.4 0.82+0.22

−0.26× < 0.38 6.8+1.8
−2.1× < 3.1 5.2+14.1

−14.1 0.27 −1.43 ± 0.75 4.1 ± 2.6

AzTEC/C111 2.10+0.54
−0.59 09 59 29.23 +02 12 43.97 36.1 ± 2.4 36.1 ± 2.4 15.0 < 0.38 < 3.2 . . . 0.14 −0.81 ± 0.27 > 31.8

AzTEC/C112 zspec = 1.894 10 00 11.03 +01 53 14.06 49.7 ± 2.2 65.4 ± 4.6 22.6 0.66+0.07
−0.07× < 0.38 5.6+0.5

−0.6× < 3.2 41.8+5.9
−5.9 0.19 −0.82 ± 0.23 20.3 ± 4.4

AzTEC/C113 zspec = 2.0899 09 59 14.40 +02 29 60.00 107.3 ± 2.3 107.3 ± 2.3 46.7 < 0.38 < 3.2 . . . 0.11 −0.63 ± 0.11 > 98.9

AzTEC/C114 zFIR = 5.33+1.67
−3.22 10 00 24.15 +02 20 05.22 9.3 ± 2.1 54.6 ± 14.0 4.4 2.68+0.63

−0.65 × 0.93+0.32
−0.38 16.3+3.9

−3.9 × 5.7+2.0
−3.9 168.5+9.5

−9.4 0.33 > −0.23 1.0 ± 0.6

AzTEC/C115 zsynth = 2.80+1.30
−0.60 10 00 15.36 +02 05 31.72 16.6 ± 2.3 20.1 ± 4.6 7.2 0.70+0.19

−0.24× < 0.38 5.5+1.5
−1.8× < 3.0 119.9+12.6

−12.7 0.13 > −1.45 5.6 ± 3.7

AzTEC/C116 2.20+1.75
−0.43 10 01 09.85 +02 03 46.42 35.9 ± 2.3 35.9 ± 2.3 15.6 < 0.38 < 3.1 . . . 0.06 −0.64 ± 0.27 > 31.7 Cosbo-27

AzTEC/C118 zspec = 2.2341 09 59 59.94 +02 06 33.26 38.0 ± 2.2 49.3 ± 4.6 17.3 0.53+0.09
−0.10× < 0.38 4.4+0.7

−0.8× < 3.1 140.2+16.4
−16.4 0.12 −0.98 ± 0.30 23.9 ± 8.7 X-ray,

Cosbo-8

AzTEC/C119 3.25+0.82
−0.62 09 59 15.34 +02 07 47.38 20.7 ± 2.2 25.0 ± 4.3 9.4 0.45+0.16

−0.23× < 0.38 3.4+1.2
−1.7× < 2.9 61.7+35.4

−35.5 0.08 > −1.00 16.8 ± 14.8

AzTEC/C122a 1.06+0.12
−0.40 10 02 00.74 +02 16 38.12 13.5 ± 2.3 16.1 ± 4.4 5.9 0.54+0.24

−0.38× < 0.38 4.4+1.9
−3.0 × 3.1+0.2

−3.0 6.9+28.5
−28.5 0.08 > −1.89 7.5 ± 8.8

AzTEC/C123 1.82+0.20
−0.61 10 00 22.82 +01 51 40.40 32.5 ± 2.3 36.3 ± 4.4 14.1 0.43+0.11

−0.14× < 0.38 3.6+1.0
−1.2× < 3.2 143.3+16.7

−16.7 0.12 > −0.35 26.7 ± 16.4

AzTEC/C127 2.01+0.17
−0.51 10 01 25.33 +02 35 27.32 62.1 ± 2.4 62.1 ± 2.4 25.9 < 0.38 < 3.2 . . . 0.06 −0.98 ± 0.15 > 56.3

