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ABSTRACT
We present a method to recover the gas-phase metallicity gradients from integral
field spectroscopic (IFS) observations of barely resolved galaxies. We take a forward
modelling approach and compare our models to the observed spatial distribution of
emission line fluxes, accounting for the degrading effects of seeing and spatial binning.
The method is flexible and is not limited to particular emission lines or instruments.
We test the model through comparison to synthetic observations and use downgraded
observations of nearby galaxies to validate this work. As a proof of concept we also
apply the model to real IFS observations of high-redshift galaxies. From our testing
we show that the inferred metallicity gradients and central metallicities are fairly
insensitive to the assumptions made in the model and that they are reliably recovered
for galaxies with sizes approximately equal to the half width at half maximum of the
point-spread function. However, we also find that the presence of star forming clumps
can significantly complicate the interpretation of metallicity gradients in moderately
resolved high-redshift galaxies. Therefore we emphasize that care should be taken when
comparing nearby well-resolved observations to high-redshift observations of partially
resolved galaxies.

Key words: galaxies: evolution – galaxies: abundances – galaxies: ISM

1 INTRODUCTION

It is well known that star forming galaxies present a mod-
erately tight relation between their stellar masses and their
star formation rates (e.g. Brinchmann et al. 2004; Noeske
et al. 2007; Whitaker et al. 2014). Further it has been well
established that the star formation rates of these galaxies
is correlated with their gas content (e.g. Kennicutt 1998b;
Bigiel et al. 2008; Genzel et al. 2010), but that these gas
reservoirs are insufficient to sustain star formation periods
> 0.7Gyr (Tacconi et al. 2013). It has been suggested that

? E-mail: david.carton@univ-lyon1.fr

galaxies grow in a regulated fashion which maintains an
equilibrium between these quantities, where the star forma-
tion rate is limited by the supply and removal of gas (in-
flows/outflows) (Bouché et al. 2010; Davé et al. 2012; Lilly
et al. 2013). Therefore to understand how galaxies form and
evolve we should study gas flowing into and out from galax-
ies.

Gas-phase metallicity1 provides an indirect tracer of gas
flows in galaxies. While gas-phase metallicity does not di-
rectly track the volume of gas in a galaxy, it does, how-

1 Throughout this work we use metallicity, gas-phase metallicity

and oxygen abundance, 12 + log10 (O/H), interchangeably.

© 2017 The Authors
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ever, indicate the origin of the gas. To understand this it is
often helpful to consider metallicity in the context of two
other fundamental observables: the star-formation rate, and
the stellar mass. Both gas-phase metallicity and stellar mass
track a similar quantity, the time-integrated star-formation
history. However, the presence of gas flows will cause the
metallicity and stellar mass to diverge from a simple one-to-
one relation.

Inflows and outflows can both have similar effects, both
lowering the observed metallicity, one introduces metal-poor
gas into the system, whilst the other preferentially expels
metals entrained in winds (see Veilleux et al. 2005). Study-
ing the interplay of the star formation rate, stellar mass, and
gas-phase metallicity is imperative to understanding the re-
lation to the regulated growth of galaxies (e.g. Lilly et al.
2013; Ma et al. 2016).

By examining the metallicity gradients of massive
(>∼108 M�) low-redshift galaxies it has been found that
the centres of galaxies are more typically metal-rich than
their outskirts (Vila-Costas & Edmunds 1992; Zaritsky et al.
1994). Furthermore it is often claimed that when normalized
for disc scale-length, the same (common) metallicity gradi-
ent is found in all isolated galaxies (Sánchez et al. 2014; Ho
et al. 2015). This is not, however, the case for interacting or
non-isolated galaxies, for which the metallicity profiles are
typically shallower (Rich et al. 2012). In these cases Rupke
et al. (2010) have suggested that galaxy-galaxy interactions
have triggered strong radial flows of gas towards the galaxy
centre which act to temporarily erase the common metallic-
ity gradient.

There are numerous reports of high redshift (z>∼1)
galaxies having inverted (positive) metallicity gradients (e.g.
Queyrel et al. 2012; Jones et al. 2013; Leethochawalit et al.
2016). However, this phenomenon for galaxies to have cen-
tral regions more metal poor than their outskirts is not nor-
mally observed in low redshift galaxies. It has been sug-
gested that anomalously metal-poor centres may be a result
of low-metallicity gas being deposited in the inner regions
of galaxies: either via cold flow accretion (e.g. Cresci et al.
2010; Mott et al. 2013; Troncoso et al. 2014) or the transport
of gas from the outer disc (Queyrel et al. 2012). Support for
these ideas comes with the indication that the metallicity
gradient is correlated with the specific star-formation rate,
with the trend for aggressively star-forming (starbursting)
galaxies to possess flatter (less negative) or even positive
metallicity gradients (Stott et al. 2014). This could be con-
sistent with low redshift results that interacting galaxies ex-
hibit flatter metallicity gradients, since interacting galaxies
often show elevated star formation activity.

Measuring the metallicity gradients of high-redshift
galaxies is not straightforward as one has to contend with the
effects of seeing (e.g. Mast et al. 2014). Observing strongly
lensed galaxies has proven to be a successful approach for
overcoming the loss of resolution (e.g. Yuan et al. 2013).
However, with lensing alone it is hard to survey the larger
galaxy population, and in particular assess environment ef-
fects. Therefore, as a complement, we should attempt to
derive the metallicity gradients of barely resolved galaxies,
correcting for the effects of seeing. In recent surveys Stott
et al. (2014) and Wuyts et al. (2016) use integral field spec-
troscopy (IFS) to provide metallicity gradients for a large
sample of 0.6 < z < 2.6 galaxies. After measuring the seeing

corrupted metallicity gradients they applied a correction fac-
tor to infer the true uncorrupted metallicity gradient. Here
we will present a similar, but inverse approach for deriving
the true metallicity gradient in galaxies from IFS observa-
tions. Instead of applying an a posteriori correction we pro-
pose a forward modelling approach in which we directly fit a
model to the emission-line flux data. From this model we can
derive both the true metallicity gradient and its associated
uncertainty. Unlike previous methods, our approach is flex-
ible and is not limited to a particular set of emission lines.
Our method can therefore be applied to galaxies observed
over a variety of redshifts and/or with different instruments.

This paper is dedicated to outlining and testing a model
which we shall apply in future work using the Multi Unit
Spectroscopic Explorer (MUSE) (Bacon et al. 2010, and in
prep.).

We structure the paper as follows. Section 2 provides
a detailed description of our method. Afterwards we per-
form a comprehensive series of tests to analyse our model
(Section 3). In Section 4 we apply our method to real data
and discuss some characteristics of the model. Finally we
summarize our results in Section 5. Throughout the paper
we assume a ΛCDM cosmology with H0 = 70 kms−1 Mpc−1,
Ωm = 0.3 and ΩΛ = 0.7.

2 MODEL DESCRIPTION

We are interested in measuring the metallicity gradients of
distant galaxies. However, our observations are often limited
by the resolution of the telescope. The point spread func-
tion (PSF) can have two effects on the metallicity gradient.
Firstly we expect that the larger the PSF, the flatter the ob-
served metallicity gradient will be. However, the PSF is also
wavelength dependent and will alter the emission-line ratios
and ultimately the derived metallicity in a complex manner.
Applying an a posteriori correction to infer the true metal-
licity gradient would be non-trivial. Here we present the op-
posite approach whereby we construct a model galaxy with a
given metallicity profile and predict the 2D flux distribution.
We can fit the predicted fluxes to the observed fluxes and
thereby find the best-fit metallicity gradient. In this section
we will describe this model and fitting procedure.

2.1 Simulating Observations

We shall now outline the workflow that we use to simulate
observations, i.e. how we project the model from the source
plane to the observed flux. At this point we will not concern
ourselves with the physical properties (metallicity etc.) of
the galaxy model itself.

To address the problem outlined above, our simulated
observations must propagate the effects of seeing. In addi-
tion, however, we must also mimic the aggregation (or “bin-
ning”) of spaxels2. The binning of spaxels is often required
to increase the signal-to-noise ratio (S/N) of the data, but
at the cost of further spatial resolution loss.

We shall now describe our model. To accompany this

2 spatial pixel

MNRAS 000, 1–25 (2017)



Forward modelling of metallicity gradients 3

Figure 1. Directed acyclic graph outlining the model workflow
for generating model fluxes Fj,λ . Fixed model inputs are repre-

sented as blue rectangles with rounded corners. The five free pa-

rameters to the model are shown as red ellipses. Computation
steps within the model are drawn as orange rectangles. ith sub-

scripts denote values assigned for each pixel in the input SFR
map.

text we show a schematic outline of the model in Fig. 1.
Our methodology is as follows:

(i) The galaxy is initialized from a star formation rate
(SFR) map. This map is a 2D Cartesian grid which lies in
the plane of the sky. For simplicity we treat each pixel to be
represented by a point source situated at the centre of the
pixel, and with a star formation rate (SFR) equal to that
of the whole pixel. In practice, to ensure the model is well-
sampled, we will oversample our SFR maps by a factor two
or three.

(ii) We use the galaxy model to associate a set of emis-
sion line luminosities to each point source. We project each
point source through the galaxy model (the galaxy lies in
a plane inclined with respect to the observer). Given the
projected galaxy-plane coordinates and the SFR, the galaxy
model generates a list of emission line fluxes as a function
of position in the galaxy. (The details of the galaxy model
will be given in Section 2.3).

(iii) We now simulate image pixelization and PSF effects.
An output image pixel grid is constructed with same geome-
try as that of the observed image. We calculate the distance
from each point source to the centre of each pixel. By eval-

uating the PSF at these distances we can approximate how
much flux is diffused from each point source into each output
pixel.

(iv) To mimic the effects of aggregating spaxels together
to increase the S/N, we also coadd the model pixels to match
the exact binning that was applied to the data.

In step (ii) we project source coordinates into the galaxy
model plane. This requires four morphological parameters:
the Right Ascension (RA) and Declination (Dec.) of the
galaxy centre, the inclination (inc.) of the galaxy, and the
position angle (PA) of the major axis on the sky. Partly for
reasons of computational efficiency these morphological pa-
rameters are fixed a-priori. The galaxy morphology can, for
example, be determined from either high-resolution imaging
or the kinematics of the ionized gas. When fitting the model
we will need to repeat steps (ii)–(iv) many times. We can,
however, vastly reduce the computation time if we cache the
mapping operations (steps (iii) & (iv)) as a single sparse3

matrix.
So far we have only outlined how we simulate observa-

tions. We have not yet touched upon how the emission-line
luminosities are generated. Our methodology divides this
into two separate components: an SFR map and the galaxy
model (i.e. steps (i) & (ii), respectively). Essentially, the for-
mer describes the 2D spatial emission-line intensity distri-
bution, and the latter the 2D line-ratio distribution. In the
following sections we will describe both these components.