Notes. The meaning of columns is as follows: (1): SMG name; (2): redshift; (3) and (4): celestial peak position (equinox J2000.0) of the fitted Gaussian 3 GHz intensity distribution; (5): peak
surface brightness; (6): total flux density provided by the Gaussian fit; (7): S/N ratio as determined from the peak intensity and local rms noise given in Col. (5); (8) and (9): deconvolved FWHM size
(θmaj× θmin) in arcsec and physical kpc; (10): major axis position angle of the fitted Gaussian measured from north through east; (11): projected angular offset from the ALMA 1.3 mm peak position;
(12): spectral index between the observed-frame frequencies of 1.4 GHz and 3 GHz; (13): brightness temperature at the observed frequency of 3 GHz; and (14): comments on the source.(a) Unless
otherwise stated, the quoted redshift was derived from optical-MIR photometry (i.e. z ≡ zphot; Brisbin et al. 2017). For AzTEC/C1a, C2a, C3a, C5, C6a, and C17 the quoted spectroscopic redshift
is taken from M. S. Yun et al. (in prep.), D. A. Riechers et al. (in prep.), E. F. Jiménez Andrade et al. (in prep.), Yun et al. (2015), Wang et al. (2016), and Schinnerer et al. (2008; their source
J1000+0234), respectively. The remaining 21 spectroscopic redshifts were taken from the COSMOS spectroscopic redshift catalogue (M. Salvato et al., in prep.). The redshifts of AzTEC/C2b,
C4, C8b, C10b, C21, C31a, C37, C39, C53, and C115 are the synthetic values derived by Brisbin et al. (2017), while those of AzTEC/C40, C62, C81, C106, and C144 are based on the peak
position of the FIR SED, and those of AzTEC/C3c, C10a, C30a, C33b, and C101b are based on the 3 GHz and submm flux density comparison. The photo-z’s of AzTEC/C56 and C86 are based
on AGN template fitting (see Brisbin et al. 2017 for details). (b) The quoted error in I3 GHz and S 3 GHz represents the formal error returned by JMFIT. The uncertainties do not include the absolute
calibration uncertainty. (c) The size and P.A. uncertainties represent the minimum and maximum values as returned by JMFIT. The P.A. is formally defined to range from 0◦ to 180◦, but for example
for AzTEC/C3a the maximum P.A. value is 203◦.5, which is symmetric with respect to an angle of 203◦.5 − 180◦ = 23◦.5. The minimum and maximum P.A. values for AzTEC/C2a, C44a, and C48a
are equal to the nominal value, and hence the quoted uncertainties are equal to zero. (d) The spectral index is a lower limit if the source was not detected at 1.4 GHz, and the brightness temperature
is a lower limit for the unresolved sources. (e) A note is given if the source has been detected with the VLBA or in the X-rays. The other AzTEC ID refers to the JCMT/AzTEC SMG ID (see
Scott et al. 2008), and is quoted for the sources whose 3 GHz radio sizes we studied in M15. The COSLA IDs refer to the LABOCA 870 µm selected sources (F. Navarrete et al., in prep.) that
Smolčić et al. (2012) detected with the PdBI at 1.3 mm, while the Cosbo IDs refer to the MAMBO-2 1.2 mm sources (Bertoldi et al. 2007). See Smolčić et al. (2012) for more details about the
COSLA and Cosbo IDs.
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Appendix D: Cosmic-ray electron cooling time and

diffusion length in AzTEC/C2a, C4, C5, C17, and

C42

Five of our target SMGs benefit from high, subarcsecond res-
olution submm interferometric imaging, namely AzTEC/C2a
(=AzTEC 8), C4 (=AzTEC 4), C5 (=AzTEC 1), C17
(=J1000+0234), and C42 (=AzTEC 5). This provides us with
information about their dust-emitting sizes that can be quanti-
tatively compared on a galaxy-by-galaxy basis with the present
radio sizes. This, in turn, allows us to examine the length scale
that CR electrons would have to travel in case they originate in
the dust-emitting region.

Appendix D.1: Rest-frame far-infrared-emitting sizes

The SMGs AzTEC/C2a and C4 were imaged with the Sub-
millimetre Array (SMA) at 870 µm by Younger et al. (2010),
where the angular resolutions of the data were 0′′.86 × 0′′.55 and
0′′.86×0′′.77, respectively. For both sources, Younger et al. (2010)
derived an angular major axis FWHM of 0′′.6±0′′.2 when a Gaus-
sian intensity distribution was assumed.

The SMGs AzTEC/C5, C17, and C42 were observed with
the ALMA Band 7 during the second early science campaign to
search for [C ii] or [N ii] line emission (Cycle 1 ALMA project
2012.1.00978.S; PI: A. Karim). The Common Astronomy Soft-
ware Applications (CASA; McMullin et al. 2007) package5 was
used to construct the continuum images from the line-free chan-
nels at λobs = 870 µm, 857 µm, and 994 µm, respectively. The
corresponding angular resolutions were 0′′.30 × 0′′.29, 0′′.35 ×
0′′.35, and 0′′.52×0′′.30, respectively. As described in M15, the de-
convolved angular major axis FWHM of AzTEC/C5 was found
to be 0′′.39 ± 0′′.01 using the JMFIT task in AIPS. Using a sim-
ilar AIPS/JMFIT analysis, we derived a rest-frame FIR size of
(0′′.35 ± 0′′.01) × (0′′.19 ± 0′′.01) for AzTEC/C17. As we also de-
scribed in more detail in M15, AzTEC/C42 was resolved into
two components with these ALMA observations. We used a
two-component Gaussian fit option of JMFIT to derive a FIR
size of 0′′.33+0.05

−0.03 × 0′′.24+0.06
−0.09 for the northern component, and

0′′.38+0.10
−0.07 × 0′′.36+0.07

−0.08 for the southern component. The north-
ern component is well coincident with the 3 GHz radio emission
peak position (see also Fig. 14 herein). As a consistency check,
we also used CASA (release 4.6.1) to determine the ALMA dust-
emitting sizes of the aforementioned three sources (using the
imfit task), and obtained identical results with AIPS/JMFIT.

The rest-frame FIR sizes of the five SMGs under study are
about 0.7 (AzTEC/C2a) to 2.9 (C4 and C42) times that of their
radio-emitting region (see Table D.1, the fifth row); on aver-
age, the radio size is two times larger than the dust-emitting re-
gion, in good agreement with the size comparisons described in
Sect. 4.2.2. The cases of AzTEC/C5 and C17 are illustrated in
Fig. D.1.

Appendix D.2: The cooling timescale and diffusion length
scale of cosmic-ray electrons

In an accompanying paper (O. Miettinen et al., in prep.; see also
Miettinen et al. 2017), we derived the total-IR (8−1 000 µm) lu-
minosities (LIR) of AzTEC/C2a, C4, C5, C17, and C42 through
fitting their panchromatic SEDs, and we also estimated their gas
masses (Mgas) using the Scoville et al. (2016) dust continuum
method. Here, we employ those quantities to improve the esti-

5 https://casa.nrao.edu.

mates of the CR electron cooling timescales and diffusion length
scales from M15.

More precisely, LIR is needed to calculate the radiation field
energy density of the galaxy (urad; see Murphy et al. 2008, 2012a
for an equation where also the non-absorbed UV radiation is
taken into account), to which the cooling time due to the inverse
Compton (IC) process is inversely proportional (τIC ∝ u−1

rad). The
galaxy area needed in the calculation of urad was defined as

AIR = π ×
FWHMmaj

2
×

FWHMmin

2
, (D.1)

where the major and minor axes refer to the ALMA dust emis-
sion extents described in Appendix D.1.

On the other hand, the mass of the gas component (Mgas ≃
MH2 ) is needed to estimate the hydrogen number density of the
galaxy that is being sampled by the electrons; the bremsstrahlung
and ionisation cooling times are both inversely proportional to
the gas density (τbrem ∝ n−1

H and τion ∝ n−1
H ). To calculate the

volumetric average hydrogen number density, we used the gas
mass estimates from O. Miettinen et al. (in prep.). The CO-
based gas masses derived for AzTEC/C5 by Yun et al. (2015)
and for AzTEC/C17 by Schinnerer et al. (2008) agree with the
dust-based values within a factor of two when correcting for
the different assumptions used in the calculation. The volume-
averaged gas (H2) mass density was calculated as ρgas = Mgas/V ,
where the volume was defined as V = 2πR2h with R ≡ RFIR the
radius of the dust-emitting region, and h the disk scale height
(half-thickness). For the purpose of our calculation, we adopted
a value of h = 1 kpc, which is characteristic of high-z puffy
starbursts (Lacki & Thompson 2010, and references therein); a
lower scale height would make the density estimates higher (e.g.
by 1 dex for a thin disk with h ∼ 100 pc). The volume-averaged
hydrogen number density was then derived using the standard
formula

nH = n(H) + 2n(H2) ≃ 2n(H2) = 2 ×
ρgas

µH2 mH
, (D.2)

where µH2 = 2.82 is the mean molecular weight per
H2 molecule (assuming a He/H abundance ratio of 0.1;
Kauffmann et al. 2008), and mH is the mass of a hydrogen atom.