2.2 Star Formation Rate (SFR) Maps

Nebular emission lines are associated with the H ii regions
that surround young massive stars. We therefore need to
model the spatial SFR distribution. The simplest approach
would be to assume that the star formation rate density
declines exponentially with radius, but while this might be
an acceptable approximation, it is difficult for any paramet-
ric model to accurately describe the SFR distribution of a
galaxy. We shall later show that the clumpy nature of the
SFR can have important consequences for the metallicity
profile that we infer (see §3.2). If a realistic (and reliable)
empirical map of the SFR can be obtained then we should
input this into the modelling. In Appendix D we describe
how these maps can be obtained in practice. It is important
to note that the map should have higher resolution than the
data we are modelling.

The SFR map is not, however, entirely fixed a priori;
to allow some flexibility in the model fit we shall allow one
free parameter in the SFR. We introduce a normalization
constant, the total star formation rate (SFRtot) which is used
to rescale the SFR map, and thereby it also rescales the
emission-line luminosities without altering the line ratios in
any way.

3 The matrix is sparse as we only actually evaluate the PSF in

step (iii) for the closest pairs of point sources and output pixels.
The maximum evaluation distance is chosen to enclose 99.5% of
the PSF.

MNRAS 000, 1–25 (2017)
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2.3 The Galaxy Model

In our model we describe a galaxy as a series of H ii regions,
each with a SFR set by the input SFR map. We assume
the galaxy is infinitesimally thin, lying in an inclined plane.
Apart from the SFR distribution, the galaxy model is ax-
isymmetric. I.e. the emission line ratios only depend on one
coordinate, r, the galactocentric radius.

There are three H ii region properties in our model
which set the observed line-ratios: metallicity, ionization pa-
rameter, and attenuation due to dust. We shall now describe
the radial parametrizations of these components.

2.3.1 Metallicity and Ionization Parameter

The physical properties of H ii regions determine the ob-
served emission-line intensities. Varying elemental abun-
dances alters the cooling rate of an H ii region and thereby
impacts upon the thermal balance of the H ii region. Tem-
perature sensitive emission line ratios have long been used
to infer the abundances of an H ii region (Aller & Liller
1959). However, metallicity does not single-handedly control
the emission-line intensities of H ii regions. Indeed the line-
ratios will be affected by variations in the electron density
and changes due to the ionizing continuum spectrum (Kew-
ley et al. 2013). Theoretical photoionization models partly
encapsulate these effects in the dimensionless ionization-
parameter, U , which is in effect the ratio of the number
density of ionizing photons to the number density of hydro-
gen atoms. At fixed metallicity the largest variation in line
ratios with physical properties is function of the ionization
parameter (Dopita et al. 2000). So, similarly for our galaxy
model we will assume that the emission line luminosities at
each spatial position in the galaxy are prescribed by these
two parameters: metallicity and ionization parameter. We
therefore need to parametrize both metallicity and ioniza-
tion parameter spatially throughout the galaxy disc.

It has long been established that the metallicity in the
inner disc of low redshift galaxies is well described by simple
exponential function (e.g. Moustakas et al. 2010). With this
precedent, and in accordance with others (e.g. Queyrel et al.
2012), we shall adopt the same functional form

log10 Z(r) = ∇r (log10 Z)r + log10 Z0, (1)

where r is the radius, ∇r (log10 Z) is the metallicity gradient,
and log10 Z0 is the metallicity at the galaxy centre.

In contrast, the ionization parameter may depend on
the local environmental conditions of the H ii region, and
therefore is not necessarily a simple function of galactocen-
tric radius. It would be very computationally challenging
to non-parametrically incorporate the ionization parameter
into the model. We wish to have a simple one parameter de-
scription for the ionization parameter as a function of radius,
but we do not wish to assume the ionization parameter to be
constant throughout the galaxy. Instead we exploit a natural
anti-correlation between ionization parameter and metallic-
ity (Dopita & Evans 1986). The origin of this anti-correlation
has been discussed fully in Dopita et al. (2006). But to sum-
marize, fewer ionizing photons escape from higher metallic-
ity stars because at higher abundances stellar winds are more
opaque and the photospheres scatter more photons. These
effects combined predict an anti-correlation between ioniza-

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

log10 (Z/Z�) [dex]

−4.0

−3.5

−3.0
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log10 U (Z) = −0.8 log10 (Z/Z�)− 3.58

Figure 2. Anti-correlation in the SDSS DR7 sample between ion-
ization parameter, log10 U , and central metallicity, log10 Z. SDSS

galaxies show as a grey histogram. The histogram is normalized

per each metallicity bin (i.e. column). The orange line indicates
the best fit solution for the theoretical U ∝ Z−0.8 dependence. To

exclude active galactic nuclei (AGN) contamination we use the

star-forming classification of Brinchmann et al. (2004) (with a
cut on emission-line S/N > 10). To further exclude weak AGN

we require that the stellar surface-mass density within the fibre
is < 108.3 M�/kpc2. Note that because of the AGN removal our

sample does not extend to very high metallicities.

tion parameter and metallicity with dependence U ∝ Z−0.8.
In Fig. 2 we show the dependence of ionization parame-
ter on metallicity for the Sloan Digital Sky Survey (SDSS;
York et al. (2000)) Data Release 7 (DR7; Abazajian et al.
(2009)). It is clear that the SDSS sample broadly follows the
U ∝ Z−0.8, although at low metallicities (<∼ − 0.5dex) the
data implies a steeper dependence and is better described
with a second-order polynomial.

In our galaxy model we shall couple the ionization pa-
rameter to the metallicity using

log10 U (Z) =−0.8log10
(
Z/Z�

)
+ log10 U�, (2)

where Z� is solar abundance and log10 U� is the ioniza-
tion parameter at solar abundance. We consider log10 U� to
be constant throughout the galaxy. It has been suggested
that higher redshift galaxies exhibit elevated ionization-
parameters (Shirazi et al. 2014; Kewley et al. 2015), there-
fore we will allow the constant offset, log10 U�, to be a free
parameter.

There is a second, but equally important reason for cou-
pling the ionization-parameter to the metallicity. In a typical
use case of the model, we will have a galaxy with only a lim-
ited set of emission lines observed (e.g. [O ii]3727,3729, Hβ ,
[O iii]5007). With these three emission lines the infamous
R23 degeneracy arises. See for instance McGaugh (1991)
and Kewley & Dopita (2002) who provide informative dis-
cussions of this degeneracy. In this case, solving for metal-
licity produces two solutions, one low metallicity and the
other high. Without additional information it is impossible
to constrain which is the true solution. However, consider
the scenario in which we simultaneously measure a high
O32 = ([O iii]5007/[O ii]3727,3729) ratio, from this we would

MNRAS 000, 1–25 (2017)
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infer a high ionization-parameter. By assuming metallicity
and ionization-parameter are anti-correlated we could con-
clude the low-metallicity (high ionization-parameter) solu-
tion to be the correct one. Our modelled galaxies therefore
possess both metallicity and ionization parameter gradients,
the slopes of which are anti-correlated with one another.

In this paper we adopt the photoionization models of
Dopita et al. (2013, herein D13) . In addition to metallicity
and ionization parameter, these models introduce a third pa-
rameter, κ, that allows non-equilibrium electron energy dis-
tributions (Nicholls et al. 2012). We will, however, limit our-
selves to the traditional Maxwell-Boltzmann case (κ = ∞).
These photoionization models have been computed on a grid
spanning 0.05Z� ≤ Z ≤ 5Z�4 and −3.98<∼ log10 U <∼ −1.98.
However, our above parametrization of Z(r) and log10 U(r) is
not explicitly bound to this region. And since we do not wish
to extrapolate the photoionization model grids, we “clip”
Z(r) and log10 U(r) so that they do not depart from the grid
region. I.e. where Z(r) < 0.05Z� we set Z(r) = 0.05Z� and
likewise where Z(r)> 5Z� we set Z(r) = 5Z�. In Appendix A
we show the D13 photoionization model grids for a few stan-
dard line-ratios.

The D13 models adopt an electron density ne ∼ 10cm−3.
This is thought to be appropriate for low redshift galax-
ies, but this is not necessarily the case for high redshift
(z>∼1) galaxies (e.g. Shirazi et al. 2014; Sanders et al. 2016).
We caution the reader that if our model is to be applied
to high redshift galaxies, different photoionization models
would likely be needed. Indeed, the model could easily be
extended to include the electron density of the galaxy as an
additional free parameter. However, since we will be apply-
ing this model to z<∼1 galaxies, we simply choose to fix the

electron density at ne ∼ 10cm−3.
It is also worth noting that D13 models assume that the

underling stellar population has a continuous star formation
history (as opposed to a instantaneous burst). But, since we
are applying our model to poorly resolved data, we are in
effect averaging over many individual H ii regions. Therefore,
while an instantaneous burst might be most appropriate for
modelling individual H ii regions, we consider the continuous
star-formation assumption to be more valid for our purposes.

The line fluxes are scaled to luminosities based on the
SFR map, with the following scaling relation between Hα

luminosity and SFR as taken from Kennicutt (1998a)

L(Hα)

ergs−1 =
1

7.9×10−42
SFR

M� yr−1 . (3)

This assumes a Salpeter (1955) initial mass function, con-
sistent with the D13 photoionization modelling.

The emission-line luminosities are computed as follows:

(i) Evaluate the metallicity for each radial coordinate us-
ing equation 1 (for given values of log10 Z0 and ∇r (log10 Z)).

(ii) Clip log10 Z(r) to the metallicity range of the pho-
toionization model grid.

(iii) Calculate the associated ionization parameter using
equation 2 (for a given value of log10 U�).

(iv) Clip log10 U(r) to the ionization parameter range of
the photoionization models.

4 The undepleted solar abundance of these photoionization mod-

els is 12 + log10 (O/H) = 8.69 (Grevesse et al. 2010).

(v) Infer the relative emission line luminosities by inter-
polating the photoionization grid at (log10 Z(r), log10 U(r)).

(vi) Scale the emission-line luminosities appropriate for
the SFR using equation 3.

2.3.2 Dust attenuation

There remains one hitherto undiscussed ingredient in the
model, the attenuation due to dust. Since dust attenuation
is wavelength dependent it will alter the emission-line ratios.

We adopt the dust absorption curve appropriate for H ii
regions as proposed by Charlot & Fall (2000)

Lext(λ ) = L(λ )e−τ(λ ) (4)

with

τ(λ ) = τV

(
λ

5500Å

)−1.3
, (5)

where Lext(λ ) and L(λ ) are the attenuated and unattenu-
ated luminosities respectively, λ is the rest-frame wavelength
of the emission line, and τV is the V-band (5500Å) optical
depth. Thus the absorption curve is described by only one
parameter, τV .

The radial variation of the dust content of galaxies is
not well known. For simplicity we shall therefore assume the
optical depth to be constant across the whole galaxy. We dis-
cuss the appropriateness of this assumption in Section 4.3.1.

It should be noted that, even aside from the lack of ra-
dial variation, this dust model is relatively basic. We have
assumed the galaxy to be infinitesimally thin, and we do not
include any radiative transfer effects along the line-of-sight.
Approximating the galaxy in this way as a thin disc becomes
highly questionable for highly-inclined (>∼70◦) galaxies and
we do not claim that our model works for such edge-on sys-
tems.

2.3.3 Summary

We have now outlined how we assign the emission-line lumi-
nosities. All told there are five free parameters: the total star
formation rate of the galaxy, SFRtot, the central metallicity,
log10 Z0, the metallicity gradient, ∇r (log10 Z), the ionization
parameter at solar abundance, log10 U�, and the V-band op-
tical depth, τV . In the next section we discuss the fitting of
our model, and the bounds we place on these parameters.

As a final cautionary note we highlight that the model
only describes the nebular emission from star-forming re-
gions. In the centres of galaxies, however, active galactic nu-
clei (AGN) and low-ionization nuclear emission-line regions
(LINERs) can contribute significantly to the emission-line
flux. Therefore this model should not be applied to galaxies
that present signs of significant AGN/LINER contamina-
tion.

2.4 Model fitting

In the preceding sections we have described our model which
we will use to derive the metallicity of barely resolved galax-
ies. Of the modelled parameters the most scientifically inter-
esting are the central metallicity, log10 Z0, and the metallicity
gradient, ∇r (log10 Z). We would like to derive meaningful

MNRAS 000, 1–25 (2017)
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errors, accounting for the degeneracies among the param-
eters. Such a problem naturally lends itself to a Markov
chain Monte Carlo (MCMC) approach. Here we use the
MultiNest algorithm (Feroz et al. 2009; Feroz & Hobson
2008; Feroz et al. 2013) accessed through a Python wrap-
per (Buchner et al. 2014). In light of the known degenera-
cies between metallicity and ionization-parameter we antici-
pate that the likelihood surface may be similarly degenerate.
For this reason we have adopted the MultiNest algorithm,
which is efficient at sampling multimodal and/or degenerate
posterior distributions.

2.4.1 Prior probability distributions (Priors)

For the Bayesian computation we place an initial probability
distribution (prior) on each parameter. We set the priors to
be all independent of one another, described as follows:

• SFRtot: The total SFR of the galaxy provides the over-
all flux normalization of the model, we place a flat prior
on the interval [0,100] M� yr−1. This sufficiently covers the
expected range of galaxies we could observe.

It may seem more logical to adopt a logarithmic prior for
this normalization constant. Adopting such a prior caused
our model to converge to local minima in our highest S/N
tests (§3.1.1). Real data, which has much lower S/N, will not
suffer the same convergence issues as the likelihood surface
will be smoother. For consistency we adopt a uniform prior
throughout this paper. This does not affect our conclusions.
• log10 Z0: We place a flat prior on the central metal-

licity, log10 Z0, (logarithmic over Z0). The interval is cho-
sen to match the full metallicity range allowed by the
photoionization-model grid (∼[-1.30,0.70] dex).
• ∇r (log10 Z): We set a flat prior on the metallicity gradi-

ent of galaxies spanning the range [−0.5,0.5] dex/kpc. Cur-
rent evidence suggests galaxies at high redshifts (z>∼1) may
exhibit metallicity gradients steeper than those found in
lower redshift galaxies. Typically high redshift galaxies have
metallicity gradients between −0.1 and 0.1dex/kpc, and at
most −0.3dex/kpc (Leethochawalit et al. 2016). Our prior is
therefore sufficiently broad to incorporate even the steepest
gradients.

It should be noted that a flat prior on a metallicity gra-
dient is not an uninformative prior. A uniform prior in gra-
dient is not uniform in angle, but is biased towards steeper
profiles (see VanderPlas 2014). Furthermore, a minimally
informative prior would yield equal probability to find any
metallicity at all radii, r. I.e. the 2D (r, log10 Z0) space should
be evenly sampled. Since we clip our metallicities to a finite
grid of photoionization models this is difficult to achieve per-
fectly. Therefore, for the simplicity of this paper we adopt a
uniform prior on the metallicity gradient. The choice of this
prior will have to be revisited in future work. We further
discuss the effect of this prior in Appendix B.
• log10 U�: The photoionization-model grid already sets

bounds on the allowed values of log10 U . We set a flat prior on
log10 U� such that log10 U can span this full range, at any
metallicity. For this paper this range is ∼[-5.02,-1.42] dex.
Remember that ultimately log10 U (r) will clipped to remain
within the photoionization-model grid.
• τV : We place a flat prior on the V-band optical depth

on the interval [0,4]. This should be sufficient to include all

galaxies we are interested in, which have relatively strong
emission-lines.

2.4.2 Likelihood function

The likelihood function assigns the probability that, for
a given model, we would have measured the observed
emission-line fluxes.

We will have a set of observed fluxes, Fobs,i, for each
observed emission-line and for each spatial bin. Correspond-
ingly we have a set of errors, σobs,i, estimated from the data.
Our model predicts a complementary set of fluxes, Fmodel,i.
Following Brinchmann et al. (2004), we additionally assign
a constant 4% theoretical error, σmodel,i = 0.04Fmodel,i.

We assume that the observed fluxes, Fobs,i, are related
to the true fluxes, Ftrue,i, through

Fobsi = Ftruei + εi, (6)

where the noise, εi, is drawn from a Student’s t-distribution.
Our likelihood function is therefore

L (x1, . . . ,xn | ν ,σ1, . . . ,σn) =
n

∏
i=1

L (xi | ν ,σi) (7)

with

L (xi | ν ,σi) =
Γ
(

ν+1
2
)

Γ
(

ν

2
)√

πνσi

(
1 +

1
ν

(
xi

σi

)2
)− ν+1

2

, (8)

where we define the residual as

xi = Fobs,i−Fmodel,i, (9)

and the square of the scale parameter as

σ
2
i =

ν−2
ν

(σ
2
obs,i + σ

2
model,i). (10)

In this paper we assume ν = 3 degrees of freedom.
There are two motivations for adopting Student’s t-

distribution over the more traditional normal distribution.
The first and highly practical reason is to add robustness
to our fitting. Student’s t-distribution is more heavily tailed
than the normal distribution. Therefore outliers with large
residuals will be penalized less by Student’s t-distribution
than by the normal distribution. Even if most of the data is
well described by the normal distribution, one errant data
point can have disastrous consequences on the inference. Es-
sentially by adopting a more robust likelihood function we
are trading an increase in accuracy for a decrease in preci-
sion.

The second reason for adopting Student’s t-distribution
is that in fact our data may indeed be better described
by Student’s t-distribution than the normal distribution.
The emission-line fluxes are typically measured from spec-
tra where the resolution is such that the emission line is
covered only by a few wavelength elements. In this case the
associated errors are calculated only from a few independent
pieces of information, and hence the Student’s t-distribution
is more appropriate. Precisely calculating the degrees of free-
dom of each emission-line is difficult, although in theory can
be estimated from repeat observations. For simplicity we as-
sume the number of degrees of freedom is small, and hence
we choose a constant ν = 3 degrees of freedom.
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Table 1. Moffat parameters of the adopted PSF model, indicating
knots of a piecewise-linear interpolation. Each wavelength has an

associated full-width half-maximum size (FWHM) and a Moffat–

β parameter.

Wavelength FWHM β

[Å] [arcsec]

4750 0.76 2.6
7000 0.66 2.6

9300 0.61 2.6

2.5 PSF model

There is one further aspect of the model that we have not
yet discussed. The galaxy model fluxes are distributed as-
suming a PSF. To derive meaningful results from the best fit
model it is important to input a PSF that closely matches
the true seeing of the observations. The adopted PSF should
therefore be driven by the data itself.

In this paper we will use MUSE observations of the
Hubble Deep Field South (Bacon et al. 2015). The authors
use a moderately bright star also within the MUSE field of
view (FoV) to derive the PSF. The best-fit Moffat profile
for this star has the parameters as given in Table 1. For
consistency, unless otherwise specified, we will adopt this
empirical model throughout this paper as our fiducial PSF.

3 MODEL TESTING

In the previous section we presented our method for mod-
elling the emission lines of distant galaxies. Before moving to
the modeling of distant galaxies in the following section, we
here assess the reliability of our model. Of all the modelled
quantities, we are most interested in the metallicity profile,
hence we will only focus on validating two of the model’s
parameters: the central metallicity, and the metallicity gra-
dient. In essence we consider SFRtot, log10 U� and τV all to
be nuisance parameters.

Here we present two categories of tests. In the first set
of tests (§3.1) we fit the model to mock data constructed
using noisy realizations of the model itself. This will allow
us the observe intrinsic systematics and uncover inherent
limitations of our method. However, these tests cannot as-
sess whether our model is actually a good description of a
real galaxy. So, to answer this we present a second set of
tests (§3.2) using mock data from downgraded observations
of low redshift galaxies. With these we can study how the
model performs for realistic galaxies with complex structure,
violating our idealized model assumptions.

3.1 Accuracy and precision tests

In order to validate our method we must minimally show
that the model can recover itself. With the inclusion of noise
it is not obvious that this should be the case. A combination
of low S/N and resolution loss may yield highly degenerate
model solutions.

In the following tests we use our model to construct
simulated mock observations for a galaxy at a redshift of
z = 0.5, using the PSF given in Table 1. We assume the star
forming disc of the galaxy to have an exponentially declining

star-formation rate density

ΣSFR ∝ e−r/rd (11)

where rd is the exponential scale-length of the disc. With
our model we generate four noise-free emission-line images5.
To this data we add normally distributed noise, with the
standard deviation depending on the pixel flux Fi as follows

σi = α
√

Fi, (12)

where α is a scaling factor. This scaling factor is the same
for all emission lines. By adjusting the scaling factor we can
achieve different S/N observations. We define the S/N as
that of the brightest pixel in the unbinned Hβ map.

We must treat the fake data as we would for real data,
therefore we bin spaxels together to reach a minimum S/N =
5 in all emission lines. This binning algorithm is outlined in
Appendix C.

3.1.1 Varying S/N

Our solution should converge to the true solution at high
S/N, but might be biased or show incorrect uncertainty es-
timates at lower S/N. In the following we therefore explore
a range of S/N levels (S/N = 3,6,9,50).

For the test we construct 50 realisations of mock data, at
a given S/N ratio. For each realisation we fit the model and
retrieve marginal posterior probability distributions of the
two parameters of interest (the central metallicity, log10 Z0,
and metallicity gradient, ∇r (log10 Z)). We take the median
of each marginal posterior to be the best-fit solution.

In Fig. 3 we show the mean and scatter of these best-fit
values over the 50 realizations. We provide this for a range
in S/N levels, and for two slightly different input models
(Panels a & b). From this we can assess that at all but the
lowest S/N level there is little systematic offset of the mean
from true value. For S/N ≥ 6 we find that bias on the cen-
tral metallicity is <0.01dex and on the metallicity gradient
<0.003dex/kpc. At S/N = 3 there is some noticeable offset,
but the realization-to-realization scatter is much larger. We
discuss biases in more detail in Appendix B. Therein we ex-
plore a larger portion of the parameter space where strong
systematic offsets can arise.