The magnetic field strength (B), which (for a given elec-
tron energy) determines the critical frequency at which a CR
electron emits most of its energy (νcrit ∝ B), is needed in the
calculation of the synchrotron cooling time (τsynch ∝ B−3/2),
IC cooling time (τIC ∝ B1/2), and ionisation cooling time
(τion ∝ B−1/2/ ln(νcrit/B)). We estimated the B-field strength
using the assumption of magnetic flux freezing, that is B =

B0 ×
√

nH [cm−3], where B0, which is the field strength at nH =

1 cm−3, was taken to be 10 µG (e.g. Crutcher 1999; Beck 2001,
and references therein).

The cooling times due to the energy losses from the afore-
mentioned processes, the effective total cooling lifetime for CR
electrons (τtot

cool), and the corresponding electron escape scale-
length (lesc ∝ (τtot

cool)
1/2ν

1/2
crit B−1/2 for a random walk diffusion) in

the five SMGs under study are listed in Table D.1. Owing to the
strong radiation fields in these SMGs, the most rapid cooling oc-
curs via the IC losses (τIC ∼ 1.2 × 104 yr on average), and the
average diffusion (escape) length is only 11 pc.
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Fig. D.1. Left: Observed-frame 870 µm (λrest = 163 µm) ALMA image of AzTEC/C5. Right: Observed-frame 857 µm (λrest = 155 µm) ALMA
image of AzTEC/C17. These ALMA data were obtained as part of our Cycle 1 project (PI: A. Karim). In both panels, the white and green ellipses,
which are centred on the ALMA peak position, show the intrinsic rest-frame FIR and νobs = 3 GHz radio FWHM sizes of the source (AzTEC/C5:
0′′.39 × 0′′.31 and 0′′.67 × 0′′.43, respectively; AzTEC/C17: 0′′.35 × 0′′.19 and 0′′.70× < 0′′.38, respectively). A scale bar of 0′′.2 (= 1.34 proper kpc
for AzTEC/C5, and 1.32 proper kpc for AzTEC/C17) projected length is shown in the bottom right corner. The length of the bar is about 2.2 dex
longer than the CR electron diffusion length of 9 pc for AzTEC/C5 and 8 pc for AzTEC/C17 (Appendix D). The ALMA synthesised beam FWHM
(0′′.30 × 0′′.29, P.A. 98◦.1 for AzTEC/C5; 0′′.35 × 0′′.35 for AzTEC/C17) is shown in the bottom left.

Appendix E: Estimating the radial dust temperature

profile of AzTEC/C5

As we discussed in Sect. 4.5.2, one possible cause of the very
compact rest-frame FIR sizes of SMGs is a negative radial
dust temperature gradient in the galactic disk. To explore this
possibility, we employed the aforementioned high-resolution
(0′′.30 × 0′′.29) ALMA 870 µm data for AzTEC/C5 to estimate
the average temperature of the cold dust component within the
rest-frame FIR-emitting region (see Fig. D.1, left panel). Be-
sides the high-resolution ALMA data we possess, AzTEC/C5
is well suited for this analysis because it has a reliable CO and
[C ii]-based spectroscopic redshift (Yun et al. 2015), it exhibits a
fairly symmetric morphology in the rest-frame FIR, it is likely
seen nearly face-on (Yun et al. 2015; Miettinen et al. 2017), and
its SED-based fundamental physical properties are available
(O. Miettinen et al., in prep.; Miettinen et al. 2017, and refer-
ences therein).

We modelled the dust emission as a modified blackbody, in
which case the surface brightness at rest-frame frequency ν is
given by

Iν = Bν(Tdust)
(

1 − e−τν
)

+ Bν(TCMB)e−τν , (E.1)

where Bν(Tdust) is the Planck blackbody function at the dust tem-
perature Tdust, τν is the optical thickness, and TCMB is temper-
ature of the CMB, which evolves with redshift as TCMB(z) =
2.725 × (1 + z) K. At the redshift of AzTEC/C5, the value of
TCMB is about 14.6 K.

The dust surface brightness map was converted into a Tdust
map by solving Eq. (E.1) for Tdust, and assuming that the opti-
cal thickness obeys a power-law functional form as a function
of frequency, namely τν = τ0 × (ν/ν0)β (e.g. Hildebrand 1983),
where the reference frequency, at which τν = τ0 = 1, was set
to ν0 = 3 THz (λ0 = 100 µm). The dust emissivity index was

fixed at β = 1.5. At νrest = 1.84 THz probed by our ALMA
870 µm observations, τν = 0.48, that is the dust has a moderate
optical thickness, and the assumption of optically thin (τ ≪ 1)
dust emission would not be valid. As an alternative dust optical
thickness estimate, we used a dust mass of log(Mdust/M⊙) = 9.17
derived for AzTEC/C5 by O. Miettinen et al. (in prep.), and con-
verted that to τν using the formula

τν = κν ×
Mdust

AIR
, (E.2)

where κν is the dust opacity, and AIR is defined in Eq. (D.1).
To be consistent with the SED analysis by O. Miettinen et al.
(in prep.), we assumed that κν has a power-law ν-dependence of
κν = κ0 × (ν/ν0)β with κ0 = 0.77 cm2 g−1 at ν0 = 352.7 GHz
(λ0 = 850 µm). For a dust-emission region radius of 1.3 kpc
(Table D.1), Eq. (E.2) yields τν = 0.66, which is comparable to
the aforementioned, simple frequency-scaled value of τν = 0.48.

The Tdust map based on the assumption that (β, τν) =
(1.5, 0.48) is shown in the left panel in Fig. E.1. To derive the
Tdust(r) profile shown in the right panel in Fig. E.1, we used
one pixel-wide (0′′.05) annuli (concentric circles) centred on the
Tdust peak position, and derived the azimuthally averaged Tdust
values. The data points were fitted by a Plummer-like function
(Plummer 1911) of the form

Tdust(r) =
T

peak
dust

1 +
(

r
r0

)m , (E.3)

where T
peak
dust is the central peak dust temperature, r is radial dis-

tance from the centre, r0 is the radius of the flat inner region,
and m is the the power-law exponent at large radii (r ≫ r0).
For the case shown in Fig. E.1, we derived T

peak
dust = 24.3 K,
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Table D.1. Physical properties of AzTEC/C2a, C4, C5, C17, and C42,
and the CR electron cooling times and diffusion length scales.

Parameter C2a C4 C5 C17 C42
za 3.179 5.30+0.70

−1.10 4.3415 4.542 3.63+0.37
−0.56

Mgas
b [1011 M⊙] 5.6 4.7 5.5 3.8 3.1

D
maj
FIR

c [kpc] 4.5 3.7 2.6 2.3 2.4

Dmin
FIR

c [kpc] 3.8 2.4 2.1 1.2 1.7

D
maj
radio/D

maj
FIR

d 0.7+0.6
−0.4 2.9+2.3

−1.2 1.7+0.5
−0.5 2.0+0.6

−0.7 2.9+0.5
−0.5

he [kpc] 1.0 1.0 1.0 1.0 1.0

nH
f [cm−3] 598 967 1 840 2 515 1 388

Bg [µG] 245 311 429 502 373

LIR
h [1013 L⊙] 2.6 2.0 1.8 0.8 3.8

urad
i [keV cm−3] 8.2 12.1 17.7 15.6 49.9

uCMB
i [eV cm−3] 80.3 414.9 214.4 248.5 121.0

τsynch [105 yr] 1.0 0.6 0.4 0.3 0.5

τIC [103 yr] 19.3 11.9 10.4 12.5 3.7

τIC,CMB [105 yr] 19.6 3.5 8.6 7.9 15.2

τbrem [105 yr] 1.4 0.9 0.5 0.3 0.6

τion [104 yr] 4.6 3.1 1.3 0.9 1.7

τtot
cool

j [103 yr] 11.0 6.8 4.5 3.9 2.7

lesc
j [pc] 17 14 9 8 7

Notes. (a) See Table C.1 for the redshift references. (b) The gas mass
estimated by using the Scoville et al. (2016) dust continuum method
(O. Miettinen et al., in prep.). The CO-based gas masses for AzTEC/C5
(Yun et al. 2015) and AzTEC/C17 (Schinnerer et al. 2008) agree with
the quoted values within a factor of two when the values are scaled
according to the assumptions used in the calculation. (c) The param-
eters D