The tests here also show that there is considerable scat-
ter in the poor S/N=3 data. This is of course unsurprising,
however, even the good S/N=9 results in Fig. 3(b) show
moderate scatter. Since we are performing an MCMC fit,
we retrieve the full posterior probability distribution (or pos-
terior for short). We can use the 50 repeat realizations to
infer whether the posterior is a good estimate of this er-
ror. For each realisation we define the z-score to be the dif-
ference between the true value and the estimated mean in
units of the predicted uncertainty. If the uncertainty esti-
mates are accurate, these z-scores should be distributed as
a standard normal distribution (zero mean and unit vari-
ance). In Tables 2 & 3 we summarize these z-scores for the
model shown in Fig. 3(b). We see that the tabulated percent-
ages are slightly smaller than would be expected. This in-
dicates that our posteriors typically underestimate the true

5 [O ii]3726,3729, Hγ, Hβ , and [O iii]5007
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Figure 3. The effects of S/N on accuracy and precision of
the inferred central metallicity, log10 Z0, and metallicity gradient,

∇r (log10 Z). Plot showing error ellipses for varying S/N, drawn
such that they enclose 90% of the scatter (assuming the data to be
distributed normally). Coloured error crosses indicated the means

(and standard error on the mean) at each S/N level. The two dif-

ferent panels show this experiment for two different sets of origi-
nal model inputs. In panel (a) Model inputs were log10

(
Z0/Z�

)
=

0.3dex, ∇r (log10 Z) =−0.05dex/kpc, SFRtot = 1M� yr−1, rd = 0.4′′,
log10 U� =−3dex, τV = 0.7. In panel (b) Model inputs identical to

(a) except for log10
(
Z0/Z�

)
=−0.3dex.

error. However, this is only a relatively small difference so,
although not perfect, we conclude these error estimates to
be acceptable. For reference we also present Q-Q plots in the
appendix (Fig. E2), comparing the z-scores to a theoretical
normal distribution.

3.1.2 Varying PSF

The preceding section showed that at moderate to high S/N,
our model is unbiased when fitting itself. These tests were
performed with decent spatial resolution (rd >∼0.5×FWHM),
so we will now explore the effect of degrading the PSF. To do
this, we create a series of mock data with fixing the physical
model parameters, but with different PSFs.

We model changes in the seeing simply through changes
in the FWHM of the PSF. The wavelength dependence of the

Table 2. Percentage of 50 repeat realizations with log10 (Z0) z-

scores within a given range. Associated Q-Q plot are found in
the appendix (Fig. E2). Results here are for the model shown in

Fig. 3(b).

S/N −1≤ z < 0 0≤ z < 1 −1≤ z <−1 −2≤ z < 2
3 (22 ± 3)% (46 ± 4)% (68 ± 3)% (98 ± 1)%

6 (28 ± 3)% (30 ± 3)% (58 ± 3)% (84 ± 3)%
9 (28 ± 3)% (26 ± 3)% (54 ± 4)% (88 ± 2)%

50 (30 ± 3)% (34 ± 3)% (64 ± 3)% (90 ± 2)%

Expected 34% 34% 68% 95%

Table 3. Percentage of 50 repeat realizations with ∇r (log10 Z) z-

scores within a given range. Associated Q-Q plot are found in
the appendix (Fig. E2). Results here are for the model shown in

Fig. 3(b).

S/N −1≤ z < 0 0≤ z < 1 −1≤ z <−1 −2≤ z < 2
3 (40 ± 3)% (10 ± 2)% (50 ± 4)% (84 ± 3)%

6 (26 ± 3)% (32 ± 3)% (58 ± 3)% (86 ± 2)%
9 (22 ± 3)% (32 ± 3)% (54 ± 4)% (90 ± 2)%

50 (26 ± 3)% (28 ± 3)% (54 ± 4)% (90 ± 2)%

Expected 34% 34% 68% 95%

seeing is retained, and we modulate the FWHM amplitude
by a multiplicative factor. The Moffat β parameter remains
fixed. We remind the reader that our S/N is defined on the
peak (unbinned) flux of the Hβ emission line (§3.1), so by
changing the PSF we inadvertently alter the S/N. To isolate
the effects of resolution from those of S/N, we shall keep α

(the noise scaling factor in equation 12) fixed to that used
for the fiducial PSF. The total flux from the galaxy remains
unchanged.

In Fig. 4 we show the mean and scatter of 50 realiza-
tions for four different PSFs. This shows that even with sig-
nificantly poorer seeing our model is still able to recover
the true values with little systematic offset. However, poorer
seeing will introduce information loss and the precision to
which we can determine the metallicity gradient is much re-
duced. We caution the reader that this statement can not
readily be converted into an absolute FWHM of the PSF
since what is of real importance here is the relative size of
the PSF to the size of the galaxy. But as a guide for the
reader, the percentages in Fig. 4 correspond to PSFs be-
tween ∼ 0.4–1.5′′ FWHM, which should be compared to a
galaxy that has a rd = 0.4′′ disc scale-length (which would
be typical for 3×1010 M� disc galaxies at z = 0.75 (e.g. van
der Wel et al. 2014)).

It should be noted that the direction of the systematic
offset in the poor (PSF = 200%) seeing data is actually to-
wards a steeper metallicity gradient, rather than towards
the flat gradient that one might näıvely expect. Since see-
ing is wavelength dependent its effects can be complicated,
and therefore worse seeing may not automatically lead to a
flatter inferred gradient. However, it is perhaps more likely
a reflection of systematics intrinsic to the modelling and/or
introduced by the model priors (see Appendix B).

3.1.3 Varying inclination

Altering the PSF is not the only way to reduce spatial infor-
mation. Highly inclined (edge-on) galaxies lose considerable
resolution along the minor axis. We should check that our

MNRAS 000, 1–25 (2017)
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Figure 4. Effects of changing the PSF on the inferred central
metallicity and metallicity gradient. We show error ellipses for a

series of improving PSFs (see Fig. 3 for plot description). Here a

200% PSF indicates observations with a FWHM double that of
the fiducial (100%) model. The noise scaling factor (α in equa-

tion 12) is fixed such that the 100% model has a peak S/N = 9.

We adopt the same model inputs as used Fig. 3(a). The disc
scale-length is rd = 0.4′′.

method is able to recover the same metallicity profile for a
galaxy independent of its inclination.

Again we construct a series of mock observations where
the only variation is in the inclination of the galaxy. As
before, in order to remove the effects of changing S/N, we
fix α (the noise scaling factor in equation 12) to that used
for the fiducial inc. = 0◦ model.

In Fig. 5 we show the mean and scatter of 50 realiza-
tions for four different inclinations. We perform this exercise
for two galaxies of different sizes (rd = 0.3′′ and rd = 0.6′′),
where the smaller galaxy should be more sensitive to incli-
nation effects. It can be seen that even in the edge-on case
we are able to well recover the metallicity profile, although
admittedly to a lower precision than for the face-on galaxy.

It should be stressed, however, that even though the
method works for the extreme edge-on cases there are sig-
nificant limitations in the galaxy model at high inclinations.
Because we assume the galaxy to be infinitesimally thin, two
issues arise. Firstly, at high inclinations the centres of dusty
galaxies may be obscured, but since we do not include any
radiative transfer effects along the line-sight the model does
not reproduce this. Secondly, when a galaxy is nearly edge-
on it becomes almost impossible to distinguish metallicity
that varies with radius from metallicity that varies with
vertical disc height. Even with high-spatial resolution ob-
servations these problems would remain. For these reasons
we caution the reader that the results for highly inclined
galaxies are unlikely to be relevant for real galaxies and we
will limit our studies to galaxies with inclinations less than
∼ 70◦.

The tests presented so far are not sufficient to validate
our model, and indeed further tests are required. In the fol-
lowing section we use mock observations constructed from
real observations of low redshift galaxies. This will enable
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Figure 5. The impact of inclination on the accuracy and preci-
sion to which we can derive the central metallicity and metallicity

gradient. We show error ellipses for a set of progressively more in-
clined models (see Fig. 3 for plot description). The noise scaling
factor (α in equation 12) is fixed such that the inc. = 0◦ model

has a peak S/N = 9.

us to compare our model against data that more closely re-
sembles real, rather than idealized, galaxies.

3.2 Model tests with realistic data

So far we have ascertained that our method is able to recover
the true metallicity profile. Although adverse conditions (low
S/N and poor seeing) reduce the precision of the method,
they do not significantly impact upon the accuracy. This
does not, however, verify that the model is a good descrip-
tion of real galaxies. To address this we will fit the model
to mock data generated from observations of low redshift
galaxies, downgraded in both S/N and resolution.

The mock data is constructed from IFS observations of
three low redshift galaxies (UGC463, NGC628, NGC4980).
These galaxy were not selected especially to be represen-
tative of higher redshift galaxies (although their SFRs are
comparable to those we will study). Instead these galax-
ies were chosen primarily owing to the availability of high
quality IFS data, and because they are not highly inclined
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galaxies. Two of these galaxies were observed with MUSE
(UGC463 and NGC4980) and the other (NGC628) was ob-
served as part of the PPAK IFS Nearby Galaxies Survey
(Sánchez et al. 2011). We construct emission-line maps6 of
Hβ , [O iii]5007, Hα, [N ii]6584 and [S ii]6717,6731 from these
observations and convolve these maps with the seeing and
bin them to the appropriate pixel scale to produce mock im-
ages. Finally noise is added and the data binned as described
above (Section 3.1). In the following we define the size of the
galaxies using the disc scale-length of dust-corrected Hα flux
profile. Note that the galaxy centres are defined using the
stellar light not the nebular emission (which can be clumpy
and asymmetric).

In addition to the emission-line images, our method re-
quires a SFR map for each galaxy. Typically these SFR maps
will be created from high-resolution observations. So, we
generate SFR maps using the dust-corrected Hα maps of
the low redshift galaxies. These maps are then degraded to
a resolution comparable to that of the Hubble Space Tele-
scope (HST), i.e. a Gaussian PSF with FWHM = 0.1′′ and
pixel scale 0.05′′. We do not add any additional noise to the
SFR maps.

To test our ability to measure the metallicity profile
of these mock observations, we run our full model fitting
procedure on galaxies of two different sizes (rd = 0.4′′ and
rd = 0.8′′), simulated with S/N = 9, at a redshift z = 0.2557,
and with the PSF given in Table 1. At this redshift Hβ ,
the most blueward emission line, is the most affected by
seeing and has a FWHM = 0.7′′. These results are then com-
pared to the metallicity derived from the high-resolution
(non-degraded) data. We compute the latter using the IZI
procedure developed by Blanc et al. (2015), which solves
for metallicity, marginalized over the ionization parameter.
For consistency with our galaxy model we use the same D13
(κ = ∞) photoionization model grid. We fit a simple expo-
nential model for the metallicity as a function of radius (i.e.
equation 1), where each data point is weighted proportional
to its Hα flux. We weight by flux because unless one can re-
solve H ii regions individually, one is unavoidably weighted
towards the emission-line ratios of the brightest H ii regions.
Thus, for comparison to our low-resolution mock data, it is
appropriate to weight our fit by the Hα flux. We caution the
reader that the high-resolution metallicity profiles presented
here should not be considered definitive. The analysis that
follows is nonetheless self-consistent.

In Fig. 6 we present a comparison of the inferred and
true metallicity profiles. For each mock dataset we create
50 realizations and calculate the marginalized 2D probabil-
ity on the central metallicity, log10 Z0, and metallicity gradi-
ent, ∇r (log10 Z). The left-hand panels show this marginalized
probability, after stacking all 50 realizations. A triangle in-
dicates the maximum a posteriori (MAP) estimate of this
stacked marginalized probability. In the central panels we

6 The exact details of how these maps are obtained are not crucial

to our analysis. For a self-consistent analysis we simply require
realistic mock inputs, ideally with high S/N and good spatial

resolution.
7 At this redshift all five emission lines are within the MUSE

wavelength coverage. More typically, however, we will apply this
model to higher redshift galaxies where [O ii]3726,3729 is available,

but Hα, [N ii] and [S ii] are not.

present the true metallicity profile, with the best-fit expo-
nential model and MAP estimate models overplotted. As can
be seen, our model performs well for UGC463 and NGC628,
but derives an entirely different solution for NGC4980. We
shall now discuss each galaxy in turn.

UGC463 This is a SAB(rs)c galaxy (de Vaucouleurs et al.
1991, herein V91) and has a stellar mass log10

(
M∗/M�

)
=

10.6 (Martinsson et al. 2013). This galaxy was observed dur-
ing MUSE commissioning (Martinsson et al. in prep.). Be-
fore we downgrade them, the physical resolution of the ob-
servations is ∼ 240pc. The convolved images indicate that
the galaxy is roughly axisymmetric, with the brightest flux
consistent with the centre of the galaxy. From panel (a) we
note that both the inferred model solutions are in agree-
ment with the best fit to the high-resolution data. Despite
the rd = 0.4′′ MAP metallicity gradient estimate being a fac-
tor two shallower than the best fit, panel (b) shows this
solution is still consistent with the data. In fact it could be
argued that no solution is an exceptionally good description
of the data. The data indicates the galaxy has a downturn in
metallicity beyond r>∼1.3rd and therefore does not support
any simple exponential metallicity profile.
We actually find it quite unexpected that the model suc-
ceeds in recovering the metallicity profile. This is because the
galaxy demonstrably breaks our assumption that the ioniza-
tion parameter is anti-correlated to the metallicity (equa-
tion 2). In this galaxy the ionization parameter and metal-
licity are in fact positively correlated (see Fig. E1). Nev-
ertheless the model is perfectly able to recover the truth,
although since this is a single case it is not possible gener-
alise about the robustness of our model. We can, however,
infer that our derived metallicity gradients are not entirely
driven by ionization parameter gradients in galaxies.

NGC628 This galaxy, like the previous, appears to be a
SA(s)c galaxy (V91) with stellar mass log10

(
M∗/M�

)
= 10.3

(Querejeta et al. 2015). Before we downgrade it, the galaxy
physical resolution of the data is ∼ 120pc. Dissimilarly, how-
ever, NGC628 has a dearth of star forming regions in its cen-
tre. This is accentuated by the rd = 0.8′′ image the galaxy,
which is visibly lopsided and features a strong star forming
complex to the upper-right of the centre. Panel (c) indicates
that in the rd = 0.8′′ case our model is able to recover the
same result as the best fit. Whereas for the smaller rd = 0.4′′

case the model appears to perform less well, and is mildly
inconsistent with the best fit solution. Notably the solution
for the rd = 0.4′′ case favours a steeper metallicity profile
than rd = 0.8 solution. It is interesting to note that in this
case, with significant emission line flux outside the central
region, worse seeing does not lead automatically to a shal-
lower metallicity gradient, which one might näıvely expect.
On examination of panel (d), however, it becomes clear that
the rd = 0.4′′ MAP estimate is not actually a bad descrip-
tion of the data and arguably provides a better characteri-
zation of the data than either the rd = 0.8′′ MAP estimate
or high-resolution best fit. A plausible explanation is that
with worsening resolution, we become increasingly weighted
towards the metallicity of the brightest H ii regions. In the
high-resolution case it appears that the metallicity trend de-
viates from linear in this galaxy, and the small scale struc-
ture of the metallicity profile plays a central role. When the
relative importance of the PSF is larger (i.e. in the rd = 0.4′′
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Figure 6. Comparison between the true and model derived metallicity profiles for three galaxies: UGC463, NGC628 and NGC4980,

shown in descending order. (Left) We show the marginalized 2D probability contours for the central metallicity, log10 Z0, and metallicity
gradient, ∇r (log10 Z) (after stacking 50 mock realizations). Results are shown for two mock galaxies of different sizes: rd = 0.4′′ (orange)

and rd = 0.8′′ (blue). In addition to the 1σ & 2σ contours, we plot the MAP estimates as triangles. N.B. panels (a,c,e) are all scaled to

span the same axis ranges. (Centre) Using the full resolution data we construct a 2D histogram of metallicity versus radius. We weight
the histogram by the Hα flux of each data point. Overploted are the MAP solutions for the rd = 0.4′′ and rd = 0.8′′ models (orange and
blue respectively). Additionally we also show the exponential best-fit to the full resolution data (green). The locations of the the best-fit
parameters for the full resolution data are indicated on the left as a green star. Histograms are plotted on a linear scale, clipped between
the 1st and 99th percentiles. In panel (f) we indicate one bin with a red circle. This single bin contains 10% of the total Hα flux. (Right)

We show aligned images of the Hβ emission line for the two mocks and the full resolution data. The images are shown without noise,
and are plotted on a linear scale, clipped between the 1st and 99th percentiles. The white circle indicates a 0.7′′ FWHM PSF in the mock
images.
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case) these features are smeared out and the fit is no longer
affected by these structures. It should be noted that even
supplying a very high resolution SFR map does not resolve
this issue. A combination of the seeing and finite S/N pro-
duces an irreversible loss of information.
We direct the interested reader towards a similar study by
Mast et al. (2014) who also study resolution effects on the
metallicity gradient with NGC628 amongst other galaxies.
NGC4980 This galaxy was observed as part of the MUSE

Atlas of Disks (MAD) (Carollo et al. in prep.). It is
a SAB(rs)a pec? galaxy (V91) and has a stellar mass
log10

(
M∗/M�

)
= 9.2 (Querejeta et al. 2015). Before down-

grading, the physical resolution of the data is ∼ 80pc. Spiral
structure is not readily evident in the Hβ images, instead
the emission-line flux is dominated by a few H ii regions.
NGC4980 is extremely clumpy, for example ∼ 10% of the
total Hα flux is contained within one spaxel. As shown in
panel (e), both the rd = 0.4′′ and rd = 0.8′′ MAP solutions
are consistent with one another. However, they are both in-
consistent with the best fit solution to the extent that they
even have the opposite sign for the metallicity gradient.
Panel (f) shows the true metallicity profile of the galaxy. The
lower surface brightness emission supports a flat or slightly
negative metallicity gradient. But the flux is dominated by a
few bright H ii regions which have metallicities significantly
lower than fainter H ii regions at the same radius. As a result,
none of the solutions (including the low-z best fit) provide
a good depiction of the data. It should be stressed that the
model parameter uncertainties estimate the impact of the
random data errors, however, by definition they do not ac-
count for the systematic errors caused by applying the wrong
model.
It is challenging to define a meaningful metallicity gradient
in galaxies like NGC4980. At low redshift one could poten-
tially treat the bright low-metallicity H ii regions as outliers
from the true metallicity profile. Whereas as at higher red-
shifts one would treat the brightest emission as representa-
tive of the metallicity profile.

Testing our model against these three galaxies has
shown that our method does indeed have the power to re-
cover the metallicity profile even at the marginally resolved
limit. However, for one of the galaxies our model fails catas-
trophically. Clearly a larger sample is required to assess
whether such cases are common.

We repeat the previous exercise, downgrading IFS ob-
servations with a larger sample of nearby galaxies selected
from the 3rd CALIFA Data Release (Sánchez et al. 2016,
2012; Walcher et al. 2014). From this we select a sub-sample
that has morphological information (RA, Dec., inc., PA)
provided by HyperLEDA (Makarov et al. 2014). We exclude
galaxies that are either highly-inclined (≥ 70◦), have low Hα

SFR (< 1M� yr−1), or are very small (rd < 7′′). After prun-
ing the sample, 76 CALIFA galaxies remain. For each of
these galaxies we downgrade images of their emission lines8

and use our model to recover the metallicity profile.
In Fig. 7 we compare the model recovered values of

the central metallicity (log10 Z0) and the metallicity gradient
(∇r (log10 Z)) against those derived from the full-resolution
data. For this we employ two methods of determining the

8 Hβ , [O iii]5007, Hα, [N ii]6584 and [S ii]6717

true metallicity profile in the full-resolution data. Our pri-
mary method is the same as before, where we perform a Hα

flux weighted linear-fit to the metallicity derived in the indi-
vidual CALIFA spaxels. The metallicity is computed using
izi in the spaxels that have all emission lines ([O ii]3726,3729,
Hβ , [O iii]5007, Hα, [N ii]6584 and [S ii]6717,6731) with S/N>
3. We exclude spaxels that do not have [O iii]/Hβ and
[N ii]/Hα line-ratios consistent with emission from star-
formation. Unfortunately individual spaxels may not have
sufficient S/N which could bias our metallicity profile to-
wards that of the brightest H ii regions. Therefore to assess
the impact this might have we employ a second method for
determining the true metallicity profile. Instead of using in-
dividual spaxels, we first integrate the flux into elliptical
annuli (with major width 4′′) before deriving the metallicity
in each. This avoids excluding low-luminosity H ii regions
that, while faint, could be numerous enough have a non-
negligible contribution to the total flux. This second method
is somewhat limited, however, and might be skewed by the
emission of diffuse ionized gas particularly in the outskirts
of the galaxies. With this caution in mind, we indicate both
results in Fig. 7, where the data points represent the fit to
individual spaxels, and the end of the horizontal “errorbar”
is situated at the location of the fit to the annularly binned
data. It can clearly be seen that for most galaxies there is
little difference between the binned and unbinned methods.
However, a few galaxies do show large differences, indicating
that a “true” metallicity profile for these galaxies is perhaps
poorly defined.