maj
FIR and Dmin

FIR refer to the major and minor axis FWHM sizes,
respectively. The FWHM of the rest-frame FIR-emitting region of
AzTEC/C2a and C4 was derived through subarcsec resolution SMA
870 µm observations by Younger et al. (2010), while that of AzTEC/C5,
C17, and C42 was derived from the subarcsec resolution ALMA submm
continuum data (PI: A. Karim). The AzTEC/C42 size refers to the
northern ALMA component, which is coincident with the 3 GHz emis-
sion peak (M15). (d) The ratio between the observed-frame 3 GHz ra-
dio size and the rest-frame FIR size. (e) A disk scale height is assumed
to be 1 kpc, i.e. that of high-z puffy starbursts considered by Lacki &
Thompson (2010). (f) The average hydrogen number density was cal-
culated from the Mgas, FIR-emitting size, and h values (see text for
details). (g) The magnetic field strength was estimated using the for-
mula B = 10 µG×

√

nH/cm−3. (h) The total IR (8–1 000 µm) luminosity
adopted from O. Miettinen et al. (in prep.). (i) The radiation field and
CMB energy densities (urad and uCMB, respectively). (j) For the formulas
used to calculate the electron cooling times and escape scale lengths,
we refer to Appendix E in M15, and references therein.

r0 = 0′′.436 ± 0′′.002 and m = 2.378 ± 0.015. The T
peak
dust value

is in good agreement with the temperature of the cold dust com-
ponent of 25 K derived for AzTEC/C5 by O. Miettinen et al.
(in prep.) through their panchromatic SED analysis using the
MAGPHYS code (da Cunha et al. 2015). The CMB temperature
floor is reached at r = 0′′.367, that is at a radius shorter than r0,
and hence the compact size of the rest-frame FIR-emitting region
appears to be physical, rather than an observational bias owing to
a Tdust(r) gradient. The fitting parameters obtained through dif-
ferent assumptions about τν are fairly similar to each other; see
Table E.1. The implications of this analysis are discussed further
in Sect. 4.5.2.

Table E.1. Parameters of the Tdust profiles derived using different as-
sumptions.

τν
a T

peak
dust

b r0
b mb r = r(TCMB)c

[K] [′′] [′′]
0.48 (β = 1.5) 24.3 0.436 ± 0.002 2.378 ± 0.015 0.367
0.38 (β = 2) 25.6 0.397 ± 0.018 2.718 ± 0.158 0.358

0.66 (Mdust; β = 1.5) 22.9 0.449 ± 0.012 2.462 ± 0.080 0.357
1.51 (Mdust; β = 2) 20.7 0.497 ± 0.021 2.377 ± 0.104 0.344

Notes. (a) The optical thickness at λrest = 163 µm based on different as-
sumptions of β and using either a simple frequency scaling or dust mass
method (Eq. (E.2)). (b) The Plummer profile parameters of Eq. (E.3).
(c) The radius at which the CMB temperature is reached.
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Fig. E.1. Left: Dust temperature map of AzTEC/C5. The dust emissivity index, β, was fixed at 1.5. The colourbar on the right indicates the units
in kelvin. The two ellipses show the dust and radio-emitting FWHM extents as in Fig. D.1. The thick black line indicates the border where the dust
temperature drops to the CMB temperature at the source redshift (TCMB(z = 4.3415) = 14.6 K). Right: Radial profile of the cold dust temperature
of AzTEC/C5. The data points represent azimuthally averaged values inside 0′′.05 wide circular annuli, and the vertical error bars represent the
standard deviations of these averages. The red dashed line shows the mean radial Tdust(r) profile fitted using Eq. (E.3). The CMB temperature floor
is shown by a horizontal blue dashed line, and is met with the Tdust(r) profile at r = 0′′.367.
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