In the figure we observe that there is a good agreement
between the results recovered by the model and the low-z
best fit, with most galaxies lying close to the 1:1 line. Many
of the galaxies that lie off the 1:1 line possess AGN (shown
as triangles in the plot). We define galaxies as possessing
an AGN if the innermost annular bin has [O iii]/Hβ and
[N ii]/Hα line-ratios typical of AGN (Kewley et al. 2001).
Unsurprisingly our model is unable the infer the metallicity
profiles of galaxies with AGN. So we reiterate that when
applying our method we must be careful to exclude such
galaxies.

We conclude that, in general, our model is able to re-
cover central metallicities and metallicity gradients from re-
alistic galaxies. However, while most galaxies lie close to the
1:1 line, a few of the galaxies with the steepest true metal-
licity gradients do not. Several of these exhibit large differ-
ences between our two methods for defining the true metal-
licity gradient, clearly indicating that a metallicity gradient
is poorly defined in these galaxies. Nevertheless, there are
a few galaxies for which our model significantly underesti-
mates the metallicity gradient. These, alongside NGC4980,
could be considered as cases where our model fails catas-
trophically.

3.3 Interpreting the observed metallicity gradient

Our analysis has highlighted some intrinsic limitations when
working with low-resolution data. Namely the effect that
clumpy emission will have on the inferred gradient, particu-
larly if the clumps have uncharacteristically low/high metal-
licities. This will become an important consideration if one
is to compare the metallicity gradients of galaxies between
the low and high redshift universes.
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Figure 7. Assessment of the models ability to recover the “true” metallicity profile for a sample of 76 CALIFA galaxies. As before,

we simulate mock versions of each galaxy at 2 different sizes, rd = 0.4′′ (top) and rd = 0.8′′ (bottom). (Left) We plot the model derived
value for the central metallicity vs the true value derived from the undegraded data. (Right) Similarly, we compare the model derived

metallicity gradient. In each panel galaxies are represented by blue circles or orange triangles, the former indicating regular star-forming
galaxies and the latter indicating galaxies with AGN. The vertical errorbars indicated the 1σ errors reported by the model fit. The
horizontal “errorbars” do not indicate the statistical error in the true gradient, but rather they indicate by how much the result would

change if the true profile was instead determined from azimuthally averaged data, see text for details. We indicate the 1:1 relation with
a black line. If our model is good at recovering the true metallicity profile we would expect most galaxies should lie along this line.

As mentioned in the introduction, there have been many
reports of inverted (positive) metallicity gradients in high-
redshift galaxies. This is often interpreted as either evidence
of possible accretion of metal poor gas to the centres of
galaxies, or evidence for centrally concentrated winds which

entrain metals in the outflow. Therefore it is intriguing that
a galaxy like NGC4980 that has a normal (negative) metal-
licity gradient can appear to have an inverted (positive) one
when analysed using the methodology normally applied to
distant galaxies. It would be inappropriate for us to claim
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that clumpy emission explains any or all of the observed pos-
itive metallicity gradients. However, we suggest that when
interpreting these results, it is important to consider the im-
plication that the positive gradients can be caused by low-
metallicity strongly star-forming clumps, whose metallicity
is not indicative of the overall metallicity profile.

In this section we have shown that our model performs
satisfactorily well in both ideal and realistic scenarios. Our
model is able to recover the metallicity gradients of barely
resolved galaxies, but we have identified that there are im-
portant considerations to be made with regards to the inter-
pretation. In the following section we will apply our method
to real observations as a proof on concept.

4 APPLICATION

In the previous section we successfully tested our model
against mock data. We shall now demonstrate the model ap-
plied to real IFS observations of high-redshift galaxies. This
will allow us to assess how well the model can constrain the
metallicity profile of distant galaxies.

4.1 Data

We will use MUSE observations of the Hubble Deep Field
South (HDFS) which were taken during the last commis-
sioning phase of MUSE (June–August 2014). MUSE is an
integral field spectrograph providing continuous spatial cov-
erage over a 1′×1′ FoV, across the wavelength range 4750Å
– 9300Å, with a spectral resolution of 2.3Å FWHM.

The data and its reduction (version 1.0)9are described
at length by Bacon et al. (2015). With the 54 exposures (27h)
it is possible to obtain a 1σ emission-line surface-brightness
limit of 1× 10−19 ergs−1 cm−2 arcsec−2. Here we use a more
recent reduction (version 1.24) that incorporates some minor
improvements in the uniformity and sky subtraction of the
data. However, for the sources that we concern ourselves
with here these modifications are not important. The PSF
in these observations is characterized by a Moffat profile
with parameters as given in Table 1. The final data cube is
sampled with equally sized voxels10 (0.2′′×0.2′′×1.25Å).

Our model requires a set of predetermined morpholog-
ical parameters: the location of the centre of the galaxy, its
inclination and the position angle of the major axis (PA).
The details of the measurement of these quantities are given
in Contini et al. (2016), but briefly they were determined
by running GALFIT (Peng et al. 2002) on the F814W HST
images (Williams et al. 1996), using a disc+bulge model.

We adopt the redshifts of the galaxies as those tabulated
by Bacon et al. (2015). We will also use the same object ID
numbers.

4.2 Analysis

To separate the nebular emission from the underlying stellar
component we do full-spectral fitting using the platefit

9 Public data products and catalogues are available at http://

muse-vlt.eu/science/
10 volumetric pixels

code described in Tremonti et al. (2004) and Brinchmann
et al. (2004). We process a spectrum as follows:

Redshift determination. Although we already know the
redshift of each galaxy, the galaxy’s own rotation will re-
sult in small velocity offsets from this value. We determine
the redshift of the spectrum using the autoz code described
by Baldry et al. (2014), which determines redshifts using
cross-correlations with template spectra. If there is a strong
correlation peak within ±500kms−1 of the galaxy’s redshift,
then we accept this peak as the redshift of the spectrum. If
no significant correlation peak is found within this range, we
assume the spectrum’s redshift to be the same as the galaxy
as a whole.
Stellar velocity dispersion. The stellar velocity dispersion

is determined using vdispfit11. This uses a set of eigen-
spectra, convolved for different velocity dispersions. From
this the best fit velocity dispersion is determined. This value
includes the instrumental velocity dispersion. If the best fit
velocity dispersion lies outside the range [10−300] kms−1

we assume the fit has failed and adopt a default value of
80kms−1. Such failures are typical when the stellar contin-
uum is faint or non-existent.
Continuum fitting. For the spectral fitting we use the

platefit spectral-fitting routine (Tremonti et al. 2004;
Brinchmann et al. 2004). platefit, which was developed
for the SDSS, fits the stellar continuum and emission lines
separately. In this continuum fitting stage, regions around
possible emission-lines are masked out. The stellar contin-
uum is fit with a collection of Bruzual & Charlot (2003)
stellar population synthesis model templates. The template
fit is performed using the previously derived redshift and ve-
locity dispersion. If the continuum fitting fails, i.e. because
the continuum has very low S/N, then we construct the con-
tinuum from a running-median filter with a 150Å width.
Emission-line fitting. The second platefit emission-line

fitting stage is now performed on the residual spectrum
(after continuum subtraction). The emission lines are each
modelled with a single Gaussian component. Doublets such
as [O ii]3726,3729 are fit with two Gaussian components. All
emission lines share a common velocity offset and a common
velocity dispersion. The velocity offset and velocity disper-
sion are not fixed, but are instead free parameters in the fit.
The amplitudes and associated errors are determined as part
of a Levenberg-Marquardt least-squares minimization. How-
ever, analysis of duplicate SDSS observations has shown that
these formal errors typically underestimate the true uncer-
tainties. Corrections for this can, however, be derived from
the duplicate observations (e.g. Brinchmann et al. 2013). We
use these corrections to rescale our formal uncertainties to
more representative values.

For this paper we make it a requirement that all our
emission-line flux measurements have S/N ≥ 5. Near the
bright centres of galaxies individual spaxels will satisfy this
criterion. However, at larger radii we need to coadd spaxels
to reach the required S/N. To combat the effects of seeing
we will need as much radial information as possible, and
therefore it is necessary to bin (aggregate) spaxels together.
There is, however, no perfect binning algorithm. We present

11 http://spectro.princeton.edu/idlspec2d_install.html
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Table 4. Galaxy properties: disc scale-length, stellar mass and
star-formation rate. These results were reported in Contini et al.

(2016), but we reproduce them here for convenience.

Galaxy rd log10 (M∗) log10 (SFR)

[arcsec] [M�] [M� yr−1]

HDFS-0003 0.660± 0.007 9.66± 0.14 0.24± 0.37
HDFS-0016 0.40 ± 0.01 8.74± 0.21 −0.65± 0.55

our adopted procedure in Appendix C. The method bins the
galaxy into annular sectors, and attempts to avoid binning
spaxels at very different radii, although this last point is far
from guaranteed. This should help minimize addition radial
resolution loss as a result of the binning. It should be noted
that these bins are not contiguous, i.e. non-adjacent spax-
els will be combined. In many cases the bins will be smaller
than the PSF, and therefore the derived fluxes will not be
statistically independent of one another.

4.3 Results

In this section we present the results of fitting our model
to real data. Using this we will discuss characteristics of
the method, outline certain limitations, and discuss future
improvements that could be made.

As examples we will show results for two galaxies, one
of which is well resolved (HDFS-0003), and another barely
resolved galaxy (HDFS-0016). These galaxies were selected
to represent these two extremes. Of the two, HDFS-0003
is the larger, more massive, and more strongly star forming
(see Table 4). Both galaxies have similar redshifts (z = 0.5637
and z = 0.4647, respectively), which means that the intrin-
sic physical resolution of both observations is approximately
4kpc FWHM. In our analysis we use the same set of emission
lines for both galaxies.

In Figs. 8 & 9 we present a comparison between the
observed emission-line fluxes and the model fit for the two
galaxies. The model reproduces the observed emission-line
fluxes in both. However, while the model is able to capture
the overall radial flux profile, it does not (by construction)
have the flexibility to match the observed azimuthal metal-
licity variations. This is especially evident in HDFS-0016
where the emission line fluxes are not single-valued at all
radii. In this galaxy it appears that the radial run of emis-
sion line fluxes could by described by two branches, with
the brightest branch originating from a star-forming clump
offset to the West of the galaxy centre.

We discussed in the previous section that star-forming
clumps can conceptually be divided into two categories: ei-
ther clumps that are bright, but have the same metallicity
as other gas at the same radius, and clumps which have un-
characteristically low/high metallicities. In the case of the
former the line ratios (but not line fluxes) would be single
valued as function of radius.12 However, HDFS-0016 falls
into the latter category as it is clear to the eye that the up-
per branch of fluxes has a consistently higher [O iii]/[O ii]
ratio. For a range of radii in HDFS-0016 there is no single
characteristic line-ratio.

12 This is not entirely true since seeing has a wavelength depen-
dence.

The existence of multiple branches in the flux profiles
can cause problems for the model fitting even if the line-
ratios are unaltered. One can envisage a scenario where,
for example, the model might have fit the upper branch in
[O iii], but the lower branch in [O ii]. Obviously this would
result in deriving an entirely incorrect best fit model. In-
deed Fig. 9 shows slight hints of this problem. Notably the
model fits the lower flux branch in all emission lines, except
for Hγ where the model fits in between the lower and upper
branches. Albeit relatively minor in this case, it is crucial to
be aware of this possible problem and assess its severity.

4.3.1 Validity of constant dust approximation

For our model we assume there is a constant attenuation
due to dust across the whole galaxy. Studying the Hβ and
Hγ profiles in both Figs. 8 & 9 one observes that the model
slightly underpredicts the Hβ flux in the centre of the galax-
ies. This would imply that there is perhaps a mild dust gra-
dient across the galaxy, with galaxy centres being slightly
more dusty than their outskirts.

Using high spatial-resolution grism spectroscopy Nelson
et al. (2016) identified radial dust variations in z=1.4 galax-
ies. They found that the most massive galaxies presented
the strongest variations, but less massive 109.2 M� galax-
ies exhibited almost no variation and little dust attenuation
overall.

We reperform our analysis of HDFS-0003 using a dust
model with the same radial dependence as Nelson et al.
(2016) propose for a 109.66 M� galaxy. The normalization
of this model is allowed as a free parameter. We find that
dust model produces a significantly worse fit to the data
than the constant dust model. Admittedly, since the Nelson
et al. (2016) dust models are based on z=1.4 galaxies they
may not be appropriate for our galaxies.

Using the new dust model changes many of the derived
best fit values. For example the inferred central metallicity
is increased by ∼ 0.14dex, however, the metallicity gradient
is bizarrely unaffected and changes by < 0.001dex/kpc.

Choosing a appropriate dust model is clearly important
for deriving the metallicity of galaxies. But, on the whole
the data appears largely consistent with our assumption of
a constant optical depth for the whole galaxy.

4.3.2 Parameter constraints

So far we have only discussed the quality of the model fits.
We will now discuss how well the model can constrain the
metallicity profile of these galaxies. In Figs. 10 & 11 we show
1D and 2D histograms of the derived model parameters for
both HDFS-0003 and HDFS-0016. We note that most of the
derived parameters are relatively well constrained. For ex-
ample in HDFS-0016 the errors on central metallicity and
metallicity gradient are ±0.1 dex and ±0.03 dex/kpc re-
spectively. These errors are more than sufficient to estab-
lish HDFS-0016 as possessing a significantly sub-solar cen-
tral metallicity and a positive metallicity gradient. The con-
straints on HDFS-0003 are tighter. Naturally the quality of
the constraints will vary with the S/N of the data. It is
therefore perhaps more interesting to discuss the correla-
tions between the modelled parameters.
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Figure 8. Summary of model fitting for visual quality assessment of galaxy HDFS-0003. (Top) We plot five images: four HST broadband
images, and the derived SFR map which is used as an input to the model. (Left) We show the radial flux profiles for all four emission-lines
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Figure 10. MCMC fitting results shown for galaxy HDFS-0003. We show both 1D and 2D marginalized histograms for all 5 parameters:

the total star-formation rate, SFRtot, central metallicity, log10 Z0, metallicity gradient, ∇r (log10 Z), ionization parameter at solar metallicity,
log10 U�, and V-band optical depth, τV . In each 1D histogram the vertical lines indicate the median (solid), ±1σ quantiles (dashed) and

±2σ quantiles (dash-dotted). All axes span a [−4σ ,4σ ] interval in their respective parameters. Letters label particular panels that we
refer to in the text.

It is clear from Panel A that the model produces a
very tight correlation between the total star-formation rate
and the V-band optical depth. Dustier model solutions are
fainter, so intrinsically higher SFRs are required to compen-
sate.

The model also shows a strong anti-correlation between
the metallicity gradient and central metallicity of a galaxy
(Panel C). This degeneracy is of course not surprising given

that data directly constrains the metallicity profile, not
the metallicity gradient, which is dependent on the central
metallicity. However, the situation may actually be more
complicated than this. For example in HDFS-0016, as de-
picted by Panels B & D, the ionization parameter at so-
lar metallicity, log10 U�, is (anti-)correlated with both the
metallicity gradient and central metallicity. HDFS-0003 does
not show this dependence between log10 U� and ∇r (log10 Z).
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Figure 11. MCMC fitting results shown for galaxy HDFS-0016. See Fig. 10 for details.

However, HDFS-0003 does show an interdependency be-
tween SFRtot, log10 Z0, log10 U� and τV .

Because we have assumed an intrinsic correlation be-
tween metallicity and ionization parameter, it is somewhat
difficult to unravel these dependencies. In essence metallic-
ity gradients and ionization-parameter gradients are one and
the same. It is this which allows us to mitigate against the
R23 degeneracy (the degeneracy between metallicity and ion-
ization parameter that arises from the limited set of emission
lines used here). However, as a consequence the ionization

parameter at solar metallicity, central metallicity and metal-
licity gradient are now inadvertently coupled.

Interestingly, the metallicity gradient in HDFS-0016 is
slightly bimodal (see Panel E). An effect which may in part
be explained by the dual-valued nature of the R23 degener-
acy, although this is hard to verify. Currently there is insuf-
ficient evidence to place an informative prior on log10 U�. If
in the future this were possible one could in theory achieve
a more precise measurement for central metallicity and the
metallicity gradient.

It is important to note that in our model testing we
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Table 5. Comparison of derived metallicity profile parameters
from two methods. One method is a simple linear fit to the metal-

licity derived in a series of annular bins. The other is the full model

fitting that accounts for seeing effects.

Galaxy Parameter
Simple Full

Annular Modelling

HDFS-0003

log10
(
Z0/Z�

)
+0.31±0.01 +0.26+0.01

−0.01[dex]

∇r log10 (Z) −0.026±0.002 −0.034+0.001
−0.002[dex/kpc]

HDFS-0016

log10
(
Z0/Z�

)
−0.28±0.02 −0.43+0.10

−0.13[dex]

∇r log10 (Z)
+0.016±0.004 +0.11+0.03

−0.03[dex/kpc]

have only verified the central metallicity and the metallicity
gradient parameters. We have not applied the same testing
scrutiny to the other parameters, so their values should not
be considered validated and used only with great care.

4.4 Discussion

As we have seen, we can use the model to constrain the true
metallicity gradient in galaxies. To emphasise the necessity
for correcting for the effects of seeing, we have also derived
the metallicity profiles of these galaxies without making any
corrections for seeing.

We extract emission-line fluxes in a series of elliptical
annular apertures (semi-major width 0.35′′) with axis-ratios
to match the galaxy. In each annulus we derive the metal-
licity following Maiolino et al. (2008, herein M08) , except
that our method differs slightly as we use the Charlot &
Fall (2000) dust absorption model. We use the same set of
emission lines as for the full modelling, but also include the
[O iii]4959 required for the R23 index.

In Table 5 we summarize the derived central metallici-
ties and gradients, and compare them to those derived from
the full modelling. As a cautionary note it can be dangerous
to compare metallicities derived from different methods and
calibrations (Kewley & Ellison (2008) provide a good discus-
sion of this). Nevertheless it is still interesting to compare
the results, as they should be broadly consistent.

HDFS-0003 is a well resolved galaxy, therefore the ef-
fects of seeing will be limited. Indeed both methods produce
shallow, negative metallicity gradients. Although the annu-
lar method is slightly shallower, this is not likely to be seeing
effect and is more probably due to differences between the
methods for deriving metallicity and/or the fact that the
annular method derives the dust in each annulus, allowing
for possible radial dust variations.

In stark contrast, HDFS-0016 will be much more af-
fected by seeing effects. The predominant effects of seeing
will be to flatten the metallicity gradient. And this is ex-
actly what is observed, the näıve annular method yields
a significantly flatter (but still positive) metallicity gradi-
ent. This method also estimates a ∼ 0.15dex higher central
metallicity. While this could entirely be due to difference be-
tween the methods for deriving metallicity, there are other
important factors to consider. If the galaxy truly has a steep
positive metallicity gradient, then a significant fraction of
the flux from the outer, higher metallicity material could be
scattered into the central bin. Thus the uncorrected central

metallicity may be much closer to the average metallicity of
the galaxy (although given the non-linear nature of the con-
nection between metallicity and emission-line flux this may
not necessarily be the case in all galaxies).

As a final cautionary note, throughout this section we
have made use of high-resolution SFR maps to provide a
more realistic model for these galaxies. Whilst employing
SFR maps may be theoretically optimal, in practice good
SFR maps are challenging to obtain. The SFR maps con-
tain systematic and random errors. For example in Fig. 9
we observe a star-forming clump to the West of the galaxy
centre which is seen in the HST images. This clump is how-
ever not apparent in the derived SFR maps. Additionally
the SFR maps can be contaminated by other galaxies in the
(fore/back)ground. Both the systematic and random uncer-
tainties, which are not factored into the modelling, may limit
or even negate their effectiveness.

5 CONCLUSIONS

It is important to correct for the effects of seeing when de-
termining metallicity gradients in galaxies. Here we have
outlined an approach that allows us to directly model the
emission-line fluxes. By fitting this model to the data we can
infer the true metallicity profile of a galaxy in the absence
of seeing. Unlike other existing approaches, our method is
general can be applied to many IFS studies of distant galax-
ies.

We use theoretical photoionization models to predict
the emission-line ratios as a function of metallicity and ion-
ization parameter. As such the model can be applied to
a flexible set of observed emission-lines, enabling a self-
consistent analysis across a range of redshifts and a variety of
instrument wavelength coverages. To alleviate degeneracies
we enforce a correlation between metallicity and the ioniza-
tion parameter. We, however, do permit global ionization-
parameter variations, accommodating for both possible red-
shift and environmental evolution of the ionization parame-
ter.

We have performed an extensive set of tests to validate
the method and understand its limitations. In summary:

(i) By creating noisy model realizations for a variety of
S/N, inclination, and seeing conditions, we have established
that the model is able to recover the metallicity profile even
in adverse conditions. In addition the method produces ap-
propriate error estimates.

(ii) We have downgraded observations of nearby galaxies
to test our method against realistic mock data. With limited
resolution the metallicity profile will inevitably be weighted
towards the metallicity of the brightest clumps.

(iii) This effect is not wholly reversible, even if the under-
lying SFR distribution is known a priori. Providing a good
map of the underlying SFR distribution is challenging, and
proves to be the greatest limitation for our model.

(iv) The ability for bright star-forming clumps to skew the
measured metallicity gradient should be taken into account
when interpreting metallicity gradient studies.

In future work we will apply this method to allow us de-
rive the metallicity profiles of galaxies observed with MUSE.
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APPENDIX A: MODEL LINE RATIOS

In Fig. A1 we show the D13 model predictions for a set of
standard line-ratios. We show two versions: one with tracks
of constant ionization parameter, log10 U , and the other with
tracks of constant ionization parameter at solar metallicity,
log10 U�. Both versions span the full model grid range. To
enable this the log10 U� parameter must span a large range
in values ∼ (−5.0,−1.4). As a result the grids are artificially
clipped at extreme values of log10 U�. I.e. at high metallic-
ities the low log10 U� model tracks pile-up and, vice versa,
at low metallicities the high log10 U� tracks pile-up. This
is most readily seen in O32 line-ratio. In fact there is only
a very narrow safe range ∼ (−3.4,−3.0) of log10 U� values
for which there is no clipping at any metallicity. At first
glance this may appear bad, however, no realistic galaxy
would span both extremes in metallicity. The safe range will
vary on a galaxy to galaxy basis. If clipping becomes a sig-
nificant issue the inferred log10 U� parameter should become
degenerate and unbounded. Visual inspection of plots, such
as those shown in Fig. 8, would reveal if clipping has become
an issue.

In Fig. A1 we also compare the model grid predictions
with the parametrizations from M08. We note that there are
some discrepancies, especially at low metallicities where the
D13 models are unable to reproduce the highest O32 values.

It is interesting to also note that in O32, which is mostly

sensitive to ionization conditions, the M08 parametriza-
tion shows a similar dependence to the tracks of constant
log10 U�. Much like our approach, M08 implicitly encodes
some empirical dependence of ionization conditions as a
function of metallicity.

APPENDIX B: MODEL SYSTEMATICS

In Section 3.1.1 we briefly discussed systematic offsets in the
model. Here we expand upon this by exploring a larger vari-
ety of metallicity profiles (i.e. combinations of log10

(
Z0/Z�

)
and ∇r (log10 Z)). This is shown in Fig. B1, where we fit the
model to data generated by the model itself. The differences
that arise indicate systematic offsets.

It can be clearly seen that portions of parameter show
strong systematic offsets, typically towards steeper gra-
dients. However, there is also a distinguishable safe re-
gion that runs diagonally from models with high metallic-
ity and negative gradients to models with low metallicity
and positive gradients (i.e. from top-left to bottom-right in
Fig. B1). On the whole models with shallow inferred gra-
dients (|∇r (log10 Z)|< 0.2dex/kpc) are free from strong sys-
tematics. However, one cannot truly generalize this state-
ment since this will depend upon, amongst other things, the
size of the galaxy, the PSF of the seeing and the S/N of the
observations.

There are two related effects that can explain the large
systematics we observe. Firstly we notice that the mod-
els with large systematic offsets tend to pileup around
∼±0.35dex/kpc with large errors. This is highly indica-
tive of model degeneracy and is to be expected since, in
the model we clip metallicities to the lower/upper bounds
of the D13 model grid. As a direct result, models with low
central metallicities and negative gradients become almost
identical. The same is also true for models with high central
metallicities and positive gradients.

The second reason is that we adopt a flat prior on
the metallicity gradient, which, as previously noted in Sec-
tion 2.4.1, is not the minimally informative prior. It is
fundamentally harder to distinguish ∇r (log10 Z) = 0.4 &
0.5dex/kpc models than it to distinguish ∇r (log10 Z) = 0.1
& 0.2dex/kpc models. This is true even in the absence of
the aforementioned clipping issue, and this should be re-
flected in the prior by down-weighting steeper gradients. By
choosing a broad, flat prior that includes unrealistic extreme
metallicity gradients, we exacerbate the systematics.

A way to partially resolve the issue of systematic errors
could be to adopt a joint prior on log10 Z0 and ∇r (log10 Z)
which traces the safe region, effectively eliminating the prob-
lematic portions of the parameter space. This of course
makes explicit assumptions about the nature of metallic-
ity gradients, but it would formalize such assumptions in a
tractable manner.

To summarize the origin of the systematic errors stem
from the finite extent of the D13 model grids. When the
model infers galaxies to have extreme metallicity gradients,
these should be treated with scepticism. Investigation of
plots such as Fig. 8 will reveal if a the metallicity gradient
is poorly constrained and unbounded. Overall, one must be
acutely aware of the tendency of the model to be biased to-
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Figure A1. Theoretical model predictions for line ratios: N2 = log10 ([N ii]6584/Hα), R23 = log10 (([O ii]3726,3729+ [O iii]4959,5007)/Hβ )

and O32 = log10 ([O iii]5007/[O ii]3726,3729). (Left) We show the D13 models grids with tracks of constant ionization parameter, log10 U .
(Right) We show the same model grids, but instead with tracks of constant ionization parameter at solar metallicity, log10 U�, assuming
the coupling between metallicity and the ionization parameter (equation 2). All plots show the parametrizations of M08 as a red dashed

line.
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Figure B1. Model systematics spanning a wide range of log10
(
Z0/Z�

)
and ∇r (log10 Z) combinations. The true input model parameters are

indicated by circles. Crosses are plotted at the values inferred by the model. Size of the crosses indicate the ±1σ errors derived from the
1D marginalized posterior distributions on each parameter. Thick lines join the crosses to the true value, thereby indicating the systematic

offset. Colours are added primarily to enhance clarity. Other models input parameters are the same in each model SFRtot = 1M� yr−1,

rd = 0.4′′, log10 U� = −3dex, τV = 0.7, however, they remain free parameters in the fitting. We use a constant S/N = 6 as defined on the
peak flux of Hβ line. At high metallicity [O ii]3726,3729 and [O iii]5007 become faint and have insufficient S/N to fit the model. Therefore

models with high central metallicities and steeply positive metallicity gradients (i.e. the upper-right corner) are missing from this plot.

In fact this is in itself an unrelated (but nonetheless important) selection bias on the galaxies we can study.

wards steeper gradients. However, a careful choice in priors
may be able to mitigate against the systematics.

APPENDIX C: SPAXEL BINNING
ALGORITHM

Here we outline our binning algorithm for aggregating spax-
els such that the coadded spectrum meets certain accep-
tance criteria. In this work our S/N will be defined such
that the set of emission-line fluxes are all above a minimum
S/N threshold.

Any form of binning trades spatial information for an in-
creased S/N. This algorithm is intended to reduce the impact
of radial information loss, while extracting as many bins as
possible, out to large radii. We therefore need to know what
is the galactocentric radius of each spaxel. With all our data

we have higher-resolution images that provides us with accu-
rate estimates for the centre of the galaxy, inclination of the
galaxy, and its position angle on the sky. This inclination is,
however, not a good match to the lower-resolution data we
are binning. We use Galfit to fit a 2D Gaussian function
to a narrow-band image of a Balmer-series emission line. We
fix the galaxy centre and PA to that of the high-resolution
imaging, and obtain the axis ratio of the narrow-band im-
age. Using these four parameters, we assign radial, ri, and
azimuthal coordinates, θi. to each spaxel.

The binning algorithm is as follows:

(i) Loop over all spaxels individually. Perform spectral
fitting on each. If the spaxel’s S/N is above the set threshold,
assign it a unqiue bin ID number remove spaxel from future
binning.

(ii) For each remaining unbinned spaxel, coadd the spaxel

MNRAS 000, 1–25 (2017)
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with other spaxels within ∆r and ∆θ of the spaxel’s coordi-
nates. (∆r and ∆θ define some initial bin size in radial coor-
dinates.) Perform spectral fitting on the coadded spectrum
and record the S/N of the weakest emission line in this bin.

(iii) Find the bin with the lowest S/N, but still above the
S/N threshold. Assign these spaxels with a bin ID number,
and remove them from future binning.

(iv) Repeat steps (ii) & (iii) until there are no bins above
threshold.

(v) Increase ∆r and/or ∆θ (i.e. increase bin size) and goto
step (ii). These increases follow some predefined sequence.
Once ∆r and/or ∆θ reach a maximum size limit, continue to
next step.

(vi) For each remaining unbinned spaxel. Accrete the
spaxel to the nearest bin at a greater radius than it. If the
S/N of the new bin is greater than previous then record
the new bin. Otherwise discard the spaxel and leave the bin
unchanged.

APPENDIX D: SFR MAPS

In order to fit our model to the emission-line data we re-
quire the SFR distribution as an input. We could simply fit
our data with an exponentially declining SFR density (see
equation 11), but, as discussed in section 3.2, clumpy star
formation can affect the inferred metallicity profile. For this
reason, we wish to input a best-guess SFR map.

To generate these high-resolution SFR maps we use a
combination of multi-band13 HST imaging and stellar pop-
ulation synthesis (SPS) modelling. Maps of the SFR and
other derived quantities will be published by Shirazi et al.
(in prep.). The modelling procedure is described in detail by
Kauffmann et al. (2003) and Gallazzi et al. (2005). For the
SPS models we adopt a star formation history which is a
combination of an exponentially declining SFR and super-
imposed random bursts. The photometry is calculated using
the Bruzual & Charlot (2003) stellar template library. Stellar
fluxes are attenuated by dust, with the adopted attenuation
curve depending on the stellar age. Young stars (< 10Myr)
are attenuated by a τ(λ ) ∝ λ−1.3 power-law, whilst older
stars will be attenuated by a shallower τ(λ ) ∝ λ−0.7 power-
law. This dust model was proposed by Charlot & Fall (2000).

For a reliable SPS analysis we require a minimum
S/N ≥ 5 in the (F450W−F606W) colour image. To reach
this we bin the data using the weighted Voronoi tessellation
by Diehl & Statler (2006), a generalization of the algorithm
by Cappellari & Copin (2003). Using the SPS modelling we
calculate the total SFR in each bin. However, we wish to
partially restore the resolution lost by binning. We therefore
redistribute the binned SFR into the individual pixels using
the same proportions as the pixel F814W flux.

Following this procedure we can use high-resolution
photometry to produce SFR maps. We will use these maps
as inputs for our emission-line modelling.

13 F300W, F450W, F606W and F814W
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log10 U (Z) = −0.8 log10 (Z/Z�)− 2.99

Figure E1. Correlation between ionization parameter and metal-
licity for UGC463. The individual spaxels are shown as a grey

histogram, weighted by the Hα flux of each spaxel. The orange

line indicates the best fit solution for the log10 U� assuming the
fixed coupling between the ionization parameter and metallicity

(i.e. equation 2).

APPENDIX E: ADDITIONAL PLOTS

In Fig. E1 we show the correlation between ionization pa-
rameter and metallicity in UGC463. This positive correla-
tion shows a very different dependence from the typical anti-
correlation that we assume.

In Fig. E2 we show Quantile-Quantile (Q-Q) for models
shown in Tables 2 & 3. If there are no systematic offsets then
the data should pass through the (0,0) coordinate (within
error). If the model errors are normally distributed then they
should match the black one-to-one line.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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Figure E2. Quantile-Quantile plots showing the distribution of inferred model solutions relative to the true input value. The z-scores
of the 50 realizations are plotted on the y-axis, whilst the x-axis shows the z-scores if they were normally distributed. The orange lines

indicate a 90% confidence interval.
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